KR20140137795A - 에피택셜 웨이퍼 - Google Patents

에피택셜 웨이퍼 Download PDF

Info

Publication number
KR20140137795A
KR20140137795A KR20130058794A KR20130058794A KR20140137795A KR 20140137795 A KR20140137795 A KR 20140137795A KR 20130058794 A KR20130058794 A KR 20130058794A KR 20130058794 A KR20130058794 A KR 20130058794A KR 20140137795 A KR20140137795 A KR 20140137795A
Authority
KR
South Korea
Prior art keywords
doping concentration
buffer layer
active layer
substrate
growth
Prior art date
Application number
KR20130058794A
Other languages
English (en)
Other versions
KR102098297B1 (ko
Inventor
강석민
김지혜
하서용
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to KR1020130058794A priority Critical patent/KR102098297B1/ko
Publication of KR20140137795A publication Critical patent/KR20140137795A/ko
Application granted granted Critical
Publication of KR102098297B1 publication Critical patent/KR102098297B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02293Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process formation of epitaxial layers by a deposition process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

에피택셜 웨이퍼에 관한 것이다.
에피택셜 웨이퍼는 기판, 그리고 상기 기판 상에 형성되는 버퍼층과 상기 버퍼층 상에 형성된 활성층을 포함하는 에피택셜 구조체를 포함하되, 상기 버퍼층은 상기 기판 상에 형성되며, 소정의 도핑 농도를 유지하는 제1구간, 그리고 상기 제1구간 상에 형성되며, 상기 활성층에 가까울수록 도핑 농도가 점차적으로 감소하는 제2구간을 포함한다.

Description

에피택셜 웨이퍼{EPITAXIAL WAFER}
본 발명은 에피택셜 웨이퍼에 관한 것으로, 보다 상세하게는 표면 결함 (Surface Defect)이 감소된 에피택셜 웨이퍼에 관한 것이다.
에피택셜 성장(epitaxial growth)은 단결정 기판 위에 새로운 층을 적층하여 단결정층을 형성하는 성장 방법이다.
에피택셜 웨이퍼(epitaxial wafer)는 실리콘 웨이퍼 위에 화학 증착법을 이용해 또 다른 단결정막을 성장시킨 것으로서, 전기적 특성이 우수하여 다양한 분야에 적용된다.
에피택셜 웨이퍼의 제조 시 형성되는 결함(이하, '에피 결함'이라 칭함)은, 격자의 기저면으로부터 생성된 결함, 격자의 틀어짐으로 인한 결함, 웨이퍼 표면에서 생성된 결함 등 그 종류가 다양하다.
이러한 에피 결함들 중 특히 표면 결함은 에피택셜 웨이퍼의 품질에 직접적으로 영향을 미칠 수 있다.
따라서, 표면 결함을 억제하여 특성 및 수율이 우수한 고품질의 에피택셜 웨이퍼를 제조하기 위한 방법이 필요하다.
본 발명이 해결하고자 하는 기술적 과제는 표면 결함을 줄임으로써 고품질의 에피택셜 웨이퍼를 제공하는 것이다.
본 발명의 일 실시 예에 따른 에피택셜 웨이퍼는 기판, 그리고 상기 기판 상에 형성되는 버퍼층과 상기 버퍼층 상에 형성된 활성층을 포함하는 에피택셜 구조체를 포함하되, 상기 버퍼층은 상기 기판 상에 형성되며, 소정의 도핑 농도를 유지하는 제1구간, 그리고 상기 제1구간 상에 형성되며, 상기 활성층에 가까울수록 도핑 농도가 점차적으로 감소하는 제2구간을 포함한다.
상기 제2구간의 도핑 농도는 연속적으로 변화할 수 있다.
상기 제2구간의 도핑 농도는 선형적 또는 비선형적으로 변화할 수 있다.
상기 에피택셜 웨이퍼의 기저면 전위 결함 밀도는 0.1개/cm2이하일 수 있다.
상기 활성층의 표면 결함 밀도는 0.1개/cm2이하일 수 있다.
본 발명의 실시 예에 의하면, 기판과 활성층 사이에 버퍼층을 저속 성장으로 1차 성장시킴으로써, 에피택셜 구조체의 초기 성장 단계에서 발생하는 내부 결함인 기저면 전위 결함의 밀도를 0.1개/cm2 이하로 줄일 수 있다.
또한, 활성층에 가까워질수록 도핑 농도가 감소하도록 버퍼층을 2차 성장 시킴으로써, 격자 내부의 결함을 줄이고 전자의 빠른 이동이 이루어지도록 하여 전류 밀도, 브레이크다운 전압 및 순방향 전류을 향상시키는 효과가 있다. 또한, 반도체 소자의 성능을 좌우하는 표면 결함 밀도 또한 0.1개/cm2 이하로 제어하는 것이 가능하다.
또한, 도핑 농도를 연속적으로 변화시키는 성장 공정을 통해서 버퍼층 성장 공정과 활성층 성장 공정을 단속시키지 않고 자연스럽게 연이어 진행할 수 있다. 즉, 버퍼층 성장 공정으로부터 활성층 성장 공정에 이르기까지, 반응 소스의 주입을 중단시키지 않는 상태로(성장 공정을 중단하지 않는 상태로) 연속적으로 진행될 수 있다.
도 1은 본 발명의 일 실시 예에 따른 에피택셜 웨이퍼의 단면도이다.
도 2는 본 발명의 일 실시 예에 따른 에피택셜 웨이퍼 제조 방법을 나타낸 순서도이다.
도 3은 본 발명의 일 실시 예에 따른 에피택셜 웨이퍼 제조 방법에서의 성장 조건을 나타낸 예시 도면이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시 예를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제2, 제1 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제2 구성요소는 제1 구성요소로 명명될 수 있고, 유사하게 제1 구성요소도 제2 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
층, 막, 영역, 판 등의 부분이 다른 부분 위에 있다고 할 때, 이는 다른 부분 바로 위에 있는 경우 뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 어떤 부분이 다른 부분 바로 위에 있다고 할 때에는 중간에 다른 부분이 없는 것을 뜻한다.
이하, 첨부된 도면을 참조하여 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 대응하는 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
본 발명의 실시 예에 따르면, 에피택셜 웨이퍼의 표면 결함 밀도(surface defect density)를 줄일 수 있는 방법을 제공한다. 이러한 에피택셜 웨이퍼의 표면 결함 밀도는 초기에 투입되는 반응 가스의 양(flux), 성장 온도, 압력, 전체 반응 가스의 양, 탄소/실리콘(C/Si) 비율(ratio), 실리콘/수소(Si/H2)비율 등의 변수들에 의해서 달라질 수 있다.
