KR20140136040A - 슬래그 재료의 분리 방법 및 시스템 - Google Patents
슬래그 재료의 분리 방법 및 시스템 Download PDFInfo
- Publication number
- KR20140136040A KR20140136040A KR1020147028755A KR20147028755A KR20140136040A KR 20140136040 A KR20140136040 A KR 20140136040A KR 1020147028755 A KR1020147028755 A KR 1020147028755A KR 20147028755 A KR20147028755 A KR 20147028755A KR 20140136040 A KR20140136040 A KR 20140136040A
- Authority
- KR
- South Korea
- Prior art keywords
- magnetic
- size
- iron
- slag material
- separator
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims abstract description 106
- 239000002893 slag Substances 0.000 title claims abstract description 65
- 238000000034 method Methods 0.000 title claims abstract description 59
- 238000012545 processing Methods 0.000 title description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 360
- 229910052742 iron Inorganic materials 0.000 claims abstract description 179
- 238000007885 magnetic separation Methods 0.000 claims abstract description 30
- 238000004513 sizing Methods 0.000 claims abstract description 10
- 239000002245 particle Substances 0.000 claims description 97
- 239000006148 magnetic separator Substances 0.000 claims description 54
- 238000000926 separation method Methods 0.000 claims description 40
- 238000000227 grinding Methods 0.000 claims description 19
- 238000001035 drying Methods 0.000 claims description 11
- 238000005549 size reduction Methods 0.000 claims description 7
- 238000010298 pulverizing process Methods 0.000 claims description 6
- 239000000047 product Substances 0.000 abstract description 43
- 239000006227 byproduct Substances 0.000 abstract description 8
- 239000002994 raw material Substances 0.000 description 41
- 239000006249 magnetic particle Substances 0.000 description 16
- 238000012216 screening Methods 0.000 description 15
- 239000013072 incoming material Substances 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- 229910000831 Steel Inorganic materials 0.000 description 5
- 238000003491 array Methods 0.000 description 5
- 230000005484 gravity Effects 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 4
- 239000000696 magnetic material Substances 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000007670 refining Methods 0.000 description 3
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 2
- 241000237509 Patinopecten sp. Species 0.000 description 2
- 235000011941 Tilia x europaea Nutrition 0.000 description 2
- 239000004568 cement Substances 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000004571 lime Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 235000020637 scallop Nutrition 0.000 description 2
- 239000002594 sorbent Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910000805 Pig iron Inorganic materials 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000003914 acid mine drainage Methods 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 238000010981 drying operation Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005007 materials handling Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 210000004761 scalp Anatomy 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C1/00—Magnetic separation
- B03C1/02—Magnetic separation acting directly on the substance being separated
- B03C1/30—Combinations with other devices, not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C23/00—Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
- B02C23/08—Separating or sorting of material, associated with crushing or disintegrating
- B02C23/14—Separating or sorting of material, associated with crushing or disintegrating with more than one separator
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B02—CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
- B02C—CRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
- B02C23/00—Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
- B02C23/18—Adding fluid, other than for crushing or disintegrating by fluid energy
- B02C23/20—Adding fluid, other than for crushing or disintegrating by fluid energy after crushing or disintegrating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03B—SEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
- B03B9/00—General arrangement of separating plant, e.g. flow sheets
- B03B9/04—General arrangement of separating plant, e.g. flow sheets specially adapted for furnace residues, smeltings, or foundry slags
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C1/00—Magnetic separation
- B03C1/005—Pretreatment specially adapted for magnetic separation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B3/00—General features in the manufacture of pig-iron
- C21B3/04—Recovery of by-products, e.g. slag
- C21B3/06—Treatment of liquid slag
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/005—Separation by a physical processing technique only, e.g. by mechanical breaking
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/04—Working-up slag
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B9/00—General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
- C22B9/14—Refining in the solid state
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C2201/00—Details of magnetic or electrostatic separation
- B03C2201/20—Magnetic separation of bulk or dry particles in mixtures
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B2400/00—Treatment of slags originating from iron or steel processes
- C21B2400/02—Physical or chemical treatment of slags
- C21B2400/022—Methods of cooling or quenching molten slag
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Food Science & Technology (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Processing Of Solid Wastes (AREA)
- Combined Means For Separation Of Solids (AREA)
- Treatment Of Steel In Its Molten State (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
Abstract
철분 풍부 완제품 및 저철분 미세 완제품을 포함하는 부산물을 산출하도록 슬래그 재료를 처리하는 방법 및 시스템이 이용된다. 상기 부산물은 고철분 완제품 및 중간 철분 완제품을 포함할 수 있다. 상기 방법 및 시스템은 자기 분리를 이용하기 전에 재료를 복수의 사이즈 그룹으로 사이즈 분류함으로써, 사이즈 그룹 중 하나 이상을 상이한 자화율을 갖는 2가지 부분으로 분리한다. 상기 방법 및 시스템은 재료를 복수의 사이즈 그룹으로 사이즈 분류하여 사이즈 그룹 중 적어도 하나를 부분들로 분리하는 자기 분리를 이용하는 2가지 이상의 상(more than one phase)을 구비할 수 있으며, 하나의 상 후에 남아 있는 재료의 평균 사이즈는 후속적인 상(subsequent phase) 이전에 감소된다.
Description
본 발명은 일반적으로 상이한 철분 함량 제품을 제공하도록 슬래그 재료를 처리하는 것에 관한 것이다.
입자로 이루어진 슬래그 재료를 상이한 철분 함량의 부산물로 분리하도록 각종 조합으로 다수의 기술이 이용될 수 있다. 슬래그 재료의 입자의 사이즈, 형상, 금속 함량, 화학 조성, 마손도(friability), 가단성(malleability) 및 자화율(magnetic susceptibility)의 가변성을 포함하는 다수의 요인이 각 기술에 대한 효율 및 유효성에 영향을 미친다. 예컨대, 철 또는 강 정제 작업에 차지 스톡(charge stock)으로서 적합한 철분 풍부 제품을 구비할 수 있는 재사용가능한 제품을 회수하도록 슬래그 재료를 처리하는 경제적인 실행가능성은, 원재료의 철분 함량과, 원재료를 그 부산물로 분리하는데 이용되는 처리 방법의 효율 및 유효성에 따라 다르다. 그 처리 방법의 효율 및 유효성은, 처리 방법이 유연성에서 제한될 때 또는 유연성에 비용이 드는 경우에 절충될 수 있다. 예를 들면, 고정식 영구자석 분리기의 유연성은 상기 분리기 내의 영구자석의 고정 강도 및 위치설정에 제한될 수 있다. 전자석을 구비하는 자기 분리기를 이용하면, 분리를 위해 이용되는 자기장의 강도를 조절하게 하지만, 전자석에 전력 공급하는데 상당히 높은 비용이 든다.
본원에서, 적어도 철분 풍부 완제품과 저철분 미세 완제품을 포함하는 부산물(본원에서 완제품으로 지칭될 수도 있음)을 산출하도록 슬래그 재료를 처리하는 방법 및 시스템이 제공된다. 상기 방법 및 시스템은 복수의 사이즈 그룹 각각을 상이한 자화율을 갖는 부분으로 분리하도록 자기 분리를 이용하기 전에 상기 재료를 상기 복수의 사이즈 그룹으로 사이즈 분류하는 단계를 구비함으로써, 상기 자기 분리의 유효성을 증대시킨다. 일례로서, 상기 방법 및 시스템은, 상기 재료를 복수의 사이즈 그룹으로 사이즈 분류하고 상기 사이즈 그룹 각각을 저철분 미세부를 구비하는 부분으로 분리하는 단계, 상기 저철분 미세부를 제거하는 단계, 나머지 재료 내의 입자의 사이즈를 분쇄 및/또는 감소시키는 단계, 및 상기 나머지 재료를 또 다른 복수의 사이즈 그룹으로 사이즈 분류하고 상기 사이즈 그룹 각각을 저철분 미세부와, 특정 레벨 이상의 철분 함량을 갖는 적어도 하나의 다른 부분을 포함하는 부분으로 분리하는 단계를 구비하며, 상기 다른 부분은 철분 풍부 제품일 수 있다.
각각의 사이즈 그룹을 부분들로 분리하도록 자기 분리를 이용하기 전에 상기 재료를 복수의 사이즈 그룹으로 사이즈 분류함으로써, 자기 분리의 효율 및 유효성이 증대될 수 있어서, 부산물을 산출하도록 슬래그 재료를 처리하는 총비용을 감소시키고, 입자 사이즈 및 철분 함량과 같은 각각의 부산물의 소정 특성에 대한 가변성을 감소시킬 수 있다.
일례로서, 상기 방법은 하나 이상의 조절가능한 자기 분리기를 이용하는 단계를 구비하며, 상기 자기 분리기는 사전결정된 레벨의 자화율 및/또는 철분 함량에서 상기 재료의 분리를 성취하도록 조절가능할 수 있다. 특정 레벨 이상의 철분 함량을 갖는 적어도 하나의 부산물을 제공하도록 상기 재료를 분리하는데 조절가능한 자기 드럼 분리기가 이용될 수 있다. 바람직한 사전결정된 최소 철분 함량 및/또는 사이즈 그룹 내의 입자 사이즈에 따라서 자기 분리기의 분리 표면에서의 자기장의 강도(strength)(예컨대, intensity)를 조절함으로써, 사전결정된 최소의 요구된 철분 함량을 갖는 입자 분리가 효율적으로 성취될 수 있다. 일례로서, 상기 조절가능한 자기 분리기는 분리면에 대해 배치된 자기 어레이를 구비할 수 있으며, 상기 자기 어레이는 영구 자기 어레이일 수 있다. 상기 자기 어레이의 배치와 상기 분리면의 위치 중 하나 이상이 서로에 대해 조절가능할 수 있음으로써, 상기 자기 어레이와 상기 분리기의 분리면 사이의 거리는 자기 입자 분리가 발생하는 분리면에서 자기장의 강도를 조절하도록 변경될 수 있다. 상기 자기 어레이의 조절가능한 특징은, 비교를 위해 가변 전자석을 구비하는 자기 분리기보다 실질적으로 낮은 작동 비용으로 상기 자기 분리기가 조절가능한 자기 분리기로서 구성되게 한다.
본 발명의 상기한 특징 및 다른 특징 그리고 이점은 첨부한 도면과 함께 취해질 때 본 발명의 최선책에 대한 하기의 상세한 설명으로부터 명백하다.
도 1은 슬래그 재료를 상이한 철분 함량을 갖는 제품으로 분리하는 방법에 대한 흐름도,
도 2는 도 1의 방법을 수행하기 위한 제1 예시적인 시스템에 대한 개략도,
도 3은 도 1의 방법을 수행하기 위한 제2 예시적인 시스템에 대한 개략도.
도 2는 도 1의 방법을 수행하기 위한 제1 예시적인 시스템에 대한 개략도,
도 3은 도 1의 방법을 수행하기 위한 제2 예시적인 시스템에 대한 개략도.
도면을 참조하면, 유사 참조부호는 일부 도면을 통해 유사한 구성요소를 나타내며, 도 1은 일련의 처리 단계를 이용하여 슬래그 재료를 상이한 철분 함량을 갖는 제품으로 분리하는 방법에 대한 흐름도(10)를 도시한다. 도 2는 도 1의 방법을 수행하는 제1 예시적인 시스템(60)을 도시하고, 도 3은 도 1의 방법을 수행하는 제2 예시적인 시스템(160)을 도시한다. 도 1 내지 3을 참조하여 반입 또는 재료 취급 단계(12)를 시작하면, 단계(14)에서 건조 공정에 공급되도록 피딩 메커니즘 내에 원재료(62)(도 2 및 3 참조)가 반입된다. 원재료(62)는 슬래그, 슬래그-타입 또는 슬래그 함유 재료일 수 있다. 원재료(62) 내에 포함된 슬래그는 강 및 철 제조 산업에서의 폐기물일 수 있고, 용광로(blast furnace), 전로(converter), 순산소 전로(basic oxygen furnace: BOF) 또는 전기로(electric furnace) 내에 발생되는 슬래그, 및/또는 용광로 슬래그, 광재 슬래그(kish slag), c-스크랩 슬래그, 탈황 슬래그 및/또는 그 조합물로 통상적으로 불리는 하나 이상의 타입의 슬래그를 포함할 수 있다. 원재료(62)는 건조 작업에 제공됨에 따라 5 내지 10% 습기의 습기 함량을 가질 수 있다. 일례의 구성에서, 원재료(62)는 오픈 게이트 덤프 스타일의 트럭(미도시)에 의해 운반되어 단계(12)에서 건조 공정(14)에 제공되도록 피딩 메커니즘(미도시) 내에 반입될 수 있거나, 또는 본원에 기술된 방법 및 시스템에 의한 처리 전의 시간 주기 동안에 저장될 수 있다. 원재료(62)는 슬래그 재료를 취급하는 임의의 적절한 재료 취급 수단에 의해 건조 공정(14)에 제공될 수 있다. 예를 들면, 원재료(62)는 관절형 프론트엔드로더(미도시)에 의해 픽업되어 피딩 벨트 컨베이어(미도시) 상에 원재료를 보내도록 구성된 호퍼 내에 위치될 수 있다. 피딩 벨트 컨베이어는 재료를 건조 단계(14)로 이송할 수 있다.
단계(14)에서, 원재료(62)는, 원재료(62)의 표면으로부터 습기를 실질적으로 제거하도록 건조기(64)(도 2 및 3 참조)를 이용하여 건조된다. 일례로서, 건조 공정은 원재료 표면 습기의 99%를 제거하도록 구성될 수 있다. 건조 단계(14)는 슬래그 또는 슬래그-타입 재료의 건조를 위한 임의의 적절한 수단에 의해 성취될 수 있다. 일례로서, 건조 단계(14)는 킬른 스타일의 회전 밀봉식 건조기로서 구성된 건조기(64) 내에 원재료(62)를 반입하는 단계를 구비할 수 있으며, 상기 원재료(62)는 텀블링되고, 상승된 온도로 가열되고, 건조되고 그리고 사이즈 분류 단계(16)로 직접 또는 버킷 엘리베이터 또는 컨베이어와 같은 중간의 피딩 메커니즘을 이용하여 배출될 수 있다. 건조 단계(14) 동안에 원재료(62)를 가열 및 텀블링하는 단계는, 텀블링 동안의 입자간 접촉 충격, 상승된 온도에 의한 원재료(62)의 열 변형력 또는 이들 영향의 조합으로 인해, 비자기 재료 또는 슬래그 입자로부터 원재료(62) 내의 철분 함유 입자를 해방시킬 수 있다. 예를 들면, 철분 함유 입자는 원재료(62)의 보다 큰 취성의 비자기 또는 슬래그부보다 더욱 가단성이 큼으로써, 건조기(64) 내의 원재료(62)를 텀블링하는 것은 보다 큰 가단성의 철분 함유 입자로부터 취성의 비자기 슬래그부의 균열 및 분리를 야기하여, 철분 함유 입자를 해방시킨다. 원재료(62) 내의 철분 함유 입자의 열팽창 계수는 원재료(62)의 비자기 슬래그부의 열팽창 계수와는 다름으로써, 이들 성분 각각은 건조기(64) 내의 상승된 온도에 노출될 때 상이한 비율로 팽창하여 사이즈 변경될 것이다. 비자기 슬래그 재료에 부착되거나 또는 그 내에 포함된 철분 함유 입자가 철분 함유 입자에 부착되거나 또는 그를 둘러싸는 비자기 슬래그 재료보다 상이한 비율로 팽창함에 따라, 철분 함유 입자의 열팽창 및 증가된 사이즈는 슬래그 재료로부터 철분 함유 입자의 분리 또는 균열을 야기하기에 충분할 수 있는 비자기 슬래그 상에 응력을 부여함으로써, 철분 함유 입자를 해방시킨다. 열응력 요인과 조합하여, 원재료(62)의 텀블링 동안의 입자간 접촉은 건조 단계(14) 동안에 철분 함유 입자의 해방을 더욱 증가시킬 수 있다.
단계(16)에서, 실질적으로 건조한 원재료(62)는 사이즈 분류 공정을 이용하여 복수의 사이즈 그룹으로 분리됨으로써, 사이즈 분류 단계(16)에 의해 발생된 각각의 사이즈 그룹은 특정한 사이즈 범위 내의 원재료 입자로 이루어진다. 사이즈 그룹의 개수 및 사이즈 그룹 각각을 위해 특정 또는 확립된 입자 사이즈 범위는 원재료의 하나의 롯트 또는 배치로부터 다른 것으로 변경될 수 있거나, 또는 슬래그 재료의 타입, 원재료(62)의 배치 내의 입자 분포, 원재료(62)의 배치의 화학적 성질 등과 같은 특성에 근거하여 확립될 수 있다. 사이즈 분류 단계(16)는 원재료(62)를 복수의 사이즈 그룹으로 분리하도록 구성될 수 있는 스크리닝 시스템(66)(도 2 및 3 참조)을 이용하여 수행될 수 있다. 일례로서, 스크리닝 시스템(66)은 이중 데크 시프팅 스크린(double deck sifting screen)을 구비할 수 있고, 예컨대 스크리닝 시스템(66)은 입자를 제1 사이즈 그룹 내에 보유하여 제1 스크린보다 작은 입자를 제2 스크린으로 통과시키는 제1 스크린에 원재료(62)가 공급된다. 제2 스크린은 제2 사이즈 그룹 내에 입자를 보유하고, 제3 사이즈 그룹으로서 수집되도록 제2 스크린보다 작은 입자를 통과시킨다. 스크리닝 시스템(66)은 SWECO(등록상표) Gyramax(등록상표) 자이러터리 시프터와 같은 자이러터리 시프터(gyratory sifter)로서 구성될 수 있다. 상이한 사이즈 그룹 각각은 본원에 기술된 바와 같이 또 다른 공정을 위해 자기 분리 단계(18)로 개별적으로 공급될 수 있다.
일례로서, 시프터(66)의 제1 스크린(제1 데크로 부를 수도 있음)이 20 메시 스크린일 수 있음으로써, 제1 스크린은 원재료(62)로부터 +20 미시보다 큰 입자를 실질적으로 함유한 제1 사이즈 그룹을 스칼프 오프(scalp off), 예컨대 가려내거나 또는 분리(separate off)하고, 나머지 원재료(원재료(62)의 나머지 부분으로도 부를 수 있음)를 제2 스크린으로 통과시킨다. 제2 데크 스크린은 60 메시 스크린일 수 있음으로써, -20 메시 내지 + 60 메시의 사이즈 범위인 입자를 실질적으로 함유한 제2 사이즈 그룹은 제2 스크린을 이용하여 스칼프 오프되고, 나머지 원재료는 제2 스크린을 통과하여 제3 사이즈 그룹으로서 수집된다. 제3 사이즈 그룹은 - 60 메시 사이즈인 입자를 구비한다.
단계(18)에서, 각각의 사이즈 그룹은, 그 사이즈 그룹 및 사전결정된 철분 함량을 위해 구성된 자기 분리기를 통해 처리된다. 자기 분리는 자기 입자 상의 자기장에 의해 발휘되는 힘을 이용하여, 자기 입자를 끌어당기고 그리고/또는 낙하하는 자기 입자를 자기장으로 자기 인력을 갖는 중력 및 관성의 영향에 부분적으로 또는 전체적으로 대응함으로써 낙하하는 자기 입자의 궤적을 변경한다. 자기 입자, 예컨대 자기장으로 끌어당겨지기에 충분한 철분 함량 및 자화율을 갖는 입자의 궤적을 변경하는 것은, 자기 입자의 궤적을 자기부(magnetic portion)로서 이러한 입자의 수집을 허용하는 경로 내에 영향을 미치게 함으로써 유입 재료의 자기부에 대한 분리를 허용한다. 비자기 입자, 예컨대 자기 장으로 끌어 당겨지기에 불충분한 철분 함량 및 불충분한 자화율을 갖는 입자는, 자기장에 끌어 당겨지지 않고 그리고/또는 중력 및 관성에 의해 결정되고 자기장에 의해 영향을 받지 않는 궤적을 따름으로써, 비자기 입자가 비자기부(non-magnetic portion)로서 이들 입자의 수집을 허용하는 경로를 대체로 따를 것이다. 각 입자의 밀도, 사이즈 및 철분 함량과 같은 특성은 그 입자의 궤적에 영향을 미치며, 유사하지 않은 특성을 갖는 이러한 2가지의 입자는, 경우에 따라, 예컨대 더욱 무거운 비자기(저철분) 입자가 자기 분리기 내로 공급되는 더욱 가벼운 자기(고철분) 입자와 실질적으로 동일한 궤적을 따를 수 있는 경우, 동일한 궤적을 나타낼 수 있다. 따라서, 드럼 분리기에서와 같은 중력 공급식 자기 분리 공정(gravity fed megnetic separation process)에서, 광범위한 입자 사이즈를 포함하는 재료는 보다 가벼운 자기 입자에 유사한 궤적을 나타낼 수 있는 더욱 무거운 비자기 입자를 구비할 수 있고, 자기 분리 공정의 정확성 및 유효성을 감소시키는 자기부로 분리될 수 있음으로써, 유입 재료의 사이즈 범위가 증대됨에 따라, 자기 분리 공정의 정확도가 감소한다.
원재료(62)를 각각의 사이즈 그룹 내의 제한된 범위의 입자 사이즈를 갖는 복수의 사이즈 그룹으로 사이즈 분류한 다음, 자기 분리기를 통해 사이즈 그룹 각각을 별개로 처리함으로써, 자기 분리 공정의 유효성에 대한 입자 사이즈 변동의 영향이 실질적으로 감소되고, 비자기 입자로부터 자기 분리하는 자기 분리 공정의 정확도가 증대된다.
자기 분리 단계(18)는 고정식 자기 분리기로서 구성될 수 있는 복수의 자기 분리 장치(68, 70)를 이용하여, 도 2의 제1 예시적인 시스템(60)에 도시한 바와 같이 수행될 수 있다. 도시한 예에서, 자기 분리기(68, 70)는 영구자석 드럼 분리기로서 구성될 수 있으며, 여기서 자기장을 제공하는 자석(들)은 드럼 표면에 대해 고정된 위치에 있을 수 있고, 드럼 표면은 자기 입자 분리가 발생하는 분리면을 형성한다. 분리 지점으로서의 자기장의 강도, 예컨대 영구자석(들)의 강도 및 자기 드럼 분리기(68, 70) 각각의 영구자석(들)의 고정된 구성은 상이할 수 있다. 예를 들면, 제1 자기 드럼 분리기(68)는 제1 사이즈 입자의 그룹, 예컨대 + 20 메시 사이즈 그룹을 제1 자기부와 제2 비자기부로 분리하도록 구성될 수 있다. 제1 자기 드럼 분리기(68)의 자기장의 강도는 + 20 메시 사이즈인 입자를 최소한의 특정한 철분 함량을 갖는 자기부와, 최소한의 특정한 철분 함량보다 낮은 철분 함량을 갖는 비자기부로 효율적으로 분리하도록 사전결정될 수 있다. 제2 자기 드럼 분리기(70)는 제2 사이즈 입자의 그룹, 예컨대 - 20 내지 + 60 메시 사이즈의 그룹을 분리하도록 구성될 수 있다. 제2 자기 드럼 분리기(700)의 자기장의 강도는 - 20 내지 + 60 메시 사이즈인 입자를 최소한의 특정한 철분 함량을 갖는 자기부와, 최소한의 특정한 철분 함량보다 낮은 철분 함량을 갖는 비자기부로 효율적으로 분리하도록 사전결정될 수 있다. 도 3의 제2 예시적인 시스템(160)에 도시한 바와 같이, 제3 자기 분리기(72)는 제3 사이즈 그룹을 자기부와 비자기부로 분리하는데 이용될 수 있다.
본원에 이용된 바와 같이, "자기부(magnetic portion)"는 자기 분리기의 자기장에 의해 끌어 당겨지고 그리고/또는 그에 의해 영향을 받기에 충분한 철분 함량 및/또는 자화율을 가짐으로써 그 입자가 제1 부분으로 전환 및/또는 수집되는 입자의 부분을 포함하고, "비자기부(non-magnetic portion)"는 자기 분리기의 자기장에 의해 영향을 받기에 충분한 철분 함량 및/또는 자화율보다 낮음으로써 그 입자가 분리기의 자기장에 의해 영향을 받지 않고 그리고/또는 최소한으로 영향을 미치는 궤적을 유지하고, 이로써 제2 부분으로 수집되는 입자의 부분을 포함한다. 용어 "자기부" 및 "비자기부"는 입자가 처리되는 자기 분리기의 특정한 설정 또는 구성에 관한 것으로 이해될 것이다. 예를 들면, 제1 자기 드럼 분리기(68)는 총 철분의 27 중량%의 최소한의 철분 함량을 갖는 입자를 분리하도록 구성될 수 있다. 본 예에서, 자기 드럼 분리기(68)에 의해 분리되는 자기부는 27%의 최소한의 철분 함량을 갖는 입자를 포함할 것이고, 비자기부는 약한 자기성 및/또는 실질적으로 비철 입자를 포함할 수 있는 27% 미만의 철분 함량을 갖는 입자를 포함할 것이다. 또 다른 자기 드럼 분리기, 예컨대 자기 드럼 분리기(70)는 총 철분의 88% 중량%의 최소한의 철분 함량을 갖는 입자를 분리하도록 구성될 수 있다. 본 예에서, 자기 드럼 분리기(70)에 의해 분리된 자기부는 자기성이 강한 입자를 실질적으로 포함할 수 있는 88%의 최소한의 철분 함량을 갖는 입자를 포함할 것이고, 비자기부는 중간 정도 및/또는 약한 자기성 입자를 포함할 수 있는 88% 미만의 철분 함량을 갖는 입자를 포함할 것이다.
도 2 및 3을 참조하면, + 20 메시 입자의 제1 사이즈 그룹은 드럼 분리기(68)를 이용하여 자기부와 비자기부로 자기식으로 분리됨으로써, 비자기부는 총 철분 함량의 W 중량% 미만을 특징으로 하며, W 총 철분 함량 재료는 저철분 재료로 고려될 것이다. 일례로서, 저철분 재료는 27% 미만의 총 철분 함량을 특징으로 하며, 드럼 분리기(68)는 27% 미만의 총 철분 함량을 갖는 입자를 비자기부로 분리하도록 구성된다. 비자기부는 저철분 함량을 갖는 완제품으로서 수집되며, 이는 저철분 미세 및/또는 저철분 완제품으로 지칭될 수도 있다. 저철분 완제품(30)은 총 철분의 30 중량%의 철분 함량을 대체로 가지거나, 또는 저철분 제품이 시멘트 산업과 같은 저철분 함량을 요구하는 적용에 또는 클린커(clinker) 제조에 적합하도록 충분히 낮은 철분 함량을 가지거나, 혹은 제품이 철 또는 강 정제 작업에서 차지(charge)로 이용되기에 적합하지 않도록 충분히 낮은 철분 함량을 가질 수 있다. 이러한 자기부는 총 철분의 W 중량% 이상을 특징으로 할 수 있으며, 일례에서 W%는 27%이다.
- 20 내지 + 60 메시 입자의 제2 사이즈 그룹은 드럼 분리기(70)를 이용하여 자기부와 비자기부로 자기식으로 분리됨으로써, 비자기부는 총 철분 함량의 W 중량% 미만을 특징으로 하며, W 총 철분 함량 재료는 저철분 재료로 고려될 것이다. 일례로서, 드럼 분리기(70)는 27% 미만의 총 철분 함량을 갖는 입자를 비자기부로 분리하도록 구성된다. 비자기부는 전술한 바와 같이 저철분 완제품(30)으로서 수집된다. 드럼 분리기(70)로부터 배출된 자기부는 사이즈 감소 단계(20)에서 사이즈를 더욱 감소시키기 위해 수집된다. 이러한 자기부는 총 철분의 W 중량% 이상을 특징으로 할 수 있으며, 일례에서 W%는 27%이다.
도 2에 도시한 제1 예시적인 공정(60)에서, - 60 메시 입자의 제3 사이즈 그룹은 저철분 완제품(30)으로서 수집된다. 도 3에 도시한 제2 예시적인 공정(160)에서, - 60 메시 입자의 제3 사이즈 그룹은 드럼 분리기(72)를 이용하여 자기부와 비자기부로 자기식으로 분리됨으로써, 비자기부는 총 철분 함량의 W 중량% 미만을 특징으로 하며, W 총 철분 함량 재료는 저철분 재료로 고려될 것이다. 일례로서, 드럼 분리기(72)는 27% 미만의 총 철분 함량을 갖는 입자를 비자기부로 분리하도록 구성된다. 비자기부는 전술한 바와 같이 저철분 완제품(30)으로서 수집된다. 시스템(160)의 일 구성에서, 드럼 분리기(72)로부터 배출된 자기부는 도 3에 도시한 드럼 분리기(84)와 같은 또 다른 드럼 분리기를 이용하여 또 다른 자기 분리를 위해 수집된다. 이러한 자기부는 총 철분의 W 중량% 이상을 특징으로 할 수 있으며, 일례에서 W%는 27%이다. 시스템(160)의 또 다른 구성에서, 드럼 분리기(72)로부터 배출된 자기부는 사이즈 감소 단계(20)에서 사이즈를 더욱 감소시키기 위해 수집된다.
사이즈 분류 단계(16)와 자기 분리 단계(18)는 제1 분류/분리 상(first classifying/separating phase), 또는 본 방법(10)의 제1 상(first phase)으로서 지칭될 수 있으며, 제1 상은 단계(16)에서 유입 재료를 복수의 사이즈 그룹으로 사이즈 분류하는 단계와, 그 후 단계(18)에서 복수의 사이즈 그룹 각각을 자기부와 비자기부로 자기식으로 분리하는 단계로 이루어지며, 이들 용어는 본원에 기재되어 있다.
다른 타입의 영구자석 분리기가 자기 분리 단계(18)를 수행하는 제1 상에서 이용될 수 있다. 예를 들면, 영구자석 분리기 중 하나 이상의 벨트-타입 분리기일 수 있다. 일례로서, 자기 분리기(68, 70, 72) 중 적어도 하나는 재료, 예컨대 공급 원료(feedstock)가 컨베이어 벨트의 단부에서 배출하여 공급 원료가 컨베이어 벨트의 단부로부터 낙하함에 따라 공급 원료 내의 자기 입자의 궤적에 영향을 미침에 따라 재료 상에 자기력을 발휘하는 자기장을 제공하는 자기 어레이를 구비하는 자기 컨베이어 벨트 분리기일 수 있음으로써, 이는 자기부로 분리될 수 있다. 일례로서, 자기 분리기(68, 70, 72) 중 적어도 하나는 크로스-벨트 자기 분리기로서 구성될 수 있으며, 공급 원료 또는 유입 재료는 제1 컨베이어(피드 컨베이어로도 부름) 상에 공급되며, 이는 자기 어레이를 수용하는 자기 컨베이어인 제2 컨베이어로부터 소정 거리로 수직한다. 자기 어레이에 의해 제공된 자기장에 의해 끌어 당겨지기에 충분한 자화율 및/또는 철분 함량의 피드 컨베이어 표면(분리면) 상의 자기 입자는 자기 벨트에 의해 끌어 당겨져서 보유되고, 자기부로서 자기 벨트로부터 수집된다.
단계(20)에서, 단계(18)에서 분리 및 수집된 자기부는 자기부 내의 슬래그 재료로부터 철분 풍부 입자 또는 철분 입자를 해방시킬 수 있는 분쇄 시스템 또는 장치(74)를 이용하여 사이즈 감소 그리고/또는 분쇄된다. 자기부 내의 철분 입자에 부착되거나 또는 그를 둘러쌀 수 있는 슬래그 재료보다 철분이 더욱 가단성이 있기 때문에, 분쇄 장치(74)를 이용하여 자기부를 분쇄 또는 그라인딩하는 것은 보다 가단성이 있는 철분 함유 입자로부터 취성의 슬래그부의 파쇄 및 분리를 야기하여, 철분 함유 입자를 해방시킨다. 시스템(60, 160)에서, + 60 메시의 입자 사이즈를 갖는 자기부, 예컨대 자기 드럼 분리기(68, 70)로부터 수집된 자기부는 보다 미세한 사이즈로 분쇄 및/또는 감소시키기 위한 분쇄 장치(74) 내에 공급된다. 시스템(160)의 선택적인 구성에서, 자기 드럼 분리기(68, 70, 72) 각각으로부터 수집된 자기부는 분쇄 장치(74) 내에 공급된다. 분쇄 장치(74)는 볼 밀로서 구성될 수 있으며, 이는 자기부의 입자를 더욱 미세한 사이즈로 분쇄 또는 그라인딩하도록 강철 볼과 대전될 수 있다. 분쇄 장치(74)는 슬래그와 같은 비자기 재료를 입자로부터 파쇄 또는 분리하도록 입자를 분쇄 또는 그라인딩함으로써, 증가된 철분 함량을 갖는 더욱 미세한 입자를 산출할 수 있다. 분쇄 장치(74)의 다른 구성은 페블 밀(pebble mills), 반자생 그라인딩 밀(semi-autogenous grinding mills), 로드 밀(rod mills), 해머 밀(hammer mills), 롤러 밀(rollder mills) 등을 포함하는 슬래그 또는 재료의 비자기부로부터 철분을 해방하는데 이용될 수 있다. 분쇄된 재료는 분쇄 장치(74)로부터 배출되어 분류 단계(22)로 공급된다.
단계(22)에서, 분쇄 장치(74)로부터 배출된 분쇄 재료 내에 포함되는 미세물, 예컨대 미세 제품을 분리하도록 분류 시스템 또는 장치(76)가 이용될 수 있다. 분류 시스템은 사이클론(78)과 유체 연통하는 공기 대 공기 분류기(76)로서 구성될 수 있다. 분쇄된 제품이 공기 분류기(76)에 의해 분류됨에 따라, 미세 제품은 공기 대 공기 분류기(76)로부터 사이클론(78)으로 배출되어, 저철분 완제품(30)으로서 수집되도록 사이클론(78)의 하부로부터 배출된다. 사이클론(78)으로 배출되지 않은 보다 거친 제품이 수집되어 제2 상 사이즈 분류 단계(24)로 공급된다.
단계(24)에서, 보다 거친 분쇄 재료가 사이즈 분류 공정을 이용하여 복수의 사이즈 그룹으로 분리됨으로써, 사이즈 분류 단계(24)에 의해 발생된 각각의 사이즈 그룹은 특정한 사이즈 범위 내의 입자로 이루어진다. 사이즈 분류 단계(24)(제2 상 분류 단계로서 지칭될 수도 있음)는 스크리닝 시스템(82, 182)(도 2 및 3 참조)을 이용하여 수행될 수 있으며, 이는 보다 거친 분쇄 재료를 복수의 사이즈 그룹으로 분리하도록 구성될 수 있다. 예를 들면, 스크리닝 시스템(82, 182)은 이중 데크 진동 스크린을 구비할 수 있고, 예컨대 스크리닝 시스템(82, 182)은 공기 분류기(76)로부터 유입 재료가 제1 사이즈 그룹 내의 입자를 보유하여 제1 스크린보다 작은 입자를 제2 스크린으로 통과시키는 제1 스크린으로 공급된다. 제2 스크린은 제2 사이즈 그룹 내의 입자를 보유하고, 제3 사이즈 그룹으로서 수집되도록 제2 스크린보다 작은 입자를 통과시킨다. 상이한 사이즈 그룹 각각은 본원에 기술된 바와 같이 또 다른 처리를 위해 자기 분리 단계(26)로 개별적으로 공급될 수 있다.
비제한적인 예에서, 제1 데크로 지칭될 수도 있는 이중 데크 스크리닝 시스템(82, 182)의 제1 스크린은 20 메시 스크린일 수 있음으로써, 제1 스크린은 원재료로부터 + 20 메시보다 큰 입자를 실질적으로 함유하는 제1 사이즈 그룹을 스칼프 오프(scalp off), 예컨대 가려내거나 또는 분리(separate off)하고, 나머지 원재료(원재료의 나머지 부분으로도 부를 수 있음)를 제2 스크린으로 통과시킨다. 도 2에 도시한 예시적인 시스템(60)에서, 제2 데크 스크린은 40 메시 스크린일 수 있음으로써, -20 메시 내지 + 40 메시의 사이즈 범위인 입자를 실질적으로 함유한 제2 사이즈 그룹은 제2 스크린을 이용하여 스칼프 오프되고, 나머지 원재료는 제2 스크린을 통과하여 제3 사이즈 그룹으로서 수집된다. 제3 사이즈 그룹은 - 40 메시 사이즈인 입자를 구비한다. 도 3에 도시한 예시적인 시스템(160)에서, 제2 데크 스크린은 60 메시 스크린일 수 있음으로써, -20 메시 내지 + 60 메시의 사이즈 범위인 입자를 실질적으로 함유한 제2 사이즈 그룹은 제2 스크린을 이용하여 스칼프 오프되고, 나머지 원재료는 제2 스크린을 통과하여 제3 사이즈 그룹으로서 수집된다. 제3 사이즈 그룹은 - 60 메시 사이즈인 입자를 구비한다.
단계(26)에서, 사이즈 그룹 각각은 자기 분리 공정을 이용하여 또 분리될 수 있다. 자기 분리 단계(26)는, 도 2 및 3에 도시한 바와 같이, 복수의 자기 분리 장치(80, 84, 86)를 이용하여 수행될 수 있으며, 그 중 하나 이상은 조절가능한 자기 분리기로서 구성됨으로써 분리기의 분리면에서의 자기장의 강도가 유입 재료를 사전결정된 철분 함량 및/또는 자화율의 2개 부분으로 분리하는데 최적화하도록 변경될 수 있다. 조절가능한 자기 분리기(80, 84, 86) 중 하나 이상은 조절가능한 자기 드럼 분리기로서 구성될 수 있고, 영구자석 또는 영구자석 세트를 구비할 수 있으며, 이는 드럼 분리기의 드럼 내에 수용된 자기 어레이로서 배치되어 자기 어레이의 배치가 드럼 표면의 위치에 대해 조절가능함으로써 드럼 표면, 예컨대 분리면에서 자기장의 강도를 변경하도록 구성될 수 있다. 일례로서, 분리면에 대한 자기 어레이의 배치는 기계식 메커니즘을 이용하여 조절될 수 있다. 또 다른 예로서, 자기 어레이에 대한 분리면의 위치는 변경될 수 있으며, 이는 자기 입자의 분리가 발생하는 드럼 표면으로부터 반경방향 외측에 제2 표면을 제공하도록 드럼을 슬리브함으로써 수행될 수 있다. 또 다른 예로서, 자기 어레이의 배치 및 분리면의 위치 각각은 서로에 대해 변경됨으로써, 분리면에서 자기장의 강도를 변경하므로, 자기부 내에 수집된 입자의 특정한 철분 함량을 변경할 수 있다. 조절가능한 자기 분리기(80, 84, 86)는, 조절가능한 자기 분리기(80, 84, 86) 각각의 영구자석 요소의 강도가 상이할 수 있도록 그리고 자기 분리기(80, 84, 86) 각각의 분리면에서 측정된 바와 같은 자기장의 조절가능한 강도 범위가 상이할 수 있도록 구성될 수 있다.
도 2 및 3을 다시 참조하면, + 20 메시 입자의 제1 사이즈 그룹은, 조절가능한 자기 분리기(80)를 이용하여 적어도 X%의 사전결정된 철분 함량을 갖는 자기부와, X% 미만의 사전결정된 철분 함량을 갖는 비자기부로 자기식으로 분리됨으로써, 자기부는 적어도 X%의 고철분 함량을 특징으로 한다. 일례로서, 제1 사이즈 그룹은 적어도 85 중량% 총 철분 함량의 자기부를 제공하도록 분리될 수 있고, 예컨대 X의 사전결정된 값은 85일 것이다. 또 다른 예로서, 조절가능한 자기 분리기(80)는 적어도 88 중량% 철분 함량의 자기부를 제공하도록 분리될 수 있다. 자기부는 적어도 X%의 고철분 함량을 갖는 완제품(50)(고철분 완제품으로 지칭될 수도 있음), 또는 1차 제품으로서 수집된다. 조절가능한 분리기(80)로부터 배출된 고철분 완제품(50)은, 도 2에서 50A로 나타낸 + 20 메시의 입자 사이즈를 갖는 사이즈 분류된 고철분 제품으로서, 다른 고철분 제품으로부터 수집되고 그리고/또는 별개로 저장될 수 있다. 조절가능한 분리기(80)로부터 배출된 비자기부는 사이즈 감소 단계(20)에서 사이즈를 더욱 감소시키기 위해 수집된다. 이러한 비자기부는 X 중량% 미만의 총 철분 함량을 특징으로 할 수 있으며, 입자 사이즈를 더욱 감소시키기 위해 그리고/또는 입자로부터 비철 슬래그 재료를 제거함으로써 입자의 철분 함량을 증대시키기 위해 볼 그라인더(74)로 회수된다.
도 2의 예시적인 시스템(60)에서, - 20 내지 + 40 메시 입자의 제2 사이즈 그룹은, 조절가능한 자기 분리기(86)를 이용하여 적어도 X%의 사전결정된 철분 함량을 갖는 자기부와, X% 미만의 사전결정된 철분 함량을 갖는 비자기부로 자기식으로 분리됨으로써, 자기부는 적어도 X%의 고철분 함량을 특징으로 한다. 일례로서, 제2 사이즈 그룹은 적어도 85 중량% 총 철분 함량의 자기부를 제공하도록 분리될 수 있고, 예컨대 X의 사전결정된 값은 85일 것이다. 또 다른 예로서, 조절가능한 분리기(86)는 적어도 88 중량% 철분 함량의 자기부를 제공하도록 분리될 수 있다. 자기부는 적어도 X%의 철분 함량을 갖는 고철분 완제품(50)으로서 수집된다. 조절가능한 분리기(86)로부터 배출된 고철분 완제품(50)은, 도 2에서 50B로 나타낸 - 20 내지 + 40 메시의 입자 사이즈를 갖는 사이즈 분류된 고철분 제품으로서, 다른 고철분 제품으로부터 수집되고 그리고/또는 별개로 저장될 수 있다. 조절가능한 분리기(86)로부터 배출된 비자기부는 사이즈 감소 단계(20)에서 사이즈를 더욱 감소시키기 위해 수집된다. 이러한 비자기부는 X 중량% 미만의 총 철분 함량을 특징으로 할 수 있으며, 입자 사이즈를 더욱 감소시키기 위해 그리고/또는 입자로부터 비철 슬래그 재료를 제거함으로써 입자의 철분 함량을 증대시키기 위해 볼 그라인더(74)로 회수된다.
도 3의 예시적인 시스템(160)에서, - 20 내지 + 60 메시 입자의 제2 사이즈 그룹은, 조절가능한 자기 분리기(86)를 이용하여 적어도 X%의 사전결정된 철분 함량을 갖는 자기부와, X% 미만의 사전결정된 철분 함량을 갖는 비자기부로 자기식으로 분리됨으로써, 자기부는 적어도 X%의 고철분 함량을 특징으로 한다. 일례로서, 제2 사이즈 그룹은 적어도 85 중량% 총 철분 함량의 자기부를 제공하도록 분리될 수 있고, 예컨대 X의 사전결정된 값은 85일 것이다. 또 다른 예로서, 조절가능한 분리기(86)는 적어도 88 중량% 철분 함량의 자기부를 제공하도록 분리될 수 있다. 자기부는 적어도 X%의 철분 함량을 갖는 고철분 완제품(50)으로서 수집된다. 조절가능한 분리기(86)로부터 배출된 고철분 완제품(50)은, 도 3에서 50C로 나타낸 - 20 내지 + 60 메시의 입자 사이즈를 갖는 사이즈 분류된 고철분 제품으로서, 다른 고철분 제품으로부터 수집되고 그리고/또는 별개로 저장될 수 있다.
도 3의 시스템(160)을 참조하면, 조절가능한 분리기(86)로부터 배출된 비자기부는 단계(28)에서 하나 이상의 작업에서 또 다른 자기 분리를 위해 수집된다. 도 3을 참조하면, 단계(28)는 자기 분리기(88)를 이용하여 제1 자기 분리와, 자기 분리기(90)를 이용하여 분리기(88)로부터 배출된 비자기 재료의 제2 자기 분리를 포함할 수 있다. 예로서, 분리기(88)는 조절가능한 자기 드럼 분리기로서 구성될 수 있고, 분리기(90)는 고정식 영구자석 드럼 분리기로서 구성될 수 있다. 조절가능한 분리기(86)로부터 배출된 비자기부는 조절가능한 자기 드럼 분리기(88) 내에 공급될 수 있으며, 분리기(88)는 유입 재료를 적어도 Y%의 사전결정된 철분 함량을 갖는 자기부와, Y% 미만의 사전결정된 철분 함량을 갖는 비자기부로 자기식으로 분리하도록 구성됨으로써, 자기부는 적어도 Y%의 중간 철분 함량을 특징으로 한다. 일례로서, 자기부는 적어도 55 중량% 총 철분 함량일 수 있고, 예컨대 Y의 사전결정된 값은 55일 것이다. 또 다른 예로서, 조절가능한 분리기(88)는 적어도 60 중량% 철분 함량을 갖는 자기부를 분리하도록 구성될 수 있다. 또 다른 예로서, 조절가능한 분리기(88)는 사전결정된 비중에 상응하는 적어도 Y%의 철분 함량을 갖는 자기부를 분리하도록 구성될 수 있으며, 자기부는 카운터웨이트 또는 필러 재료 적용과 같은 사전결정된 비중을 갖는 재료를 필요로 하는 적용에 사용되기 위해 수집된다. 자기부는 적어도 Y%의 중간 철분 함량을 갖는 완제품(40)으로서 수집되며, 이는 중간 철분 완제품 또는 2차 제품으로 지칭될 수도 있다.
고철분 완제품(50)과 중간 철분 완제품(40)은 철분 풍부 제품 또는 철분 풍부 완제품으로서 지칭될 수 있다. 철분 풍부 제품은, 예컨대 용광로, 소결 플랜트, 전기 아크로, 주조 공장 또는 철합금 생산 공정과 같은 철 또는 강 정제 또는 처리 작업에서 차지로서 적합할 수 있다. 철분 풍부 완제품의 소비자는 종래의 선철 및 스크랩의 소비자를 포함할 수 있다.
시스템(160)을 참조하면, 분리기(88)로부터 배출된 비자기부는 자기 드럼 분리기(90) 내로 공급되고, 적어도 Z%의 사전결정된 철분 함량을 갖는 자기부와, Z% 미만의 사전결정된 철분 함량을 갖는 비자기부로 자기식으로 분리된다. 일례로서, 자기부는 적어도 20 중량% 총 철분 함량을 특징으로 하며, 예컨대 Z의 사전결정된 값은 20일 것이다. 분리기(90)로부터 배출된 자기부는 사이즈를 더욱 감소시키기 위해 그리고/또는 입자로부터 비철 슬래그 재료를 제거함으로써 입자의 철분 함량을 증대시키기 위해 볼 그라인더(74)로 회수된다. 비자기부는 전술한 바와 같이 저철분 완제품(30)으로서 수집된다. 저철분 완제품(30)은, 예컨대 블라스팅 매체(blasting media), 산업용 흡수제(industrial absorbent), 산성광산배수 중화제(acid mine drainage neutralizer), 산성광산 토양 회복(acid mine land recovery), 도로 견인 매체(road traction media) 및 염 첨가제(salt additive)와 같은 하나 이상의 특수한 적용에 이용되기에 적합할 수 있다. 저철분 완제품(30)의 다른 적용은 시멘트 및 고온 혼합 아스팔트를 위한 구성 재료를 포함하고, 석회 대체제(lime replacement), 철 첨가제(iron additive) 또는 마찰 저항 첨가제(skid resistance additive), 농업용 석회 대체제(agricultural lime replacement), 또는 지피 재료(groundcover material) 혹은 도로 재료(roadway material)로서 이용할 수 있다.
도 2 및 3의 시스템(60, 160)을 다시 참조하면, 스크리닝 단계(24)로부터의 제3 사이즈 그룹의 입자는 자기부와 비자기부로의 자기 분리를 위해 조절가능한 자기 분리기(84) 내에 공급된다. 고정식 자기 분리기(72)로부터 배출된 자기부는 스크리닝 단계(24)로부터의 제3 사이즈 그룹과 함께 또는 그 자체의 사이즈 그룹으로서 별개로 조절가능한 자기 드럼 분리기(84) 내에 공급될 수 있다. 조절가능한 분리기(84)는 유입 재료가 적어도 Y%의 사전결정된 철분 함량을 갖는 자기부와, Y% 미만의 사전결정된 철분 함량을 갖는 비자기부로 분리되도록 구성됨으로써, 자기부는 적어도 Y%의 중간 철분 함량을 특징으로 한다. 일례로서, 자기부는 적어도 55 중량% 총 철분 함량일 수 있고, 예컨대 Y의 사전결정된 값은 55일 것이다. 또 다른 예로서, 조절가능한 분리기(84)는 적어도 60 중량% 철분 함량을 갖는 자기부를 분리하도록 구성될 수 있다. 자기부는 적어도 Y%의 중간 철분 함량을 갖는 중간 철분 완제품(40)으로서 수집된다. 중간 철분 완제품(40)은, 예컨대 카운터웨이트 재료와 같은 하나 이상의 특수한 적용 또는 석탄 처리 산업에서의 적용에 이용되기에 적합할 수 있다. 분리기(84)로부터 배출된 비자기부는 저철분 완제품(30)으로서 수집된다.
사이즈 분류 단계(24)와 자기 분리 단계(26, 28)는 방법(10)의 제2 분류/분리 상(second classifying/separating phase) 또는 제2 상(second phase)으로 지칭될 수 있으며, 제2 상은 단계(24)에서 유입 재료를 복수의 사이즈 그룹으로 사이즈 분류하는 단계 후에, 단계(26, 28)에서 복수의 사이즈 그룹 각각을 자기부와 비자기부로 자기식으로 분리하는 단계로 이루어지며, 이들 용어는 본원에 기재되어 있다.
자기 분리 단계(26)를 수행하도록 제2 상 내에 다른 타입의 조절가능한 자기 분리기가 이용될 수 있다. 예를 들면, 조절가능한 자기 분리기 중 하나 이상은 벨트-타입 분리기일 수 있다. 일례로서, 자기 분리기(80, 84, 86, 88) 중 하나 이상은 재료, 예컨대 공급 원료가 컨베이어 벨트의 단부에서 배출하여 공급 원료가 컨베이어 벨트의 단부로부터 낙하함에 따라 공급 원료 내의 자기 입자의 궤적에 영향을 미침에 따라 재료 상에 자기력을 발휘하는 자기장을 제공하는 조절가능한 자기 어레이를 구비하는 자기 컨베이어 분리기일 수 있음으로써, 이는 자기부로 분리될 수 있다. 자기 어레이의 배치는 컨베이어 벨트의 단부면에 대해 조절가능할 수 있음으로써, 분리 지점에서의 자기력의 강도는 변경될 수 있다. 일례로서, 자기 분리기(80, 84, 86, 88) 중 하나 이상은 조절가능한 크로스-벨트 자기 분리로서 구성될 수 있으며, 공급 원료 또는 유입 재료는 제1 컨베이어(피드 컨베이어로 부를 수도 있음) 상에 공급되며, 이는 자기 어레이를 수용하는 자기 컨베이어로서 구성된 제2 컨베이어로부터 특정한 거리에 수직한다. 자기 어레이에 의해 제공된 자기장에 의해 끌어 당겨지기에 충분한 자화율 및/또는 철분 함량의 피드 컨베이어 표면(분리면) 상의 자기 입자는 자기 벨트에 의해 끌어 당겨져서 보유되고, 자기부로서 자기 벨트로부터 수집된다. 피드 컨베이어 표면으로부터의 자기 어레이의 배치는, 자기 어레이에 의해 제공된 자기장의 강도가 분리면에서 측정된 바와 같이 변경될 수 있도록 조절가능함으로써, 자기 벨트에 의해 끌어 당겨지고 그리고/또는 보유되어 자기부로서 분리된 입자의 최소한의 철분 함량을 변경시킬 수 있다.
분리면에서 측정된 바와 같은 자기장의 강도는, 자기 어레이의 자기 강도, 및 자기 어레이와 분리면, 예컨대 드럼 또는 벨트 표면 사이의 거리에 따라 다를 수 있다. 분리면에서 측정된 바와 같은 자기장의 강도는, 자기 어레이가 분리면으로부터 리트랙트(retract)되거나 또는 그로부터 멀어지게 이동함에 따라 감소, 예컨대 약해진다. 분리면에서 측정된 바와 같은 비교적 낮은 자기장의 강도는 비교적 보다 높은 철분 함량을 가질 수 있는 입자를 구비한 높은 자화율을 갖는 입자를 끌어당기는데 이용될 수 있다. 분리면에서 측정된 바와 같은 자기장의 강도는, 자기 어레이가 분리면에 도달하거나 또는 그에 근접하에 이동됨에 따라 증대, 예컨대 강해진다. 비교적 높은 자기장의 강도는 비교적 적당한, 예컨대 중간 또는 낮은 철분 함량을 가질 수 있는 입자를 구비한 낮은 자화율을 갖는 입자를 끌어당기는데 이용될 수 있다. 자기 어레이와 분리면 사이의 거리를 조절함으로써, 자기 분리기는 유입 재료로부터의 사전결정된 철분 함량을 갖는 자기 입자를 분리하도록 조절될 수 있다. 따라서, 분리기(80, 84, 86, 88)의 상이한 구성을 제공하도록 조절가능한 자기 분리기가 조절 및/또는 구성될 수 있고, 이는 시스템(60)의 분리기(68, 70, 72, 90) 중 하나 이상으로서 구성가능하므로, 예컨대 시스템(60) 내의 분리기 중 어느 하나로서 조절가능한 자기 분리기를 구성할 수 있음으로써 시스템(60)에 상당한 유연성을 제공하여, 시스템 가동 시간을 유지하는데 요구되는 백업 장비의 양을 최소화할 수 있다. 예를 들면, 분리기(86) 내의 자기 어레이의 배치는 고철분 함량 재료를 분리하기에 적합한 제1 위치로부터 분리면에서 자기장의 강도가 증가되는 제2 위치로 변경될 수 있음으로써, 분리기(88)가 유지보수 등으로 인해 유용하지 않는 경우에 중간 철분 함량을 갖는 자기부를 분리하도록 분리기(86)가 분리기(88)로 대체될 수 있다.
본원에 기술된 시스템 및 방법의 다른 구성이 가능하며, 본원에 제공된 예는 제한의 의도가 아니다. 본원에 기술된 원재료 처리 방법 및 시스템은, 예컨대 철분 또는 철광석(iron ore), 드로스(dross), 광물찌꺼기(tailings) 등을 포함할 수 있는 다른 자기 금속을 갖는 원재료 또는 골재 재료의 다른 형태에 적용될 수 있다. + 20 메시, - 20 내지 + 40 메시, - 20 내지 + 60 메시, 및 - 60 메시의 예시적인 사이즈 그룹은 제한의 의도가 아니다. 사이즈 그룹의 개수, 및 사이즈 그룹 각각의 입자 사이즈 범위는 유입 재료의 입자 사이즈 분포에 근거하여 변경됨으로써, 자기 분리의 효율을 최적화할 수 있다. 예를 들면, 제1 분류/분리 상에서, 유입 재료는 사이즈 분류 단계(16)에서 4가지 사이즈 그룹으로 분리될 수 있으며, 이는 또 다른 분쇄를 위해 상당히 큰 사이즈의 재료를 제거하도록 원재료의 제1 스크리닝을 포함할 수 있다. 제1 스크리닝은, 예컨대 제4 사이즈 그룹 내에 큰 사이즈의 재료를 보유하기에 충분한 사이즈의 그레이트(grate) 또는 스크리닝 장치(screening device)를 통해 원재료를 통과시킴으로써 수행될 수 있다. 유입 재료는 보다 큰 입자의 부재(absence) 또는 입자의 좁은 사이즈 분포를 특징으로 할 수 있음으로써, 자기 분리 전에 2가지 사이즈 그룹으로의 분류는 효율적이고 효과적인 자기 분리 단계를 제공하기에 충분할 수 있다. 제2 분류/분리 상에서, 유입 재료는 2가지, 3가지, 4가지 이상의 그룹으로 분리됨으로써, 철분 함량 및/또는 입자 사이즈의 별개의 범위를 갖는 부산물로의 분리를 용이하게 할 수 있다.
예컨대 자기 컨베이어를 구비한 벨트-타입 자기 분리기를 포함하는, 건식 자기 드럼 분리기 이외의 자기 분리 타입이 이용될 수 있고, 크로스-컨베이어 분리기는 드럼-타입 자기 분리기로 대체될 수 있고, 조절가능한 자기 분리기는 고정식 자기 분리기로 대체될 수 있다. 고정식 자기 분리기는 하나 이상의 조절가능한 자기 분리기로 대체될 수 있다. 스크리닝 이외의 사이즈 분류 공정이 이용될 수 있으며, 이는 예컨대 공기 분류를 포함한다. 분쇄 및/또는 그라인딩 장치의 다른 타입이 이용됨으로써, 슬래그로부터 철분을 해방시키고 그리고/또는 단계(20)에서 로드 밀(rod mills), 페블 밀(pebble mills), 반자생 그라인딩 밀(semi-autogenous grinding mills), 해머 밀(hammer mills), 롤러 밀(rollder mills) 등과 같이 압자의 사이즈를 감소시킬 수 있다. 상기 방법은 추가적인 단계를 구비할 수 있으며, 예컨대 제1 상의 사이즈 분류 단계(16) 전에 유입 원재료를 분쇄함으로써, 스크리닝 작업의 유효성 및/또는 유입 원재료를 복수의 사이즈 그룹으로의 분리하는 단계를 구비할 수 있다. 하나의 작업으로부터 출력된 재료는 후속적인 작업에 직접 및/또는 연속적으로 공급될 수 있거나, 또는 작업 후에 수집 및 저장된 다음, 저장으로부터 회수되어 후속적인 작업에 공급될 수 있다. 재료가 작업들 간의 수집 컨테이너 내에 저장되거나 또는 작업들 간에 원격으로 저장될 수 있다. 시스템(60, 160)은 재료 취급 및 저장 장비(미도시)를 구비할 수 있지만, 하나의 작업 단계로부터 다른 단계로 또는 하나의 장치로부터 다른 장치로 재료를 이송하는 것이 필요한 것으로 이해된다. 재료 취급 및 저장 장비에는, 예컨대 오픈 게이트 덤프 스타일 트럭을 포함하는 트럭, 벌크 공압 트레일러, 저장용 사일로, 창고, 프런트로드 로더, 스크류 컨베이어를 포함하는 컨베이어, 버킷 엘리베이터를 포함하는 엘리베이터, 통, 호퍼, 로터리 에어 록 피더, 피드 튜브 등이 있을 수 있다.
본 발명의 최선책이 상세하게 기술되었지만, 첨부한 특허청구범위 내에서 본 발명을 실시하는 각종 변형된 설계 및 실시예를 당업자라면 이해할 것이다.
Claims (15)
- 슬래그 재료를 분리하는 방법에 있어서,
상기 슬래그 재료를 제1 복수의 사이즈 그룹으로 사이즈 분류하는 단계;
제1 자기부와 제1 비자기부를 제공하도록 상기 제1 복수의 사이즈 그룹 중 하나 이상을 자기식으로 분리하는 단계로서, 상기 제1 비자기부는 저철분 완제품(finished low iron product)인, 상기 제1 복수의 사이즈 그룹의 자기식 분리 단계;
분쇄 재료를 제공하도록 상기 제1 자기부의 상기 슬래그 재료의 적어도 일부의 사이즈를 감소시키는 단계;
상기 분쇄 재료를 제2 복수의 사이즈 그룹으로 사이즈 분류하는 단계; 및
제2 자기부와 제2 비자기부를 제공하도록 상기 제2 복수의 사이즈 그룹 각각을 자기식으로 분리하는 단계로서, 상기 제2 자기부는 철분 풍부 제품(iron rich product)인, 상기 제2 복수의 사이즈 그룹의 자기식 분리 단계
를 포함하는,
슬래그 재료의 분리 방법.
- 제1항에 있어서,
상기 철분 풍부 제품은 고철분 완제품(finished high iron product)인,
슬래그 재료의 분리 방법.
- 제1항에 있어서,
상기 철분 풍부 제품은 중간 철분 완제품(finished medium iron product)인,
슬래그 재료의 분리 방법.
- 제1항에 있어서,
상기 제2 복수의 사이즈 그룹 중 하나 이상을 자기식으로 분리하는데 조절가능한 자기 분리기(adjustable magnetic separator)가 이용되는,
슬래그 재료의 분리 방법.
- 제1항에 있어서,
제3 자기부와 제3 비자기부를 제공하도록 상기 제2 복수의 사이즈 그룹 중 하나 이상의 상기 제2 비자기부를 자기식으로 분리하는 단계를 더 포함하며,
상기 제3 자기부는 고철분 완제품인,
슬래그 재료의 분리 방법.
- 제5항에 있어서,
제4 자기부와 제4 비자기부를 제공하도록 상기 제3 비자기부를 자기식으로 분리하는 단계를 더 포함하며,
상기 제4 자기부는 중간 철분 완제품인,
슬래그 재료의 분리 방법.
- 제1항에 있어서,
상기 분쇄 재료로부터 미세 제품을 제거하도록 상기 분쇄 재료를 사이즈 분류하기 전에 상기 분쇄 재료를 분리하는 단계를 더 포함하며,
상기 미세 제품은 저철분 완제품인,
슬래그 재료의 분리 방법.
- 제7항에 있어서,
상기 분쇄 재료를 분리하는 단계는 공기 분류기를 이용하여 상기 분쇄 재료를 분류하는 단계를 구비하는,
슬래그 재료의 분리 방법.
- 제1항에 있어서,
중간 철분 완제품 및 고철분 완제품을 제공하도록 상기 제1 복수의 사이즈 그룹 중 하나의 상기 제1 자기부를 자기식으로 분리하는 단계를 더 포함하는,
슬래그 재료의 분리 방법.
- 제1항에 있어서,
상기 슬래그 재료 내의 철분 함유 입자를 해방(liberate)시키도록 상기 슬래그 재료를 상승된 온도에서 건조시키는 단계를 더 포함하는,
슬래그 재료의 분리 방법.
- 슬래그 재료를 분리하는 시스템에 있어서,
슬래그 재료를 제1 복수의 사이즈 그룹으로 분류하도록 구성된 하나 이상의 사이즈 분류 장치;
슬래그 재료를 자기부와 비자기부로 분리하도록 구성된 하나 이상의 자기 분리기; 및
상기 슬래그 재료의 사이즈를 감소시키도록 구성된 사이즈 감소 장치
를 포함하며,
상기 하나 이상의 사이즈 분류 장치, 상기 하나 이상의 자기 분리기 및 상기 사이즈 감소 장치는,
제1 상(first phase)에서, 슬래그 재료를 제1 복수의 사이즈 그룹으로 사이즈 분류하고, 제1 자기부와 제1 비자기부를 제공하도록 상기 하나 이상의 자기 분리기를 이용하여 상기 제1 복수의 사이즈 그룹 중 하나 이상을 자기식으로 분리하며, 상기 제1 비자기부는 저철분 완제품이고;
분쇄 재료를 제2 상으로 제공하도록 상기 사이즈 감소 장치를 이용하여 상기 제1 자기부의 적어도 일부의 상기 슬래그 재료의 사이즈를 감소시키고; 그리고
상기 제2 상에서, 상기 분쇄 재료를 제2 복수의 사이즈 그룹으로 사이즈 분류하고, 제2 자기부와 제2 비자기부를 제공하도록 상기 하나 이상의 자기 분리기를 이용하여 상기 제2 복수의 사이즈 그룹 각각을 자기식으로 분리하며, 상기 제2 자기부는 철분 풍부 제품을 구비하도록
구성된,
슬래그 재료의 분리 시스템.
- 제11항에 있어서,
상기 분쇄 재료로부터 미세 제품을 분리하도록 구성된 공기 분류기를 더 포함하는,
슬래그 재료의 분리 시스템.
- 제11항에 있어서,
상기 슬래그 재료 내의 철분 함유 입자를 해방(liberate)시키도록 상기 슬래그 재료를 상승된 온도로 가열하도록 구성된 건조기를 더 포함하는,
슬래그 재료의 분리 시스템.
- 제11항에 있어서,
상기 제1 상에서, 상기 하나 이상의 자기 분리기는 고정식 영구자석 분리기로서 구성되고,
상기 제2 상에서, 상기 하나 이상의 자기 분리기는 조절가능한 자석 분리기로서 구성되는,
슬래그 재료의 분리 시스템.
- 제11항에 있어서,
상기 하나 이상의 자기 분리기는 영구자석 드럼 분리기로서 구성되는,
슬래그 재료의 분리 시스템.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261612627P | 2012-03-19 | 2012-03-19 | |
US61/612,627 | 2012-03-19 | ||
US13/757,147 US9016477B2 (en) | 2012-03-19 | 2013-02-01 | Method and system for processing slag material |
US13/757,147 | 2013-02-01 | ||
PCT/US2013/026115 WO2013141983A1 (en) | 2012-03-19 | 2013-02-14 | Method and system for processing slag material |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20140136040A true KR20140136040A (ko) | 2014-11-27 |
KR101967705B1 KR101967705B1 (ko) | 2019-04-11 |
Family
ID=49156657
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020147028755A KR101967705B1 (ko) | 2012-03-19 | 2013-02-14 | 슬래그 재료의 분리 방법 및 시스템 |
Country Status (9)
Country | Link |
---|---|
US (3) | US9016477B2 (ko) |
EP (1) | EP2827995B1 (ko) |
JP (1) | JP6125608B2 (ko) |
KR (1) | KR101967705B1 (ko) |
CN (1) | CN104245144B (ko) |
BR (1) | BR112014022822B1 (ko) |
CA (1) | CA2866694C (ko) |
MX (1) | MX345521B (ko) |
WO (1) | WO2013141983A1 (ko) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8695903B2 (en) * | 2006-12-21 | 2014-04-15 | Westwood Lands, Inc. | Processing of steel making slag |
DE102012112093B4 (de) * | 2012-12-11 | 2016-12-15 | Thyssenkrupp Industrial Solutions Ag | Verfahren und Anlage zur Aufbereitung von erzhaltigem Material |
US20140262968A1 (en) * | 2013-03-15 | 2014-09-18 | Fritz Enterprises, Inc. | System and method for recovery of valuable constituents from steel-making slag fines |
FR3025806B1 (fr) * | 2014-09-15 | 2019-09-06 | Bigarren Bizi | Procede de traitement et d'extraction de dechets electroniques en vue de la recuperation des constituants inclus dans de tel dechets |
EP3559281A4 (en) * | 2016-12-22 | 2020-05-13 | Valery Shver | SYSTEMS AND METHODS FOR PREHEATING FERROMAGNETIC SCRAP |
CN108296015B (zh) * | 2018-01-17 | 2020-10-09 | 内蒙古科技大学 | 一种干式多级风磁选机 |
CN108458953B (zh) * | 2018-01-24 | 2024-05-03 | 广州机械科学研究院有限公司 | 一种基于热敏胶膜片的铁谱磨粒沉积技术及其装置 |
CN109293194B (zh) * | 2018-09-29 | 2022-07-26 | 宝山钢铁股份有限公司 | 一种滚筒法直接干化无机污泥的方法及装置 |
CN109759419B (zh) * | 2018-12-27 | 2021-05-28 | 江苏道亚环境科技有限公司 | 一种炉渣干式自动分选方法 |
CN109701997A (zh) * | 2019-02-13 | 2019-05-03 | 安徽中泰创展环境科技股份有限公司 | 一种太阳能协同利用的生活垃圾处理系统及方法 |
CN112845524B (zh) * | 2021-01-04 | 2023-02-21 | 包头钢铁(集团)有限责任公司 | 一种铁矿固体废物综合利用方法 |
EP4277752A1 (en) | 2021-01-15 | 2023-11-22 | Addforce Services Ltd | Slag processing |
CN113798042A (zh) * | 2021-09-16 | 2021-12-17 | 上海岩川科技有限公司 | 一种用于铁矿的选矿方法和选矿控制系统 |
CN114471937B (zh) * | 2022-02-23 | 2023-04-07 | 昆明学院 | 一种从硅锰合金冶炼水淬渣中综合回收铁锰矿物的方法 |
CN114854911B (zh) * | 2022-04-22 | 2023-11-24 | 南京迎信技术有限公司 | 一种高温钢渣热能利用的装置及方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19980701262A (ko) * | 1995-01-05 | 1998-05-15 | 볼프람 브뤽 | 혼합 플라스틱 재처리 방법 및 장치(process and plant for processing mixed plastics) |
KR20050098494A (ko) * | 2004-04-07 | 2005-10-12 | 치-치앙 쳉 | 가열로 잔류물의 세척 방법 |
JP2011104583A (ja) * | 2009-10-22 | 2011-06-02 | Jfe Steel Corp | 強磁性体の分離装置 |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1729008A (en) | 1929-09-24 | Method and means for separating paramagnetic ores from their dia | ||
US2075466A (en) | 1936-05-26 | 1937-03-30 | Queneau Augustin Leon Jean | Method of electromagnetically separating ores |
US2353613A (en) * | 1941-10-21 | 1944-07-11 | Virginia Metal Ind Inc | Process for beneficiation of iron ores and recovery of by-product values |
GB702314A (en) | 1951-06-06 | 1954-01-13 | Titan Co As | A new or improved process for the concentration of reduced iron ore |
US2971703A (en) | 1958-06-04 | 1961-02-14 | Frank E Rath | Process for cleaning and recovering scrap metal from slag and the like |
US3049305A (en) * | 1960-02-16 | 1962-08-14 | Spang & Company | Process for recovering substantially clean magnetic metal pieces and magnetic oxides from steel plant debris |
GB1193637A (en) | 1966-10-19 | 1970-06-03 | Electromagnets Ltd | Drum Magnetic Separator. |
GB1253996A (en) | 1968-08-16 | 1971-11-17 | Electromagnets Ltd | Magnetic separators |
US3885744A (en) | 1974-05-20 | 1975-05-27 | Air Prod & Chem | Method and apparatus for crushing and separating scrap material |
JPS5221207A (en) * | 1975-08-13 | 1977-02-17 | Kiyouzai Kogyo Kk | Method of recovering metal from iron making slag |
JPS5231916A (en) * | 1975-09-05 | 1977-03-10 | Hamada Juko Kk | Recovering method of metallic iron from steel making slag |
JPS542204A (en) * | 1977-06-08 | 1979-01-09 | Yoshikawa Kogyo Kk | Recovering method of iron particles |
JPS54157380A (en) * | 1978-05-31 | 1979-12-12 | Nippon Jiriyoku Senkou Kk | Method of disposing slag formed from iron mill |
JPS5853053B2 (ja) * | 1980-01-28 | 1983-11-26 | 日本磁力選鉱株式会社 | 製鉄所より発生するスラグ処理方法 |
DE3239135C2 (de) | 1982-10-22 | 1985-01-17 | Hoesch Ag, 4600 Dortmund | Verfahren zum Aufbereiten von Müllschrott und Einrichtung zu dessen mechanischer Bearbeitung |
JPS60125332A (ja) | 1983-12-06 | 1985-07-04 | Nippon Jiryoku Senko Kk | 製鉄所より発生するスラグより鉄粉を製造する方法 |
US4666591A (en) * | 1984-01-10 | 1987-05-19 | Kawasaki Jukogyo Kabushiki Kaisha | Slag disposal method |
JPS6199638A (ja) * | 1984-10-22 | 1986-05-17 | Nippon Jiryoku Senko Kk | 含銑鉄スラグから鉄粉を製造する方法 |
JPS62294140A (ja) * | 1986-06-11 | 1987-12-21 | Nippon Jiryoku Senko Kk | 製鉄所から発生するスラグの処理方法 |
DK161680C (da) | 1989-12-07 | 1992-01-27 | Tarco Vej As | Fremgangsmaade og anlaeg til knusning af slagge hidroerende fra staalproduktion |
US6149014A (en) | 1997-12-04 | 2000-11-21 | Eriez Manufacturing Co. | Mill magnet separator and method for separating |
US6258150B1 (en) | 1998-03-24 | 2001-07-10 | Mackellar William James | Process for the beneficiation of waste material and the product developed therefrom |
EP1008395A3 (en) * | 1998-12-11 | 2003-05-02 | Matsushita Electric Industrial Co., Ltd. | Method for separating metallic material from waste printed circuit boards, and dry distilation apparatus used for waste treatment |
DE20221285U1 (de) | 2001-02-19 | 2005-08-25 | Schons, Georg, Dipl.-Ing. | Anlage für die Behandlung von metallhaltigem Haufwerk |
US7083130B2 (en) * | 2002-10-18 | 2006-08-01 | Showa Denko K.K. | Dry grinding system and dry grinding method |
NL1026956C2 (nl) | 2004-09-03 | 2006-03-06 | Recco B V | Werkwijze en inrichting voor het terugwinnen van RVS uit staalslakken. |
US7810746B2 (en) | 2006-12-21 | 2010-10-12 | Westwood Lands, Inc. | Processing of steel making slags |
CN101890501A (zh) * | 2010-07-05 | 2010-11-24 | 北京凯特破碎机有限公司 | 一种钢渣的破碎加工方法 |
CN102172556B (zh) * | 2010-12-07 | 2013-02-13 | 东北大学 | 一种钒钛磁铁矿高压辊磨-预选加工方法 |
CN102205270A (zh) * | 2011-05-26 | 2011-10-05 | 山东梁邹矿业集团有限公司 | 一种从旋流器沉砂中提取钼精矿的方法 |
US9370780B2 (en) * | 2014-09-17 | 2016-06-21 | Shane T. Nolan | Scrap separation system and device |
-
2013
- 2013-02-01 US US13/757,147 patent/US9016477B2/en active Active
- 2013-02-14 BR BR112014022822-1A patent/BR112014022822B1/pt active IP Right Grant
- 2013-02-14 KR KR1020147028755A patent/KR101967705B1/ko active IP Right Grant
- 2013-02-14 EP EP13706866.4A patent/EP2827995B1/en active Active
- 2013-02-14 CN CN201380020339.1A patent/CN104245144B/zh active Active
- 2013-02-14 MX MX2014011215A patent/MX345521B/es active IP Right Grant
- 2013-02-14 WO PCT/US2013/026115 patent/WO2013141983A1/en active Application Filing
- 2013-02-14 CA CA2866694A patent/CA2866694C/en active Active
- 2013-02-14 JP JP2015501677A patent/JP6125608B2/ja not_active Expired - Fee Related
-
2015
- 2015-04-03 US US14/678,465 patent/US9707569B2/en active Active
-
2017
- 2017-06-21 US US15/628,940 patent/US10799882B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19980701262A (ko) * | 1995-01-05 | 1998-05-15 | 볼프람 브뤽 | 혼합 플라스틱 재처리 방법 및 장치(process and plant for processing mixed plastics) |
KR20050098494A (ko) * | 2004-04-07 | 2005-10-12 | 치-치앙 쳉 | 가열로 잔류물의 세척 방법 |
JP2011104583A (ja) * | 2009-10-22 | 2011-06-02 | Jfe Steel Corp | 強磁性体の分離装置 |
Also Published As
Publication number | Publication date |
---|---|
US20130240415A1 (en) | 2013-09-19 |
US9016477B2 (en) | 2015-04-28 |
BR112014022822A2 (ko) | 2017-06-20 |
WO2013141983A1 (en) | 2013-09-26 |
KR101967705B1 (ko) | 2019-04-11 |
US10799882B2 (en) | 2020-10-13 |
CN104245144A (zh) | 2014-12-24 |
EP2827995B1 (en) | 2021-01-06 |
CN104245144B (zh) | 2017-07-14 |
US20170282251A1 (en) | 2017-10-05 |
US20150209798A1 (en) | 2015-07-30 |
CA2866694A1 (en) | 2013-09-26 |
EP2827995A1 (en) | 2015-01-28 |
MX2014011215A (es) | 2015-03-10 |
MX345521B (es) | 2017-02-01 |
JP2015517027A (ja) | 2015-06-18 |
JP6125608B2 (ja) | 2017-05-10 |
US9707569B2 (en) | 2017-07-18 |
CA2866694C (en) | 2019-04-23 |
BR112014022822B1 (pt) | 2021-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101967705B1 (ko) | 슬래그 재료의 분리 방법 및 시스템 | |
US11071987B2 (en) | System and method for recovery of valuable constituents from steel-making slag fines | |
AU2016218961B2 (en) | System and process for dry recovery of iron oxide fines from iron-bearing compacted and semi-compacted rocks | |
US5961055A (en) | Method for upgrading iron ore utilizing multiple magnetic separators | |
JP6228519B2 (ja) | 金属鉄の製造方法 | |
JP6421765B2 (ja) | 鉄鋼スラグの選別方法、鉄鋼スラグの再利用方法および製鉄用原料の製造方法 | |
CN108187880B (zh) | 一种钢渣深度处理工艺 | |
JP2009006273A (ja) | 微粒混合物の湿式磁気分離方法 | |
RU2358027C1 (ru) | Способ переработки отвальных шлаков | |
JP6604346B2 (ja) | 鉄鋼スラグの選別方法、鉄鋼スラグの再利用方法および製鉄用原料の製造方法 | |
KR20160137016A (ko) | 철강 슬래그에서 재활용 철의 선별장치 및 선별방법 | |
JP2014043645A (ja) | 金属鉄の製造方法 | |
JP6015335B2 (ja) | 磁力選別方法及び磁力選別設備 | |
OA18678A (en) | System and process for dry recovery of iron oxide fines from iron-bearing compacted and semi-compacted rocks | |
UA57173U (uk) | Спосіб переробки доменних шлаків |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application | ||
AMND | Amendment | ||
X701 | Decision to grant (after re-examination) |