KR20120116516A - 작업 지원 로봇 시스템 - Google Patents

작업 지원 로봇 시스템 Download PDF

Info

Publication number
KR20120116516A
KR20120116516A KR1020107020531A KR20107020531A KR20120116516A KR 20120116516 A KR20120116516 A KR 20120116516A KR 1020107020531 A KR1020107020531 A KR 1020107020531A KR 20107020531 A KR20107020531 A KR 20107020531A KR 20120116516 A KR20120116516 A KR 20120116516A
Authority
KR
South Korea
Prior art keywords
work
unit
worker
supply
time
Prior art date
Application number
KR1020107020531A
Other languages
English (en)
Other versions
KR101686517B1 (ko
Inventor
가즈히로 고스게
유스케 스가하라
준 기누가와
유타 가와아이
아키요시 이토
요이치 마쓰이
신지 가와베
Original Assignee
도요타지도샤 히가시니혼 가부시키가이샤
고쿠리츠다이가쿠호진 도호쿠다이가쿠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도요타지도샤 히가시니혼 가부시키가이샤, 고쿠리츠다이가쿠호진 도호쿠다이가쿠 filed Critical 도요타지도샤 히가시니혼 가부시키가이샤
Publication of KR20120116516A publication Critical patent/KR20120116516A/ko
Application granted granted Critical
Publication of KR101686517B1 publication Critical patent/KR101686517B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P21/00Machines for assembling a multiplicity of different parts to compose units, with or without preceding or subsequent working of such parts, e.g. with programme control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40202Human robot coexistence
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40421Motion planning for manipulator handling sheet metal profiles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40519Motion, trajectory planning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Abstract

본 발명의 작업 지원 로봇 시스템은, 로봇 암(11)과, 작업자의 위치를 계측하는 계측부(12)와, 작업 수순에 관한 데이터를 참조하면서 계측부(12)로부터 입력된 데이터에 따라 작업 진행 상황을 추정하고, 작업 공정이 다음 공정으로 천이(遷移)한 것으로 판단했을 때 그 다음 공정에 있어서 필요로 하는 것을 선택하는 작업 진행 상황 추정부(13)와, 작업 진행 상황 추정부(13)가 추정한 작업 진행 상황과 선택한 것에 따라 로봇 암(11)의 궤도를 계획하여 로봇 암(11)을 제어하는 암 운동 계획부(14)를 포함한다. 작업자의 작업에 따라 필요한 공구나 부품 등의 물품을 작업자에게 건네는 것이 가능하다.

Description

작업 지원 로봇 시스템{WORKING SUPPORT ROBOT SYSTEM}
본 발명은, 작업의 진척 상황에 따라, 예를 들면, 필요로 하는 부품이나 공구류 등을 작업자에게 건네는 작업 지원 로봇 시스템에 관한 것이다.
자동차의 조립 라인에서는 아직도 많은 작업이 인위적으로 행해지고 있다. 그것은, 많은 부품이 로봇으로 핸들링하는 것이 어려운 경우나 공정의 빈번한 교체에 유연하게 대응할 필요가 있는 경우 등 다양한 이유에 의한다.
작은 부품의 조립 공정에서는, 차체를 반송(搬送)하는 이동 수단에 대하여 왜건 대차(臺車)(wagan carriage)가 구비되어 있다. 왜건 대차는 차체의 반송에 동기하여 이동하고, 왜건 대차의 작업대에 비교적 작은 부품이나 공구가 탑재되어 있다. 작업자는 다음과 같은 일련의 작업을 행한다. 제1 작업으로서, 작업자는, 부품을 작업대로부터 인출하고, 그 부품의 장착 위치까지 이동하여 차체에 그 부품을 장착하고, 왜건 대차의 위치까지 되돌아온다. 제2 작업으로서, 작업자는, 다른 부품과 공구를 작업대로부터 인출하고, 다른 부품의 장착 위치까지 이동하여 차체에 다른 부품을 장착 공구에 의해 체결하여 왜건 대차의 위치까지 되돌아온다. 제3 작업으로서, 작업자는, 다른 공구를 인출하고, 정식 조이기를 행하는 곳까지 이동하여 정식 조이기 작업을 행하고, 왜건 대차의 위치까지 되돌아온다. 제4 작업으로서, 작업자는, 왜건 대차를 초기 위치가 되는 원 위치까지 수동으로 되돌린다. 이 일련의 작업을 행하는 조립 라인에서는, 부품 선반을 설치하지 않고, 작업자의 보행수를 저감하고 있다. 자동차의 조립 라인의 다른 예로서는, 작업자가 배치되는 대신에 로봇이 소정의 위치에 설정되어 있고, 조립 라인 작업의 자동화가 도모되어 있다.
사람과 공존할 수 있는 로봇에 관한 연구가 개발되어 있다(예를 들면, 특허 문헌 1 ~ 특허 문헌 5). 특허 문헌 1에 개시되어 있는 로봇 암의 제어 기술에서는, 다관절형의 로봇 암이라도 안전하게 사람과 로봇 암이 접촉할 수 있어, 사람의 동작에 따른 최적의 접촉 동작이 가능하며, 사람에 대한 접촉 손상이 발생하지 않는다. 특허 문헌 2에 개시되어 있는 기술에서는, 로봇이 소정의 작업을 완수하는 데 최저 한도 필요한 출력을 얻고, 그 한도를 초과하는 출력을 제어함으로써, 로봇과 사람과의 공존, 협조를 도모하고 있다. 특허 문헌 3에 개시되어 있는 기술에서는, 로봇의 가동 범위와 작업자의 침입 금지 영역을 임의의 영역으로 확실하게 또한 간편하게 설정하고, 또한 가동 범위와 침입 금지 영역을 수시로 변경할 수 있다. 특허 문헌 4에 개시되어 있는 기술에서는, 인간과 공동 작업하는 로봇과의 공동 작업 중에 휴먼 에러, 즉 사람의 실수가 발생하여 돌입(突入)해서는 안되는 영역에 돌입하는 사태의 발생을 방지하면서, 뜻하지 않게 로봇의 이동을 규제하지 않도록 하고 있다. 특허 문헌 5에 개시되어 있는 기술에서는, 동작 중에 사람과 접촉할 가능성이 있는 관절부를 가지는 인간 공존 로봇에 있어서, 접촉 센서를 설치하고, 제어 수단이 그 접촉 센서로부터 검지 신호를 받았을 때는 인간에게 위해(危害)가 가해지지 않도록 구동부를 제어하여 위험 회피 동작을 시키고 있다.
이와 같은 기술 상황에 있어서, 특허 문헌 6에 개시되어 있는 이동 로봇 시스템에서는, 무인 반송차에 로봇 암을 탑재하고, 무인 반송차가 설비 사이를 이동하여 로봇 암에 의해 작업을 행하게 한다.
일본공개특허 제2008-302496호 공보 일본공개특허 제2008-264899호 공보 일본공개특허 제2007-283450호 공보 일본공개특허 제2004-017256호 공보 일본공개특허 제2002-066978호 공보 일본공개특허 제2001-341086호 공보
P.J.Clark et al, Ecology, Vol.35, No.4, pp. 445-453, Oct.1954
그러나, 왜건 대차가 차체의 이동과 동기하여 이동하고 있어도, 작업자의 작업이 지연된 경우에 왜건 대차가 대기 상태로 되는 한편, 작업자의 작업이 빨리 진행되는 경우에는 작업자가 대기 상태로 된다. 이와 같이, 왜건 대차가 차체의 이동과 연동하고 있어도 라인 전체로서의 효율이 악화된다. 또한, 작업자는, 왜건 대차로부터의 부품이나 공구의 인출하면, 이것을 행하기 위해 왜건 대차와 작업 개소와의 사이를 왕래하는 이동을 실시하지 않으면 안되므로, 작업 효율이 나쁘다.
한편, 특허 문헌 6에서는, 이동 로봇을 복수 개의 설비를 따라 설치된 주행로를 이동시키고, 설비 전방의 소정의 작업 위치에 정지시킨 상태로 로봇 암에 의해 공작물의 받아건넴이나 조립 등의 각종 작업을 행하게 하도록 되어 있다고 설명되어 있는 것에 지나지 않는다.
그래서, 본 발명에서는, 작업자의 작업에 따라 필요로 하는 물품, 예를 들면, 상기 작업에 있어 필요로 하는 부품이나 공구 등을 그 작업을 행하려는 개소에 있어서 작업자에게 정확하고 또한 확실하게 건넬 수 있는 작업 지원 로봇 시스템을 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위해, 본 발명에 있어서의 작업 지원 로봇 시스템의 제1 구성은, 작업자에게 공구, 부품 중 어느 하나 또는 양쪽을 반송하는 반송 기구와, 작업자의 위치를 계측하는 계측부와, 작업 수순에 관한 데이터를 참조하면서 계측부로부터 입력된 데이터에 기초하여 작업 진행 상황을 추정하고, 작업 공정이 다음 공정으로 천이(遷移)한 것으로 판단했을 때 그 다음 공정에 있어서 필요로 하는 것을 선택하는 작업 진행 상황 추정부와, 작업 진행 상황 추정부가 추정한 작업 진행 상황과 선택한 것에 따라 반송 기구의 운동을 계획하여 반송 기구를 제어하는 운동 계획부를 포함한다.
상기 목적을 달성하기 위해, 본 발명에 있어서의 작업 지원 로봇 시스템의 제2 구성은, 로봇 암과, 작업자의 위치를 계측하는 계측부와, 작업 수순에 관한 데이터를 참조하면서 계측부로부터 입력된 데이터에 따라 작업 진행 상황을 추정하고, 작업 공정이 다음 공정으로 천이한 것으로 판단했을 때 그 다음 공정에 있어서 필요로 하는 것을 선택하는 작업 진행 상황 추정부와, 작업 진행 상황 추정부가 추정한 작업 진행 상황과 선택한 것에 따라 로봇 암의 궤도를 계획하여 로봇 암을 제어하는 암 운동 계획부를 포함한다.
상기 목적을 달성하기 위해, 본 발명에 있어서의 작업 지원 로봇 시스템의 제3 구성은, 센서를 가지는 계측부와, 계측부로부터 입력된 데이터로부터 작업 상황을 특정하는 작업 상황 특정부와, 시간에 대한 작업의 실행율에 관한 확률 분포를 계산하여 보유 가능하게 하고 있고 작업 상황 특정부로부터 입력된 작업자의 위치에 따라, 시간에 대한 작업의 실행율을 구하는 계산 처리 겸 데이터 베이스부와, 계산 처리 겸 데이터 베이스부에서 구한 상기 시간에 대한 작업의 실행율에 기초하여 공급 타이밍을 결정하는 공급 타이밍 결정부를 포함한다.
또한, 본 발명에 있어서의 작업 지원 로봇 시스템의 제4 구성은, 센서를 가지는 계측부와, 계측부로부터 입력된 데이터로부터 작업자의 위치를 특정하는 작업자 위치 특정부와, 위치에 대한 작업자의 존재율에 관한 확률 분포를 계산하여 보유 가능하게 하고 있고 작업자 위치 특정부로부터 입력된 작업자의 위치에 따라, 위치에 대한 작업자의 존재율을 구하는 계산 처리 겸 데이터 베이스부와, 계산 처리 겸 데이터 베이스부에서 구한 위치에 대한 작업자의 존재율에 기초하여 공급 위치를 결정하는 공급 위치 결정부와, 공급 위치 결정부에서 결정된 공급 위치에 따라 반송 기구의 궤도 계산을 행하는 공급 궤도 계산부를 포함한다.
본 발명의 제1 구성에 의하면, 작업 진행 상황 추정부는, 계측부로부터 입력된 데이터에 따라 작업 수순에 관한 데이터를 참조하면서 작업 진행 상황을 추정하고, 작업 진행 상황 추정부는 작업 공정이 다음 공정으로 천이한 것으로 판단한 경우에는 그 다음 공정에 있어서 필요로 하는 것을 선택하는 한편, 운동 계획부는, 작업 진행 상황 추정부가 추정한 작업 진행 상황과 선택한 것에 따라 반송 기구의 운동을 계획하여 반송 기구를 제어한다. 즉, 작업의 진행 상황에 따라 반송 기구가 제어되고, 작업에 필요한 공구류나 부품 등을 반송 기구에 운반시킬 수 있다. 따라서, 작업 효율의 향상, 작업 수순이 잘못되는 것을 방지할 수 있는 등 우수한 효과를 얻을 수 있다.
본 발명의 제2 구성에 의하면, 작업 진행 상황 추정부는, 계측부로부터 입력된 데이터에 따라 작업 수순에 관한 데이터를 참조하면서 작업 진행 상황을 추정하고, 작업 진행 상황 추정부는 작업 공정이 다음 공정으로 천이한 것으로 판단한 경우에는 그 다음 공정에 있어서 필요로 하는 것을 선택하는 한편, 암 운동 계획부는, 작업 진행 상황 추정부가 추정한 작업 진행 상황과 선택한 것에 따라 로봇 암의 궤도를 계획하여 로봇 암을 제어한다. 즉, 작업의 진행 상황에 따라 로봇 암이 제어되고, 작업에 필요한 공구류나 부품 등을 로봇 암에 운반시킬 수 있다. 따라서, 작업 효율의 향상, 작업 수순이 잘못되는 것을 방지할 수 있는 등 우수한 효과를 얻을 수 있다.
본 발명의 제3 구성, 제4 구성에 의하면, 계측부에 있어서의 센서로부터 취득한 작업자의 위치와 그 때의 작업 내용과의 관계를 계산 처리 겸 데이터 베이스부에 의해 통계적으로 기술(記述)하여 기억 갱신하고, 계산 처리 겸 데이터 베이스부로부터의 출력에 기초하여 작업 지원 동작을 생성한다. 따라서, 작업자의 위치의 시계열 데이터를 통계적으로 해석함으로써 작업에 실제로 걸리고 있는 시간, 작업자의 이동 경로, 작업자의 습관 등을 파악하여 작업 상황을 통계적으로 처리하고, 작업자의 동작에 맞추어 원활하게 부품이나 공구를 공급할 수 있다. 이로써, 작업자는, 종래와 같이, 작업 위치로부터 부품을 가지러 왜건으로 되돌아와 부품을 선택하고, 또한 작업 위치로 되돌아오는 반복 동작을 하지 않아도 된다. 본 발명은, 작업 효율의 향상, 작업 수순이 잘못되는 것을 방지할 수 있는 등 우수한 효과를 얻을 수 있다.
도 1은 본 발명의 제1 실시예에 관한 작업 지원 로봇 시스템의 블록 구성도이다.
도 2는 도 1에 나타낸 작업 지원 로봇 시스템의 일례를 나타낸 블록 구성도이다.
도 3은 본 발명의 제1 및 제2 실시예에 관한 작업 지원 로봇 시스템이 적용되는 장면을 모식적으로 나타낸 도면이다.
도 4는 도 3에 나타낸 계측부에 있어서의 센서의 설치 상황을 나타낸 도면이다.
도 5는 작업 스페이스의 일례를 모식적으로 나타낸 도면이다.
도 6은 작업 진행 상황 추정부에 있어서의 작업자 위치 특정 기능을 설명하기 위한 모식도이다.
도 7은 본 발명의 제2 실시예에 관한 작업 지원 로봇 시스템의 블록 구성도이다.
도 8은 도 7에 나타낸 작업 지원 로봇 시스템의 변형예의 블록 구성도이다.
도 9는 제1 계산 처리부에 저장되어 있는 확률 분포의 산출을 설명하는 도면이다.
도 10은 공급 위치 결정부 및 공급 위치 조정부에 있어서의 기능을 설명하는 도면이다.
도 11은 공급 타이밍 결정부 및 공급 시각 조정부의 기능을 설명하는 도면이다.
도 12는 위치에 대한 작업의 실행율에 대하여 모식적으로 나타낸 것으로서, (A) ~ (I)는 각 작업의 위치에 대한 실행율을 나타낸 도면이다.
도 13은 도 12에 나타낸 위치에 대한 작업의 실행율에 대하여 모식적으로 나타낸 것으로서, 위치에 대한 실행율이 가장 높은 작업을 차량으로부터의 좌표계 Xc, Yc로 나타낸 도면이다.
이하, 도면을 참조하면서, 작업 지원 로봇 시스템이 자동차의 조립 라인에 배치되어 있는 경우를 전제로, 본 발명의 실시예를 몇가지 상세하게 설명한다. 반송 기구, 예를 들면, 로봇 암 또는 이에 준하는 기구를 제어하여 작업자에 의한 작업을 지원하는 각종의 경우에도, 본 발명의 요지를 변경시키지 않는 범위에서 적용할 수 있다.
〔제1 실시예〕
도 1은 본 발명의 제1 실시예에 관한 작업 지원 로봇 시스템의 블록 구성도이다. 도 2는 도 1에 나타낸 시스템의 일례를 나타낸 블록 구성도이다. 도 3은 도 1 및 도 2에 나타낸 작업 지원 로봇 시스템이 자동차의 조립 라인에 배치되어 있는 장면을 모식적으로 나타낸 도면이다. 각 도면에 있어서 동일 또는 실질적으로 동일한 것에 대하여는 동일한 부호를 부여한다.
〔작업 지원 로봇 시스템의 전체적인 구성〕
본 발명의 제1 실시예에 관한 작업 지원 로봇 시스템(10A)은, 도 1에 나타낸 바와 같이, 부품이나 공구 등의 물품을 반송하는 반송 기구(11a)와, 작업자의 위치를 계측하는 계측부(12)와, 작업 진행 상황을 추정하여 부품이나 공구 등의 물품을 선택하는 작업 진행 상황 추정부(13)와, 반송 기구(11a)를 제어하는 운동 계획부(14A)를 포함하고 있다. 작업 진행 상황 추정부(13)는, 작업 수순에 관한 데이터를 참조하면서 계측부(12)로부터 입력된 데이터에 기초하여 작업 진행 상황을 추정하고, 작업 공정이 다음 공정으로 천이한 것으로 판단했을 때 그 다음 공정에 있어서 필요로 하는 부품이나 공구 등의 물품을 선택한다. 상기 운동 계획부(14A)는, 작업 진행 상황 추정부(13)가 추정한 작업 진행 상황과 선택한 물품에 따라 반송 기구(11a)의 운동을 계획하여 반송 기구(11a)를 제어한다.
도 2에 나타낸 작업 지원 로봇 시스템(10)은, 반송 기구(11a)로서 1개 또는 복수 개의 로봇 암(11)을 구비하고, 운동 계획부(14A)로서 암 운동 계획부(14)를 구비한다. 암 운동 계획부(14)는, 작업 진행 상황 추정부(13)가 추정한 작업 진행 상황과 선택한 물품에 따라 로봇 암(11)의 궤도를 계획하여 로봇 암(11)을 제어하는 수단이다.
도 2에 나타낸 작업 지원 로봇 시스템(10)에는, 1개 또는 복수 개의 로봇 암(11)과, 작업자의 위치를 계측하는 계측부(12)와, 작업 수순에 관한 데이터를 참조하면서 계측부(12)로부터 입력된 데이터에 기초하여 작업 진행 상황을 추정하고, 작업 공정이 다음 공정으로 천이한 것으로 판단했을 때 그 다음 공정에 있어서 필요로 하는 물품으로서의 부품이나 공구 등을 선택하는 작업 진행 상황 추정부(13)와, 작업 진행 상황 추정부(13)가 추정한 작업 진행 상황과 선택한 것에 따라 로봇 암(11)의 궤도를 계획하여 로봇 암(11)을 제어하는 암 운동 계획부(14)를 포함하고 있다. 이하의 설명에서는, 특히 도 2에 나타낸 작업 지원 로봇 시스템(10)을 전제로 한다.
작업 지원 로봇 시스템(10)은, 도 2에 나타낸 바와 같이, 부품이나 툴을 공급하는 보급부(15)와, 작업자로부터 로봇 암(11)에 대한 지령의 입력을 받는 입력부(16)와, 로봇 암(11)이 작업자에게 접촉하지 않고 로봇 암(11)이 차체나 설비와 충돌하지 않도록 작업 안전을 확보하기 위한 안전 보장부(17)와, 입력부(16)로부터의 입력을 받아 로봇 암(11)의 동작을 계획하는 상위 동작 계획부(18)와, 안전 보장부(17)로부터의 입력을 받아 로봇 암(11)을 긴급 제어하는 긴급 동작 제어부(19)와, 로봇 암(11)에 있어서의 임피던스를 제어하는 임피던스 제어부(20)를 포함한다. 여기서, 보급부(15)는, 부품이나 툴을 로봇 암(11)의 트레이(11G)에 공급하는 것이므로, 공급부라고 해도 된다.
도 2에 나타낸 작업 지원 로봇 시스템(10)에서는, 작업 진행 상황 추정부(13), 상위 동작 계획부(18), 암 운동 계획부(14), 임피던스 제어부(20) 및 긴급 동작 제어부(19)가 다음에 설명하는 바와 같이 유기적으로 관련되는 것에 의해 통합 제어부(21)가 구성되어 있다.
작업 진행 상황 추정부(13) 및 상위 동작 계획부(18)로부터의 각 출력 정보가 암 운동 계획부(14)에 입력되고, 암 운동 계획부(14)는 이들 출력 정보에 기초하여 로봇 암(11)의 궤도를 계획한다. 암 운동 계획부(14), 임피던스 제어부(20) 및 긴급 동작 제어부(19)로부터의 각 출력 정보가 로봇 암(11)에 입력되어, 로봇 암(11)이 제어된다.
도 2에 나타낸 작업 지원 로봇 시스템(10)에는, 작업 수순 데이터 축적부(22)가 포함되고, 이 작업 수순 데이터 축적부(22)에는, 작업자의 작업 수순에 따라 각 작업 공정의 내용 외에, 후술하는 바와 같은 작업 수순 데이터가 축적되어 있다. 이 작업 수순 데이터는, 작업 진행 상황 추정부(13) 및 암 운동 계획부(14)에 의해 참조된다.
이하의 설명에 있어서는, 작업 수순 데이터 축적부(22)가 포함되어 있는 경우를 설명하지만, 작업 수순 데이터가 작업 지원 로봇 시스템(10)에 외부로부터 구내 LAN 등의 네트워크를 통하여 필요에 따라 통합 제어부(21)에 데이터 분배되는 경우라도 마찬가지이다.
작업 지원 로봇 시스템(10)이 자동차의 조립 라인에 배치되는 경우에 대하여 설명한다. 도 3은, 작업 지원 로봇 시스템(10)이 적용되는 장면을 모식적으로 나타낸 도면이다. 자동차의 조립 라인에 있어서는, 차체(1)가, 예를 들면, 도시하지 않은 한쌍의 L자형의 암으로 지지되고, 그 차체(1)가 이동하면서 조립된다. 도 3에서는 캐비닛(30)은 1개 밖에 도시되어 있지 않지만, 차체(1)가 이동하는 라인을 따라 캐비닛(30)이 간격을 두고 배치되어 있다. 캐비닛(30)에는, 작업자(2)가 필요로 하는 물품, 예를 들면, 공구나 부품을 탑재 가능한 테이블(31)이 구비되고, 테이블(31)의 상부에는 필요로 하는 부품이 배출되는 배출구(32)가 설치되어 있다. 테이블(31)의 일단부에는 로봇 암(11)이 구동 가능하게 장착되어 있다. 여기서, 도 3에서는, 1대의 로봇 암(11)의 경우를 나타내고 있지만, 공정에 따라 복수 개의 로봇 암, 일반적으로는 암을 구비해도 된다.
복수 개의 관절이 링크끼리를 구동 가능하게 결합함으로써 로봇 암(11)이 구성되어 있다. 로봇 암(11)은 예를 들면 2자유도의 수평 다관절형의 로봇 암으로서, 예를 들면, 도 3에 나타낸 바와 같이, 제1 관절부(11A)가 테이블(31)과 제1 암(11D)을 연결하고, 제2 관절부(11B)가 제1 암(11D)과 제2 암(11E)을 연결하고, 제3 관절부(11C)가 제2 암(11E)과 공구 장착용 부속품(11F) 및 트레이(11G)를 연결하고 있다. 제1 내지 제3 관절부(11A, 11B, 11C)는, 모두 연직(鉛直) 방향을 따라 평행하게 배치되는 회동축(回動軸)을 가지고 있다. 캐비닛(30)에 있어서 로봇 암(11)이 구동 가능하게 장착되어 있는 측과 반대측에는, 복수 개의 공구 설치용 박스(33)가 설치되어 있다. 각 공구 설치용 박스(33)에는 드라이버, 토크 렌치 등의 수동 또는 전동의 각종 공구(34)가 위로부터 삽입되고, 로봇 암(11) 또는 작업자에 의해 인출하게 가능하게 수용되어 있다.
캐비닛(30)에는 로봇 암(11)에 있어서의 구동용 전원이나 구동부 외에, 비스나 너트 등 비교적 작은 각종 부품(35)이 수용되고, 배출구(32)로부터 테이블(31)을 향해 배출된다. 로봇 암(11)의 각 관절부(11A, 11B, 11C)를 구동하여 트레이(11G)를 테이블(31) 상으로 이동시키면, 트레이(11G)에 부품(35)을 탑재할 수 있고, 그 후 로봇 암(11)의 각 관절부(11A, 11B, 11C)를 구동시키면 부품(35)을 작업자의 근처까지 반송할 수 있고, 각종 공구(34)를 인출할 수도 있다.
〔작업 지원 로봇 시스템의 각 부의 구성〕
도 1 및 도 2에 나타낸 작업 지원 로봇 시스템(10, 10A)의 구성에 대하여 상세하게 설명한다. 반송 기구(11a)로서의 로봇 암(11)은, 암이 관절부에 의해 연결되어 구성되어 있다. 도 3에 나타낸 바와 같은 다관절형 로봇 암에 의해 동일 수평면에서만 구동되는 것이어도, 수평 및 수직의 어느 쪽으로 구동되는 것이어도 된다. 또한, 공정에 따라서는, 도 1에 나타낸 반송 기구(11a)는, 도 2에 나타낸 로봇 암(11)뿐아니라, 관절을 복수 개 가지는 것이 아니라 1자유도의 직동(直動) 테이블과 같이, 공구, 부품 중 어느 하나 또는 양쪽을 반송하는 것이면 되고, 또한 그 자체가 이동하는 대차라도 공구, 부품 중 어느 하나 또는 양쪽을 반송하는 것이면 된다. 로봇 암(11)은, 도 3에 나타낸 바와 같이, 캐비닛(30)에 구동 가능하게 장착되어 있어도, 라인의 고정 설비에 장착되어 있어도, 대차와 같은 이동 가능한 것에 장착되어 있어도 된다.
보급부(15)는, 사이즈나 규격이 상이한 각종 볼트나 너트 등의 부품을 종류마다 분류하여 저장하고 있고, 외부로부터의 지령, 예를 들면, 암 운동 계획부(14)로부터의 지령에 따라 필요로 하는 부품을 소정의 배출구에 적시에 배출한다. 보급부(15)에는, 작업에 필요한 공구 등의 툴을 선택할 수 있도록 설치되어 있다.
계측부(12)는 IC 태그와 리시버를 바닥면 등에 장착하여 구성해도 되고, 바닥면에 감압 센서를 매립하여 직접 작업자의 위치를 취득할 수 있도록 구성해도 되지만, 계측부(12)는 1개 이상의 각종 센서에 의해 구성되어 있다. 센서의 종류로서는, 간편하게 하기 위해, 예를 들면, 레이저식 측역(測域) 센서나 CCD 카메라 등의 광학 센서가 사용된다. 레이저식 측역 센서는, 레이저광을 조사(照射)하고, 설치물이나 이동하고 있는 작업자나 차체 등, 각종 물체에 의해 반사된 레이저광을 검지한다. 이 레이저식 측역 센서는 LRF(Laser Range Finder)라고도 하고, 예를 들면, 도 3에 나타낸 캐비닛(30)에 장착되어 있어도, 그 이외의 라인의 설비에 장착되어 있어도 된다. 예를 들면, 2개의 센서는 연직 상하 방향으로 격리되어 설치된다. 도 4는, 계측부(12)에 있어서의 센서의 설치 상황을 나타낸 도면이다. 한쪽의 센서로서의 제1 센서(12A)는, 작업자의 허리의 위치를 검지하기 위해, 바닥면으로부터 작업자의 표준적인 허리 높이 부근에 설치된다. 다른 쪽의 센서로서의 제2 센서(12B)는, 작업자의 다리, 예를 들면, 무릎 관절이나 발꿈치의 위치 근방을 검지하기 위해, 바닥면으로부터 작업자의 표준적인 다리 높이 부근에 설치된다. 도 4에 있어서, X축 및 Z축은 바닥면에 고정되어 있는 고정 좌표계이다.
입력부(16)란, 작업자로부터 로봇 암(11)에 대한 지령의 입력을 받는 것이며, 마이크와 음성 인식 기능을 가지는 음성 교시부(敎示部)와, 조작 버튼 및/또는 조작 레버를 가지고 그 조작 상황을 검지하여 신호로 변환하는 무음성 교시부 중 어느 하나 또는 양쪽을 구비하고 있다.
안전 보장부(17)는, 로봇 암(11)이 그 외의 것, 예를 들면, 이동하고 있는 차체(1)나 작업자(2)나 설비와 충돌의 가능성이 커지면, 긴급 동작 제어부(19)에 신호를 입력한다.
통합 제어부(21)는, 계측부(12), 입력부(16) 및 안전 보장부(17)로부터의 입력을 받아, 로봇 암(11) 및 보급부(15)를 제어하는 것이다. 통합 제어부(21)는, 상세하게는, 작업 진행 상황 추정부(13), 상위 동작 계획부(18), 암 운동 계획부(14), 임피던스 제어부(20) 및 긴급 동작 제어부(19)를 가진다. 도 1에 나타낸 예에서는, 통합 제어부(21)는 작업 지원 로봇 시스템(10) 내의 작업 수순 데이터 축적부(22)에 접속되어 있지만, 작업 지원 로봇 시스템(10)이 도시하지 않은 컨트롤 센터에 접속되어 있고, 작업 라인을 통괄적으로 제어하는 컨트롤 센터로부터 통합 제어부(21)에, 작업 수순 데이터가 수시로 입력되도록 해도 된다.
〔통합 제어부의 각 부의 구성〕
통합 제어부(21)에 있어서의 각 부의 구성에 대하여 상세하게 설명한다.
작업 진행 상황 추정부(13)는, 계측부(12)로부터 센서의 출력 데이터가 입력되고, 작업자에 의한 작업의 진행 상황을 추정하는 것이다. 상세하게는, 작업 진행 상황 추정부(13)는, 작업자의 위치를 특정하는 기능과, 작업자의 위치로부터 작업자의 행동을 판별하는 기능을 가진다. 전자를 작업자 위치 특정 기능이라고 하고, 후자를 작업자 행동 판별 기능이라고 하기로 한다.
작업자 위치 특정 기능은, 센서의 출력 데이터를 클러스터링(clustering)하고, 작업자의 클러스터를 특정하여 작업자의 위치를 특정하는 기능이다. 센서의 출력 데이터, 즉 반사점의 집합을 클러스터링하고, 어떤 특징 공간 상의 점을 그 분포 상태에 따라 몇개의 그룹으로 분류한다. 클러스터링에는, NN(Nearest Neighbor)법, K-NN(K Nearest Neighbor Algorithm)법, K 평균(K Mean Algorithm)법 등의 주지의 기술을 이용한다(비특허 문헌 1). 센서로부터의 출력 데이터를 클러스터링하여도, 작업자에게서 반사된 레이저광을 검출한 데이터와, 작업자 이외의 것 예를 들면, 조립 라인 상에 설치되어 있는 것이나 차체(1) 등에서 반사된 레이저광을 검출한 데이터를 구별하는 것은 어렵다.
그래서, 예를 들면, 도 4를 참조하여 설명한 바와 같이, 작업자의 허리의 높이 근방과 작업자의 다리의 높이 근방에서, 연직 방향으로 상하로 이격된 제1 센서(12A)와 제2 센서(12B)가 배치되어 있다. 그리고, 제1 센서(12A)로부터의 출력 데이터를 클러스터링하여 작업자의 위치를 특정하기 위한 데이터를 구하고, 제2 센서(12B)로부터의 출력 데이터를 클러스터링하여 작업자의 위치를 특정하기 위한 데이터를 구한다. 제1 센서(12A)의 출력 데이터로부터 클러스터링에 의해 구한 결과를 「허리 클러스터」라고 하고, 제2 센서(12B)의 출력 데이터로부터 클러스터링에 의해 구한 결과를 「다리 클러스터」라고 하기로 한다. 작업자의 허리와 양 다리와의 위치 관계로부터 보면, 수평면에서 생각하면, 작업자를 나타내는 허리 클러스터의 주위에서 일정 거리 내에, 다리 클러스터가 2개 존재하게 된다. 그래서, 작업 진행 상황 추정부(13)는, 먼저, 계측부(12)로부터 입력된 데이터를 클러스터링한 결과에 따라 허리 클러스터의 중심으로부터 소정 반경 내에 2개의 다리 클러스터가 있는지의 여부로, 작업자에 관한 데이터로 판정한다. 설명의 편의상, 1개의 허리 클러스터와 2개의 다리 클러스터와의 조합을 작업자 클러스터라고 하기로 한다. 이와 같이, 작업 진행 상황 추정부(13)는 계측부(12)로부터 센서의 출력 데이터가 입력될 때마다, 또는 입력된 횟수에 따라 소정의 복수 개의 횟수만큼, 작업자에 관한 데이터, 즉 작업자 클러스터를 판정한다. 이와는 상이하게, 작업 진행 상황 추정부(13)는, 계측부(12)로부터의 출력 데이터에 기초하여 작업자 클러스터를 일단 특정한 후에는, 센서로부터 1주기(周期) 전의 작업자 클러스터와 현재 계측되어 있는 각 허리 클러스터와의 거리를 계산하고, 가장 거리가 짧은 허리 클러스터를 작업자 클러스터로 특정한다. 이후, 작업자 클러스터를 계속 갱신해도 된다. 이 경우, 작업 진행 상황 추정부(13)는, 작업자가 크게 이동하지 않는 한, 작업자 클러스터를 허리 클러스터만으로부터 특정한다. 작업 진행 상황 추정부(13)는, 이상 설명한 수순에 따라 작업자 클러스터를 특정한다. 또한, 작업자 클러스터에 포함되는 모든 데이터에 기초하여, 작업자의 위치를 나타내는 대표가 되는 점을 「작업자 대표점」으로서 정하고, 작업자 위치 정보로서 행동 판별에 사용한다. 작업자 대표점은, 예를 들면, 작업자 클러스터에 포함되어 있는 모든 데이터(예를 들면, 좌표)에 대하여 평균화하여 산출된다.
도 5에 예시한 바와 같이, 작업 스페이스가 복수 개의 영역으로 구분되어 있다. 도 5에 나타낸 좌표계는, 조립 라인을 따라 이동하는 차체를 기준으로 Xc축, Yc축으로서 정해져 있다. Xc-Yc축에 대하여 영역 A, 영역 B, 영역 C, 영역 D, 영역 E의 합계 5개의 구분 영역으로 나누어져 있다. 구분 영역의 크기, 위치, 수는 공정에 맞추어 임의로 결정할 수 있다. 각 영역은, 각 작업에 따라 행해질 작업 영역이 1대 1로 대응하여 정해져 있다. 도 6은 작업 진행 상황 추정부(13)에 있어서의 작업자 위치 특정 기능을 설명하기 위한 모식도이다. 도 6으로부터, Xc-Yc 평면 상에서, 허리 클러스터가 구해지고, 그 중심에 작업 대표점이 정해져, 작업 대표점의 Xc-Yc 평면 좌표에 있어서 영역 A에서 작업자가 작업하고 있는 것을 알 수 있다.
작업 진행 상황 추정부(13)에 있어서의 다른 쪽의 기능, 즉 작업자 행동 판별 기능이란, 작업자의 위치로부터 작업자의 행동을 판별하는 기능이며, 전술한 작업자 위치 특정 기능에 의해 얻어지는 작업자 대표점과 사전에 정해져 있는 작업 수순 데이터에 따라 작업자의 행동을 판별하는 기능이다. 이하, 작업자 행동 판별 기능에 대하여 상세하게 설명한다. 어떤 작업자가 작업하는 공정에 기초하여, 작업 수순이 정해져 있다. 작업 수순 데이터에는, 적어도 작업 번호와 작업 스페이스가 필수 요소로서, 바람직하게는 작업 번호와 작업 스페이스와 작업 시간이 필수 요소로서 포함되어 있다. 작업 스페이스는, 작업자가 작업해야 할 공간이 복수 개의 영역으로 구분되어 있고, 어느 영역이 해당 작업의 영역인지를 나타내고 있다. 그리고, 각 구분된 영역을, 편의상, 구분 영역이라고 하기로 한다.
도 5는, 작업 스페이스의 일례를 모식적으로 나타낸 도면이다. 도 5에 나타낸 예에서는 조립 라인을 따라 이동하는 차체를 기준으로 좌표계가 정해져 있고, 도 5에서는 Xc축, Yc축으로서 나타내고 있다. Xc-Yc축에 대하여 영역 A, 영역 B, 영역 C, 영역 D, 영역 E의 합계 5개의 구분 영역으로 나누어져 있다. 각 영역은, 각 작업에 따라 행해질 때 작업 영역이 1대 1로 대응하여 정해져 있다. 작업 번호 i에 따라 작업 스페이스 A(i)가 변경되는 경우에는, 작업 수순 데이터의 요소로서 적어도 작업 번호 i와 작업 스페이스 A(i)가 포함되어 있으면 되고, 작업 번호 i가 다음 작업 번호 i+1로 바뀌어도 작업 스페이스 A(i+1)가 작업 스페이스 A(i)와 같은 경우에는, 작업 수순 데이터의 요소로서 작업 번호 i와 작업 스페이스 A(i)와 작업 시간 t(i)가 포함되어 있으면 된다. 여기서, i란 1이상으로 작업 공정의 수 이하의 자연수이다.
작업 수순 데이터는 이와 같은 데이터 구조를 포함하고 있으므로, 작업 공정의 변경을 작업 영역의 변경으로 치환하여, 작업자 대표점의 위치로부터 작업 공정의 진도(進度)를 추정한다. 즉, 작업자 대표점이 존재하는 작업 영역으로부터 다음 작업 영역으로 변경하면, 작업 공정의 판별 결과에 대해서도 다음 작업으로 천이하게 된다. 단, 같은 작업 영역에서 복수 개의 작업이 연속하여 행해지는 경우, 작업자 대표점의 위치만에서는 작업 공정의 변경을 식별할 수 없다. 그래서, 각 작업의 작업 시간과 시간 경과를 비교하면서 작업 공정의 천이의 유무를 판단한다. 각 작업은 작업 번호 순으로 행해지므로, 전의 작업으로 되돌아오지 않는다. 따라서, 작업 공정의 천이가 있으면, 작업자 대표점이 하나 전의 작업 공정의 작업 영역으로 들어가는 경우는 있어도 작업 공정 번호는 리셋되지 않는 한, 작업 공정이 전의 작업 공정으로 되돌아오지 않는다.
작업 진행 상황 추정부(13)는, 전술한 바와 같이, 계측부(12)로부터의 센서의 출력 데이터에 기초하여 작업자의 위치를 특정하고, 작업자에 의한 작업의 진행 상황을 추정한다. 작업 진행 상황 추정부(13)는, 작업 공정의 천이가 있으면, 암 운동 계획부(14)에 대하여 작업 공정이 천이한 취지의 신호를 출력한다.
상위 동작 계획부(18)는, 입력부(16)를 통하여 작업자로부터 로봇 암(11)에 관한 강제적인 지령을 암 운동 계획부(14)에 대한 신호로 변환하고, 그 결과를 암 운동 계획부(14)에 출력한다.
암 운동 계획부(14)는, 작업 수순 데이터 축적부(22)에 축적되어 있는 작업 수순에 관한 데이터를 참조하면서, 작업 진행 상황 추정부(13)로부터 작업 천이가 있었던 취지의 신호의 입력을 받으면, 로봇 암(11)을 다음 작업에 따라 어떻게 구동할 것인지에 대하여 계획한다. 기본적으로는, 로봇 암(11)은 다음 작업, 즉 작업자가 현재 행하고 있는 작업의 다음 작업에 있어서 필요한 공구 및 부품을 트레이에 세팅하고 다음의 공급 위치로 이동한다. 암 운동 계획부(14)는, 상위 동작 계획부(18)를 통하여 작업자의 로봇 암(11)에 관한 지령의 입력을 받으면, 작업 진행 상황이 허용하는 경우에 한정하여, 로봇 암(11)을 작업자의 지령에 따라 구동한다. 암 운동 계획부(14)에는, 예를 들면, 로봇 암(11)의 구동에 관한 다수의 동작 파일이 저장되어 있다. 암 운동 계획부(14)는, 작업 진행 상황 추정부(13) 및 상위 동작 계획부(18)로부터 입력되는 결과에 따라 1개의 동작 파일을 선택하여 로봇 암(11)에 출력한다. 그러면, 암 운동 계획부(14)는, 로봇 암(11)을 동작 파일에 따라 구동한다.
로봇 암(11)의 각 관절부에는 모터와 인코더가 장착되어 있다. 임피던스 제어부(20)는, 인코더로부터의 피드백 신호나 입력부(16)로부터의 조작 상황에 따라 임피던스 이동량을 산출하여, 로봇 암(11)을 원활하게 제어한다.
긴급 동작 제어부(19)는, 안전 보장부(17)로부터 신호의 입력이 있으면, 로봇 암(11)이 안전 영역에 위치하도록 로봇 암(11)을 강제적으로 제어하는 것이다. 이 강제 제어에 의해, 로봇 암(11)과 예를 들면, 이동하고 있는 차체(1), 작업자(2), 설비 등과의 충돌을 회피한다.
〔작업 지원 방법〕
작업 지원 로봇 시스템(10)이 도 3에 나타낸 자동차의 조립 라인에 내장되어 있는 경우를 예로 들어, 작업 지원 방법에 대하여 상세하게 설명한다.
작업자는, 작업 공정에 기초하여 조립 라인을 따라 이동하는 차체(1)에 대하여 조립 작업을 행한다. 작업자 중 한 명은 조립 라인의 소정 위치에 배치되어, 예를 들면, 제1 공정으로서 프론트 사이드 멤버 뒤쪽의 정식 조이기 작업, 제2 공정으로서 펜더 라이너 그로밋(fender liner grommet)의 장착 작업, 제3 공정으로서 좌측 프론트 브레이크 호스 클립의 끼워넣기 작업 등을 차례로 행한다.
계측부(12)는, 소정의 타이밍에서 레이저를 수평으로 조사하여 반사되어 오는 레이저광을 검출하고, 레이저광이 튀어 되돌아 오는 시간이나 방향으로부터, 작업자를 포함하는 반사점의 위치를 계측하고, 제1 센서(12A) 및 제2 센서(12B)의 각 출력 데이터를 작업 진행 상황 추정부(13)에 입력한다.
작업 진행 상황 추정부(13)는, 제1 센서(12A) 및 제2 센서(12B)로부터 각 출력 데이터의 최초의 입력이 있으면, 출력 데이터를 전술한 바와 같이 클러스터링 하여 허리 클러스터와 다리 클러스터를 구하고, 허리 클러스터의 중심으로부터 소정의 반경 내에 다리 클러스터가 있는 것과 같은 허리 클러스터와 다리 클러스터와의 페어를 추출함으로써, 작업자 클러스터를 구한다.
작업 진행 상황 추정부(13)는, 제1 센서(12A) 및 제2 센서(12B)로부터 각 출력 데이터의 2회째 이후의 입력이 있으면, 출력 데이터를 클러스터링하여 전회(前回)에 구한 허리 클러스터 근방의 것을 금회의 허리 클러스터로서 구한다.
작업 진행 상황 추정부(13)는, 이와 같이 하여 구한 허리 클러스터로부터 작업자의 위치를 계측부(12)로부터 데이터의 입력마다 특정하고, 미리 구분되어 있는 구분 영역의 어느 것에 작업자가 존재하고 있는지를 추정한다. 작업 진행 상황 추정부(13)는, 작업 영역이 별도 영역으로 되었는지, 또는 같은 작업 영역에서도 하나의 작업이 개시되고 나서 작업 수순 데이터 내에 규정되어 있는 작업 시간을 경과했는지 중 어느 하나를 만족시켰는지에 대하여 판정한다. 작업 진행 상황 추정부(13)는, 긍정적인 판정을 한 경우에는, 하나의 작업이 종료되고 다른 작업으로 이행한 것으로 판단하고, 암 운동 계획부(14)에 그 판단 결과를 출력한다.
그러면, 암 운동 계획부(14)는, 작업 진행 상황 추정부(13)로부터 작업 천이에 대한 정보의 입력이 있으므로, 그 입력을 받을 때마다, 작업 수순 데이터 축적부(22)를 참조하여 다음 작업에 있어서 보급부(15)에 있어서의 배출구(32)로부터 부품 공급이 있는지의 여부, 필요한 공구(34)가 있는지의 여부를 판단한다. 암 운동 계획부(14)는, 배출구(32)로부터 부품 공급이 있을 것이라고 판단한 경우에는, 공급될 부품의 종별이나 수 등의 정보를 보급부(15)에 통지한다. 그와 동시에, 암 운동 계획부(14)는, 배출구(32)의 바로 앞에 로봇 암(11)의 선단에 장착한 트레이(11G)를 소정 시간만큼 배치하고, 배출구(32)로부터 부품(35)의 보급을 받도록 로봇 암(11)을 구동하는 지령을 출력한다. 이 때, 보급부(15)는, 공급될 부품의 종별이나 수 등의 정보를 암 운동 계획부(14)로부터 입력되므로, 그 정보에 기초하여 배출구(32)로부터 부품 공급을 행한다. 암 운동 계획부(14)는, 지령의 출력과 동시에, 다음 작업 공정에 있어서 공구가 필요하다고 판단하는 경우에는, 예를 들면, 캐비닛(30)에 장착되어 있는 공구(34) 중 1개를 선택하고, 공구(34)를 공구 장착용 부속품(11F)에 거는 등 하여 지지하고, 로봇 암(11)을 구동하여 작업자의 근방까지 반송하도록 지령한다.
이상 설명한 바와 같이, 계측부(12)로부터 센서의 출력 데이터가 작업 진행 상황 추정부(13)에 입력되면, 작업 진행 상황 추정부(13)는 작업자의 위치를 특정하고, 다음 작업으로 천이했는지의 여부를 판정한다. 다음 작업으로 천이한 것으로 작업 진행 상황 추정부(13)가 판단하면, 암 운동 계획부(14)에 입력된다. 암 운동 계획부(14)에는 작업 천이에 관한 정보가 입력되므로, 작업 수순 데이터에 기초하여 로봇 암(11)의 궤적 등을 계산하여 로봇 암(11)을 구동하는 동시에, 작업 수순 데이터에 있어서 다음 작업에 공급 부품의 종류나 수가 설정되어 있는 경우에는 보급부(15)에 그 정보를 통지한다. 따라서, 작업 공정이 천이해도 작업자는 미리 작업을 행하려는 영역으로 이동하는 것만으로, 필요로 하는 부품이나 공구를 마치 손으로 건네는 것처럼 수취할 수 있다.
즉, 작업 지원 로봇 시스템(10)은, 다음과 같은 일련의 작업을 반복한다. 즉, 계측부(12)가 센서의 출력 데이터를 작업 진행 상황 추정부(13)에 입력하면, 작업 진행 상황 추정부(13)가 작업 공정의 천이 유무를 판단한다. 천이가 있는 경우에는 암 운동 계획부(14)에 그 정보가 출력되고 다음 작업에 있어서 필요로 하는 부품을 로봇 암(11)에 반송한다. 이 일련의 반복 도중에, 입력부(16)에 작업자의 입력이 있으면, 그 취지가 상위 동작 계획부(18)에 입력되므로, 암 운동 계획부(14)가 강제적으로 작업자의 의도에 따라 로봇 암(11)을 제어한다. 또한, 이 일련의 반복 도중에, 안전 보장부(17)로부터 로봇 암(11)의 동작을 회피해야 하는 입력이 긴급 동작 제어부(19)에 있으면, 이 일련의 반복을 중단하여 로봇 암(11)의 회피 동작을 행한다. 이로써, 작업 지원을 보다 적절히 행할 수 있다.
이상의 설명에서는 도 1에 나타낸 반송 기구(11a)가 특히 로봇 암(11)이며, 운동 계획부(14A)가 암 운동 계획부(14)인 경우에 대하여 특별히 기술하고 있다. 그러나, 반송 기구(11a)는, 작업자에게 공구, 부품 중 어느 하나 또는 양쪽의 물품을 반송하는 것이면 1개 또는 복수 개의 관절을 가지는 암뿐아니라, 1자유도의 암이어도, 직동 테이블이어도, 직접 바닥면을 주행하는 이동 대차여도 된다. 이에 대응하여, 운동 계획부(14A)는, 암 운동 계획부(14)에 한정되지 않고, 작업 진행 상황 추정부(13)가 추정한 작업 진행 상황과 선택한 것에 따라 반송 기구(11a)의 운동을 계획하여 반송 기구를 제어하는 것이면 어느 것이어도 된다. 그 외의 구성과 그에 따른 작용 효과, 작업 지원 방법에 대하여는 동일하므로 설명을 생략한다.
또한, 도 2의 시스템 구성에서는, 도 3 및 도 4에 나타낸 바와 같이, 계측부가 상하로 분리되어 배치되는 복수 개의 레이저식 측역 센서를 전제로 하고 있지만, 작업자의 위치를 계측할 수 있으면, 그 외의 센서라도 된다. 일례로서는, 감압 센서를 바닥면에 간극없이 매립한다. 예를 들면, 바닥면에 좌표를 설정하고, 복수 개의 감압 센서를 좌표의 격자형으로 매립하여 둔다. 이로써, 복수 개의 감압 센서 중 감지한 센서의 위치로부터 전술한 방법에 의해 클러스터링함으로써 작업자의 위치를 특정할 수 있다. 작업 영역 내의 바닥에 무엇인가가 놓여져 있는 경우, 다른 작업자가 침입한 경우 등은, 클러스터링을 행함으로써 작업자를 특정하는 편이, 작업자의 위치를 보다 정확하게 파악할 수 있다. 다른 예로서는, 레이저광 조사부와 레이저광 수광부와의 페어를, 작업 현장의 천정에 격자형으로 설치하여 둔다. 레이저광 조사부로부터 바닥면에 레이저광을 조사하고, 레이저광 수광부에서 레이저광의 바닥면으로부터의 반사를 수광한 경우에는, 그 페어의 바로 아래에는 작업자가 존재하지 않고, 반대로 레이저광 수광부에서 레이저광의 바닥면으로부터의 반사를 수광하고 있지 않은 경우에는 그 페어의 바로 아래에 작업자가 존재하게 된다. 따라서, 레이저광 조사부와 레이저광 수광부와의 페어를 천정에 격자형으로 배치하여 둠으로써, 작업자의 존재 위치를 특정할 수 있다. 이 경우에도 작업 영역 내에 무엇인가가 놓여져 있는 경우, 다른 작업자가 침입한 경우 등은, 클러스터링을 행함으로써 작업자를 특정하는 편이 작업자의 위치를 보다 정확하게 파악할 수 있다.
도 1 및 도 2에 나타낸 시스템 구성에 있어서는, 작업자의 위치로부터 작업 진도가 추정되므로, 미리 결정된 작업 수순에 따라 작업자가 움직이지 않으면 작업 진도가 추정되지 않는다. 또한, 실제, 작업자마다 습관이 있으므로, 근소하지만 타이밍의 어긋남이 생긴다. 그래서, 이 점을 개량한 시스템으로서, 제2 실시예를 설명한다.
〔제2 실시예〕
도 7은 본 발명의 제2 실시예에 관한 작업 지원 로봇 시스템(40)의 구성도이다. 도 1에 나타낸 시스템 구성에 대하여, 작업 수순 데이터 축적부(22) 및 작업 진행 상황 추정부(13), 암 운동 계획부(14) 및 이들과 관련된 각 부가 다음과 같이 변경되어 있다. 그리고, 도 7에 있어서도, 도 1에 나타낸 입력부(16)와, 안전 보장부(17), 상위 동작 계획부(18), 긴급 동작 제어부(19) 및 임피던스 제어부(20)에 대응하는 입력부(50), 안전 보장부(51), 상위 동작 계획부(53), 긴급 동작 제어부(52) 및 임피던스 제어부(54)를 포함하고, 이로써, 로봇 암 및 보급부를 구비하는 로봇(41)을 강제적으로 제어하는 것도 가능하도록 해도 된다.
본 발명의 제2 실시예에 관한 작업 지원 로봇 시스템(40)은, 도 1에 있어서의 로봇 암(11) 및 보급부(15)에 대응하는 로봇(41)과, 도 1 및 도 2의 계측부(12)에 상당하는 계측부(42)와, 작업자 위치 특정부(43)와, 작업 진도 추정부(44)와, 후술하는 각종 확률을 산출하여 저장하는 계산 처리 겸 데이터 베이스부(45)와, 공급 위치 결정부(46)와, 공급 타이밍 결정부(47)와, 공급 궤도 계산부(48)와, 공급 시각 실시간 수정부(49A)와, 공급 위치 조정부(49B)와, 공급 시각 조정부(49C)를 포함하고 있다. 그리고, 제2 실시예는 도 7에 나타낸 것에만 한정되지 않고 각종 변경할 수 있다. 예를 들면, 도 8에 나타낸 제2 실시예의 변형예와 같이, 작업자 위치 특정부(43) 이외에 작업 상황 특정부(55)를 설치해도 된다. 도 8에 나타낸 작업 지원 로봇 시스템(40A)에서는, 작업자 위치 특정부(43)와 작업 상황 특정부(55)에 의해 작업자 위치 및 작업 상황 특정부(56)를 구성하고 있다.
로봇(41)은, 전술과 마찬가지로, 로봇 암과, 로봇 암의 선단에 장착된 트레이 상에 부품을 공급하기 위한 보급부를 구비하고 있다. 여기서, 로봇(41) 대신에, 부품이나 공구 등의 물품을 반송하는 반송 기구와 보급부를 구비하는 기구라도 된다.
계측부(42)는, 작업자의 위치를 특정하기 위해 복수 개의 레이저식 측역 센서를 가지고 있다. 도 1에 나타낸 형태와 마찬가지로, 2개의 센서, 즉 LRF(Laser Range Finder)가 세로로 배열되어 배치되어 있고, LRF에 의해 각각 작업자의 허리와 양 다리의 높이 계측이 행해진다.
작업자 위치 특정부(43)는, 계측부(42)로부터 입력된 데이터를 클러스터링 하여 작업자의 위치를 특정하는 것이다. 도 1 및 도 2에 나타낸 형태와 마찬가지로, 계측부(42)에 의해 계측된 데이터에 대하여 NN(Nearest Neighbor)법 등을 적용하여 클러스터링을 행하고, 작업자 클러스터를 특정하여 작업자의 위치(xw, yw)를 구한다.
계산 처리 겸 데이터 베이스부(45)는, 작업자 위치 특정부(43)로부터 입력된 작업자의 위치(xw, yw)에 따라 위치에 대한 작업자의 존재율 En, i, j와, 시간에 대한 작업의 실행율 In, t와, 위치에 대한 작업의 실행율 Rn, i, j을 각각 구하여 축적하고 끊임없이 갱신하는 동시에 순차 출력한다. 3개의 확률 분포의 데이터는, 제1, 제2 및 제3 계산 처리부(45A, 45B, 45C)에 각각 저장된다.
제1 계산 처리부(45A)에는, 「위치에 대한 작업자의 존재율」의 확률 분포의 데이터가 산출되어 저장되어 있다. 이 확률 분포의 계산 방법은 다음과 같다. 도 9에 나타낸 바와 같이, 예를 들면, 일정한 폭의 메쉬로 표시되고, 또한 차량(일반적으로는 「작업 대상물」)을 기준으로 설정되어 있는 좌표계에 있어서, 셀마다 작업자가 관측된 도수(度數)를 구하고, 이것을 각 작업에 있어서의 데이터 총수로 나눔으로써, 각 작업 n에 있어서 작업자가 그 위치(i, j)에서 작업을 행하고 있는 비율, 즉 작업 n에 있어서의 위치(i, j)에 대한 작업자의 존재율 En, i, j가 구해진다. 즉, En, i, j는, 작업 번호 n이 주어졌을 때, 그 작업을 하고 있는 작업자가 어느 점에 있을 가능성이 높은지를 나타내고 있다. En, i, j는 식(1)로부터 구해진다.
[수식 1]
Figure pct00001
여기서, Cm, n, i, j는 m대째의 차량에 있어서 (i, j)번지에서 계측된 n번째의 작업 데이터 점의 수이며,
Figure pct00002
은 m대째의 차량에 있어서 작업자가 n번째의 작업을 행하고 있는 위치 데이터의 총수이며, M은 계측한 차량의 대수이다. 단, 식(1)에서는 작업자가 존재할 가능성이 있는 영역 전체를 200×360의 메쉬로 구획하고 있다. 따라서, i의 최대값은 x축 방향의 메쉬의 수(식 중에서는 200)이며, j의 최대값은 y축 방향의 메쉬의 수(식 중에서는 360)이다.
제1 계산 처리부(45A)는 상기한 확률 분포로서 En, i, j를 모든 작업 및 모든 위치에 대하여 구하여 저장한다. 어떤 작업이 주어졌다면, 그 작업을 행할 때, 작업자가 존재할 가능성이 가장 높은 위치를 통계적으로 구할 수 있다.
공급 위치 결정부(46)는, 제1 계산 처리부(45A)로부터 입력된, 위치에 대한 작업자의 존재율에 기초하여 공급 위치를 결정한다. En, i, j가 가장 높은 위치(i, j)는, 각 작업에 대하여 그 작업을 행하고 있는 작업자가 가장 존재할 가능성이 높은 위치이므로, 이 위치 좌표를 공급 위치(xn, yn)로서 출력한다.
공급 위치 조정부(49B)는, 공급 위치 결정부(46)와 공급 궤도 계산부(48)와의 사이에 설치되고, 제1 계산 처리부(45A)로부터 출력된, 위치에 대한 작업자의 존재율로부터 구한 공급 위치(xn, yn)에 오프셋량(Δxn, Δyn)을 가감하여 공급 궤도 계산부(48)에 출력한다. 도 10은, 공급 위치 결정부(46) 및 공급 위치 조정부(49B)에 있어서의 기능을 설명하는 도면이다. 종횡의 각 축은 차량을 기준으로 설정되어 있는 좌표계의 Xc, Yc이며, 농담(濃淡)이 En, i, j의 높낮이를 나타내고, 둥근 플롯(◎)이 공구·부품 공급점을 나타내고, 화살표가 오프셋량을 나타내고 있다. 공급 위치 결정부(46)는, 상기 작업을 행할 때, 작업자가 존재할 가능성이 가장 높은 위치를 (xn, yn)로서 구한다. 이 구한 값(xn, yn)은 공급 위치 조정부(49B)에 입력된다. 그래서, 공급 위치 조정부(49B)는, 그 좌표에 작업자의 몸의 크기분만큼 임의의 오프셋, 즉 공급 위치 오프셋(Δxn, Δyn)을 부가한 좌표를 공급 위치로 한다. 이 오프셋은 작업자의 취향 등에 따라 적절하게 조정해도 된다.
여기서, 어떤 작업(예를 들면, 작업 A와 작업 E)에 대하여는 존재율이 높은 위치가 복수 개 존재하도록 한 경우, 존재율이 높은 복수 개의 위치 중에서 먼저 작업을 행할 위치를 선택하여, 공급 위치 오프셋을 부가한 위치를 공급 위치로 한다. 또한, 이 공급 위치는 차량에 설정되어 있는 좌표계에 있어서의 작업 위치이므로, 로봇 좌표계로 변환하여, 로봇(41)에의 손끝의 목표 위치로 한다.
제2 계산 처리부(45B)에는, 「시간에 대한 작업의 실행율」의 확률 분포가 구해져 저장되어 있다. 이 확률 분포의 산출 방법은 다음과 같다. 어떤 시간에 작업 n을 행하고 있는 도수(度數)를, 계측한 차량의 대수로 나눔으로써, 각 시각 t에 작업자가 어떤 작업 n을 행하고 있는지의 비율, 즉 작업 n에 있어서의 시각 t에 대한 작업의 실행율 In, t를 구할 수 있다. 이 In, t는, 시각 t가 주어졌을 때, 그 시각 t에 어떤 작업을 행하고 있을 가능성이 높은지를 나타내고, 다음 식(2)에서 구해진다.
[수식 2]
Figure pct00003
여기서, Wn, t는 시각 t에 있어서 n번째의 작업을 행한 횟수이며, M은 계측한 차량 대수, 즉 개시 후에 작업이 행해진 작업 대상물의 수이다. 시각 t는 택트 타임이 개시될 때마다 제로로 리셋된다. 제2 계산 처리부(45B)는, 공장의 차량 반송 컨베이어로부터의 정보를 통신에 의해 얻는 등의 방법으로, 택트 타임이 개시될 때마다 리셋된 시각 정보를 얻을 수 있다. 여기서, 제2 계산 처리부(45B)는 시간에 대한 작업의 실행율을 매회 갱신하지 않아도 되고, 축적된 데이터로부터 계산된 시간에 대한 작업의 실행율을 공급 타이밍 결정부(47)에 출력해도 된다.
공급 타이밍 결정부(47)는, 제2 계산 처리부(45B)로부터 입력된, 시간에 대한 작업의 실행율에 기초하여 공급 타이밍 tn을 구한다. 제2 계산 처리부(45B)로부터 출력된, 시간에 대한 작업의 실행율 In, t에 기초하여, 어떤 시각에 있어서 가장 도수가 높은 작업을 작업자가 행하고 있는 것으로 하면, 어떤 작업으로부터 다음 작업으로 작업이 전환되는 시각을 알 수 있으므로, 다음 작업의 공급 타이밍 tn이 구해진다.
공급 시각 조정부(49C)는, 공급 타이밍 결정부(47)와 공급 시각 실시간 수정부(49A)와의 사이에 설치되고, 시간에 대한 작업의 실행율로부터 구한 공급 타이밍, 즉 공급 시각 tn에 오프셋량 Δtn을 부가하여 공급 시각 실시간 수정부(49A)에 출력한다. 여기서, 상기 공급 타이밍은, 제2 계산 처리부(45B)로부터 출력된다.
도 11은 공급 타이밍 결정부(47) 및 공급 시각 조정부(49C)의 기능을 설명하기 위한 도면이다. 도 11에 있어서, 가로축이 시각(Time), 세로축이 반복 빈도(Frequency)이다. 도 11과 같이 택트 시간을 100%로 규격화했을 때의 시각으로부터, 몇번째의 작업이 행해지고 있는지를 판별할 수 있다. 작업이 전환되는 시각은, 통계적으로 작업이 전환될 가능성이 높은 시각인 것으로 가정하고, 이 시각을 그대로 공급 타이밍 tn으로서 설정하면, 공급이 지연되는 경우도 존재할 수 있다. 그러므로, 공급 시각 조정부(49C)에 있어서, 공급 타이밍 tn은 이 시각에 임의의 조정 시간인 앞당김 시간 Δtn을 가하여 구한다. 그리고, 앞당김 시간 Δtn은 반드시 마이너스의 값을 취한다. 작업자가 실제로 작업에 착수하는 시각과 비교하여 실제의 공급 시각이 반드시 약간 빨라지도록 오프셋이 설정되어 있으면, 작업자의 희망 등에 따라 오프셋량을 임의로 설정해도 된다. 그리고, 작업이 실행되고 있는 도수가 조금이라도 발생한 시각을 공급 시각으로 하는 것도 고려된다. 그러나, 이것으로는, 어떠한 불규칙적인 이유 때문에, 너무 빠른 시각에 작업이 실행되고 있는 도수가 한 번이라도 발생하면, 이 데이터만에 따라서 공급 시각이 정해져 버리므로, 바람직하지 않다. 한편, 시간에 대한 작업의 실행율이 가장 높은 시각에 앞당김 시간 Δtn(<0)을 부가하여 공급 시각으로 해도 된다.
제3 계산 처리부(45C)에는, 「위치에 대한 작업의 실행율」의 확률 분포가 구해져 저장되어 있다. 이 확률 분포의 산출 방법은 다음과 같다. 어느 일정한 폭으로 설정된 메쉬에 의해 셀로 분할된 차량 좌표계에 있어서, 각 작업에 대하여, 셀마다 작업자가 계측된 도수를 상기 셀에 있어서의 데이터 총수로 나눈다. 이로써, 작업자가 그 장소에 존재할 때 각 작업을 행하고 있을 가능성의 비율, 즉 위치에 대한 작업의 실행율 Rn, i, j가 구해진다. 이 Rn, i, j는, 작업자의 위치(i, j)가 주어졌을 때 그 위치에 있는 작업자가 어떤 작업을 행하고 있을 가능성이 높은지를 나타내고, 식(3)에 의해 구해진다.
[수식 3]
Figure pct00004
여기서, Bm, n, i, j는, l(엘)대째에 (i, j)번지에 있어서 계측된 데이터점의 수이며, L은 그 번지에서 작업자가 작업한 차량의 대수이다. n은 작업 번호이다.
도 12는 위치에 대한 작업의 실행율에 대하여 모식적으로 나타낸 것이며, (A)~(I)는 차례로 각 작업의 위치에 대한 실행율을 나타낸 도면이다. 각 도면의 세로축, 가로축은 차량으로부터의 좌표계 Xc, Yc이다. 농담은 빈도를 나타내고 있다. 도 13은, 도 12에 나타낸 위치에 대한 작업의 실행율에 대하여, 위치에 대한 실행율이 가장 높은 작업을 차량으로부터의 좌표계 Xc, Yc로 나타낸 도면이다. 도 12로부터, 각 위치에서 행해지고 있을 가능성이 가장 높은 작업을 통계적으로 구할 수 있다.
작업 진도 추정부(44)는, 제3 계산 처리부(45C)로부터 입력된, 위치에 대한 작업의 실행율과, 작업자 위치 특정부(43)로부터 입력된, 작업자의 위치로부터 현재 행해지고 있는 작업을 추정하여 공급 시각의 수정량을 구한다. 작업 진도 추정부(44)는, 실제의 작업자의 위치에 관하여 실시간으로 계측한 위치로부터, 그 때 작업자가 가장 행하고 있을 확률이 높은 작업을 추정하고, 공급 시각 이전에 작업자가 다음 작업으로 진행하고 있는지의 여부를 판단한다. 작업자가 다음 작업으로 진행하고 있는 경우에는 즉시 다음의 공구나 부품을 공급하도록 공급 시각 수정량을 출력한다.
공급 시각 실시간 수정부(49A)는, 공급 타이밍 결정부(47)에서 구한 공급 타이밍과, 작업 진도 추정부(44)에서 구한 공급 시각의 수정량을 부가함으로써 공급 시각을 구한다.
공급 궤도 계산부(48)는, 공급 위치 결정부(46)에서 결정된 공급 위치에 따라 로봇 암의 궤도 계산을 행한다. 구체적으로는, 공급 궤도 계산부(48)는, 공급 위치 결정부(46)로부터 입력된 공급 위치(xn, yn)에 공급 위치 오프셋(Δxn, Δyn) 을 만족시킨 값과, 로봇 암에 대하여 부품이나 공구를 보급하는 위치에 대하여 미리 설정된 값에 기초하여 로봇 암의 선단의 공간 궤도를 구한다.
로봇(41)은, 공급 궤도 계산부(48)에서 결정된 로봇 암의 선단의 공간 궤도와, 공급 타이밍 결정부(47) 및 공급 시각 조정부(49C)를 경유하여 공급 시각 실시간 수정부(49A)로부터 입력된 공급 시각 Tn (= tn+Δtn+Δtu)과, 또한 로봇 암에 대하여 부품·공구를 보급하는 타이밍에 대하여 미리 설정된 값에 기초하여 로봇 암의 선단의 시간 궤도를 구하고, 그에 따라 로봇 암을 제어하여, 운동한다.
그리고, 제어 대상이 로봇 암이 아니고 반송 기구인 경우에는, 공급 궤도 계산부(48)는, 공급 위치 결정부(46)에서 결정된 공급 위치에 따라 반송 기구의 궤도 계산을 행한다. 구체적으로는, 공급 궤도 계산부(48)는, 공급 위치 결정부(46)로부터 입력된 공급 위치에 공급 위치 오프셋을 만족시키는 값과, 반송 기구에 대하여 부품이나 공구를 보급하는 위치에 대하여 미리 설정된 값에 기초하여 반송 기구 선단의 공간 궤도를 구한다. 여기서, 각 작업에 있어서의 공급 위치가 대략 일직선 상에 배열되어 있는 경우에는, 1자유도의 직동 테이블 등을 반송 기구로서 사용할 수 있다.
로봇(41)은, 공급 궤도 계산부(48)에서 결정된 반송 기구 선단의 공간 궤도와, 공급 타이밍 결정부(47) 및 공급 시각 조정부(49C)를 경유하여 공급 시각 실시간 수정부(49A)로부터 입력된 공급 시각 Tn (= tn+Δtn+Δtu)과, 또한 반송 기구에 대하여 부품·공구를 보급하는 타이밍에 대하여 미리 설정된 값에 기초하여 반송 기구 선단의 시간 궤도를 구하고, 그에 따라 반송 기구를 제어하여, 운동한다.
여기서, 도 7, 도 8에 나타낸 입력부(50)의 일부로서, 작업자(2)가 현재 행하고 있는 작업 상황에 대하여 의도적으로 입력하기 위한 마이크로 스위치 등의 입력 버튼이 설치되어도 되고, 도 8에 나타낸 계측부(42)로서 각종 센서가 로봇 암의 선단 측의 트레이, 공구 홀더에 설치되어 있어도 된다. 상기 각종 센서로서는, 마이크로 스위치나 적외선 센서를 사용할 수 있다. 이와 같이 구성된 입력부(50)나 계측부(42)에 의해, 작업자의 작업 상황에 관한 정보가, 작업 위치 및 작업 상황 특정부(56) 중 작업 상황 특정부(55)에 입력되면, 작업 상황 특정부(55)는 입력된 정보에 기초하여 몇번째의 작업인지와 같은 작업 상황을 특정한다. 작업 상황 특정부(55)에는, 작업 상황을 특정하기 위해 필요한 작업 수순 데이터에 기초한 정보가 저장되어 있다. 작업 상황 특정부(55)는 작업 상황을 특정하면, 제2 계산 처리부(45B)에 입력하므로, 제2 계산 처리부(45B)는, 시간에 대한 작업의 실행율을 계산하여 갱신한다. 제2 계산 처리부(45B)는 이와 같은 방법에 의해 시간에 대한 작업의 실행율을 계산할뿐만아니라, 후술하는 바와 같이, 다양한 방법에 의해, 시간에 대한 작업의 실행율을 계산해도 된다.
본 발명의 제2 실시예에 관한 작업 지원 로봇 시스템(40, 40A)의 제어 수순에 대하여 설명한다. 제1 단계로서, 작업자 위치 특정부(43)에 있어서, 계측부(42)에 있어서의 측역 센서로부터 입력된 계측 데이터에 기초하여, 작업자의 위치를 특정한다. 이 특정하는 방법에 대하여는 제1 실시예에서 설명한 바와 같다.
제2 단계로서, 계산 처리 겸 데이터 베이스부(45)에 있어서, 작업자의 위치를 통계 처리한다. 이로써, 3종류, 즉 제1 위치에 대한 작업자의 존재율 En, i, j, 제2 시간에 대한 작업의 실행율 In, t, 제3 위치에 대한 작업의 실행율 Rn, i, j의 도수 분포를 구한다. 이 때, 예를 들면, 로봇 암의 선단부로 전환하는 버튼, 레버, 근접 센서 등의 입력부(50)를 설치하여 두고(도 7, 도 8 참조), 작업자(2)가 지금의 작업을 종료하고 다음 작업으로 이행하는 경우에, 그 입력부(50)에 대하여 다음 작업으로 이행하는 취지의 간단한 입력을 행한다. 이 입력에 의해, 제1 계산 처리부(45A), 제2 계산 처리부(45B) 및 제3 계산 처리부(45C)는 각각, 위치에 대한 작업자의 존재율 En, i, j, 시간에 대한 작업의 실행율 In, t, 위치에 대한 작업의 실행율 Rn, i, j에 관하여 상기 작업의 각 확률 분포가 갱신되어, 각각, 공급 위치 결정부(46), 공급 타이밍 결정부(47) 및 작업 진도 추정부(44)에 출력되는 것이 가능하다. 즉, 도 7이나 도 8에 있어서 로봇 암의 선단부에 장착한 전환 버튼 등의 입력부(50)에 의해, 「현재 작업자가 몇번째의 작업을 행하고 있는지」의 정보를 작업자(2)가 입력한다.
여기서, 작업자(2)가 현재 행하고 있는 작업 상황에 대하여는, 도 7에 나타낸 입력부(50)와 같이 작업자가 의도적으로 입력하기 위한 것에 한정되지 않는다. 도 8에 나타낸 바와 같이, 계측부(42)로서, 로봇 암 선단 측의 트레이, 공구 홀더에 마이크로 스위치나 적외선 센서 등의 각종 센서를 사용해도 된다. 이와 같은 센서를 사용하여, 작업자가 부품을 취했는지 여부, 공구를 취했는지 여부, 반납하였는지 여부를 검출하고, 이로써, 다음 작업으로 이행하는 취지의 입력이라고 판단되어도 된다. 즉, 제2 실시예에 관한 작업 지원 로봇(40, 40A)에서는, 계측부(42)나 입력부(50)에는 각각 작업자의 작업 상황을 특정하기 위한 센서나 입력부를 구비하고 있고, 제1 계산 처리부(45A), 제3 계산 처리부(45C)에 작업자 위치 특정부(43)로부터 작업자의 위치(Xw, Yw)와, 입력부(50), 계측부(42) 중 어느 하나 또는 양쪽으로부터 작업자의 작업 상황에 관한 정보가 입력된다. 이로써, 제1 계산 처리부(45A)는 위치에 대한 작업자의 존재율을 계산하여 갱신하고, 제3 계산 처리부(45C)는 위치에 대한 작업의 실행율을 계산하여 갱신한다. 제2 계산 처리부(45B)에 입력부(50), 계측부(42) 중 어느 하나 또는 양쪽으로부터 작업자의 작업 상황에 관한 정보가 입력되므로, 제2 계산 처리부(45B)는 시간에 대한 작업의 실행율을 계산하여 갱신한다. 즉, 제1 내지 제3 계산 처리부(45A, 45B, 45C)는 각각 저장되어 있는 각 확률 분포를 갱신할 수 있다. 제2 계산 처리부(45B)는 소정 시간 간격으로, 시간에 대한 작업의 실행율 In, t를 공급 타이밍 결정부(47)에 출력한다. 제1 계산 처리부(45A)는, 소정 시간 간격, 예를 들면, 작업자 위치 특정부(43)로부터 작업자의 위치(Xw, Yw)가 입력될 때마다, 위치에 대한 작업자의 존재율 En, i, j를 작업자의 위치(Xw, Yw)에 따라 공급 위치 결정부(46)에 출력한다. 제3 계산 처리부(45C)는 작업자의 위치(Xw, Yw)에 따라, 소정 시간 간격으로 위치에 대한 작업의 실행율 Rn, i, j를 작업 진도 추정부(44)에 출력한다.
그리고, 통계 데이터의 신뢰도가 충분히 높아지고, 계산 처리 겸 데이터 베이스부(45)에 있어서의 데이터 베이스를 매회 갱신할 필요가 없는 것으로 판단할 수 있는 경우에는, 입력부(50)에 대하여 작업자로부터의 입력을 사용할 필요가 없다. 이 경우, 작업자의 훈련 등으로 계산 처리 겸 데이터 베이스부(45)에 있어서의 데이터 베이스의 갱신이 극히 가끔 필요한 경우에는, 다음 작업으로 이행하는 취지의 입력을 공정 관리자 등 작업자와는 다른 사람이 작업 상황을 관찰하면서 입력부(50)로의 입력을 대행해도 된다.
제3 단계로서, 공급 위치 결정부(46)에 있어서, 제1 계산 처리부(45A)로부터 입력된 위치에 대한 작업자의 존재율 En, i, j로부터 부품 및 공구의 공급 위치를 결정한다. 또한, 공급 타이밍 결정부(47)에 있어서, 제2 계산 처리부(45B)로부터 입력된 시간에 대한 작업의 실행율 In, t로부터 부품 및 공구의 공급 시각을 계산한다.
제4 단계로서, 실시간으로 계측한 작업자의 위치(xw, yw)와, 제3 계산 처리부(45C)로부터 입력된 위치에 대한 작업의 실행율 Rn, i, j로부터 작업 진도를 추정하고, 작업의 진척 상태에 맞추어 공급 시각 tn을 수정한다. 여기서, 작업의 실행율 Rn, i, j로부터 판단되는 작업 진도에 따른 공급 시각의 수정만이 아니고, 입력부(50)에 대하여 작업자가 다음 작업으로 이행하는 취지를 입력한 것을 검지하여 즉시 공급 시각을 수정하는 것을 병용해도 된다.
제5 단계로서, 공급 궤도 계산부(48)는, 부품 및 공구의 공급 위치로부터 암의 공간 궤도를 계산하여 로봇(41)에 출력하고, 로봇(41)은 공간 궤도와 공급 시각으로부터 암의 시간 궤도를 구하여 출력한다.
본 발명의 제2 실시예에 있어서의 시스템의 설계 컨셉은, 계측부(42)에 있어서 센서로부터 취득한 작업자의 위치와 그 취득 시의 작업 내용과의 관계를 계산 처리 겸 데이터 베이스부(45)에서 통계적으로 기술하여 기억 갱신하고, 계산 처리 겸 데이터 베이스부(45)에 기초하여 작업 지원 동작을 생성하는 것에 있다. 구체적으로는, 첫번째의 컨셉은, 작업자의 운동의 계측 결과를 축적하고, 작업자의 운동과 작업 내용과의 관계를 확률적으로 기술하고, 그에 기초하여 공구나 부품의 공급점을 결정하는 점이다. 두번째의 컨셉은, 작업자의 운동의 계측 결과를 축적하고, 작업자의 운동과 작업 내용과의 관계를 확률적으로 기술하고, 그에 기초하여, 공구나 부품의 공급 타이밍을 결정하는 점이다. 세번째의 컨셉은, 작업자의 운동의 계측 결과를 축적하고, 작업자의 운동과 작업 내용과의 관계를 확률적으로 기술하고, 이것과 실시간으로 계측한 작업자의 위치에 따라 공구나 부품의 공급 시각을 실시간으로 수정하는 점이다.
따라서, 본 발명의 제2 실시예에 있어서는, 얻어진 작업자의 위치의 시계열 데이터를 통계적으로 해석함으로써 작업에 실제로 걸리고 있는 시간이나 작업자의 이동 경로, 또한 작업자의 습관을 파악하여, 작업 상황을 통계적으로 처리하는 것이 가능해진다.
본 발명의 제2 실시예에 관한 작업 지원 로봇 시스템(40, 40A)에 의하면, 작업자의 동작에 맞추어 원활하게 부품이나 공구를 공급할 수 있어, 작업 효율이 높아진다.
본 발명의 실시예는 전술한 시스템 구성, 특히 도 7이나 도 8에 나타낸 것에 한정되지 않고, 예를 들면, 제1 계산 처리부(45A), 제2 계산 처리부(45B), 제3 계산 처리부(45C)를 개별적으로 각 계산 처리 겸 데이터 베이스부로서 구성해도 된다. 제1 계산 처리부(45A)와 공급 위치 결정부(46)와 공급 궤도 계산부(48)와 그에 필요한 각 부에 의해 시스템을 구성하거나, 제2 계산 처리부(45B)와 공급 타이밍 결정부(47)와 그에 필요한 각 부에 의해 시스템을 구성하거나, 도 7이나 도 8에 나타낸 각 부의 구성을 모두 구비하지 않고, 적절하게 취사 선택하여 시스템을 구성해도 된다.
1: 차체
2: 작업자
10, 10A, 40, 40A: 작업 지원 로봇 시스템
11: 로봇 암
11a: 반송 기구
31: 테이블
11A, 11B, 11C: 관절부
11D, 11E: 암
11F: 공구 장착용 부속품
11G: 트레이
12: 계측부
12A, 12B: 센서
13: 작업 진행 상황 추정부
14: 암 운동 계획부
15: 보급부
16, 50: 입력부
17, 51: 안전 보장부
18, 53: 상위 동작 계획부
19, 52: 긴급 동작 제어부
20, 54: 임피던스 제어부
21: 통합 제어부
22: 작업 수순 데이터 축적부
30: 캐비닛
31: 테이블
32: 배출구
33: 공구 설치용 박스
34: 공구
35: 부품
41: 로봇
42: 계측부
43: 작업자 위치 특정부
44: 작업 진도 추정부
45: 계산 처리 겸 데이터 베이스부
45A: 제1 계산 처리부
45B: 제2 계산 처리부
45C: 제3 계산 처리부
46: 공급 위치 결정부
47: 공급 타이밍 결정부
48: 공급 궤도 계산부
49A: 공급 시각 실시간 수정부
49B: 공급 위치 조정부
49C: 공급 시각 조정부
55: 작업 상황 특정부
56: 작업자 위치 및 작업 상황 특정부

Claims (11)

  1. 작업자에게 공구, 부품 중 어느 하나 또는 양쪽을 반송(搬送)하는 반송 기구와,
    상기 작업자의 위치를 계측(計測)하는 계측부와,
    작업 수순에 관한 데이터를 참조하면서 상기 계측부로부터 입력된 데이터에 기초하여 작업 진행 상황을 추정하고, 작업 공정이 다음 공정으로 천이(遷移)한 것으로 판단했을 때 그 다음 공정에 있어서 필요로 하는 물품을 선택하는 작업 진행 상황 추정부와,
    상기 작업 진행 상황 추정부가 추정한 작업 진행 상황과 선택한 물품에 따라 상기 반송 기구의 운동을 계획하여 상기 반송 기구를 제어하는 운동 계획부
    를 포함하는, 작업 지원 로봇 시스템.
  2. 로봇 암과,
    작업자의 위치를 계측하는 계측부와,
    작업 수순에 관한 데이터를 참조하면서 상기 계측부로부터 입력된 데이터에 기초하여 작업 진행 상황을 추정하고, 작업 공정이 다음 공정으로 천이한 것으로 판단했을 때 그 다음 공정에 있어서 필요로 하는 물품을 선택하는 작업 진행 상황 추정부와,
    상기 작업 진행 상황 추정부가 추정한 작업 진행 상황과 선택한 물품에 따라 상기 로봇 암의 궤도를 계획하여 상기 로봇 암을 제어하는 암 운동 계획부
    를 포함하는, 작업 지원 로봇 시스템.
  3. 제1항 또는 제2항에 있어서,
    미리 작업자가 배치될 영역이 구분 영역으로서 구분되어 있고,
    상기 작업 수순에 관한 데이터에는, 작업 공정별로 어느 구분 영역에서 작업을 할 것인지에 관한 정보가 포함되어 있고, 상기 작업 진행 상황 추정부는, 상기 계측부로부터 데이터의 입력이 있으면 상기 작업자의 위치를 특정하고, 상기 작업자가 어느 쪽의 구분 영역에 존재하는지를 판정함으로써 작업 진행 상황을 추정하는, 작업 지원 로봇 시스템.
  4. 제1항 또는 제2항에 있어서,
    미리 작업자가 배치될 영역이 구분 영역으로서 구분되어 있고,
    상기 작업 수순에 관한 데이터에는, 작업 공정별로 어느 구분 영역에서 작업을 할 것인지에 관한 작업 영역 및 작업 시간에 관한 정보가 포함되어 있고, 상기 작업 진행 상황 추정부는, 상기 계측부로부터 데이터의 입력이 있으면 상기 작업자의 위치를 특정하고, 어느 쪽의 구분 영역에 포함되는지와 작업을 개시하고 나서의 경과 시간으로부터 작업 진행 상황을 추정하는, 작업 지원 로봇 시스템.
  5. 제1항 또는 제2항에 있어서,
    상기 계측부는 상하로 분리하여 배치되는 복수 개의 측역(測域) 센서로 이루어지고, 상기 작업 진행 상황 추정부는, 상기 복수 개의 측역 센서로부터 입력된 데이터를 클러스터링(clustering)하고, 상기 작업자의 허리 및 다리에 관한 클러스터에 기초하여 작업자의 위치를 특정하는, 작업 지원 로봇 시스템.
  6. 제1항 또는 제2항에 있어서,
    상기 작업 진행 상황 추정부는 다음 공정에 있어서 필요로 하는 것으로서 공구, 부품 중 어느 하나 또는 양쪽을 선택하고,
    상기 로봇 암의 선단 측에는, 상기 작업 진행 상황 추정부가 선택한 공구 및/또는 부품을 반송하는 트레이와, 상기 작업 진행 상황 추정부가 선택한 공구를 지지할 수 있는 부속품이 장착되어 있는, 작업 지원 로봇 시스템.
  7. 센서를 가지는 계측부와,
    상기 계측부로부터 입력된 데이터로부터 작업자의 작업 상황을 특정하는 작업 상황 특정부와,
    시간에 대한 작업의 실행율에 관한 확률 분포를 계산하여 보유 가능하게 하고 있고, 상기 작업 상황 특정부로부터 입력된 작업 상황에 따라, 시간에 대한 작업의 실행율을 구하는 계산 처리 겸 데이터 베이스부와,
    상기 계산 처리 겸 데이터 베이스부에서 구한, 시간에 대한 작업의 실행율에 기초하여 공급 타이밍을 결정하는 공급 타이밍 결정부
    를 포함하는, 작업 지원 로봇 시스템.
  8. 제7항에 있어서,
    상기 계측부로부터 입력된 데이터로부터 작업자의 위치를 특정하는 작업자 위치 특정부와,
    위치에 대한 작업의 실행율에 관한 확률 분포를 계산하여 보유하고 있고, 상기 작업자 위치 특정부로부터 입력된 작업자의 위치에 따라, 위치에 대한 작업의 실행율을 구하는 별도의 계산 처리 겸 데이터 베이스부와,
    상기 별도의 계산 처리 겸 데이터 베이스부로부터 입력된, 위치에 대한 작업의 실행율과, 상기 작업자 위치 특정부로부터 입력된 작업자의 위치로부터 작업 진행을 추정하여 공급 시각의 수정량을 구하는 작업 진행 추정부와,
    상기 공급 타이밍 결정부에서 구한 공급 타이밍과, 상기 작업 진행 추정부에서 구한 공급 시각의 수정량으로부터, 공급 시각을 구하는 공급 시각 실시간 수정부를 더 포함하는, 작업 지원 로봇 시스템.
  9. 제8항에 있어서,
    상기 공급 타이밍 결정부와 상기 공급 시각 실시간 수정부와의 사이에는, 상기 계산 처리 겸 데이터 베이스부로부터 출력된, 시간에 대한 작업의 실행율로부터 구한 공급 타이밍에 대하여, 공급 시각에 대한 오프셋량을 가감하여 상기 공급 시각 실시간 수정부에 출력하는 공급 시각 조정부를 포함하는, 작업 지원 로봇 시스템.
  10. 센서를 가지는 계측부와,
    상기 계측부로부터 입력된 데이터로부터 작업자의 위치를 특정하는 작업자 위치 특정부와,
    위치에 대한 작업자의 존재율에 관한 확률 분포를 계산하여 보유 가능하게 하고 있고, 상기 작업자 위치 특정부로부터 입력된 작업자의 위치에 따라, 위치에 대한 작업자의 존재율을 구하는 계산 처리 겸 데이터 베이스부와,
    상기 계산 처리 겸 데이터 베이스부에서 구한, 위치에 대한 작업자의 존재율에 기초하여 공급 위치를 결정하는 공급 위치 결정부와,
    상기 공급 위치 결정부에서 결정된 공급 위치에 따라 반송 기구의 궤도 계산을 행하는 공급 궤도 계산부
    를 포함하는, 작업 지원 로봇 시스템.
  11. 제10항에 있어서,
    상기 공급 위치 결정부와 상기 공급 궤도 계산부와의 사이에는, 상기 계산 처리 겸 데이터 베이스부로부터 출력된, 위치에 대한 작업자의 존재율로부터 구한 공급 위치에 대하여, 공급 위치에 관한 오프셋량을 가감하여 상기 공급 궤도 계산부에 출력하는 공급 위치 조정부를 포함하는, 작업 지원 로봇 시스템.
KR1020107020531A 2009-05-22 2010-05-21 작업 지원 로봇 시스템 KR101686517B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JPJP-P-2009-124756 2009-05-22
JP2009124756 2009-05-22
JPJP-P-2010-056786 2010-03-12
JP2010056786 2010-03-12
PCT/JP2010/058648 WO2010134603A1 (ja) 2009-05-22 2010-05-21 作業支援ロボットシステム

Publications (2)

Publication Number Publication Date
KR20120116516A true KR20120116516A (ko) 2012-10-23
KR101686517B1 KR101686517B1 (ko) 2016-12-14

Family

ID=43126280

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020107020531A KR101686517B1 (ko) 2009-05-22 2010-05-21 작업 지원 로봇 시스템

Country Status (6)

Country Link
US (1) US8682482B2 (ko)
EP (1) EP2286963B1 (ko)
JP (3) JP5260673B2 (ko)
KR (1) KR101686517B1 (ko)
CN (3) CN101970185B (ko)
WO (1) WO2010134603A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102075942B1 (ko) * 2019-10-29 2020-02-11 김용이 인공지능 시스템을 이용한 자동차 부품 자동 주문 시스템

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103517789B (zh) * 2011-05-12 2015-11-25 株式会社Ihi 运动预测控制装置和方法
JP5212754B2 (ja) * 2011-05-25 2013-06-19 トヨタ自動車東日本株式会社 作業支援システム
JP5641243B2 (ja) * 2011-09-06 2014-12-17 トヨタ自動車東日本株式会社 作業支援システム
CN103988136A (zh) * 2011-12-09 2014-08-13 戴姆勒股份公司 运行生产厂房的方法
JP5962020B2 (ja) * 2012-01-17 2016-08-03 セイコーエプソン株式会社 ロボット制御装置、ロボットシステム、ロボット及びロボット制御方法
CN106483881A (zh) * 2012-01-20 2017-03-08 苏州宝时得电动工具有限公司 自动工作设备
JP5686108B2 (ja) * 2012-02-24 2015-03-18 株式会社ダイフク 誤作業防止装置および誤作業防止装置が設けられた仕分け設備
US20130345849A1 (en) * 2012-06-26 2013-12-26 Toyota Motor Engineering & Manufacturing North America, Inc. Laser location confirmation apparatus for tools
JP5717033B2 (ja) * 2012-07-19 2015-05-13 トヨタ自動車東日本株式会社 作業支援システム
JP5949473B2 (ja) * 2012-11-09 2016-07-06 トヨタ自動車株式会社 ロボット制御装置、ロボット制御方法、およびロボット
JP5574199B2 (ja) * 2013-02-12 2014-08-20 トヨタ自動車東日本株式会社 作業支援システム
US20140320893A1 (en) * 2013-04-29 2014-10-30 Hewlett-Packard Development Company, L.P. Workflow determination
JP6397226B2 (ja) * 2014-06-05 2018-09-26 キヤノン株式会社 装置、装置の制御方法およびプログラム
US9272417B2 (en) 2014-07-16 2016-03-01 Google Inc. Real-time determination of object metrics for trajectory planning
JP6293652B2 (ja) * 2014-12-26 2018-03-14 本田技研工業株式会社 状態予測システム
JP6545472B2 (ja) * 2015-01-27 2019-07-17 蛇の目ミシン工業株式会社 ロボット
CA2998403C (en) 2015-09-09 2021-04-27 Berkshire Grey, Inc. Systems and methods for providing dynamic communicative lighting in a robotic environment
ES2952517T3 (es) 2015-09-11 2023-10-31 Berkshire Grey Operating Company Inc Sistemas robóticos y métodos para identificar y procesar diversos objetos
CN108430897B (zh) * 2015-11-30 2020-11-03 哈贝尔公司 用于数据通信总线上的通道带宽的同步脉冲控制的系统、装置和方法
US9937532B2 (en) 2015-12-18 2018-04-10 Berkshire Grey Inc. Perception systems and methods for identifying and processing a variety of objects
WO2017139330A1 (en) * 2016-02-08 2017-08-17 Berkshire Grey Inc. Systems and methods for providing processing of a variety of objects employing motion planning
WO2017197170A1 (en) * 2016-05-12 2017-11-16 The Regents Of The University Of California Safely controlling an autonomous entity in presence of intelligent agents
DE112017002639T5 (de) 2016-05-26 2019-03-28 Mitsubishi Electric Corporation Robotersteuerungsvorrichtung
JP6662746B2 (ja) 2016-10-07 2020-03-11 ファナック株式会社 機械学習部を備えた作業補助システム
JP6549545B2 (ja) * 2016-10-11 2019-07-24 ファナック株式会社 人の行動を学習してロボットを制御する制御装置およびロボットシステム
EP3543812B1 (en) * 2016-11-16 2023-12-20 Makino Milling Machine Co., Ltd. Machine tool system
US10651067B2 (en) * 2017-01-26 2020-05-12 Brooks Automation, Inc. Method and apparatus for substrate transport apparatus position compensation
JP6487489B2 (ja) * 2017-05-11 2019-03-20 ファナック株式会社 ロボット制御装置及びロボット制御プログラム
JP6886869B2 (ja) * 2017-06-09 2021-06-16 川崎重工業株式会社 動作予測システム及び動作予測方法
JP7095262B2 (ja) * 2017-11-10 2022-07-05 株式会社安川電機 プログラミング支援装置、ロボットシステム及びプログラム生成方法
JP7095980B2 (ja) * 2017-11-27 2022-07-05 川崎重工業株式会社 ロボットシステム
JP6703020B2 (ja) 2018-02-09 2020-06-03 ファナック株式会社 制御装置及び機械学習装置
JP2019139570A (ja) * 2018-02-13 2019-08-22 株式会社東芝 判別装置、判別方法およびプログラム
JP7167473B2 (ja) * 2018-04-11 2022-11-09 株式会社ジェイテクト 動作支援システム
CN108655726B (zh) * 2018-05-21 2019-07-19 广东科捷龙机器人有限公司 基于机器视觉识别的机械手抓取装配控制系统
IT201800006156A1 (it) * 2018-06-08 2019-12-08 Metodo di controllo predittivo di un robot e relativo sistema di controllo
EP3810375A1 (en) * 2018-06-19 2021-04-28 BAE SYSTEMS plc Workbench system
EP3810374B1 (en) 2018-06-19 2022-06-01 BAE SYSTEMS plc Workbench system
JP6740292B2 (ja) * 2018-07-20 2020-08-12 ファナック株式会社 エアブロー方法および加工システム
US11077559B2 (en) 2018-12-05 2021-08-03 Honda Motor Co., Ltd. Support robot and methods of use thereof
JP7284575B2 (ja) * 2018-12-17 2023-05-31 キヤノン株式会社 工程推定装置および方法
WO2020138436A1 (ja) * 2018-12-27 2020-07-02 川崎重工業株式会社 ロボット制御装置、ロボットシステム及びロボット制御方法
CA3131217A1 (en) * 2019-02-21 2020-08-27 Ops Solutions Llc Acoustical or vibrational monitoring in a guided assembly system
JP7379833B2 (ja) 2019-03-04 2023-11-15 富士通株式会社 強化学習方法、強化学習プログラム、および強化学習システム
JP7225923B2 (ja) * 2019-03-04 2023-02-21 富士通株式会社 強化学習方法、強化学習プログラム、および強化学習システム
JP7235596B2 (ja) * 2019-05-31 2023-03-08 ファナック株式会社 協働ロボットシステム
JP7121200B2 (ja) * 2019-07-05 2022-08-17 株式会社Fuji 作業管理システム
JP7415356B2 (ja) * 2019-07-29 2024-01-17 セイコーエプソン株式会社 プログラム移送システムおよびロボットシステム
JP7448327B2 (ja) * 2019-09-26 2024-03-12 ファナック株式会社 作業員の作業を補助するロボットシステム、制御方法、機械学習装置、及び機械学習方法
US11288509B2 (en) * 2019-11-12 2022-03-29 Toyota Research Institute, Inc. Fall detection and assistance
JP2022159746A (ja) * 2021-04-05 2022-10-18 トヨタ自動車株式会社 協働ロボットシステム及びその組み立てセット
US20220402135A1 (en) * 2021-06-21 2022-12-22 X Development Llc Safety trajectories for robotic control systems
FR3129100A1 (fr) * 2021-11-17 2023-05-19 Psa Automobiles Sa (To Use) Système manipulateur pour robot d’assistance intelligent

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001341086A (ja) 2000-05-31 2001-12-11 Denso Corp 移動ロボットシステム
JP2002066978A (ja) 2000-08-24 2002-03-05 Sharp Corp 人間共存型ロボット
JP2004017256A (ja) 2002-06-19 2004-01-22 Toyota Motor Corp 人間と共存するロボットの制御装置と制御方法
JP2004185228A (ja) * 2002-12-02 2004-07-02 Fanuc Ltd 生産セル
JP2005022050A (ja) * 2003-07-04 2005-01-27 Honda Motor Co Ltd 部品搬送・取付方法およびその装置
JP2007283450A (ja) 2006-04-18 2007-11-01 National Institute Of Advanced Industrial & Technology 人間ロボット共存作業用安全装置
JP2008264899A (ja) 2007-04-17 2008-11-06 Kawada Kogyo Kk ロボット出力の測定方法および制限装置
JP2008302496A (ja) 2006-07-04 2008-12-18 Panasonic Corp ロボットアームの制御装置及び制御方法、ロボット、及びロボットアームの制御プログラム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0125079D0 (en) * 2001-10-18 2001-12-12 Cimac Automation Ltd Auto motion:robot guidance for manufacturing
JP2006318166A (ja) * 2005-05-12 2006-11-24 Hitachi Communication Technologies Ltd 部品組立て指示装置
JP2008033544A (ja) * 2006-07-27 2008-02-14 Toshiba Corp 作業分析方法及び装置
JP2008296308A (ja) * 2007-05-30 2008-12-11 Panasonic Corp 家事支援ロボットアームの移動制御システムおよび移動制御方法および移動制御プログラム
US8140188B2 (en) * 2008-02-18 2012-03-20 Toyota Motor Engineering & Manufacturing North America, Inc. Robotic system and method for observing, learning, and supporting human activities
WO2010063319A1 (en) * 2008-12-03 2010-06-10 Abb Research Ltd. A robot safety system and a method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001341086A (ja) 2000-05-31 2001-12-11 Denso Corp 移動ロボットシステム
JP2002066978A (ja) 2000-08-24 2002-03-05 Sharp Corp 人間共存型ロボット
JP2004017256A (ja) 2002-06-19 2004-01-22 Toyota Motor Corp 人間と共存するロボットの制御装置と制御方法
JP2004185228A (ja) * 2002-12-02 2004-07-02 Fanuc Ltd 生産セル
JP2005022050A (ja) * 2003-07-04 2005-01-27 Honda Motor Co Ltd 部品搬送・取付方法およびその装置
JP2007283450A (ja) 2006-04-18 2007-11-01 National Institute Of Advanced Industrial & Technology 人間ロボット共存作業用安全装置
JP2008302496A (ja) 2006-07-04 2008-12-18 Panasonic Corp ロボットアームの制御装置及び制御方法、ロボット、及びロボットアームの制御プログラム
JP2008264899A (ja) 2007-04-17 2008-11-06 Kawada Kogyo Kk ロボット出力の測定方法および制限装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
P.J.Clark et al, Ecology, Vol.35, No.4, pp. 445-453, Oct.1954

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102075942B1 (ko) * 2019-10-29 2020-02-11 김용이 인공지능 시스템을 이용한 자동차 부품 자동 주문 시스템

Also Published As

Publication number Publication date
JP5260673B2 (ja) 2013-08-14
JP5574202B2 (ja) 2014-08-20
EP2286963A1 (en) 2011-02-23
CN104308849A (zh) 2015-01-28
EP2286963A4 (en) 2013-11-06
WO2010134603A1 (ja) 2010-11-25
EP2286963B1 (en) 2019-05-15
KR101686517B1 (ko) 2016-12-14
CN101970185B (zh) 2015-08-19
US8682482B2 (en) 2014-03-25
JP2013151063A (ja) 2013-08-08
JP5574203B2 (ja) 2014-08-20
JP2013151062A (ja) 2013-08-08
US20110184555A1 (en) 2011-07-28
CN104308848A (zh) 2015-01-28
JPWO2010134603A1 (ja) 2012-11-12
CN104308848B (zh) 2016-06-01
CN104308849B (zh) 2016-06-01
CN101970185A (zh) 2011-02-09

Similar Documents

Publication Publication Date Title
KR20120116516A (ko) 작업 지원 로봇 시스템
US9715227B2 (en) Robot controller having function of predicting processing completion time of machine tool
US10525592B2 (en) Robot system
CN111328305B (zh) 控制设备、作业机器人、程序和控制方法
EP2883116B1 (en) Ultra-flexible production manufacturing
Kinugawa et al. PaDY: Human-friendly/cooperative working support robot for production site
JP5717033B2 (ja) 作業支援システム
JP5641243B2 (ja) 作業支援システム
JP6736488B2 (ja) 作業ロボットを搭載した移動台車
CN110817231B (zh) 一种面向物流场景订单拣选方法、设备和系统
EP3457238A1 (en) Machining devices
US20210331322A1 (en) Method and system for object tracking in robotic vision guidance
JP2020187708A (ja) 工作機械、行動種別の判別方法、および、行動種別の判別プログラム
Nozawa et al. Full-body motion control integrated with force error detection for wheelchair support
Su et al. A method of human-robot collaboration for grinding of workpieces
Shi et al. Mobile robotic assembly on a moving vehicle
JP7343329B2 (ja) ワーク選定及びロボット作業を同時に行うロボット制御システム
JP7448328B2 (ja) ワークの見逃し検知を行う機械システム
KR101455649B1 (ko) 무선 용접 시스템
Kinugawa et al. A path generation method for collision risk reduction and quantitative evaluation of assembly task partner robot
Vidal et al. Development of a flexible and adaptive robotic cell for marine nozzles processing
JP2023119632A (ja) 自走システム、制御方法、および制御プログラム
JP2021057014A (ja) ワークの搬送制御を行う機械システム
Lee et al. Visual servoing of 8-DOF arm for mobile robot platform
KR20200076541A (ko) 이동형 카트에 장착된 의료용 로봇팔의 제어 알고리즘

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20191001

Year of fee payment: 4