본 발명의 실시 예에서는 이러한 표면 결함 밀도를 0.1/cm2 이하(즉, 1 cm2 당 0.1개 이하의 결함)로 줄이기 위한 방법을 제공하며, 이를 위해 성장 과정 중 도핑 농도를 제어하는 방법을 이용한다. 이는 이하 첨부된 도면들에 관한 상세한 설명을 통해 명확히 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시 예에 따른 에피택셜 웨이퍼의 단면도이다.
도 1을 참조하면, 에피택셜 웨이퍼(100)는 기판(110), 기판(110) 상에 형성된 버퍼층(buffer layer, 120), 버퍼층(120) 상에 형성된 활성층(active layer, 130)을 포함한다. 버퍼층(120) 및 활성층(130)은 모두 에피택셜 성장에 의하여 형성되는 것으로, 이를 통칭하여 에피택셜 구조체라고 할 수 있다.
기판(110)은 최종 제작하고자 하는 소자, 제품에 따라 상이해질 수 있다.
일 예로, 기판(110)은 실리콘 카바이드(Silicon Carbide: SiC) 계열의 웨이퍼(4H-SiC웨이퍼 또는 6H-SiC 웨이퍼)일 수 있다.
기판(110)이 실리콘 카바이드 계열의 웨이퍼인 경우, 에피택셜 구조체도 도핑된 실리콘 카바이드 계열로 형성될 수 있다. 또한, 기판(110)이 실리콘 카바이드(SiC) 계열의 웨이퍼인 경우, 에피택셜 구조체는 모두 n형 전도성 실리콘 카바이드계, 즉 실리콘 카바이드 나이트라이드(SiCN)로 형성될 수 있다. 그러나, 반드시 이에 한정되는 것은 아니고 에피택셜 구조체는 모두 p형 전도성 실리콘 카바이드계, 즉 알루미늄 실리콘 카바이드 (AlSiC)로 형성될 수도 있다.
기판(110)은 5×1018/cm3내지 1×1019/cm3 의 도핑 농도를 가지도록 마련될 수 있다.
버퍼층(120)은 기판(110)과 활성층(130) 간의 격자 상수(lattice constant) 불일치로 인한 결정 결함을 줄이고 누설 전류 및 브레이크다운 전압(break down voltage)의 완충 작용을 위하여 마련된 층이다.
버퍼층(120)은 소정의 도핑 농도를 유지하는 제1구간(121)과, 도핑 농도가 연속적으로 변하는 제2구간(122)을 포함할 수 있다. 예를 들어, 버퍼층(120)의 제1구간(121)은 도핑 농도가 5×1017/cm3내지 5×1018/cm3로 형성될 수 있다.
버퍼층(120)의 제1구간(121)은 0.5μm 내지 1 μm의 두께를 가지도록 마련될 수 있다.
버퍼층(120)의 제2구간(122)은 도핑 농도가 연속적으로 변하는 구간이다. 이에 따라, 제1구간(121)에 접하는 면(A)에서의 도핑 농도와 활성층(130)과 접하는 면(B)에서의 도핑 농도가 서로 상이하다. 제2구간(122)에서 도핑 농도는 활성층(130)에 가까워질수록 점차적으로 감소하여, 활성층(130)과 접하는 면(B)에서는 활성층(130)의 도핑 농도와 같아지도록 제어될 수 있다.
활성층(130)은 버퍼층(120)의 제2구간(122) 상에 형성되며, 버퍼층(120)의 제2구간(122)과의 경계면(B)에서의 도핑 농도와 동일하거나 유사한 도핑 농도를 가지도록 마련될 수 있다. 예를 들어, 활성층(130)의 도핑 농도는 1×1015/cm3 내지 5×1016/cm3일 수 있다.
한편, 활성층(130)은 목표에 맞는 두께로 제조될 수 있다.
전술한 구조의 에피택셜 웨이퍼는, 기저면 전위 결함(Basal Plane Dislocation, BPD) 밀도가 0.1개/cm2이하이고, 활성층(130)의 표면 결함 밀도가 0.1개/cm2이하로 제작될 수 있다.
이러한 에피택셜 웨이퍼는 다양한 반도체 소자에 적용될 수 있다.
도 2는 본 발명의 일 실시 예에 따른 에피택셜 웨이퍼 제조 방법을 나타낸 순서도이다. 그리고 도 3은 본 발명의 일 실시 예에 따른 에피택셜 웨이퍼 제조 방법에서의 성장 조건을 나타낸 예시 도면이다.
이하, 도 2의 순서도를 중심으로 도 3을 참조하여 본 발명의 일 실시 예에 따른 에피택셜 웨이퍼의 제조 방법에 관하여 상세히 설명한다.
도 2를 참조하면, 반응 챔버 내에 기판(110)을 마련한다(S110). 여기서, 기판(110)은 그 표면에 발생된 자연 산화막이 제거되도록 세정된 상태로 마련된다. 또한, 반응 챔버는 그 내부가 클리닝(cleaning)된 상태로 준비된다.
다음으로, 챔버 내에 에피택셜 성장을 위한 성장 소스, 도핑을 위한 도핑 소스 및 희석 가스를 포함하는 반응 가스를 주입하며, 소정의 도핑 농도를 유지하면서 버퍼층(120)을 1차 성장 시킨다. 이에 따라, 버퍼층(120)의 제1구간(121)이 성장된다(S120).
여기서, 에피택셜 구조체를 성장시키기 위한 성장 소스는 에피택셜 구조체의 피적층 대상인 기판(110)의 재질 및 종류에 따라서 상이해질 수 있다. 또한 실제 도핑에 관여할 도핑 소스 또한 도핑될 타입(N 타입 또는 P 타입)에 따라 상이해질 수 있다.
일 예로, 기판(110)으로 실리콘 카바이드 계열의 웨이퍼가 이용되는 경우, 에피택셜 성장을 위한 성장 소스로는 그 기판과 격자 상수 일치가 가능한 물질로서 SiH4+C3H8+H2, MTS(CH3SiCl3), TCS(SiHCl3), SixCx 등의 탄소 및 규소를 포함하는 실리콘 화합물이 이용될 수 있다. 그리고 기판(110) 상에 형성될 에피택셜 구조체를 N 타입으로 도핑 하고자 하는 경우, 도핑 소스로는 질소 가스(N2)등의 5족 원소의 물질이 이용될 수 있다.
아래에서는, 설명의 편의 및 집중을 위해, 실리콘 카바이드 계열의 기판에 질소 가스(N2)를 도핑 소스로 하여 에피택셜 도핑 성장을 시키는 경우를 가정하여 설명하기로 한다. 또한 도핑 소스인 질소 가스를 희석할 용도의 희석 가스로는 수소 가스(H2)가 이용되는 것으로 가정하여 설명한다.
상기 S120 단계의 버퍼층 1차 성장 공정에서, C/Si 비는 0.6 내지 1.0이고, 성장 온도는 1500°C 내지 1800°C 로 유지되며, 성장 압력은 100mbar 내지 200 mbar로 유지될 수 있다. 또한, Si/H2 비는 0.01 내지 0.05로 일정하게 유지될 수 있다. 이에 따라, 버퍼층(120)이 일정한 도핑 농도로 1차 성장될 수 있다.
한편, 버퍼층 1차 성장 공정에서 도핑 소스의 주입량은 100 ml/min 내지 300 ml/min로 조절될 수 있다.
이에 따라, 도핑 농도가 5×1017/cm3 내지 5×1018/cm3 인 버퍼층(120)의 제1구간(121)이 0.5㎛ 내지 1㎛ 두께로 얻어질 수 있다.
다음으로, 챔버 내에 반응 가스를 연이어 주입하되, 도핑 농도를 연속적으로 감소시키면서 버퍼층(120)을 2차 성장 시킨다. 이에 따라, 버퍼층(120)의 제2구간(122)이 성장된다(S130).
도 3에 도시된 바와 같이, 버퍼층(120)의 제2구간(122)은 활성층(130)에 가까울수록 도핑 농도가 점차적으로 감소한다.
예를 들어, 제2구간(122)의 도핑 농도는, 버퍼층(120)의 제1구간(121)과 접하는 경계면(A)에서는 5×1017/cm3 내지 5×1018/cm3이고, 활성층(130)에 가까워질수록 점차적으로 감소하여, 활성층(130)과의 경계면(B)에서는 1×1015/cm3 내지 5×1016/cm3로 조절될 수 있다.
상기 S130 단계의 버퍼층 2차 성장 공정에서, 도핑 농도는 다른 성장 조건을 유지한 상태에서 Si/H2 비를 조절하여 제어될 수 있다. 또한, Si/H2 비는 성장 소스의 주입량을 조절하여 제어될 수 있다. 예를 들어, 버퍼층 2차 성장 공정에서, 성장 소스 주입량을 점차적으로 증가시켜 Si/H2 비가 0.1 내지 0.2에서 05 내지 0.6으로 증가하도록 조절할 수 있다.
한편, 도 3에 도시된 바와 같이, 버퍼층 2차 성장 공정에서, 도핑 농도는 선형적으로 증가하거나 비선형적으로 증가하도록 제어될 수 있다. 도핑 농도의 변화량은 도핑 소스의 주입량에 따라서도 제어될 수 있다.
1차 및 2차 성장 공정을 통해 버퍼층(120)은 0.5mm 내지 1mm의 두께로 성장할 수 있다.
다음으로, 챔버 내에 반응 가스를 연이어 주입하되, 소정의 도핑 농도로 활성층(130)을 성장 시킨다(S140).
상기 S140 단계의 활성층 성장 공정에서, C/Si 비는 0.6 내지 1.5이고, 성장 온도는 1550°C 내지 1700°C로 유지되며, 성장 압력은 90mbar 내지 200 mbar로 유지될 수 있다. 또한, Si/H2 비는 0.1 내지 0.5로 조절될 수 있다.
활성층 성장 공정에서 활성층(130)의 도핑 농도는 도핑 소스의 주입량에 따라 달라질 수 있다. 예를 들어, 활성층(130)의 도핑 농도는 1×1015/cm3 내지 5×1016/cm3일 수 있다.
한편, 활성층 성장 공정은 활성층(130)의 두께가 목표 두께를 만족시킬 때까지 지속될 수 있다.
전술한 본 발명의 실시 예에 따르면, 기판과 활성층 사이에 버퍼층을 저속 성장으로 1차 성장시킴으로써, 에피택셜 구조체의 초기 성장 단계에서 발생하는 내부 결함인 기저면 전위 결함(BPD)의 밀도를 0.1개/cm2 이하로 줄일 수 있다.
또한, 활성층에 가까워질수록 도핑 농도가 감소하도록 버퍼층을 2차 성장 시킴으로써, 격자 내부의 결함을 줄이고 전자의 빠른 이동이 이루어지도록 하여 전류 밀도(current density), 브레이크다운 전압(breakdown voltage) 및 순방향 전류(forward current)을 향상시키는 효과가 있다. 또한, 반도체 소자의 성능을 좌우하는 표면 결함 밀도 또한 0.1개/cm2 이하로 제어하는 것이 가능하다.
또한, 도핑 농도를 연속적으로 변화시키는 성장 공정을 통해서 버퍼층 성장 공정과 활성층 성장 공정을 단속시키지 않고 자연스럽게 연이어 진행할 수 있다. 즉, 버퍼층 성장 공정으로부터 활성층 성장 공정에 이르기까지, 반응 소스의 주입을 중단시키지 않는 상태로(성장 공정을 중단하지 않는 상태로) 연속적으로 진행될 수 있다.
이상에서는 본 발명의 실시 예를 참조하여 설명하였지만, 해당 기술 분야에서 통상의 지식을 가진 자라면 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 쉽게 이해할 수 있을 것이다.

Claims (5)

  1. 기판, 그리고
    상기 기판 상에 형성된 버퍼층과 상기 버퍼층 상에 형성된 활성층을 포함하는 에피택셜 구조체를 포함하되,
    상기 버퍼층은,
    상기 기판 상에 형성되며, 소정의 도핑 농도를 유지하는 제1구간, 그리고
    상기 제1구간 상에 형성되며, 상기 활성층에 가까울수록 도핑 농도가 점차적으로 감소하는 제2구간을 포함하는 에피택셜 웨이퍼.
  2. 제1항에 있어서,
    상기 제2구간의 도핑 농도는 연속적으로 변화하는 에피택셜 웨이퍼.
  3. 제2항에 있어서,
    상기 제2구간의 도핑 농도는 선형적 또는 비선형적으로 변화하는 에피택셜 웨이퍼.
  4. 제1항에 있어서,
    상기 에피택셜 웨이퍼의 기저면 전위 결함 밀도는 0.1개/cm2이하인 에피택셜 웨이퍼.
  5. 제4항에 있어서,
    상기 활성층의 표면 결함 밀도는 0.1개/cm2이하인 에피택셜 웨이퍼.
KR1020130058794A 2013-05-24 2013-05-24 에피택셜 웨이퍼 KR102098297B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130058794A KR102098297B1 (ko) 2013-05-24 2013-05-24 에피택셜 웨이퍼

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130058794A KR102098297B1 (ko) 2013-05-24 2013-05-24 에피택셜 웨이퍼

Publications (2)

Publication Number Publication Date
KR20140137795A true KR20140137795A (ko) 2014-12-03
KR102098297B1 KR102098297B1 (ko) 2020-04-07

Family

ID=52457484

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130058794A KR102098297B1 (ko) 2013-05-24 2013-05-24 에피택셜 웨이퍼

Country Status (1)

Country Link
KR (1) KR102098297B1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107221559A (zh) * 2017-06-07 2017-09-29 重庆中科渝芯电子有限公司 一种用于功率mosfet器件的变掺杂半导体材料片及其制造方法
KR20180063715A (ko) * 2016-12-02 2018-06-12 엘지이노텍 주식회사 에피택셜 웨이퍼 및 그 제조 방법
KR20190026472A (ko) * 2017-09-05 2019-03-13 엘지이노텍 주식회사 에피택셜 웨이퍼 및 그 제조 방법
KR20190026471A (ko) * 2017-09-05 2019-03-13 엘지이노텍 주식회사 에피택셜 웨이퍼 및 그 제조 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980024376A (ko) * 1996-09-05 1998-07-06 스콧 티. 마이쿠엔 파워반도체 디바이스 제조방법
KR20050069988A (ko) * 2002-08-26 2005-07-05 에스. 오. 이. 떼끄 씰리꽁 오 냉쉴라또흐 떼끄놀로지 버퍼층을 포함하는 웨이퍼를 그것으로부터 박막층을 분리한 후에 재활용하는 방법
JP2007131504A (ja) * 2005-11-14 2007-05-31 Shikusuon:Kk SiCエピタキシャルウエーハおよびそれを用いた半導体デバイス
JP2007324247A (ja) * 2006-05-31 2007-12-13 Sumitomo Chemical Co Ltd 化合物半導体エピタキシャル基板およびその製造方法
KR20100050562A (ko) * 2007-09-12 2010-05-13 쇼와 덴코 가부시키가이샤 에피택셜 SiC 단결정 기판 및 에피택셜 SiC 단결정 기판의 제조 방법
KR20130045492A (ko) * 2011-10-26 2013-05-06 엘지이노텍 주식회사 웨이퍼 및 박막 제조 방법
KR20150002066A (ko) * 2013-06-28 2015-01-07 엘지이노텍 주식회사 에피택셜 웨이퍼

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980024376A (ko) * 1996-09-05 1998-07-06 스콧 티. 마이쿠엔 파워반도체 디바이스 제조방법
KR20050069988A (ko) * 2002-08-26 2005-07-05 에스. 오. 이. 떼끄 씰리꽁 오 냉쉴라또흐 떼끄놀로지 버퍼층을 포함하는 웨이퍼를 그것으로부터 박막층을 분리한 후에 재활용하는 방법
JP2007131504A (ja) * 2005-11-14 2007-05-31 Shikusuon:Kk SiCエピタキシャルウエーハおよびそれを用いた半導体デバイス
JP2007324247A (ja) * 2006-05-31 2007-12-13 Sumitomo Chemical Co Ltd 化合物半導体エピタキシャル基板およびその製造方法
KR20100050562A (ko) * 2007-09-12 2010-05-13 쇼와 덴코 가부시키가이샤 에피택셜 SiC 단결정 기판 및 에피택셜 SiC 단결정 기판의 제조 방법
KR20130045492A (ko) * 2011-10-26 2013-05-06 엘지이노텍 주식회사 웨이퍼 및 박막 제조 방법
KR20150002066A (ko) * 2013-06-28 2015-01-07 엘지이노텍 주식회사 에피택셜 웨이퍼

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180063715A (ko) * 2016-12-02 2018-06-12 엘지이노텍 주식회사 에피택셜 웨이퍼 및 그 제조 방법
CN107221559A (zh) * 2017-06-07 2017-09-29 重庆中科渝芯电子有限公司 一种用于功率mosfet器件的变掺杂半导体材料片及其制造方法
CN107221559B (zh) * 2017-06-07 2020-04-28 重庆中科渝芯电子有限公司 一种用于功率mosfet器件的变掺杂半导体材料片及其制造方法
KR20190026472A (ko) * 2017-09-05 2019-03-13 엘지이노텍 주식회사 에피택셜 웨이퍼 및 그 제조 방법
KR20190026471A (ko) * 2017-09-05 2019-03-13 엘지이노텍 주식회사 에피택셜 웨이퍼 및 그 제조 방법

Also Published As

Publication number Publication date
KR102098297B1 (ko) 2020-04-07

Similar Documents

Publication Publication Date Title
KR101430217B1 (ko) 에피택셜 탄화규소 단결정 기판 및 그 제조 방법
US8203150B2 (en) Silicon carbide semiconductor substrate and method of manufacturing the same
WO2011126145A1 (ja) エピタキシャル炭化珪素単結晶基板の製造方法、及びこの方法によって得られたエピタキシャル炭化珪素単結晶基板
KR101971597B1 (ko) 웨이퍼 및 박막 제조 방법
WO2012144614A1 (ja) エピタキシャル炭化珪素単結晶基板及びその製造方法
KR101607907B1 (ko) 단결정 4H-SiC 기판 및 그 제조방법
US10991577B2 (en) Method for forming a semiconductor structure for a gallium nitride channel device
CN107407007B (zh) SiC外延晶片、SiC外延晶片的制造方法
JP6245416B1 (ja) 炭化珪素エピタキシャルウエハの製造方法及び炭化珪素半導体装置の製造方法
KR102165614B1 (ko) 에피택셜 웨이퍼
KR20140137795A (ko) 에피택셜 웨이퍼
KR102231643B1 (ko) 탄화 규소 에피택셜층의 성장 방법 및 전력 소자
KR101942528B1 (ko) 에피텍셜 기판 및 그 제조 방법
KR102565964B1 (ko) 에피택셜 웨이퍼 및 그 제조 방법
KR102053077B1 (ko) 에피택셜 웨이퍼 및 그 제조 방법
JP6108609B2 (ja) 窒化物半導体基板
KR102474331B1 (ko) 에피택셜 웨이퍼 및 그 제조 방법
KR102610826B1 (ko) 에피택셜 웨이퍼 및 그 제조 방법
KR20140100121A (ko) 에피택셜 웨이퍼 및 그 제조 방법
KR20150025648A (ko) 에피택셜 웨이퍼
KR102165615B1 (ko) 에피택셜 웨이퍼
KR20140055337A (ko) 에피택셜 웨이퍼 및 그 제조 방법
KR102339608B1 (ko) 에피택셜 웨이퍼 및 그 제조 방법
KR102128495B1 (ko) 에피택셜 웨이퍼
KR20140055335A (ko) 에피택셜 웨이퍼 및 그 제조 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant