KR20140058659A - 변형을 줄이기 위해 템플릿 상에 성장된 3족-질화물 발광 장치 - Google Patents

변형을 줄이기 위해 템플릿 상에 성장된 3족-질화물 발광 장치 Download PDF

Info

Publication number
KR20140058659A
KR20140058659A KR1020147008170A KR20147008170A KR20140058659A KR 20140058659 A KR20140058659 A KR 20140058659A KR 1020147008170 A KR1020147008170 A KR 1020147008170A KR 20147008170 A KR20147008170 A KR 20147008170A KR 20140058659 A KR20140058659 A KR 20140058659A
Authority
KR
South Korea
Prior art keywords
layer
lattice constant
grown
light emitting
layers
Prior art date
Application number
KR1020147008170A
Other languages
English (en)
Other versions
KR101584465B1 (ko
Inventor
패트릭 엔. 그릴로트
나단 에프. 가드너
워너 케이. 고에츠
린다 티. 로마노
Original Assignee
필립스 루미리즈 라이팅 캄파니 엘엘씨
코닌클리케 필립스 엔.브이.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 필립스 루미리즈 라이팅 캄파니 엘엘씨, 코닌클리케 필립스 엔.브이. filed Critical 필립스 루미리즈 라이팅 캄파니 엘엘씨
Publication of KR20140058659A publication Critical patent/KR20140058659A/ko
Application granted granted Critical
Publication of KR101584465B1 publication Critical patent/KR101584465B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

3족-질화물 발광 장치에서, 발광층을 포함하는 장치층(10)이 장치에서의, 상세하게는 발광층에서의 변형을 감소시키기 설계된 템플릿 상부에 성장된다. 발광 장치에서의 변형을 감소시키면 장치의 성능을 향상시킬 수 있다. 이 템플릿은 종래의 성장 템플릿으로부터 이용가능한 격자 상수의 범위를 넘어 발광층에서의 격자 상수를 확장시킬 수 있다. 변형은 다음과 같이 정의된다. 주어진 층은 그 층과 동일한 조성의 프리스탠딩 물질(free standing material)의 격자 상수에 대응하는 벌크 격자 상수(bulk lattice constant) abulk 및 이 구조에 성장된 그 층의 격자 상수에 대응하는 면내 격자 상수(in-plane lattice constant) ain - plane를 갖는다. 층에서의 변형의 양은
Figure pat00006
이다. 어떤 실시예들에서, 발광층에서의 변형은 1% 미만이다.

Description

변형을 줄이기 위해 템플릿 상에 성장된 3족-질화물 발광 장치{III-NITRIDE LIGHT EMITTING DEVICES GROWN ON TEMPLATES TO REDUCE STRAIN}
본 발명은 반도체 발광 장치의 성장 기법 및 장치 구조에 관한 것이다.
LED(light emitting diode, 발광 다이오드), RCLED(resonant cavity light emitting diode, 공진 공동 발광 다이오드), VCSEL(vertical cavity laser diode, 수직 공동 레이저 다이오드), 및 단면 발광 레이저(edge emitting laser)를 비롯한 반도체 발광 장치들은 현재 이용가능한 가장 효율적인 광원들에 속한다. UV, 가시, 및 어쩌면 적외선 스펙트럼에 걸쳐 동작할 수 있는 고휘도 발광 장치들의 제조에서 현재 관심을 끄는 물질 시스템은 III-V족 반도체, 상세하게는 갈륨, 알루미늄, 인듐 및 질소의 2원, 3원 및 4원 합금(3족 질화물 물질(III nitride material)이라고도 함)을 포함한다. 통상적으로, 3족 질화물 발광 장치는 MOCVD(metal-organic chemical vapor deposition), MBE(molecular beam epitaxy) 또는 기타 에피택셜 기법에 의해 사파이어, 실리콘 카바이드, 3족 질화물, 또는 기타 적당한 기판 상에 서로 다른 조성 및 도펀트 농도의 반도체층들의 적층을 에피택셜 성장시킴으로써 제조된다. 이 적층은 종종 기판 상에 형성된, 예를 들어, Si로 도핑된 하나 이상의 n-형 층, 이 n-형 층 또는 층들 상에 형성된 활성 영역 내의 하나 이상의 발광층, 및 활성 영역 상부에 형성된, 예를 들어, Mg로 도핑된 하나 이상의 p-형 층을 포함한다. 전기 접점들이 n-형 및 p-형 영역 상에 형성된다. 이들 3족 물질은 또한 기타의 광전 장치, 또한 전자 장치(FET(field effect transistor) 등) 및 검출기에서 관심을 끌고 있다.
본 발명의 실시예들에서, 3족-질화물 장치의 발광층을 포함하는 장치층들은 이 장치에서의, 상세하게는 발광층에서의 변형을 감소시키도록 설계된 템플릿 상부에 성장된다. 이 변형은 다음과 같이 정의될 수 있다. 주어진 층은 그 층과 동일한 조성의 프리스탠딩 물질(free standing material)의 격자 상수에 대응하는 벌크 격자 상수(bulk lattice constant) abulk 및 이 구조에 성장된 그 층의 격자 상수에 대응하는 면내 격자 상수(in-plane lattice constant) ain - plane를 갖는다. 층에서의 변형의 양은 특정의 층을 형성하는 물질의 면내 격자 상수와 그 장치 내의 층의 벌크 격자 상수 간의 차이를 벌크 격자 상수로 나눈 것이다.
발광 장치에서의 변형을 감소시키면 장치의 성능을 향상시킬 수 있다. 이 템플릿은 종래의 성장 템플릿으로부터 이용가능한 격자 상수의 범위를 넘어 발광층에서의 격자 상수를 팽창시킬 수 있다. 본 발명의 어떤 실시예들에서, 발광층에서의 변형은 1% 미만이다.
어떤 실시예들에서, 이 템플릿은 저온에서 성장된 2개의 층, 즉 기판 상에 직접 성장된 GaN 등의 인듐없는 핵형성층(indium-free nucleation layer) 및 이 인듐없는 층 상부에 성장된 InGaN 등의 인듐 함유층(indium-containing layer)을 포함한다. 이들 층 둘다는 비단결정층(non-single crystal layer)일 수 있다. 어떤 실시예들에서, GaN 층 등의 단결정층(single crystal layer)은 핵형성층과 인듐 함유층 사이에 성장될 수 있다. 어떤 실시예들에서, GaN, InGaN, 또는 AlInGaN 등의 단결정층은 저온 인듐 함유층(low temperature indium-containing layer) 상부에 성장될 수 있다.
어떤 실시예들에서, 이 템플릿은 다중층 적층(multiple layer stack) 또는 경사 영역(graded region)을 포함하거나, 열적 어닐링(thermal anneal) 또는 열 사이클링 성장(thermal cycled growth) 단계를 포함하는 공정에 의해 형성된다.
도 1은 종래 기술에 따른 장치의 일부분의 단면도.
도 2는 종래의 저온 핵형성층 및 그 이후에 성장된 저온 InGaN층을 포함하는 장치의 일부분의 단면도.
도 3은 다수의 저온 핵형성층들 및 그 상부에 성장된 저온 InGaN층을 포함하는 장치의 일부분의 단면도.
도 4는 종래의 저온 핵형성층 및 그 상부에 성장된 다수의 저온 층들을 포함하는 장치의 일부분의 단면도.
도 5는 저온 핵형성층 및 저온 InGaN층의 세트를 2개 이상 포함하는 장치의 일부분의 단면도.
도 6은 다수의 저온 InGaN층을 포함하는 장치의 일부분의 단면도.
도 7은 장치 층들의 어닐링 및 성장 후의 도 6의 구조의 단면도.
도 8은 고온 GaN층 및 그 이후에 성장된 저온 InGaN층을 포함하는 장치의 일부분의 단면도.
도 9는 저온 InGaN층 및 그 이후에 성장된 고온 InGaN층을 포함하는 장치의 일부분의 단면도.
도 10은 고온 GaN층 및 그 이후에 성장된 저온 InGaN층 및 그 이후에 성장된 고온 InGaN층을 포함하는 장치의 일부분의 단면도.
도 11은 2개의 고온 InGaN층들 사이에 배치된 저온 InGaN층을 포함하는 장치의 일부분의 단면도.
도 12는 저온 InGaN층 상부에 성장된 2개의 고온 InGaN층을 포함하는 장치의 일부분의 단면도.
도 13은 열 사이클링 성장에 의해 성장된 인듐이 많은(indium-rich) 층과 인듐이 적은(indium-poor) 층을 다수개 포함하는 장치의 일부분의 단면도.
도 14는 저온 층(low temperature layer) 및 경사 조성 층(graded composition layer)을 포함하는 장치의 일부분의 단면도.
도 15는 GaN 핵형성층 및 두꺼운 고온 GaN층을 포함하는 몇개의 장치들 및 저온 InGaN층 및 두꺼운 고온 GaN층을 포함하는 몇개의 장치들에 대해 c-격자 상수(c-lattice constant)를 a-격자 상수(a-lattice constant)의 함수로서 나타낸 그래프.
도 16은 몇개의 장치들에 대한 c-격자 상수와 a-격자 상수를 나타낸 그래프.
도 17은 사파이어 등의 wurtzite 구조의 몇개의 주 결정면(major crystallographic plane)을 나타낸 도면.
도 18은 성장 기판이 제거된 플립칩 발광 장치의 일부분을 나타낸 도면.
도 19는 패키징된 발광 장치의 분해도.
반도체 발광 장치의 성능은 외부 양자 효율(external quantum efficiency)(장치에 공급된 전자당 장치로부터 추출되는 광자의 수를 나타냄)을 측정함으로써 평가될 수 있다. 종래의 3족-질화물 발광 장치에 인가된 전류 밀도가 증가함에 따라, 장치의 외부 양자 효율이 처음에는 증가하다가 나중에는 감소된다. 전류 밀도가 0을 넘어 증가함에 따라, 외부 양자 효율은 증가하여 주어진 전류 밀도(예를 들어, 어떤 장치의 경우 약 10 A/cm2)에서 피크에 도달한다. 전류 밀도가 피크를 넘어 증가함에 따라, 외부 양자 효율은 처음에는 빠르게 떨어지다가 나중에는 높은 전류 밀도(예를 들어, 어떤 장치의 경우 200 A/cm2 이상)에서 느리게 감소된다. 장치의 양자 효율은 또한, 발광 영역에서의 InN 조성이 증가함에 따라 또한 방출된 광의 파장이 증가함에 따라, 감소된다.
높은 전류 밀도에서의 양자 효율의 하강을 감소 또는 역전시키는 한 기법은 더 두꺼운 발광층을 형성하는 것이다. 그렇지만, 3족-질화물 장치층에서의 변형으로 인해 두꺼운 3족-질화물 발광층을 성장시키는 것이 어렵다. 또한, 더 긴 파장의 방출을 달성하기 위해, 더 높은 InN 조성을 포함시키는 것이 바람직하다. 그렇지만, 3족-질화물 장치층에서의 변형으로 인해 높은 InN 조성의 3족-질화물 발광층을 성장시키는 것이 어렵다.
고유 3족-질화물 성장 기판(native III-nitride growth substrate)이 일반적으로 비싸서 널리 이용되지 않고 상업용 장치의 성장에 비실용적이기 때문에, 3족-질화물 장치는 종종 사파이어(Al2O3) 또는 SiC 기판 상에 성장된다. 이러한 비고유 기판(non-native substrate)은 기판 상에 성장된 3족-질화물 장치층의 벌크 격자 상수와 다른 격자 상수, 다른 열 팽창 계수, 및 장치층과 다른 화학적, 구조적 속성들을 가지며, 그 결과 장치층에 변형이 생기고 장치층과 기판 사이의 화학적, 구조적 부정합이 있게 된다. 이러한 구조적 부정합의 예로는, 예를 들어, GaN의 결정 구조와 GaN이 성장되는 사파이어 기판의 결정 구조 간의 면내 회전(in-plane rotation)이 있을 수 있다.
본 명세서에서 사용되는 바와 같이, "면내" 격자 상수는 장치 내의 층의 실제 격자 상수를 말하고, "벌크" 격자 상수는 주어진 조성의 완화된, 프리스탠딩 물질(relaxed, free-standing material)의 격자 상수를 말한다. 층에서의 변형의 양은 수학식 1에 정의되어 있다.
[수학식 1]
변형 =
Figure pat00001
유의할 점은, 수학식 1에서의 변형 ε은 플러스 또는 마이너스, 즉 ε> 0 또는 ε< 0 일 수 있다. 변형되지 않은 막에서, ain - plane = abulk이고, 따라서 수학식 1에서의 ε= 0이다. ε> 0인 막은 인장 변형(tensile strain)을 받고 있다고 또는 인장(tension)을 받고 있다고 말해지는 반면, ε< 0인 막은 압축 변형(compressive strain)을 받고 있다고 또는 압축(compression)을 받고 있다고 말해진다. 인장 변형의 예로는 변형되지 않은 GaN 상부에 성장되어 있는 변형된 AlGaN 막, 또는 변형되지 않은 InGaN 상부에 성장되어 있는 변형된 GaN 막이 있다. 양 경우에, 변형된 막은 이 막이 성장되어 있는 변형되지 않은 층의 벌크 격자 상수보다 작은 벌크 격자 상수를 가지며, 따라서 변형된 막의 면내 격자 상수가 변형되지 않은 층의 면내 격자 상수와 일치하도록 확대되어, 수학식 1에서 ε> 0이 되고, 이에 따라 그 막은 인장을 받고 있다고 말해진다. 압축 변형의 예로는 변형되지 않은 GaN 상부에 성장되어 있는 변형된 InGaN 막, 또는 변형되지 않은 AlGaN 상부에 성장되어 있는 변형된 GaN 막이 있다. 양 경우에, 변형된 막은 이 막이 성장되어 있는 변형되지 않은 층의 벌크 격자 상수보다 큰 벌크 격자 상수를 가지며, 따라서 변형된 막의 면내 격자 상수는 변형되지 않은 층의 면내 격자 상수와 일치하도록 압축되어, 수학식 1에서 ε< 0이 되고, 이에 따라 막은 압축을 받고 있다고 말해진다.
인장 막(tensile film)에서, 변형은 면내 격자 상수를 증가시키기 위해 원자들을 서로로부터 잡아당겨 떨어지게 하는 기능을 한다. 이러한 인장 변형은 종종 바람직하지 않은데, 그 이유는 막이 인장 변형에 대해 균열(cracking)(이 균열이 막에서의 변형을 감소시키지만 막의 구조적, 전기적 무결성을 열화시킴)로 반응할 수 있기 때문이다. 압축 막(compressive film)에서, 변형은 원자들을 밀어서 모이게 하는 기능을 하며, 이러한 효과는, 예를 들어, 인듐 등의 대형 원자들이 InGaN 막에 포함되는 것을 감소시킬 수 있거나, InGaN LED 내의 InGaN 활성층의 물질 품질을 떨어뜨릴 수 있다. 많은 경우에, 인장 및 압축 변형은 둘다 바람직하지 않으며, 장치의 다양한 층들에서의 인장 또는 압축 변형을 감소시키는 것이 유익하다. 이러한 경우들에서, 수학식 2에서 정의된 바와 같이, 변형의 절대값, 즉 크기를 말하는 것이 더 편리하다. 본 명세서에서 사용되는 바와 같이, 용어 "변형"은 수학식 2에서 정의되는 바와 같이 변형의 절대값, 즉 크기를 의미하는 것으로 이해되어야 한다.
[수학식 2]
변형 =
Figure pat00002
3족-질화물 장치가 종래에 Al2O3 상에 성장될 때, 기판 상에 성장되는 제1 구조는 일반적으로 약 3.189Å 이하의 면내 a-격자 상수를 갖는 GaN 템플릿층이다. GaN 템플릿은 InGaN 발광층을 포함하여 템플릿층 상부에 성장된 장치층들 모두에 대한 격자 상수를 설정한다는 점에서 발광 영역에 대한 격자 상수 템플릿(lattice constant template)으로서 역할한다. InGaN의 벌크 격자 상수가 종래의 GaN 템플릿의 면내 격자 상수보다 크기 때문에, 발광층은 종래의 GaN 템플릿 상부에 성장될 때 압축 변형된다. 예를 들어, 약 450 nm의 광을 방출하도록 구성된 발광층은, GaN의 격자 상수 3.189Å에 비해 3.242Å의 벌크 격자 상수를 갖는 조성인, 조성 In0.16Ga0.84N을 가질 수 있다. 보다 긴 파장의 광을 방출하도록 설계된 장치들에서와 같이, 발광층에서의 InN 조성이 증가함에 따라, 발광층에서의 압축 변형도 증가한다.
Tomiya 등의 Proceedings of SPIE, volume 6133(페이지 613308-1 내지613308-10)(2006)(이는 여기에 인용함으로써 그 전체 내용이 본 명세서에 포함됨)에 기술되어 있는 바와 같이, 변형된 층의 두께가 임계값을 넘어 증가하면, 변형과 연관된 에너지를 감소시키기 위해 전위(dislocation) 또는 기타 결함이 그 층 내에 형성된다. 이 구조적 결함은 장치의 양자 효율을 상당히 감소시킬 수 있는 비방사성 재결합 중심(non-radiative recombination center)과 연관되어 있을 수 있다. 그 결과, 발광층의 두께가 이 임계 두께보다 낮게 유지되어야만 한다. InN 조성 및 피크 파장이 증가함에 따라, 발광층에서의 변형이 증가하고, 따라서 발광층의 임계 두께가 감소된다.
Ponce 등의 Physica Status Solidi, volume B 240(페이지 273 내지 284)(2003)(이는 여기에 인용함으로써 그 전체 내용이 본 명세서에 포함됨)에 기술되어 있는 바와 같이, 발광층의 두께가 임계 두께보다 낮게 유지되더라도, InGaN 합금은 어떤 조성 및 온도에서 열역학적으로 불안정하다. 예를 들어, InGaN 성장에 통상적으로 사용되는 온도들에서, InGaN은 스피노달 분해(spinodal decomposition)를 보일 수 있으며, 이 경우 조성이 균일한 InGaN층은 평균보다 높은 InN 조성의 영역들 및 평균보다 낮은 InN 조성의 영역들을 갖는 층으로 변형된다. InGaN 발광층에서의 스피노달 분해는 비방사성 재결합 중심을 생성하고, 내부 흡수(internal absorption)를 증가시켜 장치의 양자 효율을 감소시킬 수 있다. 발광층의 두께가 증가함에 따라, 발광층에서의 평균 InN 조성이 증가함에 따라, 및/또는 발광층에서의 변형이 증가됨에 따라, 스피노달 분해의 문제는 악화된다. 예를 들어, 발광층이 GaN 템플릿 상에 성장되어 550 nm의 광을 방출하도록 구성되어 있는 경우, InN 조성이 20%를 넘는 것과 선호 두께가 30Å를 넘는 것의 결합은 스피노달 분해 한계를 초과한다.
그에 따라, 상기한 바와 같이, 전류 밀도가 증가함에 따라 일어나는 외부 양자 효율의 저하를 감소시키거나 없애기 위해 발광층의 두께를 증가시키는 것이 바람직하거나, 보다 긴 방출 파장을 달성하기 위해 InN 조성을 증가시키는 것이 바람직하다. 이들 경우 둘다에서, 더 두꺼운 또는 더 높은 조성의 발광층을 성장시키기 위해, 임계 두께를 증가시킴으로써 결함의 수를 허용 범위 내에 유지시키기 위해, 또한 층이 스피노달 분해 없이 성장될 수 있는 두께를 증가시키기 위해, 발광층에서의 변형을 감소시키는 것이 필요하다. 본 발명의 실시예들은 3족-질화물 장치의 장치층들에서의, 상세하게는 발광층에서의 변형을 감소시키도록 설계되어 있다.
도 1은 기판(1) 상에 성장된 종래의 핵형성층(2)을 갖는 장치를 나타낸 것이다. 하나 이상의 고온층(3, 5)이 핵형성층(2) 상부에 성장될 수 있고, 장치층(6)이 고온층(3 또는 5) 상부에 성장될 수 있다. 3족-질화물 발광층에서 변형을 감소시키는 이전의 방법들은, 도 1에 나타내고 미국 특허 제6,489,636호에 기술된 바와 같이, 응집된 GaN 영역(3) 상부에 고온의 실질적으로 단결정인 InGaN 영역(5)을 성장시키는 것, 또는 도 1에 나타내고 영국 특허 출원 제GB 2 338 107 A호에 기술되어 있는 바와 같이, 사파이어 기판 상에 직접 인듐-함유 핵형성층(2)을 성장시키는 것을 포함한다. 그렇지만, 응집된 GaN 상부에 성장된 InGaN 영역은 통상적으로 효율적으로 완화되지 않고, 따라서 변형 및 관련 결함의 제한된 감소를 제공하며, 사파이어 상에 직접 성장된 인듐-함유 핵형성층을 포함하는 영국 특허 출원 제GB 2 338 107 A호에 기술된 방식에서는 통상적으로 장치층에 하나 이상의 문제(높은 전위 밀도, 거친 표면, 및 탄소 및 산소 등의 불순물의 높은 농도를 포함함)를 일으킨다. 그에 따라, 장치층에서의 변형 뿐만 아니라 전위 밀도(dislocation density) 및 표면 거칠기를 제어할 필요가 있다.
도 1에 도시된 것과 같은 종래의 GaN 템플릿에서의 변형을 제어하는 다른 방법은, Bottcher 등의 Applied Physics Letters, volume 78(페이지 1976 내지 1978)(2001)(이는 여기에 인용함으로써 그 전체 내용이 본 명세서에 포함됨)에 기술된 바와 같이, GaN 템플릿에서의 전위 밀도를 제어하는 것이다. 이 방식에서, a-격자 상수는 TDD(threading dislocation density)가 증가함에 따라 증가된다. a-격자 상수와 TDD 간의 정확한 관계가 많은 인자들(Si 농도, 성장 온도, 및 템플릿 두께를 포함함)에 의존하는 반면, 종래의 GaN 템플릿에서의 a-격자 상수와 TDD 간의 대략적인 관계는 수학식 3으로 기술될 수 있다.
[수학식 3]
Figure pat00003
수학식 3으로부터 유의할 점은, 3.189Å의 면내 a-격자 상수가 대략 6x109cm-2의 TDD에 대응한다는 것이다. 이 a-격자 상수가 서로 다른 Si 농도, 서로 다른 성장 온도, 또는 서로 다른 템플릿 두께를 사용하여 보다 낮은 TDD에서 달성될 수 있는 반면, 본 발명자들은 3.189Å보다 큰 a-격자 상수를 갖는 종래의 GaN 템플릿이 일반적으로 적어도 2x109 cm-2의 TDD를 갖는다는 것을 관찰하였다. 도 1에서와 같은 종래의 GaN 템플릿에서 TDD를 변화시킴으로써, 본 발명자들은 대략 3.1832Å 내지 대략 3.1919Å의 범위에 걸쳐 종래의 GaN 템플릿에서의 면내 a-격자 상수를 변화시켰다.
TDD를 증가시키는 것이 따라서 일반적으로 종래의 GaN 템플릿에서의 a-격자 상수를 증가시키는 데 효과적인 반면, 이 방법은 몇가지 단점들을 갖는다. 예를 들어, 전위 등의 결함들이 비방사성 재결합 중심으로서 역할하며, Koleske 등의 Applied Physics Letters, volume 81(페이지 1940 내지 1942)(2002)(이는 여기에 인용함으로써 그 전체 내용이 본 명세서에 포함됨)에 기술된 바와 같이, 이 비방사성 재결합 중심은 3족-질화물 발광 장치의 외부 양자 효율을 감소시킬 수 있다. 따라서, 외부 양자 효율을 증가시키기 위해 전위 밀도를 감소시키는 것이 바람직하다. 또한, Romano 등의 Journal of Applied Physics, volume 87(페이지 7745 내지 7752)(2000)(이는 여기에 인용함으로써 그 전체 내용이 본 명세서에 포함됨)에 기술된 바와 같이, 면내 a-격자 상수가 종래의 GaN 템플릿에서 대략 3.189Å에 근접하고 이를 초과할 때, GaN층은 과도한 인장 변형으로 인해 균열되는 경향이 있다. 따라서, 이원 조성(binary composition) GaN 템플릿에 의해 강제되는 a-격자 상수와 전위 밀도 간의 이러한 관계를 깨는 것이 요망된다. 상세하게는, 낮은 TDD의 템플릿과 함께 낮은 변형의 활성층을 달성하는 것이 3족-질화물 LED의 외부 양자 효율 및 파장을 증가시키기 위한 중요한 목표이다. 본 발명의 어떤 실시예들에서, 장치층들이 성장되는 템플릿은 3.200Å 정도의 면내 a-격자 상수와 2x109 cm-2 보다 낮은 TDD의 결합에서 거의 균열이 없다.
본 발명의 실시예들에서, 반도체 발광 장치의 장치층들은 본 명세서에서 템플릿(장치층들에서의 격자 상수(따라서 변형)를 제어하는 성분을 포함함)이라고 하는 구조의 상부에 성장된다. 장치에서 격자 상수를 증가시키는 구조는 바람직하지 않게도 표면 거칠기의 증가 또는 TDD의 증가를 야기할 수 있으며, 따라서 템플릿은 또한 장치층들에서의, 상세하게는 발광 영역에서의 TDD 및 표면 거칠기를 제어하는 성분들도 포함할 수 있다. 이 템플릿은 이 템플릿 상부에 성장되는 반도체층들의 TDD 및 격자 상수를 설정한다. 이 템플릿은 GaN의 격자 상수로부터 발광층의 벌크 격자 상수에 더 가깝게 일치하는 격자 상수로의 격자 상수 천이부(lattice constant transition)로서 역할한다. 이 템플릿에 의해 설정된 격자 상수는 종래의 템플릿 상에 성장된 장치들에서 이용가능한 격자 상수보다 장치층들의 벌크 격자 상수에 더 가깝게 일치될 수 있으며, 그 결과 종래의 GaN 템플릿 상에 성장된 장치들과 비교하여 허용 TDD 및 표면 거칠기에서 보다 적은 변형을 일으킨다.
상기한 장치층들은 적어도 하나의 n-형 층과 적어도 하나의 p-형 층 사이에 끼여 있는 적어도 하나의 발광층을 포함한다. 서로 다른 조성 및 도펀트 농도의 부가 층들이 n-형 영역, 발광 영역 및 p-형 영역 각각에 포함될 수 있다. 예를 들어, n-형 영역 및 p-형 영역은 정반대 전도성 유형의 층들 또는 의도적으로 도핑되지 않은 층들, 성장 기판의 나중의 박리를 용이하게 해주거나 또는 기판 제거 이후에 반도체 구조의 박막화를 용이하게 해주도록 설계된 박리층(release layer), 및 발광 영역이 광을 효율적으로 방출하는 데 바람직한 특정의 광학적 또는 전기적 특성을 위해 설계된 층들을 포함할 수 있다. 어떤 실시예들에서, 발광층을 사이에 둔 n-형 층은 템플릿의 일부일 수 있다.
이하에서 설명되는 실시예들에서, 발광층 또는 발광층들에서의 InN 조성은 장치가 청색 또는 UV 광을 방출하도록 낮을 수 있거나, 장치가 녹색 또는 보다 긴 파장의 광을 방출하도록 높을 수 있다. 어떤 실시예들에서, 장치는 하나 이상의 양자 우물 발광층(quantum well light emitting layer)을 포함한다. 다수의 양자 우물은 장벽층에 의해 분리되어 있을 수 있다. 예를 들어, 각각의 양자 우물은 15Å보다 큰 두께를 가질 수 있다.
어떤 실시예들에서, 장치의 발광 영역은 50 내지 600Å, 보다 양호하게는 100 내지 250Å의 두께를 갖는 단일의 두꺼운 발광층이다. 최적의 두께는 발광층 내의 결함의 수에 의존할 수 있다. 발광 영역 내의 결함의 농도는 양호하게는 109 cm-2로 제한되고, 보다 양호하게는 108 cm-2로 제한되며, 보다 양호하게는 107 cm-2로 제한되고, 보다 양호하게는 106 cm-2로 제한된다.
어떤 실시예들에서, 장치 내의 적어도 하나의 발광층은 1x1018 cm-3 내지 1x1020 cm-3의 도펀트 농도로 Si 등의 도펀트로 도핑된다. Si 도핑은 발광층에서의 면내 a-격자 상수에 영향을 줄 수 있으며, 잠재적으로 발광층에서의 변형을 추가적으로 감소시킬 수 있다.
본 발명의 어떤 실시예들에서, 템플릿은 적어도 하나의 저온 InGaN층을 포함한다. Bosi 및 Fornari의 Journal of Crystal Growth, volume 265(페이지 434 내지 439)(2004)(이는 여기에 인용함으로써 그 전체 내용이 본 명세서에 포함됨)에 기술되어 있는 바와 같이, H2가 InGaN 막에 인듐을 포함시키는 것에 영향을 줄 수 있다는 것을 관찰되었다. Oliver 등의 Journal of Applied Physics, volume 97(페이지 013707-1 내지 013707-8)(2005)(이는 여기에 인용함으로써 그 전체 내용이 본 명세서에 포함됨)에 부분적으로 기술되어 있는 바와 같이, 성장 온도, 성장 압력, 성장 속도, 및 NH3 흐름 등의 다양한 다른 파라미터들도 InGaN 막에 인듐을 포함시키는 것에 영향을 줄 수 있다. 따라서, 변수 H2 흐름은 때때로 InGaN 또는 AlInGaN 막에서의 InN 조성을 제어하는 수단으로서 사용된다. 어떤 실시예들에서, 본 명세서에 기술된 템플릿들은 따라서 템플릿 성장 동안에 반응로로의 변수 H2 흐름, 변수 N2 흐름, 또는 변수 NH3 흐름 중 하나 이상을 사용하여 성장된다. 다른 실시예들에서, 템플릿은 템플릿 성장 동안의 변수 온도 또는 변수 압력, 또는 변수 성장 속도를 사용하여 성장된다. 다른 실시예들에서, 템플릿은 템플릿 성장 동안의 변수 H2 흐름, 변수 N2 흐름, 변수 NH3 흐름, 변수 온도, 변수 압력, 또는 변수 성장 속도 중 하나 이상의 임의의 조합을 사용하여 성장된다.
도 2는 본 발명의 제1 실시예를 나타낸 것이다. 종래의 저온 핵형성층(22)은 사파이어 기판(20)의 표면 상에 직접 성장된다. 핵형성층(22)은 통상적으로, 예를 들어, 400 내지 750℃의 온도에서 최대 500 옹스트롬의 두께로 성장하는 비정질, 다결정 또는 입방정상(cubic phase)의 GaN층 등의 저품질의 비단결정층(low quality, non-single crystal layer)이다.
제2 층(26)도 역시 낮은 온도에서 핵형성층(22) 상부에 성장된다. 저온층(26)은, 예를 들어, 저품질의 비단결정층(예를 들어, 400 내지 750℃, 보다 양호하게는 450 내지 650℃, 보다 양호하게는 500 내지 600℃의 온도에서, 최대 500 옹스트롬의 두께로 성장되는 비정질, 다결정 또는 입방정상의 3족-질화물 층 등)일 수 있다. 어떤 실시예들에서, 저온층(26)은 두께가 300 옹스트롬 미만이다. 저온층(26)은, 예를 들어, 0%보다 크고 종종 20%보다 작은, 보다 양호하게는 3% 내지 6%, 보다 양호하게는 4% 내지 5%의 InN 조성을 갖는 InGaN층일 수 있다. 어떤 실시예들에서, 저온층(26)에서의 InN 조성은 작다(예를 들어, 2% 미만). 이 구조는 핵형성층(22)의 성장 이후 저온층(26)의 성장 이전에, 저온층(26)의 성장 이후에, 또는 둘다에서 어닐링될 수 있다. 예를 들어, 이 구조는 950 내지 1150℃의 온도에서 30초 내지 30분 동안, 일반적으로 H2 및 NH3의 분위기에서, N2 및 NH3의 분위기에서, 또는 H2, N2 및 NH3의 분위기에서 어닐링될 수 있다. 어떤 실시예들에서, 어닐링 공정의 적어도 일부 동안에 Ga, Al 또는 In 전구체가 유입될 수 있다. 장치층(10)이 이어서 저온층(26) 상부에 성장된다. 저온층(26)은 장치층(10)의 격자 상수를 종래의 핵형성 구조(종래의 GaN 템플릿 등)로 달성가능한 격자 상수의 범위를 넘어 팽창시킬 수 있다. 격자 상수의 팽창이 일어나는 이유는, GaN 핵형성층이 자기가 성장되는 사파이어, 또는 SiC 또는 기타 기판과 상이한 격자 상수를 가지는 만큼 저온층(26)이 하부층들과 일치하게 성장되지 않기 때문이다. 따라서, 상기한 바와 같이, 저온층(26)은 핵형성층(22)의 격자 상수로부터 보다 큰 격자 상수로의 천이부로서 역할한다. 도 2에 도시된 바와 같이 저온 InGaN층(26)을 사용하는 3족-질화물 장치는, 예를 들어 도 1에 도시되고 영국 특허 출원 제GB 2 338 107 A호에 기술된 바와 같이, 기판 상에 직접 성장된 InN-함유 핵형성층(2)을 사용하는 3족-질화물 장치보다 더 높은 품질로 성장될 수 있다.
어떤 실시예들에서, 저온층(26)은 InGaN 대신에 AlGaN 또는 AlInGaN으로 이루어져 있을 수 있으며, 그에 따라 저온층(26)은 UV 장치의 AlGaN 발광 영역에서의 인장 변형을 감소시키기 위해 핵형성층(22)에 의해 설정된 격자 상수를 감소시킨다. 이러한 장치의 발광 활성층은, 예를 들어, AlGaN 또는 AlInGaN일 수 있다.
본 발명의 어떤 실시예들에서, 도 2에 도시된 장치는 하나 이상의 다중층 적층을 포함할 수 있다. 다중층 적층의 예는 다수의 핵형성층(22) 또는 다수의 저온층(26)을 포함한다. 예를 들어, 하나 이상의 부가적인 GaN 핵형성층이, 도 3에 도시된 바와 같이, 기판(20)과 InGaN 저온층(26) 사이에 배치될 수 있다. 다른 대안으로서, 도 4에 도시된 바와 같이, 핵형성층(22) 이후에 다수의 InGaN 저온층(26)이 성장될 수 있다. 다중층 적층을 갖는 템플릿을 포함하는 장치의 다른 예에서, 도 5에 나타낸 바와 같이, GaN 저온층(26) 및 이에 뒤이은 InGaN 저온층(26)의 시퀀스가 1회 이상 반복될 수 있다. 다수의 핵형성층 또는 저온층의 사용은 장치에서의 TDD(threading dislocation density) 및 적층 결함 밀도(stacking fault density)를 감소시킬 수 있다.
어떤 실시예들에서, 도 4 또는 도 5에서의 다수의 저온층(26)은, 도 6에 다수의 저온층(32, 34, 36)으로 나타낸 바와 같이, 똑같지 않은 InN 조성 또는 똑같지 않은 두께를 가질 수 있다. 도 6에 도시된 구조는 도 2에 나타낸 바와 같은 종래의 기판(20) 상에 또는 핵형성층(22) 상부에 직접 성장될 수 있다. 기판에 가장 가까운 저온층, 즉 층(32)은 가장 높은 인듐 조성을 가질 수 있는 반면, 기판으로부터 가장 멀리 있는 저온층, 즉 층(36)은 가장 낮은 인듐 조성을 가질 수 있다. 다른 실시예에서, 기판에 가장 가까운 저온층, 즉 층(32)은 가장 낮은 인듐 조성을 가질 수 있는 반면, 기판으로부터 가장 멀리 있는 저온층, 즉 층(36)은 가장 높은 인듐 조성을 가질 수 있다. 다른 대안으로서, 저온층들의 임의의 시퀀스가 사용될 수 있다. GaN 캡층(38)이 최상단 저온층 상부에 형성될 수 있다. 각각의 저온층이 동일한 두께일 필요는 없다. 예를 들어, 보다 낮은 인듐 조성의 층들은 보다 높은 인듐 조성의 층들보다 더 두꺼울 수 있다. 도 6에 도시된 3개의 저온층보다 더 많은 또는 더 적은 저온층이 사용될 수 있다. 그에 부가하여, 도 6에 나타낸 저온층의 적층이 다수개 장치에 포함될 수 있다. 이들 층 각각은 두께가 10 옹스트롬 내지 1000 옹스트롬의 범위에 있을 수 있거나 이보다 더 두꺼울 수 있다.
도 6에 도시된 구조는 하나 이상의 층(32, 34, 36, 또는 38)의 성장 이후에 1회 이상 어닐링될 수 있다. 이 어닐링 공정으로 인해, InGaN 저온층(32, 34, 36) 및 GaN 캡층(38)이 뒤섞여 도 7에 도시된 바와 같은 단일의 InGaN 영역(35)을 형성할 수 있고, 이 영역(35) 상부에 장치층(10)이 성장된다. 도 6의 GaN 캡층(38)은 어닐링 동안에 InGaN 저온층(32, 34, 36)으로부터 쫓겨나는 InN의 양을 감소시킬 수 있다. 어닐링을 위한 조건은 최종 구조가 평탄한 표면 및 낮은 결함 밀도를 갖도록 선택된다. 어떤 실시예들에서, 어닐링은 성장 일시중지(growth pause)를 포함한다. 예를 들어, 이 구조는 30초 내지 30분 동안 950 내지 1150℃의 온도에서 어닐링될 수 있다. 저온층(32, 34, 36)의 성장 이후에, 온도가 캡층(38) 또는 성장될 그 다음 층의 성장 온도로 상승될 수 있으며, 이어서 캡층(38) 또는 그 다음 층의 성장 이전에 성장 일시정지가 있다. 다른 실시예들에서, 어닐링은 저온층(32, 34, 36)의 성장 이후의 성장 반응로의 온도를 캡층(38)의 성장 온도로 단순히 증가시키는 것이다. 어떤 실시예들에서, 캡층(38)의 성장은 성장 반응로에서의 온도가 캡층(38)의 원하는 성장 온도에 도달하기 전에 시작된다. 어떤 실시예들에서, 캡층(38)은 핵형성층(22)을 성장시키는 데 사용되는 것과 유사한 낮은 온도에서 성장될 수 있다. 저온층(32, 34, 36) 및 캡층(38)의 구조에서, InN 조성이 낮은 층들은 어닐링 동안에 InN 조성이 높은 층들로부터의 InN의 손실을 억압하는 데 도움이 될 수 있다.
도 3 또는 도 4 또는 도 5의 다중층 적층 또는 도 6의 경사 InN-함유 층(32, 34, 36) 및 도 7의 경사 InN-함유 층(35)이 본 명세서에 기술된 실시예들 중 임의의 실시예에 도시된 단일의 저온층(26)을 대체할 수 있다. 본 명세서에서 사용되는 바와 같이, 장치 내의 층 또는 층들에서의 조성 또는 도펀트 농도를 기술할 때의 용어 "경사(graded)"는 조성 및/또는 도펀트 농도에서의 단일의 스텝이 아닌 임의의 방식으로 조성 및/또는 도펀트 농도의 변화를 달성하는 임의의 구조를 포함하기 위한 것이다. 각각의 경사층은 서브층들의 적층일 수 있으며, 각각의 서브층은 그에 인접한 어느 한 서브층과 상이한 도펀트 농도 또는 조성을 갖는다. 이 서브층들이 분해가능 두께(resolvable thickness)를 갖는 경우, 경사층은 스텝-경사층(step-graded layer)이다. 어떤 실시예들에서, 스텝-경사층에서의 서브층들은 수십 옹스트롬 내지 수천 옹스트롬 범위의 두께를 가질 수 있다. 개개의 서브층들의 두께가 0에 가까운 한계에서, 경사층은 연속-경사 영역(continuously-graded region)이다. 각각의 경사층을 이루고 있는 서브층들은 조성 및/또는 도펀트 농도 대 두께에서 다양한 프로파일(선형 경사, 포물선 경사 및 거듭제곱-법칙 경사를 포함하지만, 이들로 제한되지 않음)을 형성하도록 구성될 수 있다. 또한, 경사층은 단일의 경사 프로파일로 제한되지 않고, 서로 다른 경사 프로파일들을 갖는 부분들 및 거의 일정한 조성 및/또는 도펀트 농도 영역을 갖는 부분들을 포함할 수 있다.
일례에서, 층(32, 34, 36)은 각각 9%, 6% 및 3%의 InN 조성을 갖는 InGaN으로 이루어져 있을 수 있다. 다른 예에서, 층(32, 34, 36)은 9%, 3% 및 9%의 InN 조성을 가질 수 있다. 어닐링 이후에, 도 7의 뒤섞인 영역(35)은 하부에서 상부로 단조적으로 감소되는, 하부에서 상부로 단조적으로 증가하는, 또는 비단조적 방식으로 변화하는 InN 조성을 가질 수 있다.
본 발명의 어떤 실시예들에서, 반도체 발광 장치의 장치층들은 고온층 상부에 성장된 적어도 하나의 저온층을 포함하는 템플릿 상부에 성장된다. 고온층은, 예를 들어, 낮은 TDD 및 평탄한 표면 형태를 설정할 수 있는 반면, 저온층은 템플릿 상에 성장된 층들에 대한 팽창된 격자 상수를 설정한다. 격자 상수의 팽창이 일어나는 이유는, GaN 핵형성층이 자기가 성장되는 사파이어, 또는 SiC 또는 기타 기판과 상이한 격자 상수를 가지는 만큼 저온층(26)이 하부층들과 일치하게 성장되지 않기 때문이다. 도 8은 이러한 장치의 일부분의 단면도이다.
도 8에 도시된 장치에서, 고온층(24)이 핵형성층(22) 상부에 성장되고, 이 핵형성층(22)은 도 2를 참조하여 상기한 핵형성층(22)과 동일하다. 고온층(24)은, 예를 들어, 900 내지 1150℃의 온도에서 적어도 500 옹스트롬의 두께로 성장되는 고품질의 결정질 GaN, InGaN, AlGaN, 또는 AlInGaN층일 수 있다.
고온층(24)의 성장 이후에, 온도가 떨어지고 저온층(26)이 성장된다. 어떤 실시예들에서, 저온층(26)은 바람직하지 않게 거친 표면을 방지하기 위해, 0.1 내지 10 Å/s, 보다 양호하게는 5 Å/s 미만, 보다 양호하게는 0.5 내지 2 Å/s의 성장 속도로 성장된다. 저온층(26)은, 예를 들어, 저품질의 비단결정층(예를 들어, 400 내지 750℃, 보다 양호하게는 450 내지 650℃, 보다 양호하게는 500 내지 600℃의 온도에서, 최대 500 옹스트롬의 두께로 성장되는 비정질, 다결정 또는 입방정상 층 등)일 수 있다. 보다 높은 온도에서, 저온층(26)은, 원하는 바에 따라 그 자신의 격자 상수를 완화시키거나 설정하기보다는, 하부층들의 격자 상수와 똑같을 수 있다. 저온층(26)은 고온층(24)의 격자 상수와 똑같지 않도록 충분히 낮은 온도에서 성장되며, 오히려 저온층(26)은 아마도 저온층(26)의 낮은 품질로 인해 고온층(24)의 격자 상수보다 큰 격자 상수를 가질 수 있다. 저온층(26)은, 예를 들어, 1% 내지 20%, 보다 양호하게는 3% 내지 6%, 보다 양호하게는 4% 내지 5%의 InN 조성을 갖는 InGaN층일 수 있다. 저온층(26)은 GaN 핵형성층(22)의 격자 상수로부터 장치의 발광층의 벌크 격자 상수와 더 가깝게 일치하는 보다 큰 격자 상수로의 천이부로서 역할한다.
어떤 실시예들에서, 고온층(24)과 저온층(26) 간의 성장 온도의 차이는 적어도 300℃, 보다 양호하게는 적어도 450℃, 보다 양호하게는 적어도 500℃이다. 예를 들어, 고온층(24)은 900 내지 1150℃의 온도에서 성장될 수 있는 반면, 저온층(26)은 450 내지 650℃의 온도에서 성장된다.
본 발명의 다양한 실시예들에서 층(26)을 성장시키는 데 사용되는 낮은 성장 온도로 인해, 저온층(26)은 높은 탄소 함유량을 가질 수 있다. 어떤 실시예들에서, 저온층(26)에서의 탄소 함유량은 1x1018 cm-3 내지 1x1020 cm-3, 종종 1x1018 cm-3 내지 1x1019 cm-3이다. 이와 달리, 고온층(24)의 탄소 함유량은 일반적으로 5x1017 cm-3 미만, 보다 양호하게는 1x1017 cm-3 미만, 보다 양호하게는 1x1016 cm-3 미만이다. 높은 탄소 함유량으로 인해, 저온층(26)은 활성층에 의해 방출된 광을 흡수할 수 있다. 양호한 실시예에서, 저온층(26)의 두께는 따라서 1000Å 미만, 보다 양호하게는 500Å 미만, 보다 양호하게는 300Å 미만으로 제한된다.
또한, 낮은 성장 온도, 격자 부정합(lattice mismatch), 및 열 팽창 부정합(thermal expansion mismatch)으로 인해, 저온층(26)은 저온층(26)과 저온층(26) 바로 상부에 성장된 층 사이의 계면에 또는 이 계면 근방에, 또는 저온층(26)과 이 저온층(26)이 성장되어 있는 층 사이의 계면에 또는 이 계면 근방에 위치한 적층 결함(stacking fault), 전위 루프(dislocation loop), 및 전위선(dislocation line) 등의 결함의 농도가 높을 수 있다. 이들 결함은 종종 기판(20)과 핵형성층(22) 사이의 성장 계면에 대체로 평행하게 배향되어 있다. 이들 면내 결함의 밀도는 저온층(26) 및 저온층(26) 상부에 성장된 층들의 변형 완화(strain relaxation)에 기여한다. 유의할 점은, 이들 면내 결함의 농도가 수학식 3과 관련하여 상기한 TDD와 꼭 관련되어 있지는 않다는 것이다. 주어진 고온층(24)에서, TEM(transmission electron microscope, 투과 전자 현미경)에 의해 성장 계면에 평행한 적층 결함 또는 전위가 관찰되지 않으며, 이는 성장 계면에 평행한 적층 결함 및 전위의 밀도가 TEM의 검출 한계(통상적으로 약 1x102 cm-1임)보다 낮다는 것을 나타낸다. InGaN 저온층(26)의 TEM 이미지는 수천 옹스트롬 정도의 TEM 샘플 두께에 대한 성장 계면에 평행한 많은 전위를 보여주며, 이는 성장 계면에 평행한 전위의 밀도가 적어도 1x102 cm-1, 보다 가능성 높게는 1x103 cm-1, 보다 가능성 높게는 적어도 1x104 cm- 1 임을 나타낸다. 어떤 실시예들에서, 성장 계면에 평행한 전위의 밀도는 1x102 cm-1 내지 1x107 cm-1이다.
어떤 실시예들에서, 저온층(26)이 성장면(growth plane)에서 불연속이도록, 즉 저온층(26)이 비평면 또는 불연속이도록 만드는 의도적이거나 비의도적인 특징부를 갖도록 저온층(26)이 성장될 수 있다. 이러한 의도적인 특징부의 예는 측방 과성장(lateral overgrowth)을 포함하는 한 부류의 기법들 중 하나 이상의 사용을 포함할 수 있다. 이들 기법은, Hiramatsu의 Journal of Physics : Condensed Matter, volume 13(페이지 6961 내지 6975)(2001)(이는 여기에 인용함으로써 그 전체 내용이 본 명세서에 포함됨)에 기술된 바와 같이, ELO 또는 ELOG(epitaxial lateral overgrowth), FACELO(facet-controlled epitaxial lateral overgrowth), 및 PE(Pendeo epitaxy)를 비롯한 다양한 용어를 사용하여 말해진다. 이러한 비의도적인 특징부들의 예는 저온 3족-질화물층의 상부 표면과 교차하는 V자형 결함(통상 "피트"라고 함)의 존재, 큰 표면 스텝, 및 저온층(26)에서의 또는 저온층(26) 아래의 층 또는 층들에서의 기타 결함들을 포함할 수 있다. 이들 의도적인 측방 과성장 기법들 또는 비의도적인 기법들 중 하나 이상의 사용은 결함 영역의 측방 범위를 템플릿의 작은 부분 또는 다수의 작은 부분들로 제한할 수 있는 반면, 템플릿의 측방 과성장은 저온층(26)에 의해 설정된 큰 격자 상수를 유지할 수 있다.
어떤 실시예들에서, 장치층들은 도 8의 저온층(26) 바로 위에 성장된다. 다른 실시예에서, 도 9에 나타낸 바와 같이, 부가의 고온층(28)이 저온층(26) 상부에 성장될 수 있고, 저온층(26)에 의해 설정된 격자 상수와 똑같다. 고온층(28)은, 예를 들어, GaN, InGaN, AlGaN, 또는 AlInGaN일 수 있다. 어떤 실시예들에서, 고온층(28)은 800 내지 1000℃의 온도에서 500 내지 10,000 옹스트롬의 두께로 성장된 InGaN이다. 고온층(28)에서의 InN 조성은 일반적으로 저온층(26)에서의 InN 조성보다 작고, 예를 들어, 0.5% 내지 20%, 보다 양호하게는 3% 내지 6%, 보다 양호하게는 4% 내지 5%일 수 있다.
저온층(26)은 그 후에 성장되는 층들의 격자 상수를 증가시키기 위한 것인 반면, 고온층(28)은 피트, 큰 표면 스텝 및 저온층(26)에서의 기타 결함들을 평탄하게 하거나 채워넣기 위한 것이다. 고온층(28)은 차후의 층들이 성장되는 고품질의 베이스를 제공한다. 저온층(26)의 InN 조성은 가능한 한 많이 격자 상수를 팽창시키기 위해 비교적 높으며, 고온층(28)의 InN 조성은 바람직하게도 고품질의 층을 성장시키기 위해 비교적 낮다. 도 9에 도시된 장치는 기판과 장치층들 사이에 저온층(26) 및 고온층(28)의 세트를 다수개 포함할 수 있다. 저온층(26)에서의 InN 조성을 기판에 가장 가까운 저온층(26)에서의 가장 낮은 InN 조성으로부터 장치층에 가장 가까운 저온층(26)에서의 가장 높은 InN 조성으로 증가시킴으로써, 각각의 세트에서 격자 상수가 소량 팽창될 수 있다. 격자 상수가 팽창함에 따라, 적절히 고품질인 고온층(28)을 성장시킬 수 있는 InN 조성도 증가될 수 있다. 따라서, 고온층(28)에서의 InN 조성은 기판에 가장 가까운 고온층(28)에서의 가장 낮은 InN 조성으로부터 장치층들에 가장 가까운 고온층(28)에서의 가장 높은 InN 조성으로 증가될 수 있다. 층(26)에서의 InN 조성을 증가시키는 것이 층(28)의 InN 조성을 증가시키는 한 방법이지만, 층(26)의 InN 조성을 증가시키지 않고 층(28)의 조성이 기타 방법들에 의해 증가될 수 있다. 도 10에 도시된 다른 실시예에서, 도 8의 고온층(24)은 도 9의 고온층(28)과 함께 사용될 수 있다.
도 11에 도시된 다른 실시예에서, 저온 핵형성층(22)이 먼저 성장되고, 이어서 도 8과 관련하여 상기한 고온층(24)이 성장된다. 제2 고온층(30)이 고온층(24) 상부에 성장되고, 저온 InGaN층(26)이 층(30) 상부에 성장된다. 이어서, 고온층(28)이 저온층(26) 상부에 성장되고, 장치층(10)이 고온층(28) 상부에 성장된다. 다른 대안으로서, 고온층(28)이 도 11에서 생략될 수 있으며, 장치층(10)이 저온 InGaN층(26) 바로 위에 성장될 수 있다.
고온층(30)은, 예를 들어, 900 내지 1000℃의 온도에서 500 내지 10,000 옹스트롬의 두께로 성장된, 낮은 InN 조성(예를 들어, 5% 미만)을 갖는 InGaN층일 수 있다. 고온층(30)은 일반적으로 고온층(24)의 벌크 격자 상수보다 큰 벌크 격자 상수를 갖는 물질이다. 그 결과, 저온층(26) 및 이어서 성장된 고온층(28)에서의 면내 격자 상수가 저온층(26)이 고온층(24) 바로 위에 성장되는 경우에 달성가능한 면내 격자 상수보다 클 수 있다.
어떤 실시예들에서, 도 11에서의 고온층(30, 28)은 InGaN으로 이루어져 있다. 한 이러한 실시예에서, 고온층(28)은 주변에 H2가 더 적은 분위기에서 또는 고온층(30)보다 낮은 온도에서 성장될 수 있으며, 이 경우에, 고온층(28)은 고온층(30)보다 더 높은 InN 조성을 가질 수 있다. 예를 들어, 고온층(30)과 저온층(26)의 성장 온도 간의 차이는 적어도 350℃, 보다 양호하게는 적어도 400℃, 보다 양호하게는 적어도 450℃일 수 있다. 이와 달리, 저온층(26)과 고온층(28)의 성장 온도 간의 차이는 적어도 250℃, 보다 양호하게는 적어도 300℃, 보다 양호하게는 적어도 350℃일 수 있다. 다른 실시예에서, 고온층(28)은 H2가 더 많은 분위기에서 또는 고온층(30)보다 더 높은 온도에서 성장될 수 있으며, 이 경우에 고온층(28)은 고온층(30)보다 더 낮은 InN 조성을 가질 수 있다. 다른 실시예에서, 고온층(28)은 고온층(30)과 거의 동일한 조건 하에서 성장될 수 있거나, 고온층(28)은 고온층(30)과 거의 동일한 조성을 가질 수 있다. 이들 실시예 각각에서, 저온 InGaN층(26)은 고온층(24)의 격자 상수를 방해하고 그 다음에 성장된 층들의 격자 상수를 팽창시키며, 따라서 고온층(28)이 고온층(30)보다 큰 면내 격자 상수를 갖게 된다.
이 구조의 어떤 실시예들에서, 저온층(26)은 큰 격자 상수를 설정할 수 있는 반면, 고온층(28)은 평탄한 표면을 설정할 수 있다. 저온층(26)의 면내 격자 상수가 고온층(28)의 벌크 격자 상수보다 실질적으로 더 큰 경우, 고온층(28)은 수학식 1에 정의된 바와 같이 실질적으로 인장 변형을 받고 있으며, 이 인장 변형은 고온층(28) 내에 또는 그 근방에 균열 또는 기타 결함을 형성함으로써 부분적으로 완화될 수 있다. 이러한 효과가 바람직하지 않은 이유는, 균열이 장치의 전기적, 구조적 무결성을 열화시키고, 층(28) 내의 균열 또는 기타 구조적 결함은 층(28) 내에서의 격자 상수를 감소시키며, 활성 영역에서의 압축 변형을 증가시킬 수 있기 때문이다. 장치의 어떤 실시예들에서, 따라서 기판(20)과 장치층(10) 사이에 부가의 층들을 성장시키는 것이 선호된다. 한 이러한 실시예에서, 도 12에 도시된 바와 같이, 저온층(26)과 고온층(28) 사이에 고온층(31)이 배치될 수 있다. 이 실시예에서, 고온층(31)은 저온층(26)의 온도보다는 높지만 고온층(28)의 온도보다는 낮은 온도에서 성장될 수 있다. 각각의 고온층(28, 31)은, 예를 들어, 800 내지 1000℃의 온도에서 500 내지 10,000 옹스트롬의 두께로 성장된 InGaN일 수 있다. 각각의 고온층에서의 InN 조성은, 예를 들어, 0.5% 내지 20%, 보다 양호하게는 3% 내지 6%, 보다 양호하게는 4% 내지 5%일 수 있다.
다른 대안으로서, 고온층(28, 31)은 거의 동일한 온도에서 성장될 수 있지만, 고온층(31)은 고온층(28)을 성장시키는 데 사용되는 것보다 H2가 더 적은 분위기에서 성장될 수 있다. 이 경우에, 고온층(31)은 고온층(28)보다 더 높은 InN 조성을 가질 수 있다. 다른 대안으로서, 고온층(31)은 고온층(28)보다 더 높은 온도에서 또는 H2가 더 많은 분위기에서 성장될 수 있고, 이 경우에 고온층(31)은 고온층(28)보다 더 낮은 InN 조성을 가질 수 있다.
다른 실시예에서, 저온층(26)과 장치층(10) 사이에 3개 이상의 서로 다른 층이 성장될 수 있다. 이러한 실시예의 일례가 도 13에 도시되어 있으며, 여기서 교대로 있는 InN이 많은 물질층과 InN이 적은 물질층이 저온층(26)과 장치층(10) 사이의 다중층 적층 내에 포함되어 있다. 유의할 점은, 도 13의 다중층 적층이 도 2의 핵형성층(22) 상부에 또는 도 10의 고온층(24) 상부에 성장될 수 있다는 것이다. 도 13에 InN이 많은 층과 InN이 적은 층의 세트가 3개 도시되어 있지만, 더 많은 또는 더 적은 수의 세트가 사용될 수 있다. 인듐이 많은 층(60, 62, 64)은, 예를 들어, InGaN 또는 AlInGaN일 수 있다. 인듐이 적은 층(61, 63, 65)은, 예를 들어, GaN, InGaN 또는 AlInGaN일 수 있다. 층(60, 62, 64)은 3% InN의 조성을 가질 수 있는 반면, 층(61, 63, 65)은 0.5% InN의 조성을 가질 수 있다.
선택적인 캡층(67)이 최상단의 InN이 적은 층(65) 상부에 성장될 수 있고, 이어서 장치층(10)이 캡층(67) 또는 최상단의 InN이 적은 층(65) 상부에 성장된다. 캡층(67)은, 예를 들어, GaN 또는 InGaN일 수 있다. 다른 실시예에서, 최상단의 인듐이 적은 층이 생략될 수 있고, 장치층들이 최상단의 인듐이 많은 층(층(60, 62 또는 64) 등) 바로 위에 성장될 수 있다.
장치의 다른 실시예에서, Itoh 등의 Applied Physics Letters, volume 52(페이지 1617 내지 1618)(1988)(이는 여기에 인용함으로써 그 전체 내용이 본 명세서에 포함됨)에 기술되어 있는 바와 같이, 도 13의 다중층 적층은 열 사이클링 성장 또는 어닐링을 사용하여 형성될 수 있다. 열 사이클링 성장은 양호한 표면 형태를 가지며 또 종래의 GaN 템플릿 상에 성장시키는 것으로부터 이용가능한 a-격자 상수보다 큰 장치층에서의 a-격자 상수를 갖는 장치를 성장시키는 데 사용된다. 열 사이클링 성장 공정은 InGaN 등의 에피택셜층의 성장 및 그 이후에 행해지는 고온 성장 또는 어닐링 단계를 포함한다.
각각의 층(60, 61, 62, 63, 64, 65)의 성장 이후에, Ga, Al 및 In 전구체 등의 어떤 전구체 가스의 흐름을 중단시킴으로써 성장이 일시정지될 수 있고, 그 다음에 미리 정해진 시간 동안 그 온도를 유지 또는 상승시키면서 N 전구체, 종종 NH3를 계속 흘려보냄으로써 어닐링될 수 있다. 그 다음 층의 성장은 온도가 필요한 경우 그 다음 층의 성장 온도로 조정되고 적절한 전구체가 유입될 때 시작된다. 통상적인 어닐링 조건은 H2 및 NH3의 분위기에서 5분 동안 1100℃를 포함한다. N2가 그에 부가하여 분위기에 추가될 수 있거나, InGaN층의 과도한 분해를 방지하기 위해 H2가 분위기로부터 제거될 수 있다. 다른 대안으로서, 이들 고온 단계들 또는 온도 램프(temperature ramp) 동안에 성장이 계속될 수 있다. 각각의 층의 성장 이후의 어닐링의 결과, 각각의 층의 성장 이후에 어닐링되지 않은 장치 상부에 향상된 표면 형태가 얻어질 수 있지만, InN이 적은 층(61, 63, 65)의 성장 이후의 어닐링의 결과, 추가의 전위 또는 전위 루프가 형성될 수 있고 이는 InN이 적은 층들에서의 변형의 일부를 완화시킬 수 있으며, 그에 따라 이들 층이 InN이 많은 층들의 보다 큰 a-격자 상수로 더 이상 변형되지 않음으로써 원하는 것보다 작은 a-격자 상수를 갖는 템플릿이 얻어진다.
다른 대안으로서, 이 구조는 InN이 많은 층(60, 62, 64) 중 일부 또는 그 전부의 성장 이후에만 또는 InN이 적은 층(61, 63, 65) 중 일부 또는 그 전부의 성장 이후에만 어닐링된다. InN이 적은 층(61, 63, 65)의 성장 이후에만 어닐링하면, 그 결과 템플릿에서 보다 높은 평균 InN 조성이 얻어질 수 있는데, 그 이유는 InN이 적은 층이 임의의 어닐링 단계 동안에 장치 내의 InN이 많은 층들 내의 InN을 더 많이 포획하기 때문이다. 다른 실시예에서, 이 구조는 각각의 층의 성장 이후에 어닐링될 수 있고, 이 경우 인듐이 많은 층들의 성장 이후에 사용되는 어닐링 조건이 인듐이 적은 층들의 성장 이후에 사용되는 어닐링 조건과 다르다. 유의할 점은, 인듐이 많은 층(60, 62, 64) 각각의 조성 또는 두께가 동일할 필요가 없다는 것이다. 마찬가지로, 인듐이 적은 층(61, 63, 65) 각각의 조성 또는 두께가 동일할 필요가 없다.
다른 실시예에서, 도 14에 도시된 바와 같이, 저온층(26)과 장치층(10) 사이에 경사 InGaN층(59)이 배치될 수 있다. 경사층(59)은, 예를 들어, 다양한 InN 조성의 하나 이상의 2원, 3원 또는 4원 3족-질화물 층을 포함할 수 있다. 선택적인 캡층(도 14에 도시되어 있지 않음)이, 상기한 바와 같이, 경사층(59)과 장치층(10) 사이에 배치될 수 있다. 예를 들어, 경사층(59)은 저온층(26)에 인접하여 11%의 가장 높은 InN 조성으로부터 장치층(10)에 인접하여 3%의 가장 낮은 InN 조성으로 선형 경사된(linearly graded) 조성을 갖는 InGaN층일 수 있다. 다른 예에서, 경사층(59)은 저온층(26)에 인접하여 10%의 높은 InN 조성으로부터 장치층(10)에 인접하여 0%의 낮은 InN 조성으로 내려가는 경사를 포함할 수 있다. 또다른 예에서, 경사층(59)은 저온층(26)에 인접하여 8%의 높은 InN 조성으로부터 어떤 중간 위치에서 0%의 낮은 InN 조성으로 내려가는 경사 또는 단일의 스텝과, 그 다음에 오는 장치층(10)에 인접하여 3%의 보다 높은 InN 조성으로 다시 올라가는 경사 또는 단일의 스텝을 포함할 수 있다.
어떤 실시예들에서, 도 11의 층(24, 30)은 도 12의 층(28, 31)과 함께 사용될 수 있다. 다른 실시예에서, 저온층(26)이 도 14에 도시된 2개의 경사 InGaN층(59) 사이에 끼여 있을 수 있다. 다른 실시예에서, 저온층(26)들의 임의의 적층이 고온층들의 임의의 적층 또는 고온층들과 저온 GaN층들의 임의의 적층 사이에 분산되어 성장될 수 있다. 도 2, 도 8, 도 9 및 도 10에 도시된 실시예들 각각은, 도 3 내지 도 7 및 도 11 내지 도 14에서 설명된 바와 같이, 경사층, 다중층 적층, 및 열 사이클링 성장에 의해 성장된 어닐링된 층 또는 층들을 포함할 수 있다.
어떤 실시예들에서, 도 12의 고온층(31) 등의 층들의 특성이 저온층(26)에 의해 설정된 격자 상수를 고정시키도록 선택된다. 어떤 실시예들에서, 도 12의 고온층(28) 등의 층들의 특성이 장치에서의 표면 형태를 향상시키도록 선택된다.
도 15 및 도 16은 몇개의 장치들에 대해 c-격자 상수를 a-격자 상수의 함수로서 나타낸 그래프이다. 도 15는 본 발명의 실시예들에 따른 템플릿으로 인해 실제로 상부에 있는 층들이 적어도 부분적으로 완화된다는 것을 보여준다. 구조의 변형 상태는 구조의 c-격자 상수 및 a-격자 상수를 구함으로써 측정될 수 있다. 도 15에 다이어몬드로 나타낸 구조에서, 두꺼운 고온 GaN층(3)은 도 1에 나타낸 바와 같은 GaN 핵형성층(2) 상부에 성장되었으며, 여기서 핵형성층(2) 및 고온 GaN층(3)의 성장 조건은 TDD, 따라서 GaN 템플릿에서의 면내 a-격자 상수를 변화시키기 위해 변화되었다(수학식 3과 관련하여 앞서 설명하였음). TDD를 변경하는 이러한 방법은 Figge 등의 Journal of Crystal Growth, volume 221(페이지 262 내지 266)(2000)(이는 여기에 인용함으로써 그 전체 내용이 본 명세서에 포함됨)에 기술되어 있다. 도 15에서 다이어몬드로 나타낸 구조는 따라서 수학식 3에 따라 변하는 TDD 및 a-격자 상수를 갖는다. 원으로 나타낸 구조에서, 두꺼운 고온 GaN층이 본 발명의 실시예들에 따라 준비된 저온 InGaN층 상부에 성장되었다. 탄성 이론에 따르면, 3족-질화물 물질에서의 c-격자 상수 및 a-격자 상수는 역관계로 되어 있으며, 이는 다이어몬드로 나타낸 구조로 설명되어 있고, 이들 모두는 도 15에 나타낸 대각선 가까이에서 떨어진다. 다이어몬드로 나타낸 구조와 달리, 원으로 나타낸 구조 각각은 대각선 아래에 있으며, 이는 이들 구조의 c-격자 상수가 다이어몬드로 나타낸 구조의 c-격자 상수보다 작다는 것을 의미한다. 원으로 나타낸 구조의 c-격자 상수가 더 작다는 것은 이들 구조 내의 두꺼운 고온 GaN층이 인장 변형을 받으면서 성장된다는 것을 암시하며, 이는 고온 GaN층의 a-격자 상수가 하부에 있는 적어도 부분적으로 완화된 저온 InGaN층(26)의 a-격자 상수와 일치하도록 확장되었음을 알려준다. 원으로 나타낸 구조는 또한 주어진 a-격자 상수에 대해 다이어몬드로 나타낸 구조보다 더 낮은 TDD를 나타내었으며, 이는 본 발명이 수학식 3에서 이전에 정량화했던 바와 같이 종래의 GaN 템플릿에서 관찰되는 a-격자 상수와 TDD 간의 트레이드오프를 없애준다는 것을 나타낸다.
도 16은 본 발명의 하나 이상의 실시예들에서 몇개의 층들에 대해 관찰된 c-격자 상수 및 a-격자 상수를 나타낸 그래프이다. 도 16에서의 속이 채워진 원은 도 9에서의 층(28)을 나타내는 반면, 도 16에서의 속이 빈 원은 도 13에서의 하나 이상의 인듐이 많은 층을 나타내며, 다이어몬드 심볼은 도 13에서의 하나 이상의 인듐이 적은 층 또는 캡층을 나타낸다. 도 16에서의 실선 대각선은 도 15에 이전에 나타낸 실선 대각선에 대응하며, 도 1에 나타낸 구조 등의 GaN 템플릿에 대한 실험 데이터를 나타내는 반면, 점선 대각선은 이 실선을 더 큰 a-격자 값으로 외삽한 것이다. 도 16에 나타낸 바와 같이, 인듐이 많은 층(60)의 c-격자 상수 및 a-격자 상수 둘다는 도 15에서의 다이어몬드 심볼로 나타낸 종래의 GaN 템플릿에 대한 데이터와 비교하여 아주 크다. 인듐이 많은 층(60) 상부에 형성된 인듐이 적은 층(61) 또는 캡층(67)의 c-격자 상수 및 a-격자 상수는 인듐이 많은 층(60)의 격자 상수보다는 작지만, 도 15의 종래의 GaN 템플릿에 대해 관찰된 가장 큰 a-격자 상수보다는 훨씬 더 크며, 이는 도 13에 나타낸 실시예에 따라 성장된 인듐이 적은 층(61) 및 캡층(67)이 적어도 부분적으로 인듐이 많은 층(60)의 보다 큰 격자 상수로 변형되어 있다는 것을 암시한다. 유의할 점은, 인듐이 적은 층(61) 및 캡층(67)이 일반적으로 균열을 회피하기 위해 충분히 얇게 유지되거나 충분히 높은 InN 조성으로 성장된다는 것이다. 인듐이 적은 층(61) 및 캡층(67) 상부에 변형되어 성장된 장치층(10)은 이러한 GaN보다 큰 a-격자 상수와 똑같으며, 이는 발광층에서의 변형을 감소시킨다. 상기한 실시예들에 기술된 템플릿들은 따라서 종래의 GaN 템플릿(통상적으로 3.189Å보다 크지 않은 a-격자 상수를 가짐)보다 큰 a-격자 상수를 가질 수 있다.
상기한 실시예들 중 일부에서의 구조들과 같은 3.189Å보다 큰 면내 격자 상수를 갖는 템플릿 상부에 하나 이상의 발광층을 포함하는 장치층들을 성장시키는 것은 발광층에서의 변형을 충분히 감소시킬 수 있으며, 그에 따라 더 두꺼운 발광층이 허용 결함 밀도 및 감소된 스피노달 분해를 갖도록 성장될 수 있게 해준다. 예를 들어, 청색광을 방출하는 InGaN층은 3.23Å의 벌크 격자 상수를 갖는 조성인 조성 In0 .12Ga0 .88N을 가질 수 있다. 발광층에서의 변형은 발광층에서의 면내 격자 상수(종래의 GaN 버퍼층 상에 성장된 발광층의 경우 약 3.189Å)와 발광층의 벌크 격자 상수의 차이에 의해 결정되며, 따라서 변형은 수학식 2에 정의된 바와 같이
Figure pat00004
로 표현될 수 있다. 종래의 In0 .12Ga0 .88N층의 경우에, 이 변형은 (3.189 Å - 3.23 Å) /3.23 Å, 즉 약 1.23%이다. 동일한 조성의 발광층이 상기한 구조들과 같은 보다 큰 격자 상수 템플릿 상에 성장되는 경우, 변형이 감소되거나 없어질 수 있다. 본 발명의 어떤 실시예들에서, 430 내지 480nm의 광을 방출하는 장치의 발광층에서의 변형이 1% 미만으로, 보다 양호하게는 0.5% 미만으로 감소될 수 있다. 시안 광(cyan light)을 방출하는 InGaN층은 종래의 GaN 버퍼층 상에 성장될 때 3.24Å의 벌크 격자 상수 및 약 1.7%의 변형을 갖는 조성인 조성 In0.16Ga0.84N을 가질 수 있다. 본 발명의 어떤 실시예들에서, 480 내지 520 nm의 광을 방출하는 장치의 발광층에서의 변형은 1.5% 미만으로, 보다 양호하게는 1% 미만으로 감소될 수 있다. 녹색 광을 방출하는 InGaN층은 종래의 GaN 버퍼층 상에 성장될 때 3.26Å의 벌크 격자 상수를 가져 약 2.1%의 변형을 일으키는 조성인 조성 In0.2Ga0.8N을 가질 수 있다. 본 발명의 어떤 실시예들에서, 520 내지 560 nm의 광을 방출하는 장치의 발광층에서의 변형은 2% 미만으로, 보다 양호하게는 1.5% 미만으로 감소될 수 있다.
도 2에 도시된 장치의 경우, 본 발명자들은 3.212Å 정도의 a-격자 상수 및 4x109 cm-2 정도로 낮은 TDD를 갖는 구조를 성장하였다. 이러한 구조 상부에 성장된 발광층은 청색 발광층에 대해 0.55% 변형되고, 시안 발광층에 대해 0.87% 변형되며, 녹색 발광층에 대해 1.5% 변형될 수 있다. 도 8 및 도 10에 도시된 장치의 경우, 본 발명자들은 3.196Å 정도의 a-격자 상수 및 1.5x109 cm-2 정도로 낮은 TDD를 갖는 구조를 성장하였다. 이러한 구조 상부에 성장된 발광층은 청색 발광층에 대해 1.1% 변형되고, 시안 발광층에 대해 1.4% 변형되며, 녹색 발광층에 대해 2.0% 변형될 수 있다. 도 9 및 도 13에 도시된 장치의 경우, 본 발명자들은 도 16에 나타낸 바와 같이, 3.202Å 정도의 a-격자 상수 및 1.5x109 cm-2 정도로 낮은 TDD를 갖는 구조를 성장하였다. 이러한 구조 상부에 성장된 발광층은 청색 발광층에 대해 0.87% 변형되고, 시안 발광층에 대해 1.2% 변형되며, 녹색 발광층에 대해 1.8% 변형될 수 있다. 도 11에 도시된 장치의 경우, 본 발명자들은 3.204Å 정도의 a-격자 상수 및 1.5x109 cm-2 정도로 낮은 TDD를 갖는 구조를 성장하였다. 이러한 구조 상부에 성장된 발광층은 청색 발광층에 대해 0.8% 변형되고, 시안 발광층에 대해 1.1% 변형되며, 녹색 발광층에 대해 1.7% 변형될 수 있다. 따라서, 이들 예 각각은 수학식 3에서 앞서 설명한 면내 a-격자 상수와 TDD 간의 관계를 깬다.
본 발명의 실시예들에 따르면, 상기한 성장 템플릿 및 장치층은 사파이어의 주 결정면(major crystallographic plane)으로부터 경사져 있는 사파이어 또는 SiC 성장 기판의 표면 상에 성장될 수 있다. 도 17은 사파이어의 c-면, m-면, a-면을 나타낸 것이다. 3족-질화물 장치는 종종 사파이어의 c-면, r-면, m-면, 또는 a-면 상부에 성장된다. 본 발명의 실시예들에서, 사파이어 기판은 3족-질화물 장치층이 성장되어 있는 성장 표면이 c-면, r-면, m-면 또는 a-면으로부터 방향(12)으로, 예를 들어, 0.1°이상 기울어지도록 절단 및 연마될 수 있다. 이러한 기판 상부에 성장된 발광층은 발광층에서 감소된 스피노달 분해 및 감소된 변형을 겪을 수 있다. 이러한 기판은 상기한 템플릿들 중 임의의 것을 성장시키는 데 사용될 수 있다.
도시되고 이상에서 설명한 반도체 구조들은 접점들이 장치의 반대쪽 측면 상에 형성되어 있는 장치 또는 양 접점이 장치의 동일한 측면 상에 형성되어 있는 장치와 같은 발광 장치의 임의의 적당한 구성에 포함될 수 있다. 양 접점이 동일한 측면 상에 배치되어 있을 때, 이 장치는 접점들이 형성되어 있는 동일한 측면을 통해 광이 추출되도록 투명한 접점들이 실장되어 있거나 접점들이 형성되어 있는 측면의 반대쪽 측면으로부터 광이 추출되도록 반사 접점들이 플립칩(flip chip)으로서 실장되어 있는 상태로 형성될 수 있다.
도 18은 적당한 구성, 즉 성장 기판이 제거되어 있는 플립칩 장치의 일례의 일부분을 나타낸 것이다. 상기한 바와 같이, 장치층(10)은 적어도 하나의 n-형 층을 포함하는 n-형 영역(71)과 적어도 하나의 p-형 층을 포함하는 p-형 영역(73) 사이에 끼여 있는 적어도 하나의 발광층을 포함하는 발광 영역(72)을 포함한다. n-형 영역(71)은 성장 템플릿의 일부분이거나 별개의 구조일 수 있다. p-형 영역(73) 및 발광 영역(72)의 일부분이 제거되어 n-형 영역(71)의 일부분을 노출시키는 메사를 형성한다. n-형 영역(71)의 일부분을 노출시키는 하나의 비아가 도 18에 도시되어 있지만, 단일의 장치에 다수의 비아가 형성될 수 있다는 것을 잘 알 것이다. n-접점(78) 및 p-접점(76)이, 예를 들어, 증발 또는 도금에 의해, n-형 영역(71) 및 p-형 영역(73)의 노출된 부분 상에 형성된다. 접점(78, 76)은 공기 또는 유전층에 의해 서로 전기적으로 격리되어 있을 수 있다. 접점 금속(78, 76)이 형성된 후에, 장치들의 웨이퍼가 개개의 장치들로 다이싱될 수 있고, 이어서 각각의 장치가 성장 방향에 대해 플립(flip)되어 마운트(mount)(84) 상에 실장되며, 이 경우에 마운트(84)는, 도 18에 나타낸 바와 같이, 장치의 측방 크기(lateral extent)보다 더 큰 측방 크기를 가질 수 있다. 다른 대안으로서, 장치들의 웨이퍼가 마운트들의 웨이퍼에 접속되고, 이어서 개개의 장치들로 다이싱될 수 있다. 마운트(84)는, 예를 들어, Si 등의 반도체, 금속, 또는 AlN 등의 세라믹일 수 있고, p-접점(76)에 전기적으로 접속된 적어도 하나의 금속 패드(80) 및 n-접점(78)에 전기적으로 접속된 적어도 하나의 금속 패드(82)를 가질 수 있다. 접점(76, 78)과 패드(80, 82) 사이에 배치된 상호접속부(도 18에 도시되어 있지 않음)는 반도체 장치를 마운트(84)에 접속시킨다. 이 상호접속부는, 예를 들어, 금 등의 원소 금속, 또는 솔더일 수 있다.
실장 후에, 에칭 또는 레이저 용융(laser melting) 등의 기판 물질에 적합한 공정에 의해 성장 기판(도시 생략)이 제거된다. 반도체층을 지지하고 기판 제거 동안에 균열을 방지하기 위해, 실장 전에 또는 실장 후에 장치와 마운트(84) 사이에 경질 언더필(rigid underfill)이 제공될 수 있다. 장치층(10)이 성장되어 있는 템플릿(75)은 그대로 두거나, 예를 들어, 에칭에 의해 완전히 제거되거나, 부분적으로 제거될 수 있다. 성장 기판을 제거함으로써 노출되는 표면 및 임의의 반도체 물질은, 예를 들어, 광전화학 에칭 등의 에칭 공정에 의해 또는 연삭 등의 기계적 공정에 의해 거칠어질 수 있다. 광이 추출되는 표면을 거칠게 하면 장치로부터의 광 추출을 향상시킬 수 있다. 다른 대안으로서, 광 결정 구조(photonic crystal structure)가 표면에 형성될 수 있다. 형광체 등의 구조(85) 또는 반사경(dichroics)나 편광판(polarizer) 등의 공지된 2차 광학계가 방출 표면에 부착될 수 있다.
도 19는 미국 특허 제6,274,924호에 더 상세히 기술되어 있는 것과 같은 패키징된 발광 장치의 분해도이다. 히트-싱크 슬러그(heat-sinking slug)(100)가 삽입-몰딩된 리드프레임(insert-molded leadframe) 내에 배치된다. 삽입-몰딩된 리드프레임은, 예를 들어, 전기 경로를 제공하는 금속 프레임(106) 주변에 몰딩되어 있는 충전된 플라스틱 물질(filled plastic material)(105)이다. 슬러그(100)는 선택적인 반사체 컵(reflector cup)(102)을 포함할 수 있다. 상기 실시예들에 기술된 장치들 중 임의의 것일 수 있는 발광 장치 다이(104)는 직접 또는 열 전도성 서브마운트(103)를 통해 간접적으로 슬러그(100)에 실장된다. 광학 렌즈일 수 있는 커버(108)이 부가될 수 있다.
본 발명에 대해 상세히 기술하였지만, 당업자라면, 이상의 설명이 주어진 경우, 본 명세서에 기술된 발명 개념의 정신을 벗어나지 않고 본 발명에 여러 수정이 행해질 수 있다는 것을 잘 알 것이다. 따라서, 본 발명의 범위가 예시되고 기술된 특정의 실시예들로 제한되는 것으로 보아서는 안된다. 상세하게는, 저온층(26)은 InGaN 대신에 AlGaN 또는 AlInGaN으로 이루어져 있을 수 있다. 저온층(26)이 AlGaN으로 이루어져 있는 실시예에서, 저온층(26)의 면내 격자 상수는 핵형성층(22)의 면내 격자 상수보다 작고, 이는 단파장 UV 방출기에 사용되는 AlGaN 또는 AlInGaN층에서의 변형을 감소시킨다. 저온층(26)이 AlInGaN으로 이루어져 있는 실시예에서, 저온층(26)의 면내 격자 상수는, 저온층(26)에서의 인듐 대 알루미늄의 비에 따라, 층(22)의 면내 격자 상수보다 크거나 작을 수 있다. 또한, 본 명세서에 개시된 본 발명은, 예를 들어, FET 등의 트랜지스터 또는 검출기를 비롯한, 전자 또는 광전자 장치는 물론 발광 장치에도 적용될 수 있다.

Claims (11)

  1. 장치로서,
    상기 장치는 3족-질화물 구조를 포함하고,
    상기 3족-질화물 구조는,
    제1 단결정 층(24),
    제2 단결정 층(28), 및
    상기 제1 단결정 층과 상기 제2 단결정 층 사이에 배치된, 인듐을 포함하는 비단결정층(26)을 포함하는 것인 장치.
  2. 제1항에 있어서, 상기 3족-질화물 구조는 n-형 영역과 p-형 영역 사이에 배치된 발광층을 더 포함하고,
    상기 제2 단결정 층(28)은 발광 영역과 상기 비단결정층(26) 사이에 배치되어 있는 것인 장치.
  3. 제2항에 있어서, 상기 제1 단결정 층(24)의 조성이 상기 제2 단결정 층(28)의 조성과 다른 것인 장치.
  4. 제2항에 있어서, 상기 제1 단결정 층(24)은 GaN 또는 InGaN이고,
    상기 제2 단결정 층(28)은 InGaN이며,
    상기 제2 단결정 층은 상기 제1 단결정 층보다 더 큰 InN 조성을 갖는 것인 장치.
  5. 제2항에 있어서, 상기 제2 단결정 층(28)은 상기 제1 단결정 층(24)보다 더 큰 면내 a-격자 상수를 갖는 것인 장치.
  6. 제2항에 있어서, 상기 비단결정층(26)은 InGaN인 것인 장치.
  7. 제2항에 있어서, 상기 제1 단결정 층(24)과 상기 비단결정층(26) 사이에 배치된 제3 단결정 층(30)을 더 포함하는 장치.
  8. 제2항에 있어서, 인듐을 포함하는 상기 비단결정층(26)과 상기 발광층 사이에 배치된 제3 단결정 층(31)을 더 포함하는 장치.
  9. 제2항에 있어서, 상기 발광층은 상기 발광층과 동일한 조성의 프리스탠딩 물질(free standing material)의 격자 상수에 대응하는 벌크 격자 상수 abulk를 갖고,
    상기 발광층은 상기 구조에 성장된 상기 발광층의 격자 상수에 대응하는 면내 격자 상수(in-plane lattice constant) ain - plane를 가지며,
    상기 발광층에서의
    Figure pat00005
    은 1% 미만인 것인 장치.
  10. 제2항에 있어서, 상기 발광층은 3.189 옹스트롬보다 큰 a-격자 상수를 갖는 것인 장치.
  11. 장치로서,
    상기 장치는 3족-질화물 구조를 포함하고,
    상기 3족-질화물 구조는 n-형 영역과 p-형 영역 사이에 배치된 발광층을 포함하고,
    상기 발광층에서의 TDD(threading dislocation density)는 3x109 cm-2 미만이고,
    상기 발광층에서의 a-격자 상수는 3.200Å보다 큰 것인 장치.
KR1020147008170A 2006-12-22 2007-12-21 변형을 줄이기 위해 템플릿 상에 성장된 3족-질화물 발광 장치 KR101584465B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/615,834 US7547908B2 (en) 2006-12-22 2006-12-22 III-nitride light emitting devices grown on templates to reduce strain
US11/615,834 2006-12-22
PCT/IB2007/055267 WO2008078302A2 (en) 2006-12-22 2007-12-21 Iii-nitride light emitting diodes grown on templates to reduce strain

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020097015341A Division KR101505824B1 (ko) 2006-12-22 2007-12-21 변형을 줄이기 위해 템플릿 상에 성장된 3족-질화물 발광 장치

Publications (2)

Publication Number Publication Date
KR20140058659A true KR20140058659A (ko) 2014-05-14
KR101584465B1 KR101584465B1 (ko) 2016-01-13

Family

ID=39332231

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020097015341A KR101505824B1 (ko) 2006-12-22 2007-12-21 변형을 줄이기 위해 템플릿 상에 성장된 3족-질화물 발광 장치
KR1020147008170A KR101584465B1 (ko) 2006-12-22 2007-12-21 변형을 줄이기 위해 템플릿 상에 성장된 3족-질화물 발광 장치

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020097015341A KR101505824B1 (ko) 2006-12-22 2007-12-21 변형을 줄이기 위해 템플릿 상에 성장된 3족-질화물 발광 장치

Country Status (9)

Country Link
US (1) US7547908B2 (ko)
EP (1) EP2097934B1 (ko)
JP (2) JP5455643B2 (ko)
KR (2) KR101505824B1 (ko)
CN (3) CN101636850B (ko)
BR (1) BRPI0720935B1 (ko)
RU (1) RU2454753C2 (ko)
TW (1) TWI427819B (ko)
WO (1) WO2008078302A2 (ko)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8674405B1 (en) * 2005-04-13 2014-03-18 Element Six Technologies Us Corporation Gallium—nitride-on-diamond wafers and devices, and methods of manufacture
EP1883141B1 (de) * 2006-07-27 2017-05-24 OSRAM Opto Semiconductors GmbH LD oder LED mit Übergitter-Mantelschicht
US20080303033A1 (en) * 2007-06-05 2008-12-11 Cree, Inc. Formation of nitride-based optoelectronic and electronic device structures on lattice-matched substrates
US8664747B2 (en) * 2008-04-28 2014-03-04 Toshiba Techno Center Inc. Trenched substrate for crystal growth and wafer bonding
US8354687B1 (en) * 2008-07-30 2013-01-15 Nitek, Inc. Efficient thermal management and packaging for group III nitride based UV devices
US9117944B2 (en) * 2008-09-24 2015-08-25 Koninklijke Philips N.V. Semiconductor light emitting devices grown on composite substrates
WO2010052810A1 (ja) 2008-11-06 2010-05-14 パナソニック株式会社 窒化物系半導体素子およびその製造方法
US8227791B2 (en) * 2009-01-23 2012-07-24 Invenlux Limited Strain balanced light emitting devices
JP5291499B2 (ja) * 2009-03-10 2013-09-18 株式会社沖データ 半導体複合装置の製造方法
WO2010116703A1 (ja) * 2009-04-06 2010-10-14 パナソニック株式会社 窒化物系半導体素子およびその製造方法
US8207547B2 (en) 2009-06-10 2012-06-26 Brudgelux, Inc. Thin-film LED with P and N contacts electrically isolated from the substrate
TWI405409B (zh) * 2009-08-27 2013-08-11 Novatek Microelectronics Corp 低電壓差動訊號輸出級
US8525221B2 (en) 2009-11-25 2013-09-03 Toshiba Techno Center, Inc. LED with improved injection efficiency
US8586963B2 (en) * 2009-12-08 2013-11-19 Lehigh University Semiconductor light-emitting devices having concave microstructures providing improved light extraction efficiency and method for producing same
JP4843122B2 (ja) * 2009-12-25 2011-12-21 パナソニック株式会社 窒化物系半導体素子およびその製造方法
CN102136536A (zh) 2010-01-25 2011-07-27 亚威朗(美国) 应变平衡发光器件
US8692261B2 (en) * 2010-05-19 2014-04-08 Koninklijke Philips N.V. Light emitting device grown on a relaxed layer
US8536022B2 (en) * 2010-05-19 2013-09-17 Koninklijke Philips N.V. Method of growing composite substrate using a relaxed strained layer
US8395165B2 (en) 2011-07-08 2013-03-12 Bridelux, Inc. Laterally contacted blue LED with superlattice current spreading layer
US20130026480A1 (en) 2011-07-25 2013-01-31 Bridgelux, Inc. Nucleation of Aluminum Nitride on a Silicon Substrate Using an Ammonia Preflow
US8916906B2 (en) 2011-07-29 2014-12-23 Kabushiki Kaisha Toshiba Boron-containing buffer layer for growing gallium nitride on silicon
US9142743B2 (en) 2011-08-02 2015-09-22 Kabushiki Kaisha Toshiba High temperature gold-free wafer bonding for light emitting diodes
US8865565B2 (en) 2011-08-02 2014-10-21 Kabushiki Kaisha Toshiba LED having a low defect N-type layer that has grown on a silicon substrate
US9343641B2 (en) 2011-08-02 2016-05-17 Manutius Ip, Inc. Non-reactive barrier metal for eutectic bonding process
US9012939B2 (en) 2011-08-02 2015-04-21 Kabushiki Kaisha Toshiba N-type gallium-nitride layer having multiple conductive intervening layers
US20130032810A1 (en) 2011-08-03 2013-02-07 Bridgelux, Inc. Led on silicon substrate using zinc-sulfide as buffer layer
US8564010B2 (en) 2011-08-04 2013-10-22 Toshiba Techno Center Inc. Distributed current blocking structures for light emitting diodes
US8624482B2 (en) 2011-09-01 2014-01-07 Toshiba Techno Center Inc. Distributed bragg reflector for reflecting light of multiple wavelengths from an LED
US9117941B2 (en) * 2011-09-02 2015-08-25 King Dragon International Inc. LED package and method of the same
US20150001570A1 (en) * 2011-09-02 2015-01-01 King Dragon International Inc. LED Package and Method of the Same
US8669585B1 (en) 2011-09-03 2014-03-11 Toshiba Techno Center Inc. LED that has bounding silicon-doped regions on either side of a strain release layer
US8558247B2 (en) 2011-09-06 2013-10-15 Toshiba Techno Center Inc. GaN LEDs with improved area and method for making the same
US8686430B2 (en) 2011-09-07 2014-04-01 Toshiba Techno Center Inc. Buffer layer for GaN-on-Si LED
US8853668B2 (en) 2011-09-29 2014-10-07 Kabushiki Kaisha Toshiba Light emitting regions for use with light emitting devices
US20130082274A1 (en) 2011-09-29 2013-04-04 Bridgelux, Inc. Light emitting devices having dislocation density maintaining buffer layers
US8664679B2 (en) 2011-09-29 2014-03-04 Toshiba Techno Center Inc. Light emitting devices having light coupling layers with recessed electrodes
US9012921B2 (en) 2011-09-29 2015-04-21 Kabushiki Kaisha Toshiba Light emitting devices having light coupling layers
US9178114B2 (en) 2011-09-29 2015-11-03 Manutius Ip, Inc. P-type doping layers for use with light emitting devices
US8698163B2 (en) 2011-09-29 2014-04-15 Toshiba Techno Center Inc. P-type doping layers for use with light emitting devices
US8552465B2 (en) 2011-11-09 2013-10-08 Toshiba Techno Center Inc. Method for reducing stress in epitaxial growth
US8581267B2 (en) 2011-11-09 2013-11-12 Toshiba Techno Center Inc. Series connected segmented LED
US9184344B2 (en) 2012-01-25 2015-11-10 Invenlux Limited Lighting-emitting device with nanostructured layer and method for fabricating the same
KR102032437B1 (ko) * 2012-02-28 2019-10-16 루미리즈 홀딩 비.브이. Ac led들을 위한 실리콘 기판들 상에서의 알루미늄 갈륨 나이트라이드/갈륨 나이트라이드 디바이스들을 갖는 갈륨 나이트라이드 led들의 집적
JP5931653B2 (ja) * 2012-09-03 2016-06-08 シャープ株式会社 光電変換素子
CN102867893A (zh) * 2012-09-17 2013-01-09 聚灿光电科技(苏州)有限公司 一种提高GaN衬底使用效率的方法
JP6426976B2 (ja) * 2014-10-24 2018-11-21 日本特殊陶業株式会社 粒子検知システム
CN108039397B (zh) * 2017-11-27 2019-11-12 厦门市三安光电科技有限公司 一种氮化物半导体发光二极管
US11011377B2 (en) 2019-04-04 2021-05-18 International Business Machines Corporation Method for fabricating a semiconductor device
US11164844B2 (en) * 2019-09-12 2021-11-02 Taiwan Semiconductor Manufacturing Company, Ltd. Double etch stop layer to protect semiconductor device layers from wet chemical etch

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1039247C (zh) * 1994-09-10 1998-07-22 冶金工业部钢铁研究总院 一种涂有二硼化钛涂层的坩埚及其制造方法
DE69637304T2 (de) * 1995-03-17 2008-08-07 Toyoda Gosei Co., Ltd. Lichtemittierende Halbleitervorrichtung bestehend aus einer III-V Nitridverbindung
JPH08293473A (ja) 1995-04-25 1996-11-05 Sumitomo Electric Ind Ltd エピタキシャルウェハおよび化合物半導体発光素子ならびにそれらの製造方法
JP2839077B2 (ja) 1995-06-15 1998-12-16 日本電気株式会社 窒化ガリウム系化合物半導体発光素子
JP3771952B2 (ja) * 1995-06-28 2006-05-10 ソニー株式会社 単結晶iii−v族化合物半導体層の成長方法、発光素子の製造方法およびトランジスタの製造方法
JP2006344992A (ja) * 1995-11-27 2006-12-21 Sumitomo Chemical Co Ltd 3−5族化合物半導体
JPH10173220A (ja) * 1996-12-06 1998-06-26 Rohm Co Ltd 半導体発光素子の製法
US6266355B1 (en) 1997-09-12 2001-07-24 Sdl, Inc. Group III-V nitride laser devices with cladding layers to suppress defects such as cracking
JP4783483B2 (ja) * 1997-11-07 2011-09-28 フィリップス ルミレッズ ライティング カンパニー リミテッド ライアビリティ カンパニー 半導体基板および半導体基板の形成方法
JPH11243251A (ja) 1998-02-26 1999-09-07 Toshiba Corp 半導体レーザ装置
SG75844A1 (en) 1998-05-13 2000-10-24 Univ Singapore Crystal growth method for group-iii nitride and related compound semiconductors
TW398084B (en) 1998-06-05 2000-07-11 Hewlett Packard Co Multilayered indium-containing nitride buffer layer for nitride epitaxy
US6265289B1 (en) 1998-06-10 2001-07-24 North Carolina State University Methods of fabricating gallium nitride semiconductor layers by lateral growth from sidewalls into trenches, and gallium nitride semiconductor structures fabricated thereby
US6233265B1 (en) 1998-07-31 2001-05-15 Xerox Corporation AlGaInN LED and laser diode structures for pure blue or green emission
JP3505405B2 (ja) 1998-10-22 2004-03-08 三洋電機株式会社 半導体素子及びその製造方法
US6319313B1 (en) * 1999-03-15 2001-11-20 Memc Electronic Materials, Inc. Barium doping of molten silicon for use in crystal growing process
JP2001093834A (ja) * 1999-09-20 2001-04-06 Sanyo Electric Co Ltd 半導体素子および半導体ウエハならびにその製造方法
WO2001033643A1 (en) 1999-10-29 2001-05-10 Ohio University BAND GAP ENGINEERING OF AMORPHOUS Al-Ga-N ALLOYS
JP2001160627A (ja) 1999-11-30 2001-06-12 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体発光素子
US6599362B2 (en) 2001-01-03 2003-07-29 Sandia Corporation Cantilever epitaxial process
US6800876B2 (en) * 2001-01-16 2004-10-05 Cree, Inc. Group III nitride LED with undoped cladding layer (5000.137)
US6576932B2 (en) * 2001-03-01 2003-06-10 Lumileds Lighting, U.S., Llc Increasing the brightness of III-nitride light emitting devices
US6635904B2 (en) 2001-03-29 2003-10-21 Lumileds Lighting U.S., Llc Indium gallium nitride smoothing structures for III-nitride devices
US6489636B1 (en) 2001-03-29 2002-12-03 Lumileds Lighting U.S., Llc Indium gallium nitride smoothing structures for III-nitride devices
US6630692B2 (en) 2001-05-29 2003-10-07 Lumileds Lighting U.S., Llc III-Nitride light emitting devices with low driving voltage
US7692182B2 (en) * 2001-05-30 2010-04-06 Cree, Inc. Group III nitride based quantum well light emitting device structures with an indium containing capping structure
GB2378039B (en) 2001-07-27 2003-09-17 Juses Chao AlInGaN LED Device
JP3969989B2 (ja) * 2001-10-10 2007-09-05 三洋電機株式会社 窒化物系半導体素子およびその製造方法
US6833564B2 (en) 2001-11-02 2004-12-21 Lumileds Lighting U.S., Llc Indium gallium nitride separate confinement heterostructure light emitting devices
JP2003289175A (ja) * 2002-01-28 2003-10-10 Sharp Corp 半導体レーザ素子
JP2004247563A (ja) * 2003-02-14 2004-09-02 Sony Corp 半導体素子
US6989555B2 (en) * 2004-04-21 2006-01-24 Lumileds Lighting U.S., Llc Strain-controlled III-nitride light emitting device
JP4206086B2 (ja) * 2004-08-03 2009-01-07 住友電気工業株式会社 窒化物半導体発光素子および窒化物半導体発光素子を製造する方法
RU2262155C1 (ru) * 2004-09-14 2005-10-10 Закрытое акционерное общество "Нитридные источники света" Полупроводниковый элемент, излучающий свет в ультрафиолетовом диапазоне
JP5201563B2 (ja) * 2004-11-16 2013-06-05 豊田合成株式会社 Iii族窒化物半導体発光素子
RU2277736C1 (ru) * 2005-02-02 2006-06-10 Закрытое акционерное общество "Нитридные источники света" Полупроводниковый элемент, излучающий свет в синей области видимого спектра
JP4468210B2 (ja) * 2005-02-28 2010-05-26 株式会社東芝 Lsiパッケージ用インターフェイスモジュール及びlsi実装体
US20070069225A1 (en) * 2005-09-27 2007-03-29 Lumileds Lighting U.S., Llc III-V light emitting device
JP4922233B2 (ja) 2008-04-30 2012-04-25 ジャパンスーパークォーツ株式会社 石英ガラスルツボ

Also Published As

Publication number Publication date
CN101636850A (zh) 2010-01-27
WO2008078302A3 (en) 2008-10-23
US20080149961A1 (en) 2008-06-26
CN102544286A (zh) 2012-07-04
TWI427819B (zh) 2014-02-21
US7547908B2 (en) 2009-06-16
WO2008078302A2 (en) 2008-07-03
TW200847483A (en) 2008-12-01
CN102544286B (zh) 2015-01-07
RU2454753C2 (ru) 2012-06-27
JP2013080942A (ja) 2013-05-02
EP2097934A2 (en) 2009-09-09
RU2009128185A (ru) 2011-01-27
BRPI0720935B1 (pt) 2019-12-31
JP5455643B2 (ja) 2014-03-26
KR101584465B1 (ko) 2016-01-13
CN102569576A (zh) 2012-07-11
KR101505824B1 (ko) 2015-03-25
JP5723862B2 (ja) 2015-05-27
KR20090096531A (ko) 2009-09-10
BRPI0720935A2 (pt) 2014-03-11
CN102569576B (zh) 2015-06-03
JP2010514194A (ja) 2010-04-30
EP2097934B1 (en) 2018-09-19
CN101636850B (zh) 2013-05-01

Similar Documents

Publication Publication Date Title
KR101584465B1 (ko) 변형을 줄이기 위해 템플릿 상에 성장된 3족-질화물 발광 장치
JP5311416B2 (ja) 歪み低減のためにテンプレート上で成長させたiii−窒化物発光デバイス
JP5754886B2 (ja) 歪み低減のためにテンプレート上で成長させたiii−窒化物発光デバイス
US6156581A (en) GaN-based devices using (Ga, AL, In)N base layers
US6533874B1 (en) GaN-based devices using thick (Ga, Al, In)N base layers
US8106403B2 (en) III-nitride light emitting device incorporation boron
US20090032828A1 (en) III-Nitride Device Grown on Edge-Dislocation Template

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
GRNT Written decision to grant