KR20140130622A - 마스크층의 에칭률 및 선택도를 높이기 위한 시스템 및 방법 - Google Patents

마스크층의 에칭률 및 선택도를 높이기 위한 시스템 및 방법 Download PDF

Info

Publication number
KR20140130622A
KR20140130622A KR20137028696A KR20137028696A KR20140130622A KR 20140130622 A KR20140130622 A KR 20140130622A KR 20137028696 A KR20137028696 A KR 20137028696A KR 20137028696 A KR20137028696 A KR 20137028696A KR 20140130622 A KR20140130622 A KR 20140130622A
Authority
KR
South Korea
Prior art keywords
steam
etch
etching
silicon
rate
Prior art date
Application number
KR20137028696A
Other languages
English (en)
Other versions
KR101799139B1 (ko
Inventor
이안 제이 브라운
왈라스 피 프린츠
Original Assignee
도쿄엘렉트론가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도쿄엘렉트론가부시키가이샤 filed Critical 도쿄엘렉트론가부시키가이샤
Publication of KR20140130622A publication Critical patent/KR20140130622A/ko
Application granted granted Critical
Publication of KR101799139B1 publication Critical patent/KR101799139B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/04Etching, surface-brightening or pickling compositions containing an inorganic acid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • H01L21/30612Etching of AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67075Apparatus for fluid treatment for etching for wet etching
    • H01L21/6708Apparatus for fluid treatment for etching for wet etching using mainly spraying means, e.g. nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67075Apparatus for fluid treatment for etching for wet etching
    • H01L21/67086Apparatus for fluid treatment for etching for wet etching with the semiconductor substrates being dipped in baths or vessels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Weting (AREA)

Abstract

기판상의 마스크층의 에칭률과 에칭 선택도를 높이기 위한 방법과 시스템이 제공되며, 본 시스템은 마스크층과, 규소 또는 산화규소로 이루어진 층을 포함하는 복수의 기판과, 상기 복수의 기판을 처리하도록 구성되며, 상기 마스크층을 에칭하기 위한 처리액을 함유하는 에칭 처리 챔버와, 상기 에칭 처리 챔버에 연결되며, 승압 상태의 스팀 수증기 혼합물을 공급하도록 구성되는 비등 장치를 포함하고, 상기 스팀 수증기 혼합물은 규소 또는 산화규소에 대한 마스크층의 목표 에칭 선택비와 선택 목표 에칭률을 유지하도록 제어된 유량으로 상기 에칭 처리 챔버에 도입된다.

Description

마스크층의 에칭률 및 선택도를 높이기 위한 시스템 및 방법{INCREASING MASKING LYAER ETCH RATE AND SELECTIVITY}
본 출원은 일반적으로 일괄 에칭 프로세스를 이용하여, 마스크층의 에칭률과 에칭 선택도를 높이기 위한 에칭 처리 시스템의 설계 및 방법에 관한 것이다.
현재의 CMOS(Complementary Metal Oxide Semiconductor) 트랜지스터의 제조 방법에서는, 마스크층이, 유전체, 금속 배선부, 변형, 소스/드레인, 및 기타 등의 활성 디바이스 영역들을 분리하고 보호하고 있다. 질화규소(Si3N4) 또는 산화규소(SiOx, 여기서 x는 0보다 크다)가 종종 마스크층으로서 이용되는데, 그 이유는 전기 및 형태적인 면에서 이산화규소(SiO2)와 유사하고, 또한 질화규소가 SiO2에 쉽게 접합되기 때문이다. 일반적으로, 질화규소는 에칭 정지층으로서 이용되지만, 소정의 경우, 예컨대 "이중 다마신" 프로세스에서는 질화규소가 이산화규소의 하부층의 주의깊게 제어된 두께를 변경하는 일없이 에칭되어 없어져야 한다. 이러한 경우에, 질화규소의 에칭률을 산화규소의 에칭률로 나눈 결과로서 계산되는, 산화규소에 대한 질화규소의 에칭 선택도는 프로세스 마진을 높이기 위해서 이상적으로는 가능한 한 높다. 디바이스가 계속해서 수축하기 때문에, 마스크층과 하부층의 두께는 함께 수축한다, 초박막층에 대한 에칭 선택도는 장래에 더욱 난제가 될 것이다.
질화규소를 선택적으로 에칭하기 위한 현재의 기술은 상이한 화학반응(chemistries) 및 접근법을 이용할 수 있다. 수용성 화학 에칭과 건식 플라즈마 에칭 양쪽이 질화규소를 제거하는데 이용될 수 있다. 수용성 화학 물질은 인산과, 저농도 불화수소산(dHF: dilute HydroFluoric acid), 불화수소산/에틸렌글릴콜을 포함할 수 있다. 상이한 화학반응을 이용하기 위한 결정은 산화물에 대한 질화규소의 에칭률과 선택도의 요건에 의해 좌우된다. 수용성 화학 방법은 건식 기술과 비교해 소유 경비가 감소하기 때문에 바람직하다. 잘 아는 바와 같이, 인산에서의 질화규소 에칭률은 온도에 큰 영향을 받는데, 에칭률은 온도 상승에 따라 상승한다. 기판을 인산 수용액조에 침지하는 것과 같은 습식 벤치(wet-bench) 구성에서는, 프로세스 온도가 인산 수용액의 비등점에 의해 제한된다. 용액의 비등점은 대기압뿐만 아니라 인산 수용액내의 물 농도와의 함수이다. 온도를 유지하기 위한 현재의 한 방법은, 비등 상태의 존재를 측정하면서, 목표 온도에서 이 비등 상태를 유지하기 위해 용액조에 대한 물량 추가 및 히터 전력 타이밍 간격을 조정하는 피드백-루프-컨트롤러에 의한 것이다(통상 목표 온도의 범위는 섭씨 140도 내지 섭씨 160도이다). 물 추가 없이 인산 수용액을 가열할 때, 물이 수용액에서 증발함에 따라 인산 수용액의 비등점은 상승한다.
인산의 온도를 상승시키는 것은, 생산을 위해 질화규소의 에칭률을 높이고, 현재의 인산 재순환 탱크를 이용하기 때문에 낮은 선택도의 대가로 제조 비용을 낮추기에는 유리하지만, 비등점을 높게 한 결과는 물의 농도를 저감시키는 것이다. 물은 산화규소 또는 규소 에칭에 대한 질화규소의 선택도를 제어하는데 있어 결정적이다. 실험적 증거는, 승온에서 끓지 않는 상태(즉, 낮은 물 함량)는 바람직한 에칭 선택도로 이어지는 않는다는 것을 보여준다. 반면, 선택도를 향상시키기 위해, 물의 농도를 높게 하는 것(산성의 농도를 더 낮추는 것)이 바람직하지만, 이 역시 실용적이지 않다. 용액조에서 물의 농도를 높이면 산혼합물의 비등점은 낮아진다. 저온에서, 질화규소의 에칭률은 온도와 질화규소 에칭률 사이의 강한 아레니우스(Arrhenius) 관계로 인해 상당히 떨어진다.
현재 기술에 있어서, 예컨대 모리스(Morris)의 미국 특허 번호 제4,092,211호에는, 비등 상태의 인산 수용액 내에서, 질화규소 절연체층을 마스킹하는데 채용된 이산화규소 절연체층의 에칭률을 제어하는 방법을 개시되어 있다. 이 방법은 실리케이트 물질을 비등 상태의 인산 수용액에 의도적으로 첨가한다. 또한, 벨(Bell) 등의 미국 특허 번호 제5,332,145호에는, 플럭스 조성의 비중에 근접하게 필적한 비중을 갖는 용매를 채용한 낮은 고체 솔더링 플럭스의 조성을 계속적으로 모니터링하고 제어하는 방법을 개시하고 있다. 기술적으로, 마스크층에 대해 높은 에칭률을 유지하고, 또한 규소 또는 이산화규소에 대한 마스크층의 높은 에칭 선택도를 유지할 수 있는 방법 및 시스템이 바람직하다. 이에, 목표하는 에칭률, 에칭 선택도, 에칭 시간, 및/또는 소유 비용을 만족시킬 수 있는 일괄 에칭 처리 시스템 및 방법과, 단일 기판 시스템 및 방법에 대한 요구가 있다.
기판상의 마스크층의 에칭률과 에칭 선택도를 높이기 위한 방법 및 시스템이 제공되며, 이 시스템은, 마스크층과, 규소 또는 산화규소로 이루어진 층을 포함하는 복수의 기판과, 상기 복수의 기판을 처리하도록 구성되며, 상기 마스크층을 에칭하기 위한 처리액을 함유하는 에칭 처리 챔버와, 상기 처리 챔버에 연결되며, 승압 상태의 수증기 혼합물을 공급하도록 구성되는 비등 장치를 포함하고, 상기 수증기 혼합물은 상기 규소 또는 이산화규소에 대한 상기 마스크층의 선택 목표 에칭 선택비(selectivity ratio)와 선택 목표 에칭률을 유지하도록 제어된 유량으로 상기 처리 챔버에 도입된다.
도 1은 일괄 에칭 프로세스에 있어서 종래 기술의 질화규소 에칭 방법을 설명하기 위한 구조도이다.
도 2는 질화규소를 에칭하기 위해 공급수 및 히터를 이용하는 종래 기술의 일괄 에칭 처리 시스템을 도시하는 예시적인 구조도이다.
도 3은 인산 농도와 온도의 함수에 따른 인산의 비등점의 예시적인 그래프이다.
도 4a는 인산 농도와 온도의 함수에 따른 인산의 비등점의 예시적인 그래프와, 에칭 처리 시스템에서의 혼합물 평형 조건을 위한 온도의 함수에 따른 스팀 압력의 예시적인 그래프이다.
도 4b는 인산 농도와 온도의 함수에 따른 인산의 비등점의 예시적인 그래프와, 에칭 처리 시스템의 2가지 스팀 압력에서의 혼합물 평형 조건에 대한 온도의 함수에 따른 스팀 압력의 예시적인 그래프이다.
도 5a는 온도의 함수에 따른 인산 용액의 조성의 예시적인 그래프이다.
도 5b는 에칭 처리 시스템에서의 시간과 온도의 함수에 따른 인산 용액의 에칭 선택도의 예시적인 그래프이다.
도 6a는 본 발명의 실시형태에 따른 일괄 에칭 처리 시스템의 예시적인 개략도이다.
도 6b는 본 발명의 실시형태에 따른 단일 기판 에칭 처리 시스템의 예시적인 개략도이다.
도 7a는 본 발명의 실시형태에 따른 스팀을 분배하기 위해 노즐을 이용하는 일괄 에칭 처리 시스템의 예시적인 개략도이다.
도 7b는 본 발명의 실시형태에 따른 처리액 재순환 시스템을 포함하는 단일 기판 에칭 처리 시스템의 예시적인 개략도이다.
도 8a, 도 8b 및 도 8c는 본 발명의 여러 실시형태에 따른 에칭 처리 시스템에 있어서 반송 시스템의 예시적인 개략도이다.
도 9는 본 발명의 실시형태에 따라 처리액 및 스팀을 이용하는 일괄 에칭 처리 시스템에 있어서 기판의 마스크층에 대한 에칭률과 에칭 선택도를 높이는 방법의 예시적인 흐름도이다.
도 10은 본 발명의 실시형태에 따라 조합된 처리액과 스팀을 이용하는 일괄 에칭 처리 시스템에 있어서 기판의 마스크층에 대한 에칭률과 에칭 선택도를 높이는 방법의 예시적인 흐름도이다.
도 11은 본 발명의 실시형태에 따라 주입 노즐을 이용하는 일괄 에칭 처리 시스템에 있어서 기판의 마스크층에 대한 에칭률과 에칭 선택도를 높이는 방법의 예시적인 흐름도이다.
도 12는 본 발명의 실시형태에 따른 단일 기판 에칭 처리 시스템에 있어서 기판의 마스크층에 대한 에칭률과 에칭 선택도를 높이는 방법의 예시적인 흐름도이다.
도 13은 본 발명의 실시형태에 따라 에칭률과 에칭 선택도를 높이도록 구성된 에칭 처리 시스템을 이용해 제조 클러스터를 제어하기 위한 프로세스 제어 시스템의 예시적인 개략도이다.
도 14는 본 발명의 실시형태에 따라 에칭률과 에칭 선택도를 높이도록 구성된 에칭 처리 시스템을 이용해 제조 클러스터를 제어하는 방법의 예시적인 흐름도이다.
본 발명의 설명을 돕기 위해서, 반도체 기판은 원리의 적용을 설명하기 위해 이용되는 것이다. 방법 및 프로세스는 웨이퍼, 디스크 또는 기타 등의 다른 워크피스에도 동등하게 적용된다. 마찬가지로, 수용성 인산은 본 발명에서 처리액을 설명하기 위해 이용되는 것이다. 후술하는 바와 같이, 다른 처리액이 대안적으로 이용될 수 있다.
도 1을 참조하면, 구조도(10)는, 하나 이상의 유입 스트림(34, 38)을 이용하여 에칭 화학물질(에칭액)을, 복수의 기판(26)이 배치되어 있는 에칭 처리 챔버(44)상에 분배하는 종래 기술의 일괄 에칭 처리 시스템에 있어서 질화규소 에칭 방법을 설명하기 위한 것이다. 에칭액은 오버플로우 탱크(42)와 오버플로우 배출구(18)를 이용해 재사용 또는 재순환 또는 처리될 수 있다. 히터(22)는 예컨대 처리 챔버(44)의 측면에 또는 바닥면에 히터를 구비함으로써 마련될 수 있다. 히터(22)는 외장형 또는 인라인형일 수 있다.
도 2는 에칭 처리 챔버(66)와 배출 탱크(58)를 포함하는, 질화규소를 에칭하기 위한 종래의 일괄 에칭 처리 시스템(50)을 도시하는 예시적인 구조도이다. 앞에서와 같이, 히터(70)는 에칭 처리 챔버(66)의 전(前)면, 배면, 및 하면에 설치될 수 있고, 이들 히터(70)는 외장형 또는 인라인형일 수 있으며, 처리 챔버(66)내의 수용액(94)에 열유속(heat flux)을 유입(46)할 수 있다. 열유속의 배출은 전도(62) 및 물의 증발(90)을 포함한다. 유입된 열유속이 증발 및 전도로 인한 열유속보다 크다면, 수용액의 온도는 비등이 일어날 때까지 상승할 것이다. 비등점은 산 농도와 대기압에 의해 정해진다. 비등시에, 열이 증가하면 물이 빨리 끓어 없어진다. 수용액(94)에 대해 일정한 비등 온도를 유지하기 위해, 처리 챔버 컨트롤러(도시 생략)는 공급 라인(78)을 통해 주입되는 공급수(74)와 히터(70)를 조절해야 한다. 공급수가 증발로 인한 수분 손실보다 크다면, 수용액의 온도는 내려가서 산 농도를 묽게 하고 비등점을 낮게 한다. 반대로, 유입 공급수가 증발로 인한 수분 손실보다 작으면, 수용액의 온도가 상승하여, 산 농도를 짙게 하고 비등점을 상승시킨다.
잘 알고 있는 바와 같이, 인산에서의 질화규소의 에칭률은 온도의 영향을 크게 받는데, 에칭률은 온도의 상승에 따라 높아진다. 질화규소 에칭 및 이산화규소 에칭의 화학반응은 다음과 같다.
Figure pct00001
기판을 수용성 인산 용액(수용액)조에 침지할 경우에, TEL(Tokyo Electron Limited)의 EXPEDIUS 라인 툴 등과 같은 습식 벤치 구성에서는, 프로세스 온도가 수용액의 비등점에 의해 제한된다. 수용액의 비등점은 대기압뿐만 아니라 산용액내 물 농도와의 함수이며, 클라우지우스-클라페롱(Clausius-Clapeyron) 관계 및 라울(Raoult) 법칙에 의해 기술될 수 있다. 액체-기체 경계에 대한 클라우지우스-클라페롱 방정식은 아래와 같이 표현될 수 있다.
Figure pct00002
(3)
여기서, ln은 자연 로그이고,
T 1P 1은 해당 온도(켈빈 또는 기타 절대 온도 단위) 및 증기압이며,
T 2P 2는 다른 포인트에서의 해당 온도 및 증기압이고,
Δ H vap 은 증기화의 몰 엔탈피이며,
R은 가스 상수(8.314 J mol-1K-1)이다.
라울 법칙은, 이상적 용액의 증기압이 각 화학 성분의 증기압과, 그 용액에 존재하는 그 성분의 몰 분율에 종속되는 것을 말하고 있다. 용액내 성분이 평형 상태에 도달하면, 용액의 전체 증기압 p는,
Figure pct00003
(4)
이고, 각 성분의 개별 증기압은,
Figure pct00004
인데, 여기서,
pi는 혼합물내 성분 i의 부분압이고,
p*i는 순수 성분 i의 증기압이며,
xi는 용액내(혼합물내) 성분 i의 몰 분율이다.
인산과 물의 평형 상태의 예가 도 5a에 제공된다. 온도를 유지하기 위한 현재의 TEL EXPEDIUS 방법은 비등 상태의 존재를 측정하면서, 이 비등 상태를 목표 온도(160 ℃)에서 유지하기 위하여 용액조에 대한 물량 추가 및 히터 전력 타이밍 간격을 조정하는 피드백-루프-컨트롤러에 의한 것이다. 물 추가 없이 수용액을 가열할 때에, 물이 수용액에서 증발함에 따라 수용액의 비등점은 상승한다.
인산의 온도를 상승시키는 것은, 생산을 위해 질화규소의 에칭률을 높이고, 현재의 인산 재순환 탱크를 이용하기 때문에 낮은 선택도의 대가로 제조 비용을 낮추기에는 유지하지만, 비등점을 높게 한 결과는 물의 농도를 감소시키는 것이다. 물은 SiO2 에칭에 대한 질화규소의 선택도를 제어하는데 있어 결정적이다[화학 반응식 1, 2 참조]. 실험적 증거는 도 5b에 도시하는 바와 같이 승온에서 끓지 않는 상태(즉, 낮은 물 함량)가 바람직한 에칭 선택도로 이어지는 않는다는 것을 보여준다. 반면, 선택도를 향상시키기 위해, 물의 농도를 높게 하는 것(즉, 산성의 농도를 더 낮추는 것)이 바람직할 수 있지만, 이 역시 실용적이지 않다. 용액조에서 물의 농도를 높이면 수용액의 비등점은 낮아진다. 저온에서, 질화규소의 에칭률은 온도와 질화규소 에칭률 사이의 강한 아레니우스 관계(Arrhenius relationship)로 상당히 떨어진다.
이용된 용매가 물이거나 기타 용매일 수 있다는 것을 강조하기 위해 본 명세서의 나머지 부분에서는 처리액이란 용어를 사용할 것이다. 본 발명은 규소 또는 이산화규소에 대한 최적의 질화규소 에칭 선택도를 유지하기 위해 수분 함량을 높게 유지하면서, 질화규소 에칭률을 높이기 위해 질화규소에의 처리액의 토출 온도를 상승시키는 새로운 방법에 집중한다. 고온은, 고정되거나 회전하는 단일 기판에 인산 스트림을 분배하기 전에 그 스트림에 가압 스팀을 주입함으로써 실현된다. 농축 스팀은 잠재 열 에너지를 인산에 작용시킴으로써 인산 가열에 효율적으로 열을 전달한다. 추가적인 장점은 인산이 항상 물로 자동 포화된다는 점이다. 물은 이산화규소에 대한 질화규소의 에칭 선택도를 높게 유지하는데 필수적이다. 단일 패스 프로세스(single pass process)의 경우, 선택도 제어를 돕기 위해 용해 실리카가 인산에 공급되어야 한다. 재순환 프로세스의 경우, 실리카는 천연 인산에, 또는 에칭 처리 시스템을 통해 블랭킷 질화규소 기판의 순환에 의해 공급될 수 있다[이것은 일괄 에칭 처리 시스템에서 이용되는 공통 프로세스로서, 인산 배스(phosphoric acid bath)라고도 알려져 있다]. 실시형태에 있어서, 기판상의 중심으로부터 가장자리까지 에칭 균일성을 확보하기 위해 기판을 예열하는 데에도 스팀 제트가 이용될 수 있다.
단일 기판 프로세스를 실용적이며 비용 효율적으로 하기 위해서 무엇보다도 본 발명이 해결하려는 과제는, 처리액, 예컨대 인산을 이용하는 프로세스에서의 질화규소 에칭률의 개선이다. 인산 처리는 통상 "더티 프로세스(dirty process)"라고 알려져 있으며, 통상적으로 남아있는 입자를 제거하기 위해 표준 클린 1(SC1) 단계가 이어진다. 단일 기판 에칭 프로세스는 결함/입자 재퇴적의 메커니즘 및/또는 배면 내지 전면 오염을 피할 수 있기 때문에 본래 일괄 에칭 프로세스보다 클린하다. 160℃의 고온의 인산에서는 질화규소 에칭 프로세스가 느리다(30-60 옹스트롱/min, 즉 A/min). 질화규소의 에칭률이 180 A/min보다 높아질 수 있다면, 단일 기판 프로세스 툴상에서의 질화규소 처리를 실행할 수 있다. 질화규소를 가열하는데 직접 스팀 주입법을 사용하면, 규소 또는 이산화규소에 대해 높은 질화규소 에칭 선택도에 필요한 포화 수분 함량을 유지하면서 고온의 프로세스 온도를 실현할 수 있다.
일 실시형태에 있어서, 주위 온도의 액체수가 공급되는 비등 장치를, 승압 상태의 스팀 수증기 혼합물을 공급하는데 이용한다. 스팀 수증기 혼합물의 온도는 비등 장치 내부의 최종 압력에 의해 제어될 수 있다. 그런 다음, 스팀 수증기 혼합물은 단일 기판 처리 챔버에 연결된 고온 인산의 화학 토출 라인에 파이프로 투입된다. 스팀 수증기 혼합물이 용액조에 열과 수분의 소스를 제공할 것이기 때문에, 용액조를 표준 비등 온도보다 높게 상승시키고, 이산화규소 및 규소에 대한 질화규소의 에칭 선택도를 유지하기 위해 기상 및 액상 양상의 추가 수증기를 도입한다.
다른 실시형태에 있어서, 스팀 수증기 혼합물은 에칭 처리 챔버에 도입되기 전에 고압의 처리액과 조합된다. 공급 토출 라인에서의 비등 상태를 피하기 위해 충분한 압력이 유지되어야 한다. 그런 다음, 처리액은 주위 압력으로 에칭 처리 챔버에 도입되면 신속하게 끓기 시작할 것이다. 다른 실시형태에서는, 기판 위에서 다수의 노즐을 이용할 수 있다. 제1 노즐은 가열 상태의 인산을 도입하고, 제2 노즐 이상은, 기판에 걸쳐 일정한 온도를 유지시킴으로써 결과적으로 에칭 균일성을 확보하는 것을 돕기 위해 인산의 도입전에 기판 표면을 예열하도록 고온의 스팀 수증기 혼합물의 제트를 도입한다. 이 실시형태에 있어서, 노즐의 위치와 개수는 기판에의 열 전달 및 처리액의 효율성을 최대화하도록 결정될 수 있다. 또한 스팀 수증기 혼합물은 온도 균일성을 유지하기 위해 기판의 배면에 주입될 수 있다.
도 3은 1 대기압에서의 인산 농도와 온도의 함수에 따른 인산 비등점의 예시적인 그래프(300)를 나타낸다. 처리액의 온도와 농도는 규소 또는 산화규소에 대한 질화규소의 에칭 선택도와 에칭률을 결정하는 2개의 핵심 인수이다. 도 3은 질화규소에 대한 일괄 에칭 프로세스의 온도 대(對) 인산 농도의 비등점 곡선(304)를 나타내고 있다. 비등점 곡선(304)을 참조하면, 처리액은 초기 세트가 조건 A이고, 예컨대 처리액은 약 120℃에서 85 중량%의 인산 농도를 갖는다고 한다. 처리액은 비등점이 도면부호 308이 표기된 포인트 X로 표시하는 지점에 도달할 때까지 가열되는데, 그 점은 예시적인 에칭 처리 시스템의 제어 한계를 나타내는 비등점 곡선(304)상의 점이다. 전술한 바와 같이, 처리액은 목표 질화규소 에칭 선택도를 유지하고 동시에 에칭 균일성을 유지하면서 에칭률을 높이기 위해 승온된다.
도 4a는 1 대기압에서의 인산 농도의 함수에 따른, 좌측 수직축상에 표시되는 인산의 비등점 곡선(404)과, 에칭 처리 시스템에서의 혼합물 평형 조건을 위한 온도의 함수에 따른, 우측 수직축상에 표시되는 스팀 압력 곡선(408)을 포함하는 예시적인 그래프(400)이다. 인산 농도는 수용액내 인산의 중량%로서 표현된다. 점선으로 나타내는 포인트 (1)에서의 처리액의 초기 조건 세트는 85 중량% 인산 조성과 120℃의 온도에 해당하는 것으로 한다. 처리액은 비등점 곡선(404)의 점선부로 나타내는 비등 온도까지 가열되어 도달한다. 가열은 인라인형 또는 외부의 히터를 이용하거나, 또는 에칭 처리액에 스팀 수증기 혼합물을 주입함으로써 이루어질 수 있다. 일 실시형태에 있어서, 에칭 처리 시스템은 비등점 곡선(400)상에서 해당 온도 160℃의 의 포인트 (2)로서 표시되는 고온 한계를 갖는다. 스팀과 수증기의 조합(스팀 수증기 혼합물)은 처리액이 실질적으로 92 중량% 인산의 조성, 180℃의 온도 및 대략 1.0 메가파스칼(㎫)의 스팀 압력에 해당하는 포인트 (3)에 도달할 때까지 에칭 처리 시스템의 부닥부에 펌핑된다. 적용 목표를 충족하는 질화규소의 에칭률과 에칭 선택도를 결정하기 위해 수용성 인산과의 스팀 수증기 혼합물의 다른 조합을 테스트할 수 있다. 스팀 수증기 혼합물의 압력은 0.2 내지 2.0 ㎫의 범위 내에 있을 수 있다.
도 4b를 참조하면, 압력 0.5 ㎫이 스팀 수증기 혼합물의 목표 압력으로서 선택된 것으로 한다. 그 혼합물의 해당 온도[스팀 압력 곡선(408)상의 포인트 (A)]는 약 152℃이다. 스팀 수증기 혼합물이 용액조 또는 단일 기판 에칭 처리 시스템내의 처리액에 주입될 때에, 비등점은 비등점 곡선(404)의 점 A와 점 A'를 연결하는 수직선에 의해 결정되어, 해당 인산 농도는 약 86%의 평형 상태가 된다. 선택 목표 압력이 2.0 ㎫이면, 혼합물의 해당 온도[스팀 압력 곡선(408)상의 포인트 (B)]는 약 214℃이다. 같은 접근법을 이용하면, 비등점이 비등점 곡선(404)의 점 B와 점 B'를 연결하는 수직선에 의해 결정되어, 해당 인산 농도는 약 96%의 평형 상태가 된다. 그러므로, 스팀 수증기 혼합물의 유량 및 압력은 처리액의 온도를 제어하기 위한 변수로서 이용되어, 처리액의 비등점 온도, 나아가 처리액내의 인산 농도에도 영향을 미칠 수 있다. 처리액의 온도와 평형 상태의 인산 농도가 에칭률과 에칭 선택도에 영향을 미친다.
도 5a는 입방 미터당 수중 몰(aqueous moles)(Aq. mols/㎥)로서 표현되는 인산 용액의 조성의 제1 곡선(504)과, 온도(℃)의 함수에 따른, mols/㎥로서 표현되는 물에 대한 제2 곡선(508)을 포함하는 예시적인 그래프(500)를 나타낸다. 처리액이 160 내지 220℃의 범위까지 가열될 때, 인산의 농도는 기본적으로 변화가 없는 반면, 물 농도는 온도가 높아짐에 따라 증발로 인해 낮아진다. 처리액의 에칭 선택도에 대한 변화를 더 설명하기 위해, 도 5b는 에칭 처리 시스템에서의 처리액의 온도와 시간의 함수에 따른 인산 용액의 에칭 선택도의 예시적인 그래프(550)를 나타내고 있다. 테스트의 초기에, 처리액(수용성 인산)이 끓고 있었고, 처리액을 스파이킹하는 데에는 탈이온수(DIW)를 이용하였으며, 이산화규소에 대한 질화규소의 에칭 선택도는 높았다(554). 50분 후에, DIW에 의한 스파이킹을 멈추었고, 처리액의 온도는 약 220℃가 피크였는데, 히터 전력이 감소한 후에 낮아지기 전에는 거의 같은 온도 수준이었다. 또한, 에칭 선택도도 에칭 선택도 곡선(564)의 하향 기울기로 알 수 있는 바와 같이 고에서 저로(554에서 558로) 낮아졌다. DIW로 처리액의 스파이킹을 다시 시작한 후에, 처리액은 비등 상태로 진입하였고, 에칭 선택도는 저에서 고로(558에서 562로) 되었다. 본 발명자들은 처리액이 160 내지 200℃의 범위에서 유리할 수 있고, 수용성 인산을 이용한 처리액의 경우 약 180℃가 바람직한 것을 발견하였다.
도 6a는 본 발명의 실시형태에 따른 일괄 에칭 처리 시스템(600)의 예시적인 개략도를 나타낸다. 복수의 기판(632)이 에칭 처리 챔버(640) 내에 배치된다. 처리액(628)이 에칭 처리 챔버(640)에 도입되고, 과잉 처리액은 오버플로우 컨테이너(640)에 유입되어 배출구(608)를 통해 배출될 수 있다. 스팀 생성기(614)는 토출 라인(620)을 통해 유입수를 공급받고 히터(616)에 의해 가열되어 스팀 수증기 혼합물(612)을 생성한다. 스팀 수증기 혼합물(612)은 에칭 처리 챔버(640)의 바닥면에 있는 연결부(636)에 의해 분배된다. 컨트롤러(도시 생략)를 이용하여, 일괄 에칭 처리 시스템(600)은 고압으로 가압될 수도 가압되지 않을 수도 있는 스팀 수증기 혼합물(612)과 처리액(628)의 유량을 제어함으로써 선택 에칭 처리율과 선택 에칭 선택비를 만족시키도록 구성된다. 스팀 수증기 혼합물의 압력은 0.2 내지 2.0 ㎫의 범위내에 있을 수 있다.
도 6b는 본 발명의 실시형태에 따른 단일 기판 에칭 처리 시스템(650)의 예시적인 개략도를 나타내고 있다. 단일 기판(654)은 공급 라인(682)으로부터 처리액(678)이 분배되고 스팀 수증기 혼합물(674)이 공급 토출 라인(670)으로부터 분배되는 동안에, 그 기판(654)을 고정시키거나 회전시키도록 구성된 스테이지(662) 상에 장착되게 된다. 스팀 수증기 혼합물(674)은 기판(654)에 걸쳐 균일한 처리를 실행하도록 구성된 노즐(666)을 통해 공급 토출 라인(670)으로부터 기판(654)상에 토출된다. 단일 기판 처리 시스템(650)과 같은 다중 에칭 처리 시스템 설정은, 공통 기판 반송 시스템에 의해 제공될 수 있는 스택형, 수직형 또는 원형의 배열 및 기타 등의 여러 배열로 구성될 수 있다. 스팀은 기판(654)에 걸쳐 예열하거나 또는 균일한 온도를 유지하기 위하여 스팀 토출 라인(658)을 통해 기판(654)의 배면에 토출될 수 있다.
도 7a는 본 발명의 실시형태에 따라 스팀 수증기 혼합물을 분배하기 위해 노즐(730)을 이용하는 일괄 에칭 처리 시스템(700)의 예시적인 개략도이다. 처리액(738)은 에칭 처리 챔버(742)의 전면 및 배면에 배치된 히터(716)에 의해 가열될 수 있다. 히터(716)는 외장형 또는 인라인형일 수 있으며, 에칭 처리 챔버(742)내의 처리액(738)에 열유속(720)을 공급한다. 또한, 공급 토출 라인(726)을 통해 토출되는 스팀 수증기 혼합물(736)이 처리액(738)에 주입됨으로써 추가 열유속(722)이 공급된다. 열유속의 유출은 전도(708) 및 물의 증발(734)을 포함한다. 열유속의 유입이 증발 및 전도로 인한 열유속의 유출(708, 734)보다 크면, 처리액(738)의 온도는 비등 발생 때까지 상승할 것이다. 비등점은 처리액(738)의 농도와 대기압에 의해 정해진다. 비등시에, 열이 증가하면 물이 빨리 끓어 없어진다.
처리액(738)에 대해 일정한 비등 온도를 유지하기 위하여, 처리 챔버 컨트롤러(도시 생략)는 히터(716)와, 노즐(730)을 통과하는 스팀 수증기 혼합물의 주입을 동시에 조절해야 한다. 스팀 수증기 혼합물의 공급이 증발로 인한 물 손실보다 크면, 처리액(738)의 온도가 낮아져서 처리액(738)은 묽어지고 비등점도 낮아진다. 결과적으로, 유입되는 공급수가 증발로 인한 물 손실보다 적으면, 처리액(738)의 온도가 상승하여, 산성의 농도는 높아지고 비등점도 상승한다. 에칭 처리 챔버(742)의 바닥면에 노즐(730)을 설치함으로써, 처리액(738)의 온도 프로파일을 일정하게 하기 위해 혼합 작용을 얻을 수 있다. 처리액(738)은 제2 공급 토출 라인(724)을 통해 노즐(730)에 도입될 수 있다. 과잉의 처리액(738)은 배출 탱크(704)로 간다. 일괄 에칭 처리 시스템(700)은 처리액(738)의 온도를 상승시킴으로써, 마스크층, 예컨대 질화규소의 에칭률을 높이는 방법을 제공한다. 산화규소 또는 규소에 대한 질화규소의 목표 에칭 선택도, 에칭비 역시, 처리액(738)의 몰농도를 제어함으로써, 예컨대 스팀 수증기 혼합물을 더 추가하거나 덜 추가함으로써 및/또는 노즐(730)을 통해 분배되는 스팀 수증기 혼합물의 온도를 높이거나 낮춤으로써 유지된다.
도 7b는 본 발명의 실시형태에 따른 처리액 재순환 시스템(783)을 포함하는 단일 기판 에칭 처리 시스템(760)의 예시적인 개략도를 나타내고 있다. 처리액(774)을 재순환하면, 이하에서 추가로 설명하는 바와 같이 반응 2(Reaction 2)의 평형을 좌측에 유지하기 위하여 처리액내의 실리카의 농도를 높게 함으로써 화학물질의 사용량(chemical usage)을 저감하고 에칭 선택도를 지원한다. 단일 기판 에칭 처리 시스템(760)을 참조하면, 단일 기판(796)은, 에칭 처리 챔버(762) 내에서 기판(796)을 정지시키거나 회전시키도록 구성된 스테이지(788)상에 배치된다. 스팀 수증기 혼합물(766)이 공급 라인(764)을 이용하여 토출되고 노즐(790)을 이용하여 기판상에 분배된다. 스팀(769)은 기판(796)에 대해 온도를 일정하게 유지하기 위하여 스팀 유입 라인(768)을 이용하여 기판(796)의 배면에 분배된다. 스팀(769)은 스팀 수증기 혼합물(766)과 같은 것일 수 있다. 처리액 재순환 시스템(783)은 에칭 처리 챔버(762)의 바닥면에 연결된 배출 라인(786)을 포함하며, 폐액 라인(780)을 통해 처리액(774)의 일부는 제어 밸브(782)를 통과해 폐기되고, 처리액(774)의 나머지는 재순환 라인(784)을 통해 재순환된다. 재순환된 처리액(774)의 원하는 온도를 유지하기 위하여 선택적인 히터(778)가 처리액 토출 라인(776) 앞에 또는 뒤에 설치될 수도 있다. 처리액 토출 라인(776)을 이용하여 새로운 처리액(774)이 재순환 라인(784)에 도입된다.
도 7b를 참조하면, 용해된 실리카는 반응 2를 저지함으로써 목표 질화규소 에칭률을 유지하는 것을 돕는다. 일 실시형태에 있어서, 실리카 주입 라인(772)을 이용하고 토출 라인(776)을 이용하여, 정해진 목표 범위, 예컨대 10 내지 30 ppm 용해 실리카에서 용해 실리카 양을 유지하기에 충분한 실리카 양으로 처리액(774)에, 용해 실리카(Si(OH)4)가 주입된다. 다른 실시형태에 있어서, 재순환된 처리액(774)에서 원하는 분해 실리카 양을 얻기 위하여 질화규소를 포함하는 다수의 기판(796)이 처리된다. 단일 기판 처리 시스템을 이용하는 본 발명의 한가지 장점은 처리액내의 높은 실리카 농도에 대한 내성이다. 인산을 사용하는 종래 기술의 일괄 에칭 처리 시스템은 통상적으로 실리카의 농도가 높아짐에 따라 결함률도 높아지는 것을 보여준다. 단일 기판 처리 시스템은 산화규소에 대한 마스크층의 안정적인 선택비의 유지를 돕는 높은 실리카 농도의 내성과 함께, 동일한 적용에 대해 일괄 에칭 처리 시스템보다 결함률이 낮기 때문에 본질적으로 유리하다.
도 8a, 도 8b 및 도 8c는 본 발명의 여러 실시형태에 따른 에칭 처리 시스템에 대한 반송 시스템의 예시적인 개략도이다. 일 실시형태에 따르면, 도 8a는 기판 또는 기판들상에 비플라즈마 세정 프로세스를 수행하기 위한 처리 시스템(800)을 도시하고 있다. 처리 시스템(800)은 제1 처리 시스템(816), 이 제1 처리 시스템(816)에 연결된 제2 처리 시스템(812)을 포함한다. 예를 들어, 제1 처리 시스템(816)은 화학 처리 시스템(또는 단일 처리 챔버의 화학 처리 구성요소)를 포함할 수 있고, 제2 처리 시스템(812)은 열처리 시스템(또는 단일 처리 챔버의 열처리 구성요소)를 포함할 수 있다.
또한, 도 8a에 도시하는 바와 같이, 제1 처리 시스템(816) 및 제2 처리 시스템(812)에 대해 기판 또는 기판들을 반송하기 위하여 제1 처리 시스템(816)에 연결될 수 있는 반송 시스템(808)이 다요소(multi-element) 제조 시스템(804)과 기판을 교환할 수 있다. 제1 및 제2 처리 시스템(816, 812)과, 반송 시스템(804)은 예컨대 다요소 제조 시스템(804) 내에 처리 요소를 포함할 수 있다. 예를 들어, 다요소 제조 시스템(804)은 에칭 처리 시스템, 퇴적 시스템, 코팅 시스템, 패터닝 시스템, 계측 시스템 등과 같은 장치를 비롯한 처리 요소에 대해 기판 또는 기판들의 반송을 가능하게 한다. 제1 및 제2 시스템에서 발생하는 프로세스들을 분리시키기 위해, 차단(isolation) 어셈블리(820)를 각각의 시스템을 연결하는데 이용할 수 있다. 예를 들어, 차단 어셈블리(820)는 열차단을 제공하기 위한 열차단 어셈블리와 진공 차단을 제공하기 위한 게이트 밸브 어셈블리 중 적어도 하나를 포함할 수 있다. 물론, 처리 시스템(816, 820)과 반송 시스템(808)은 어떤 순서로도 배치될 수 있다.
이와 다르게, 다른 실시형태에 있어서, 도 8b는 기판상에 비플라즈마 세정 프로세스를 수행하기 위한 처리 시스템(850)을 도시하고 있다. 처리 시스템(850)은 제1 처리 시스템(856)과 제2 처리 시스템(858)을 포함한다. 예를 들어, 제1 처리 시스템(856)은 화학 처리 시스템을 포함할 수 있고, 제2 처리 시스템(858)은 열처리 시스템을 포함할 수 있다.
또한, 도 8b에 도시하는 바와 같이, 반송 시스템(854)은 제1 처리 시스템(856)에 대해 기판 또는 기판들을 반송하기 위하여 제1 처리 시스템(856)에 연결될 수 있고, 제2 처리 시스템(858)에 대해 기판 또는 기판들을 반송하기 위하여 제2 처리 시스템(858)에 연결될 수 있다. 또한, 반송 시스템(854)은 하나 이상의 기판 카세트(도시 생략)와 기판 또는 기판들을 교환할 수 있다. 도 8b에는 2개의 프로세스 시스템만 도시하고 있지만, 에칭 처리 시스템, 퇴적 시스템, 코팅 시스템, 패터닝 시스템, 계측 시스템 등과 같은 장치를 비롯한 다른 프로세스 시스템이 반송 시스템(854)에 액세스할 수 있다. 제1 및 제2 시스템에서 발생하는 프로세스들을 분리시키기 위해, 차단 어셈블리(862)를 에칭 시스템을 연결하는데 이용할 수 있다. 예를 들어, 차단 어셈블리(862)는 열차단을 제공하기 위한 열차단 어셈블리와 진공 차단을 제공하기 위한 게이트 밸브 어셈블리 중 적어도 하나를 포함할 수 있다. 또한, 예컨대, 반송 시스템(854)이 차단 어셈블리(862)의 부분으로서 기능할 수도 있다.
이와 다르게, 다른 실시형태에 있어서, 도 8c는 기판 또는 기판들상에 비플라즈마 세정 프로세스를 수행하기 위한 처리 시스템(870)을 도시하고 있다. 처리 시스템(870)은 제1 처리 시스템(886)과 제2 처리 시스템(882)을 포함하는데, 제1 처리 시스템(886)은 제2 처리 시스템(882) 위에, 도시하는 바와 같이 수직 방향으로 적층되어 있다. 예를 들어, 제1 처리 시스템(886)은 화학 처리 시스템을 포함할 수 있고, 제2 처리 시스템(882)은 열처리 시스템을 포함할 수 있다.
또한, 도 8c에 도시하는 바와 같이, 반송 시스템(878)은 제1 처리 시스템(886)에 대해 기판 또는 기판들을 반송하기 위하여 제1 처리 시스템(886)에 연결될 수 있고, 제2 처리 시스템(882)에 대해 기판 또는 기판들을 반송하기 위하여 제2 처리 시스템(882)에 연결될 수 있다. 또한, 반송 시스템(878)은 하나 이상의 기판 카세트(도시 생략)와 기판 또는 기판들을 교환할 수 있다. 도 8c에는 2개의 프로세스 시스템만 도시하고 있지만, 에칭 처리 시스템, 퇴적 시스템, 코팅 시스템, 패터닝 시스템, 계측 시스템 등과 같은 장치를 비롯한 다른 프로세스 시스템이 반송 시스템(878)에 액세스할 수 있다. 제1 및 제2 시스템에서 발생하는 프로세스들을 분리시키기 위해, 차단 어셈블리(874)를 에칭 시스템을 연결하는데 이용할 수 있다. 예를 들어, 차단 어셈블리(874)는 열차단을 제공하기 위한 열차단 어셈블리와 진공 차단을 제공하기 위한 게이트 밸브 어셈블리 중 적어도 하나를 포함할 수 있다. 또한, 예컨대, 반송 시스템(878)이 차단 어셈블리(874)의 부분으로서 기능할 수도 있다. 전술한 바와 같이, 화학 처리 시스템과 열처리 시스템은 서로에 대해 연결된 개별 처리 챔버를 포함할 수 있다. 이와 다르게, 화학 처리 시스템과 열처리 시스템은 단일 처리 챔버의 구성요소일 수 있다.
도 9는 실시형태에 따라 처리액과 스팀 수증기 혼합물을 이용하여, 일괄 에칭 처리 시스템에 있어서 기판의 마스크층에 대해 에칭률과 에칭 선택도를 높이기 위한 방법의 예시적인 흐름도(900)이다. 단계 904에서, 산화규소 또는 규소에 대한 마스크층의 목표 에칭 선택도와 목표 에칭률이 선택된다. 마스크층은 질화규소, 질화갈륨, 또는 질화알루미늄 및 기타일 수 있다. 단계 908에서, 승압 상태의 스팀 수증기 혼합물이 공급된다. 스팀 수증기 혼합물은 인라인형 스팀 생성기에 의해 또는 범용의 스팀 소스로부터 제조 클러스터에 제공될 수 있다. 단계 912에서, 마스크층을 선택적으로 에칭하기 위한 처리액이 공급된다. 처리액은 인산, 불화수소산, 또는 불화수소산/에틸렌글리콘 및 기타를 포함할 수 있다. 단계 916에서, 복수의 기판이 에칭 처리 챔버에 배치된다. 단계 920에서, 처리액이 에칭 처리 기판에 분배되는데, 분배는 공급 토출 라인을 이용해 또는 노즐을 이용해 행해질 수 있다. 단계 924에서, 스팀 수증기 혼합물 흐름이 에칭 처리 챔버에 주입되는데, 스팀 수증기 혼합물의 유량은 산화규소 또는 규소에 대한 마스크층의 목표 에칭 선택비와 목표 에칭률을 달성하도록 제어된다. 스팀 수증기 혼합물의 유량은 도 4a와 도 4b에 도시한 바와 같이 처리액 농도, 수용액의 온도, 및 스팀 압력에 기초한 데이터에 상관될 수 있다. 도 4b에서 전술한 바와 같이, 스팀 수증기 혼합물의 유량과 압력은 처리액의 온도를 제어하기 위한 변수로서 이용되어, 처리액의 비등점 온도, 나아가 처리액내의 인산 농도에도 영향을 미칠 수 있다. 평형 상태의 인산 농도 및 온도는 에칭률과 에칭 선택도에 영향을 미친다.
도 10은 조합된 처리액과 스팀 수증기 혼합물을 이용하여, 일괄 에칭 처리 시스템에서 기판의 마스크층에 대한 에칭률과 에칭 선택도를 높이기 위한 방법의 예시적인 흐름도(1000)이다. 단계 1004에서, 산화규소 또는 규소에 대한 마스크층의 목표 에칭 선택도와 목표 에칭률이 선택된다. 마스크층은 질화규소, 질화갈륨, 또는 질화알루미늄 및 기타일 수 있다. 단계 1008에서, 승압 상태의 스팀 수증기 혼합물이 공급된다. 스팀 수증기 혼합물은 인라인형 스팀 생성기에 의해 또는 범용의 스팀 소스로부터 제조 클러스터에 공급될 수 있다. 단계 1012에서, 마스크층을 선택적으로 에칭하기 위한 처리액이 공급된다. 처리액은 인산, 불화수소산, 또는 불화수소산/에틸렌글리콘 및 기타를 포함할 수 있다. 단계 1016에서, 복수의 기판이 에칭 처리 챔버에 배치된다. 단계 1020에서, 혼합 탱크에서 또는 공급 토출 라인에서 처리액이 스팀 수증기 혼합물과 조합된다. 공급 토출 라인에서의 비등 상태를 피하기 위해 충분한 압력이 유지되어야 한다. 처리액은 주위 압력으로 에칭 처리 챔버에 도입될 때에 신속하게 끓기 시작할 것이다.
도 10을 참조하면, 단계 1024에서, 조합된 스팀 수증기 혼합물과 처리액의 흐름이 에칭 처리 챔버에 주입되는데, 스팀 수증기 혼합물의 유량은 산화규소 또는 규소에 대한 마스크층의 목표 에칭 선택도와 마스크층의 목표 에칭률을 달성하도록 제어된다. 전술한 바와 같이, 스팀 수증기 혼합물의 유량은 도 4a와 도 4b에 도시한 바와 같이 처리액 농도, 수용액의 온도, 및 스팀 압력에 기초한 데이터에 상관될 수 있다. 도 4b에서 전술한 바와 같이, 스팀 수증기 혼합물의 유량과 압력은 처리액의 온도를 제어하기 위한 변수로서 이용되어, 처리액의 비등점 온도, 나아가 처리액내의 인산 농도에도 영향을 미칠 수 있다. 평형 상태의 인산 농도 및 온도가 에칭률과 에칭 선택도에 영향을 미친다.
상관은 목표 에칭률과 목표 에칭 선택도를 만족시키는데 필요한 유량을 결정하는데 이용될 수 있다. 일 실시형태에 있어서, 스팀 수증기 혼합물과 처리액은 에칭 처리 챔버에 도입되기 전에 공급 토출 라인에서 조합된다. 다른 실시형태에 있어서, 스팀 수증기 혼합물과 처리액은 공급 토출 라인에서 에칭 처리 챔버로 유출되기 직전에 조합된다.
도 11은 에칭 처리 챔버의 바닥면과 측면에 설치된 복수의 노즐을 이용하여, 일괄 에칭 처리 시스템에서 기판의 마스크층에 대한 에칭률과 에칭 선택도를 높이기 위한 방법의 예시적인 흐름도(1100)이다. 단계 1104에서, 산화규소 또는 규소에 대한 마스크층의 목표 에칭 선택도와 목표 에칭률이 선택된다. 마스크층은 질화규소, 질화갈륨, 또는 질화알루미늄 및 기타일 수 있다. 단계 1108에서, 승압 상태의 스팀 수증기 혼합물이 공급된다. 스팀 수증기 혼합물은 인라인형 스팀 생성기에 의해 또는 범용의 스팀 소스로부터 제조 클러스터에 제공될 수 있다. 단계 1112에서, 마스크층을 선택적으로 에칭하기 위한 처리액이 공급된다. 처리액은 인산, 불화수소산, 또는 불화수소산/에틸렌글리콘 및 기타를 포함할 수 있다. 단계 1116에서, 복수의 기판이 에칭 처리 챔버에 배치된다. 단계 1120에서, 처리액이 에칭 처리 챔버에 분배된다.
단계 1124에서, 조합된 스팀 수증기 혼합물과 처리액의 흐름이 에칭 처리 챔버에 주입되는데, 스팀 수증기 혼합물의 유량은 산화규소 또는 규소에 대한 마스크층의 목표 에칭 선택비와 마스크층의 목표 에칭률을 달성하도록 제어된다. 복수의 노즐이 에칭 처리 챔버의 바닥면에 및/또는 측면에 설치될 수 있다. 복수의 노즐의 배열은 온도 균일성과 결과적으로 에칭 균일성을 확보하기 위해 변경될 수 있다. 전술한 바와 같이, 스팀 수증기 혼합물의 유량은 도 4a와 도 4b에 도시한 바와 같이 처리액 농도, 수용액의 온도, 및 스팀 압력에 기초한 데이터에 상관될 수 있다. 도 4b에서 전술한 바와 같이, 스팀 수증기 혼합물의 유량과 압력은 처리액의 온도를 제어하기 위한 변수로서 이용되어, 처리액의 비등점 온도, 나아가 처리액내의 인산 농도에도 영향을 미칠 수 있다. 평형 상태의 인산 농도 및 온도가 에칭률과 에칭 선택도에 영향을 미친다.
도 12는 단일 기판 에칭 처리 시스템에서 기판의 층에 대한 에칭률과 에칭 선택도를 높이기 위한 방법의 예시적인 흐름도이다. 단계 1204에서, 산화규소 또는 규소에 대한 마스크층의 목표 에칭 선택도와 목표 에칭률이 선택된다. 마스크층은 질화규소, 질화갈륨, 또는 질화알루미늄 및 기타일 수 있다. 단계 1208에서, 승압 상태의 스팀 수증기 혼합물이 공급된다. 스팀 수증기 혼합물은 인라인형 스팀 생성기에 의해 또는 범용의 스팀 소스로부터 제조 클러스터에 제공될 수 있다. 단계 1212에서, 마스크층을 선택적으로 에칭하기 위한 처리액이 공급된다. 처리액은 인산, 불화수소산, 또는 불화수소산/에틸렌글리콘 및 기타를 포함할 수 있다. 단계 1216에서, 단일 기판이 에칭 처리 챔버에 배치된다. 일 실시형태에 있어서, 2개 이상의 에칭 처리 챔버는, 이들 챔버에 처리액이 공급되고, 스팀 수증기 혼합물이 공급되며, 기판을 로드하고, 기판의 로드를 해제하도록 구성될 수 있다. 단계 1120에서, 처리액이 에칭 처리 챔버에 분배되는데, 분배는 공급 토출 라인 또는 노즐을 이용해 행해질 수 있다. 단계 1224에서, 스팀 수증기 혼합물 및/또는 처리액의 흐름이, 기판이 회전하고 있는 동안에 하나 이상의 노즐을 이용하여 에칭 처리 챔버에 주입된다. 이와 다르게, 노즐이 회전하게 되는 동안 기판은 고정될 수도 있다.
도 12를 참조하면, 일 실시형태에 있어서, 처리액과 스팀 수증기 혼합물은 에칭 처리 챔버에 도입되기 전에 또는 에칭 처리 챔버에 도입된 후지만 노즐을 빠져나가기 전에 공급 토출 라인에서 조합된다. 공급 토출 라인에서의 비등 상태를 피하기 위해 충분한 압력이 유지되어야 한다. 그리고 처리액은 주위 압력으로 에칭 처리 챔버에 도입될 때에 신속하게 끓기 시작할 것이다. 다른 실시형태에 있어서, 다수의 노즐이 기판 위에서 이용될 수 있다. 제1 노즐은 가열된 인산을 도입하고, 제2 노즐 이상은, 기판상에서 일정한 온도를 유지시킴으로써 에칭 균일성을 확보하는 것을 돕기 위해 인산의 도입전에 기판 표면을 예열하도록 고온의 스팀 제트를 도입한다. 다른 실시형태에 있어서, 노즐의 위치와 노즐수는 기판에의 열 전달 및 처리액의 효율성을 최대화하도록 결정될 수 있다. 또 다른 실시형태에 있어서, 스팀 수증기 혼합물은 온도 균일성을 유지하기 위해 기판의 배면에 주입될 수도 있다.
도 13은 에칭 처리후 기판상의 구조의 프로파일 파라미터를 결정하고 이용하기 위한 시스템(1300)의 예시적인 블록도로서, 프로파일 파라미터값은 자동 프로세스 및 설비 제어에 이용되는 것이다. 시스템(1300)은 제1 제조 클러스터(1302)와 광계측 시스템(1304)을 포함한다. 또한, 시스템(1300)은 제2 제조 클러스터(1306)를 포함한다. 기판상의 구조의 프로파일 파라미터를 결정하는데 이용되는 광계측 시스템의 세부사항에 대해서는, 2005년 9월 13일자로 허여된 미국 특허 제 6,943,900호(발명의 명칭: GENERATION OF A LIBRARY OF PERIODIC GRATING DIFFRACTION SIGNALS)를 참조하면 되고, 이 특허문헌은 참조용으로 그 전체가 본 명세서에 포함된다. 도 13에는 제2 제조 클러스터(1306)가 제1 제조 클러스터(1302)에 후속되는 것으로서 도시되지만, 제2 제조 클러스터(1306)는 시스템(1300) 내에서, 예컨대 제조 프로세스 흐름에 있어서 제1 제조 클러스터(1302) 앞에 배치될 수 있는 것은 물론이다.
기판에 도포된 포토레지스트층의 노광 및 현상 등의 포토리소그래피 프로세스는 제1 제조 클러스터(1302)를 이용해서 행해질 수 있다. 일 예시적인 실시형태에 있어서, 광계측 시스템(1304)은 광계측 툴(1308)과 프로세서(1310)를 포함한다. 광계측 툴(1308)은 샘플 구조로부터 벗어난 회절 신호를 측정하도록 구성되어 있다. 프로세서(1310)는 광계측 툴에 의해 측정된 측정 회절 신호를 이용하고 신호 조정기를 이용해 조정하여, 조정 계측 출력 신호를 생성하도록 구성되어 있다. 또한, 프로세서(1310)는 조정 계측 출력 신호와 시뮬레이션된 회절 신호를 비교하도록 구성되어 있다. 전술한 바와 같이, 시뮬레이션된 회절은 전자기 회절의 맥스웰 방정식에 기초해, 광선 추적, 구조의 프로파일 파라미터 세트 및 수치해석을 이용한 광계측 툴 모델을 사용하여 결정된다. 일 예시적인 실시형태에 있어서, 광계측 시스템(1304)은 또한 복수의 시뮬레이션 회절 신호와, 그 복수의 시뮬레이션 회절 신호와 연관된 하나 이상의 프로파일 파라미터의 복수의 값을 갖는 라이브러리(1312)를 포함할 수 있다. 전술한 바와 같이, 라이브러리는 미리 생성될 수도 있으며, 계측 프로세서(1310)는 조정 계측 출력 신호를 라이브러리내의 복수의 시뮬레이션 회절 신호에 비교할 수 있다. 일치하는 시뮬레이션 회절 신호가 발견되면, 라이브러리내의 일치하는 시뮬레이션 회절 신호와 연관된 프로파일 파라미터의 하나 이상의 값이, 샘플 구조를 제조하기 위해 기판 애플리케이션에 이용되는 프로파일 파라미터의 하나 이상의 값이 된다고 한다.
또한, 시스템(1300)은 계측 프로세서(1316)를 포함한다. 일 예시적인 실시형태에서는, 프로세서(1310)가 하나 이상의 프로파일 파라미터의 하나 이상의 값을 계측 프로세서(1316)에 전송할 수 있다. 이 때 계측 프로세서(1316)는 광계측 시스템(1304)을 이용하여 결정된 하나 이상의 프로파일 파라미터의 하나 이상의 값에 기초하여, 제1 제조 클러스터(1302)의 하나 이상의 프로세스 파라미터 또는 설비 설정을 조정할 수 있다. 또한, 계측 프로세서(1316)는 광계측 시스템(1304)을 이용하여 결정된 하나 이상의 프로파일 파라미터의 하나 이상의 값에 기초하여, 제2 제조 클러스터(1306)의 하나 이상의 프로세스 파라미터 또는 설비 설정을 조정할 수 있다. 전술한 바와 같이, 제2 제조 클러스터(1306)는 제1 제조 클러스터(1302) 앞에서 또는 뒤에서 웨이퍼를 처리할 수 있다. 다른 예시적인 실시형태에 있어서, 프로세서(1310)는 측정 회절 신호의 세트를 머신 러닝 시스템(MLS: Machine Learning System)(1314)에 대한 입력으로서, 그리고 프로파일 파라미터를 머신 러닝 시스템(1314)의 예상 출력으로서 이용하여 머신 러닝 시스템(1314)을 트레이닝하도록 구성되어 있다.
도 14는 에칭률과 에칭 선택도를 높이기 위해 구성된 에칭 처리 시스템을 이용하여 제조 클러스터를 제어하기 위한 방법의 예시적인 흐름도이다. 도 13에서 설명한 시스템을 이용하면, 도 3 내지 도 12와 관련해서 설명한 시스템 및 방법을 이용한 에칭 처리후에, 자동 프로세스 및 설비 제어용 프로파일 파라미터를 결정하여 이용하기 위한 시스템의 예시적인 블록도(1400)에서 설명하는 바와 같은 방법을 이용해 기판내의 구조를 측정할 수 있다. 단계 1410에서, 광계측 툴을 이용하여, 샘플 구조로부터 벗어난 측정 회절 신호가 획득된다. 단계 1420에서, 광선 추적 방법론, 광계측 장치의 칼리브레이션 파라미터, 및 하나 이상의 정밀도 기준, 또는 회귀, 라이브러리 매칭 또는 머신 러닝 시스템 등의 기타 스캐터로미트리(scatterometry) 방법론을 이용하여, 측정 회절 신호로부터 계측 출력 신호가 결정된다. 단계 1430에서, 계측 출력 신호를 이용하여 샘플 구조의 적어도 하나의 프로파일 파라미터가 결정된다. 단계 1400에서, 구조의 적어도 하나의 프로파일 파라미터를 이용하여, 적어도 하나의 제조 프로세스 파라미터 또는 설비 설정이 변경된다.
도 6a와 도 6b를 참조하면, 처리액과 스팀 수증기 혼합물의 유량, 처리액의 압력, 일괄 또는 단일 기판 에칭 적용에 따른 노즐 이용의 순서 결정을 제어하는 데에 컨트롤러(도시 생략)가 이용될 수 있다. 컨트롤러의 메모리에 저장된 프로그램은 규소 또는 산화규소에 비해 마스크층의 에칭률과 에칭 선택도를 높이는 방법을 수행하기 위해 프로세스 레시피에 따라 전술한 에칭 처리 시스템의 구성요소(도 6a의 600과 도 6b의 650)에 대한 입력을 활성화하는데 이용된다. 컨트롤러의 예는 미국 텍사스주 오스틴에 소재한 Dell Corporation에서 입수 가능한 DELL PRECISION WORKSTATION 610(등록 상표)이다. 컨트롤러는 에칭 처리 시스템(600, 650)에 대해 근거리에 위치하거나, 인터넷 또는 인트라넷을 통해 에칭 처리 시스템(600, 650)에 대해 원거리에 위치할 수도 있다. 따라서, 컨트롤러는 직접 접속, 인트라넷, 또는 인터넷 중 적어도 하나를 이용하여 에칭 처리 시스템(600, 650)과 데이터를 교환할 수 있다. 컨트롤러는 고객 사이트(즉, 디바이스 제조업자 등)에서 인트라넷에, 또는 벤더 사이트(즉, 설비 제조업자)에서 인트라넷에 연결될 수 있다. 또한, 다른 컴퓨터(즉, 컨트롤러, 서버 등)가 직접 접속, 인트라넷, 또는 인터넷 중 적어도 하나를 통해 데이터를 교환하기 위해 에칭 처리 시스템(600, 650)의 컨트롤러에 액세스할 수 있다.
예시적인 실시형태에 대해 설명하였지만, 본 발명의 사상 및/또는 범주에서 벗어나는 일 없이 다양한 변형이 이루어질 수 있다. 예를 들어, 본 발명은 기판상의 마스크층, 구체적으로 질화규소의 에칭을 이용하는 것을 예시하고 설명하였다. 명세서에 기술한 같은 방법 및 시스템을 이용하여 다른 마스크 재료 또는 절연층을 처리할 수도 있다. 따라서 본 발명은 전술한 내용 및 도면에 개시한 특정 형태에 한정되는 것으로서 이해되어서는 안 된다. 따라서, 그러한 모든 변형은 본 발명의 범위내에 포함되는 것이다.

Claims (24)

  1. 기판상의 마스크층의 에칭률과 에칭 선택도를 높이기 위한 시스템에 있어서,
    상기 마스크층과, 규소 또는 산화규소로 이루어진 층을 포함하는 복수의 기판과,
    상기 복수의 기판을 처리하도록 구성되며, 상기 복수의 기판내 마스크층을 에칭하기 위한 처리액을 함유하는 에칭 처리 챔버와,
    상기 에칭 처리 챔버에 연결되며, 승압 상태의 스팀 수증기 혼합물을 공급하도록 구성되는 비등 장치
    를 포함하고,
    상기 스팀 수증기 혼합물은 규소 또는 산화규소에 대한 상기 마스크층의 선택 목표 에칭 선택비(selectivity ratio)와 선택 목표 에칭률을 유지하기에 충분한 유량으로 상기 에칭 처리 챔버에 도입되는 것인 에칭률과 에칭 선택도를 높이기 위한 시스템.
  2. 제1항에 있어서, 상기 마스크층은 질화규소, 질화갈륨, 또는 질화알루미늄 중 하나를 포함하는 것인 에칭률과 에칭 선택도를 높이기 위한 시스템.
  3. 제2항에 있어서, 상기 처리액은 인산 수용액인 것인 에칭률과 에칭 선택도를 높이기 위한 시스템.
  4. 제2항에 있어서, 상기 선택 목표 에칭 선택비는 10:1 내지 1000:1의 범위내에 있는 것인 에칭률과 에칭 선택도를 높이기 위한 시스템.
  5. 제3항에 있어서, 상기 인산 수용액의 온도는 160 내지 220℃의 범위내에 있는 것인 에칭률과 에칭 선택도를 높이기 위한 시스템.
  6. 제2항에 있어서, 상기 승압 상태의 스팀 수증기 혼합물과 처리액은 상기 에칭 처리 챔버에 유입되기 전에 고압에서 조합되는 것인 에칭률과 에칭 선택도를 높이기 위한 시스템.
  7. 제2항에 있어서, 상기 승압 상태의 스팀 수증기 혼합물과 처리액은 공급 토출 라인에서 상기 에칭 처리 챔버로 유출되기 전에 고압에서 조합되는 것인 에칭률과 에칭 선택도를 높이기 위한 시스템.
  8. 제2항에 있어서, 상기 스팀 수증기 혼합물의 유량과 압력은 규소 또는 산화규소에 대한 질화규소의 선택 목표 에칭 선택비와 선택 목표 에칭률을 유지하도록 제어되는 것인 에칭률과 에칭 선택도를 높이기 위한 시스템.
  9. 제1항에 있어서, 상기 승압 상태의 스팀 수증기 혼합물은 상기 에칭 처리 챔버의 바닥면과 측면을 따라 장착된 노즐을 이용해서 상기 에칭 처리 챔버에 도입되고,
    상기 스팀 수증기 혼합물은 규소 또는 산화규소에 대한 상기 마스크층의 선택 목표 에칭 선택비와 선택 목표 에칭률을 유지하도록 제어된 유량으로 도입되는 것인 에칭률과 에칭 선택도를 높이기 위한 시스템.
  10. 제1항에 있어서, 상기 처리액은 인산, 불화수소산, 또는 불화수소산/에틸렌글리콜 중 하나를 포함하는 것인 에칭률과 에칭 선택도를 높이기 위한 시스템.
  11. 제1항에 있어서, 상기 스팀 수증기 혼합물의 유량과 압력은 상기 처리액의 온도에 이어서 상기 처리액의 비등점 온도에, 나아가 상기 처리액의 평형 농도와 온도에 영향을 미쳐 목표 에칭률과 목표 에칭 선택비를 달성하도록 제어되는 것인 에칭률과 에칭 선택도를 높이기 위한 시스템.
  12. 기판상의 마스크층의 에칭률과 에칭 선택도를 높이는 방법에 있어서,
    상기 마스크층과, 규소 또는 산화규소로 이루어진 층을 포함하는 복수의 기판을 제조하는 단계와,
    승압 상태의 스팀 수증기 혼합물을 공급하는 단계와,
    규소 또는 산화규소에 대해 설정 에칭률과 설정 에칭 선택비로 상기 마스크층을 선택적으로 에칭하기 위한 처리액을 공급하는 단계와,
    상기 복수의 기판을 에칭 처리 챔버에 배치하는 단계와,
    상기 처리액과 상기 스팀 수증기 혼합물을 조합하는 단계와,
    조합된 처리액과 스팀 수증기 혼합물을 상기 에칭 처리 챔버에 주입하는 단계
    를 포함하고,
    상기 조합된 처리액과 스팀 수증기 혼합물의 흐름은 규소 또는 산화규소에 대한 상기 마스크층의 설정 에칭 선택비와 설정 에칭률을 유지하도록 구성되는 것인 에칭률과 에칭 선택도를 높이는 방법.
  13. 제12항에 있어서, 상기 마스크층은 질화규소를 포함하는 것인 에칭률과 에칭 선택도를 높이는 방법.
  14. 제13항에 있어서, 상기 처리액은 인산 수용액을 포함하는 것인 에칭률과 에칭 선택도를 높이는 방법.
  15. 제13항에 있어서, 상기 설정 에칭 선택비는 10:1 내지 1000:1의 범위내에 있는 것인 에칭률과 에칭 선택도를 높이는 방법.
  16. 제13항에 있어서, 상기 인산 수용액의 온도는 160 내지 220℃의 범위내에 있는 것인 에칭률과 에칭 선택도를 높이는 방법.
  17. 제13항에 있어서, 상기 승압 상태의 스팀 수증기 혼합물과 상기 처리액은 상기 에칭 처리 챔버에 유입되기 전에 고압에서 조합되는 것인 에칭률과 에칭 선택도를 높이는 방법.
  18. 제13항에 있어서, 상기 조합된 처리액과 스팀 수증기 혼합물을 주입하는 단계는 상기 에칭 처리 챔버의 바닥면 및/또는 측면을 따라 장착된 노즐을 이용하고,
    상기 스팀 수증기 혼합물은 규소 또는 산화규소에 대한 질화규소의 설정 에칭 선택비를 유지하도록 제어된 유량으로 도입되는 것인 에칭률과 에칭 선택도를 높이는 방법.
  19. 제13항에 있어서, 상기 처리액은 인산, 불화수소산, 또는 불화수소산/에틸렌글리콜 중 하나를 포함하는 것인 에칭률과 에칭 선택도를 높이는 방법.
  20. 제19항에 있어서, 상기 마스크층은 질화규소, 질화갈륨, 또는 질화알루미늄 중 하나를 포함하는 것인 에칭률과 에칭 선택도를 높이는 방법.
  21. 제20항에 있어서, 상기 스팀 수증기 혼합물의 유량과 압력은 상기 처리액의 온도에 이어서 상기 처리액의 비등점 온도에, 나아가 상기 처리액의 평형 농도와 온도에 영향을 미쳐 목표 에칭률과 목표 에칭 선택비를 달성하도록 제어되는 것인 에칭률과 에칭 선택도를 높이는 방법.
  22. 기판상의 질화규소의 에칭률과 에칭 선택도를 높이는 방법에 있어서,
    질화규소로 이루어진 마스크층과, 규소 또는 산화규소로 이루어진 층을 포함하는 복수의 기판을 에칭 처리 챔버에 배치하는 단계와,
    승압하에 처리액과 스팀 수증기 혼합물을 조합하는 단계와,
    조합된 처리액과 스팀 수증기 혼합물을 상기 에칭 처리 챔버에 주입하는 단계
    를 포함하고,
    상기 조합된 처리액과 스팀 수증기 혼합물의 흐름은 규소 또는 산화규소에 대한 질화규소의 목표 에칭 선택비와 질화규소의 목표 에칭률을 유지하도록 제어되는 것인 에칭률과 에칭 선택도를 높이는 방법.
  23. 제22항에 있어서, 상기 처리액은 인산, 불화수소산, 또는 불화수소산/에틸렌글리콜 중 하나를 포함하는 것인 에칭률과 에칭 선택도를 높이는 방법.
  24. 제23항에 있어서, 상기 스팀 수증기 혼합물의 유량과 압력은 상기 처리액의 온도에 이어서 비등점 온도에, 나아가 상기 처리액의 평형 농도와 온도에 영향을 미쳐 목표 에칭률과 목표 에칭 선택비를 달성하도록 제어되는 것인 에칭률과 에칭 선택도를 높이는 방법.
KR1020137028696A 2011-03-30 2012-03-31 마스크층의 에칭률 및 선택도를 높이기 위한 시스템 및 방법 KR101799139B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/076,272 US20120248061A1 (en) 2011-03-30 2011-03-30 Increasing masking layer etch rate and selectivity
PCT/US2012/031738 WO2013101274A1 (en) 2011-03-30 2012-03-31 Increasing masking layer etch rate and selectivity

Publications (2)

Publication Number Publication Date
KR20140130622A true KR20140130622A (ko) 2014-11-11
KR101799139B1 KR101799139B1 (ko) 2017-11-17

Family

ID=46925858

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020137028696A KR101799139B1 (ko) 2011-03-30 2012-03-31 마스크층의 에칭률 및 선택도를 높이기 위한 시스템 및 방법

Country Status (5)

Country Link
US (1) US20120248061A1 (ko)
JP (1) JP6081442B2 (ko)
KR (1) KR101799139B1 (ko)
TW (1) TWI505350B (ko)
WO (1) WO2013101274A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170139453A (ko) * 2016-06-09 2017-12-19 도쿄엘렉트론가부시키가이샤 기판 액처리 장치, 기판 액처리 방법 및 기억 매체

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10062586B2 (en) 2013-07-26 2018-08-28 Tokyo Electron Limited Chemical fluid processing apparatus and chemical fluid processing method
TWI629720B (zh) 2015-09-30 2018-07-11 東京威力科創股份有限公司 用於濕蝕刻製程之溫度的動態控制之方法及設備
JP6645900B2 (ja) * 2016-04-22 2020-02-14 キオクシア株式会社 基板処理装置および基板処理方法
WO2018067500A1 (en) * 2016-10-05 2018-04-12 Magic Leap, Inc. Fabricating non-uniform diffraction gratings
US10551749B2 (en) 2017-01-04 2020-02-04 Kla-Tencor Corporation Metrology targets with supplementary structures in an intermediate layer
KR102517333B1 (ko) * 2018-12-21 2023-04-03 삼성전자주식회사 습식 식각 시스템 운전 방법 및 관련된 시스템
CN111785623B (zh) * 2020-06-15 2022-11-04 上海华虹宏力半导体制造有限公司 湿法刻蚀方法
KR20220092345A (ko) 2020-12-24 2022-07-01 세메스 주식회사 기판 처리 장치 및 기판 처리 방법
US20230062572A1 (en) * 2021-08-30 2023-03-02 Taiwan Semiconductor Manufacturing Company, Ltd. Method of manufacturing semiconductor device

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3709749A (en) * 1969-12-01 1973-01-09 Fujitsu Ltd Method of etching insulating films
US4092211A (en) * 1976-11-18 1978-05-30 Northern Telecom Limited Control of etch rate of silicon dioxide in boiling phosphoric acid
JPH0810684B2 (ja) * 1989-02-17 1996-01-31 山形日本電気株式会社 半導体装置の製造装置
JPH0350724A (ja) * 1989-07-19 1991-03-05 Hitachi Ltd ウエットエッチング装置
JPH06140380A (ja) * 1992-10-28 1994-05-20 Sanyo Electric Co Ltd エッチング装置
JP2605594B2 (ja) * 1993-09-03 1997-04-30 日本電気株式会社 半導体装置の製造方法
US5885903A (en) * 1997-01-22 1999-03-23 Micron Technology, Inc. Process for selectively etching silicon nitride in the presence of silicon oxide
JPH10214813A (ja) * 1997-01-31 1998-08-11 Matsushita Electron Corp 半導体ウェーハの洗浄方法および洗浄装置
US6037273A (en) * 1997-07-11 2000-03-14 Applied Materials, Inc. Method and apparatus for insitu vapor generation
US6117351A (en) * 1998-04-06 2000-09-12 Micron Technology, Inc. Method for etching dielectric films
EP1704586A1 (en) 2003-12-30 2006-09-27 Akrion Llc System and method for selective etching of silicon nitride during substrate processing
US20070289732A1 (en) * 2004-03-11 2007-12-20 Pillion John E Apparatus for conditioning the temperature of a fluid
JP4471131B2 (ja) * 2007-02-19 2010-06-02 セイコーエプソン株式会社 処理装置および半導体装置の製造方法
CN101681827A (zh) * 2007-05-18 2010-03-24 Fsi国际公司 用水蒸气或蒸汽处理基材的方法
US9059104B2 (en) * 2010-12-10 2015-06-16 Tel Fsi, Inc. Process for selectively removing nitride from substrates
US9257292B2 (en) * 2011-03-30 2016-02-09 Tokyo Electron Limited Etch system and method for single substrate processing
JP6146109B2 (ja) * 2013-04-26 2017-06-14 新日鐵住金株式会社 粘結補填材の選択方法及びそれを利用した高強度コークスの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170139453A (ko) * 2016-06-09 2017-12-19 도쿄엘렉트론가부시키가이샤 기판 액처리 장치, 기판 액처리 방법 및 기억 매체

Also Published As

Publication number Publication date
TW201250817A (en) 2012-12-16
JP6081442B2 (ja) 2017-02-15
WO2013101274A1 (en) 2013-07-04
TWI505350B (zh) 2015-10-21
JP2014510417A (ja) 2014-04-24
US20120248061A1 (en) 2012-10-04
KR101799139B1 (ko) 2017-11-17

Similar Documents

Publication Publication Date Title
KR101928118B1 (ko) 단일 기판 처리를 위한 에칭 시스템 및 방법
KR101799139B1 (ko) 마스크층의 에칭률 및 선택도를 높이기 위한 시스템 및 방법
TWI591713B (zh) 用以提供加熱的蝕刻溶液之處理系統及方法
TWI518768B (zh) 用於單一基板剝除處理之順序階段混合
JP6276922B2 (ja) レジストバッチ剥離プロセスのための順次段階的混合法
KR20180112063A (ko) 선택적 SiARC 제거
JP2011514684A (ja) 半導体ワークピースを処理する溶液調製装置及び方法
US10096480B2 (en) Method and apparatus for dynamic control of the temperature of a wet etch process
US9513556B2 (en) Method and system of process chemical temperature control using an injection nozzle
US20040194806A1 (en) IPA concentration interlock detector for substrate dryer
CN108701612B (zh) 确定干法蚀刻工艺的后热处理的工艺完成的系统和方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant