KR20120055695A - 실리콘 단결정 인상용 실리카 유리 도가니 및 그 제조 방법 - Google Patents

실리콘 단결정 인상용 실리카 유리 도가니 및 그 제조 방법 Download PDF

Info

Publication number
KR20120055695A
KR20120055695A KR1020127006751A KR20127006751A KR20120055695A KR 20120055695 A KR20120055695 A KR 20120055695A KR 1020127006751 A KR1020127006751 A KR 1020127006751A KR 20127006751 A KR20127006751 A KR 20127006751A KR 20120055695 A KR20120055695 A KR 20120055695A
Authority
KR
South Korea
Prior art keywords
crucible
silica glass
silica
less
opaque
Prior art date
Application number
KR1020127006751A
Other languages
English (en)
Other versions
KR101395859B1 (ko
Inventor
토시아키 스도
마키코 코다마
미노루 칸다
히로시 키시
Original Assignee
쟈판 스파 쿼츠 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 쟈판 스파 쿼츠 가부시키가이샤 filed Critical 쟈판 스파 쿼츠 가부시키가이샤
Publication of KR20120055695A publication Critical patent/KR20120055695A/ko
Application granted granted Critical
Publication of KR101395859B1 publication Critical patent/KR101395859B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/09Other methods of shaping glass by fusing powdered glass in a shaping mould
    • C03B19/095Other methods of shaping glass by fusing powdered glass in a shaping mould by centrifuging, e.g. arc discharge in rotating mould
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B20/00Processes specially adapted for the production of quartz or fused silica articles, not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • C30B35/002Crucibles or containers
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/18Quartz
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1032Seed pulling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

실리콘 단결정 인상 중의 고온 하에 있어서 침입이 억제된 실리카 유리 도가니 및 그 제조 방법을 제공한다.
실리카 유리 도가니(10)는, 도가니의 외표면측에 설치된 다수의 기포를 포함하는 불투명 실리카 유리층(11)과, 도가니의 내표면측에 설치된 투명 실리카 유리층(12)을 구비하며, 불투명 실리카 유리층(11)은, 도가니 상부에 설치된 제1 불투명 실리카 유리 부분(11a)과, 도가니 하부에 설치된 제2 불투명 실리카 유리 부분(11b)을 가진다. 제2 불투명 실리카 유리 부분(11b)의 비중은 1.7~2.1이며, 제1 불투명 실리카 유리 부분(11a)의 비중은 1.4~1.8이며 제2 불투명 실리카 유리 부분의 비중보다도 작다. 제1 불투명 실리카 유리 부분(11a)의 원료 실리카 분말의 입도분포는 제2 불투명 실리카 유리 부분(11b)의 원료 실리카 분말의 입도분포보다도 넓으며, 보다 많은 미분을 포함하고 있다.

Description

실리콘 단결정 인상용 실리카 유리 도가니 및 그 제조 방법{Silica glass crucible for pulling silicon single crystal and method for producing same}
본 발명은 실리콘 단결정 인상용 실리카 유리 도가니 및 그 제조 방법에 관한 것이며, 특히, 실리카 유리 도가니의 높이 방향의 단면구조에 관한 것이다.
실리콘 단결정의 제조에는 실리카 유리 도가니가 사용된다. 쵸크랄스키법(CZ법)에서는, 폴리실리콘을 실리카 유리 도가니에 넣어서 가열 용융하며, 상기 실리콘 융액에 종결정을 침지하여, 도가니와 종결정을 서로 역방향으로 회전시키면서 서서히 인상(引上)하여 단결정을 성장시킨다. 반도체 장치용의 고순도 실리콘 단결정을 제조하기 위하여, 실리카 유리 도가니에 포함되는 불순물의 용출에 의해 실리콘 단결정이 오염되지 않는 것이 요구되며, 또한 도가니 내의 실리콘 융액의 온도제어가 쉬워지게끔 충분한 열용량을 가지는 것도 필요하다. 이 때문에, 다수의 미소한 기포를 포함하는 불투명한 외층과, 기포함유율이 0.1% 이하이며, 기포의 평균 직경이 100μm 이하인 투명한 내층을 가지는 2층 구조의 실리카 유리 도가니가 바람직하게 사용된다 (특허문헌1 참조). 또한, 도가니의 외층을 천연 실리카로 형성하여 고온 하에서의 도가니의 강도를 높임과 동시에, 실리콘 융액에 접촉되는 도가니의 내층을 합성 실리카로 형성하여 불순물의 혼입을 방지하게끔 2층 구조로 된 실리카 유리 도가니도 사용된다(특허문헌2 참조).
최근, 실리콘 웨이퍼의 대형화에 따라 700mm 이상의 대구경의 실리카 유리 도가니가 사용되고 있으며, 용융량의 증대(增大)나 100시간 이상의 장시간의 인상, 도가니에 있는 히터로부터 단결정까지의 거리가 멀어지기에, 지금보다도 더 강하게 가열함으로써 실리카 유리 도가니에 대한 열부하가 커져, 인상 중의 자중(自重)에 의해 실리카 유리 도가니 하부가 변형되는 침(沈)입(깊이 가라앉음) 현상이 일어난다. 침입을 방지하는 방법으로서는, 도가니의 내표면이나 외표면을 결정화시켜 강화된 실리카 유리 도가니가 알려져 있다. 예를 들면, 특허문헌3에는, 도가니 외표면에 결정화 촉진제를 도포하고, 인상중에 도가니를 결정화시켜서 강화하는 것이 기재되어 있다. 또한 특허문헌4에는, 도가니 외표면에 산수소 화염을 분사하여 결정화 유리층을 도가니 외표면에 형성하는 것이 기재되어 있다. 또한 특허문헌5에는, 도가니 내표면 전체를 샌드 블라스트(sand blast) 등으로 연마하고, 상기 연마면을 산수소 화염에 의해 더 가열 처리하여 평활화게 한 실리카 유리 도가니가 기재되어 있다.
특허문헌 1 : 일본공개특허 평 1-197381호 공보 특허문헌 2 : 일본공개특허 평 1-261293호 공보 특허문헌 3 : 일본공개특허 평 09-110590호 공보 특허문헌 4 : 일본공개특허 평 10-203893호 공보 특허문헌 5 : 일본공개특허 제 2001-328831호 공보
그러나, 특허문헌3에 기재된 종래의 도가니에 있어서, 도가니의 외표면에 도포되는 결정화 촉진제는 실리콘 단결정에 있어서는 불순물이며, 제조된 웨이퍼의 전기적 특성에 악영향을 끼칠 가능성이 있다. 또한, 특허문헌4에 기재된 도가니에 의하면, 도가니 외표면에 산수소 화염을 분사하여 결정화 유리층을 도가니 외표면에 형성할 수 있지만, 산소 분위기 중에서 실리카 유리를 연화점 (약 1700℃) 이상까지 가열하면, 냉각 과정에서 크리스토발라이트 결정이 석출된다. 실리카 유리와 크리스토발라이트에서는 열팽창계수가 크게 다르므로, 이 방법으로 형성된 크리스토발라이트층은 박리되기 쉽고, 실용화에 적합하지 않다. 더욱이 특허문헌5에 기재된 종래의 도가니는, 내표면이 기포를 포함하지 않고, 순도가 높기에 단결정화율이 향상될 수 있는 이점이 지적되어 있지만, 도가니의 자중에 의해 특히 실리카 유리 도가니 하부가 변형되는 침입 현상의 문제는 해결되지 않았다.
본 발명은 상기 과제를 해결하는 것이며, 실리콘 단결정 인상 중의 고온 하에 있어서, 도가니의 침입 현상이 억제된 실리카 유리 도가니 및 그 제조 방법을 제공하는 것을 목적으로 한다.
상기 과제를 해결하기 위하여, 본 발명자들은 연구를 거듭한 결과, 도가니 상부의 불투명 실리카 유리층의 비중을 도가니 하부보다도 작게 하는 것으로써, 실리콘 단결정 인상 중의, 실리카 유리 도가니 외측에 있는 히터로부터의 1,500℃이상의 높은 열부하에 의한 침입을 방지할 수 있으며, 이런 도가니는 사용되는 실리카 분말의 입경을 조정하는 것으로써 용이하게 제조될 수 있다는 것을 알았다. 본 발명은 이러한 기술적 지견에 근거하여 행해진 것이며, 본 발명은, 측벽부, 만곡부 및 저부를 가지는 실리카 유리 도가니에 있어서, 도가니의 외표면측에 설치된 다수의 기포를 포함하는 불투명 실리카 유리층과, 도가니의 내표면측에 설치된 투명 실리카 유리층을 구비하며, 불투명 실리카 유리층은, 도가니의 상단으로부터 상기 상단보다도 아래쪽의 제1 중간위치까지의 범위에 속하는 도가니 상부에 설치된 제1 불투명 실리카 유리 부분과, 상기 제1 중간위치로부터 도가니의 하단까지의 범위, 또는 제1 중간위치보다도 아래쪽의 제2 중간위치로부터 도가니의 하단까지의 범위에 속하는 도가니 하부에 설치된 제2 불투명 실리카 유리 부분을 가지며, 제1 실리카 유리 부분의 높이h1가 도가니 전체의 높이h0에 대하여 0.1h0 이상 0.6h0이하이며, 제2 불투명 실리카 유리 부분의 비중은 1.7 이상 2.1 이하이며, 제1 불투명 실리카 유리 부분의 비중은 1.4 이상 1.8 이하이며 제2 불투명 실리카 유리 부분의 비중보다도 작은 것을 특징으로 한다.
본 발명에 의하면, 도가니 상부의 불투명 실리카 유리층의 비중이 작으므로, 도가니 하부에 가해지는 자중에 의한 부하를 저감할 수 있으며, 도가니의 침입을 억제할 수 있다. 또한, 도가니 상부의 불투명 실리카 유리층이 보다 많은 기포를 포함하기에, 도가니 상부의 보온성을 높일 수 있으며, 예를 들면 냉각 속도 3.0℃/min 등의 급냉각에 의한 실리콘 단결정의 크랙의 발생을 방지할 수 있다.
또한, 본 발명은, 측벽부, 만곡부 및 저부를 가지는 실리카 유리 도가니의 제조 방법에 있어서, 실리카 유리 도가니의 외형에 맞춘 내면을 가지는 중공형상(中空狀)의 몰드를 회전시키면서 몰드 내에 실리카 분말을 공급하고, 몰드의 내면을 따라 실리카 분말층을 형성하는 공정과, 실리카 분말층을 가열하여 실리카 분말을 용융하는 것으로 실리카 유리층을 형성하는 공정을 구비하며, 실리카 분말층을 형성하는 공정은, 도가니의 상단으로부터 상기 상단보다도 아래쪽의 제1 중간위치까지의 범위에 속하는 도가니 상부에 상당하는 위치에 제1 실리카 분말을 공급하는 공정과, 상기 제1 중간위치로부터 도가니의 하단까지의 범위, 또는 상기 제1 중간위치보다도 아래쪽의 제2 중간위치로부터 도가니의 하단까지의 범위에 속하는 도가니 하부에 상당하는 위치에 제2 실리카 분말을 공급하는 공정과, 제1 및 제2 실리카 분말에 의해 덮여진 도가니의 내면에 제3 실리카 분말을 공급하는 공정을 포함하며, 제1 실리카 분말의 입도분포는, 제2 실리카 분말의 입도분포보다 넓으며 또한 보다 많은 미분(微粉)을 포함하는 것을 특징으로 한다.
입경이 비교적 작은 실리카 분말(미분)의 용융 속도는 입경이 큰 실리카 분말(조립, 粗粉)보다도 빠르며, 분위기 중으로부터 인입된 입자 간에 존재하는 공기를, 이미 유리화된 부분이 받아들인다. 즉, 용융 실리카 유리 내로부터 공기가 빠지기 어렵고, 기포함유율이 높아진다. 따라서, 도가니 상부에 사용되는 실리카 분말이 미분을 많이 포함할 경우에는, 도가니 상부의 비중이 작아지고, 도가니의 침입이 완화된다. 본 발명에 의한 상기 효과는, 대형 도가니에 대하여 보다 효과적이다.
본 발명에 있어서, 제1 실리카 분말은, 입경이 50μm 이상 250μm 미만인 것을 60% 이상 포함하는 천연 실리카 분말이며, 제2 실리카 분말은, 입경이 150μm 이상 350μm 미만인 것을 60% 이상 포함하는 천연 실리카 분말인 것이 바람직하다. 이 경우에 있어, 제1 실리카 분말의 입도 분포는, 50μm 미만이 5%~20%, 50μm 이상 250μm 미만이 60%~80%, 250μm 이상이 20% 이하이며, 제2 실리카 분말의 입도 분포는, 150μm 미만이 20% 이하, 150μm 이상 350μm 미만이 60%~80%, 350μm 이상이 10%~20%인 것이 특히 바람직하다. 제1 및 제2 불투명 실리카 유리 부분의 형성에 사용되는 이것들의 실리카 분말의 입경이 상기 조건을 만족시킬 경우에는, 도가니 상부와 도가니 하부를 적절한 비중으로 할 수 있고, 대형 도가니에 있어서 문제로 되는 침입을 확실하게 방지할 수 있다.
본 발명에 있어서, 제3 실리카 분말은, 입경이 200μm 이상 400μm 미만인 것을 50% 이상 포함하는 합성 실리카 분말인 것이 바람직하다. 도가니의 내표면측에 설치된 투명 실리카 유리층의 형성에 사용되는 실리카 분말이 상기 조건을 만족시킬 경우에는, 기포함유율이 그다지 높아지지 않으므로, 실질적으로 기포를 포함하지 않는 불투명 실리카 유리층을 용이하게 형성할 수 있다. 여기에서, 「실질적으로 기포를 포함하지 않는다」라는 것은, 기포를 원인으로 단결정화율이 저하되지 않는 정도의 기포함유율 및 기포 사이즈인 것을 의미하며, 특별히 한정되는 않는 한, 기포함유율이 0.1% 이하이며, 기포의 평균 직경이 100μm 이하인 것을 말한다.
본 발명에 의한 실리카 유리 도가니의 제조 방법은, 실리카 분말층을 가열하여 실리카 분말을 용융할 때, 몰드에 설치된 통기공으로부터 가열 중의 실리카 분말을 탈기함으로써 도가니의 내표면측에 투명 실리카 유리층을 형성하는 공정과, 탈기를 위하여 감압을 약화 또는 정지시킴으로써 도가니의 외표면측에 불투명 실리카 유리층을 형성하는 공정을 포함하는 것이 바람직하다.
본 발명에 의하면, 도가니의 외표면측에 설치된 다수의 기포를 포함하는 불투명 실리카 유리층과, 도가니의 내표면측에 설치된 실질적으로 기포를 포함하지 않는 투명 실리카 유리층을 가지며, 도가니 상부의 불투명 실리카 유리층의 비중이 비교적 작은 실리카 유리 도가니를 확실하게 형성할 수 있다.
본 발명은, 구경이 812mm 이상인 대형의 실리콘 단결정 인상용 실리카 유리 도가니에서 보다 큰 효과를 확인할 수 있다. 구경이 812mm 이상인 대형 도가니는, 직경이 300mm인 실리콘 웨이퍼용 잉곳의 인상에 이용되는 것이며, 대용량이며 중량도 크고, 자중에 의하여 특히 실리카 유리 도가니 하부가 변형되어 버리는 침입 현상이 생기기 쉽다. 그러나, 본 발명에 의하면, 구경이 812mm 이상의 대형 도가니에 있어서 침입을 방지할 수 있고, 실리콘 단결정의 제조 수율을 향상시킬 수 있다.
본 발명에 의하면, 실리콘 단결정의 인상 중의 고온 하에서 도가니의 침입이 효과적으로 방지된 실리카 유리 도가니를 제공할 수 있다. 또한, 본 발명에 의하면, 이러한 실리카 유리 도가니를 용이하게 제조하기 위한 제조 방법을 제공할 수 있다.
도 1은 본 발명의 제1 실시 형태에 의한 실리카 유리 도가니(10)의 구조를 나타내는 개략 단면도이다.
도 2는 실리카 유리 도가니의 제조 방법을 설명하기 위한 플로우차트이다.
도 3은 실리카 유리 도가니(10)의 제조 방법을 설명하기 위한 모식도이다.
도 4는 실리카 유리 도가니(10)의 제조 방법을 설명하기 위한 모식도이다.
도 5는 제1 및 제2 실리카 분말(13a,13b)의 입도분포를 나타내는 그래프이다.
도 6은 본 발명의 제2 실시 형태에 의한 실리카 유리 도가니(20)의 구조를 나타내는 개략 단면도이다.
아래에, 첨부 도면을 참조하면서, 본 발명의 바람직한 실시 형태에 대하여 상세히 설명한다.
도1은, 본 발명의 제1 실시 형태에 의한 실리콘 단결정 인상용 실리카 유리 도가니의 구조를 나타내는 개략 단면도이다.
도1에 도시된 바와 같이, 본 실시 형태에 의한 실리카 유리 도가니(10)는 2층 구조이며, 외층을 구성하는 불투명 실리카 유리층(11)과, 내층을 구성하는 투명 실리카 유리층(12)을 구비하고 있다.
불투명 실리카 유리층(11)은, 다수의 미소한 기포를 내포하는 비정질 실리카 유리층이다. 본 명세서에 있어서 「불투명」이라는 것은, 실리카 유리 중에 다수의 기포가 내재하며, 외관상 백탁(白濁)된 상태를 의미한다. 불투명 실리카 유리층(11)은, 도가니 외주에 배치된 히터로부터의 열을 실리카 유리 도가니 중의 실리콘 융액에 균일하게 전달하는 역할을 한다. 불투명 실리카 유리층(11)은, 투명 실리카 유리층(12)에 비하여 보온성이 높기에, 실리콘 융액의 온도를 쉽게 일정하게 유지할 수 있다.
불투명 실리카 유리층(11)은, 도가니 상부에 위치하는 제1 불투명 실리카 유리 부분(11a)과, 도가니 하부에 위치하는 제2 불투명 실리카 유리 부분(11b)을 가지며, 각각의 기포함유율 및 비중은 다르다. 여기에서, 「도가니 상부」라는 것은, 도가니의 상단 P0으로부터 중간위치 P1까지의 범위에 속하는 부분을 말하며, 「도가니 하부」라는 것은, 「도가니 상부」 아래쪽에 위치하여 있으며, 중간위치 P1로부터 도가니의 하단 P2까지의 범위에 속하는 부분을 말한다. 도가니 전체 높이를 h0으로 할 때, 제1 불투명 실리카 유리 부분(11a)의 높이 h1는 0.1h0~0.6h0인 것이 바람직하다. h1이 0.1h0 미만일 경우에는 제1 불투명 실리카 유리 부분(11a)의 설치로 인한 효과를 얻을 수 없으며, h1이 0.6h0을 초과할 경우에는 도가니의 강도가 저하되어 도가니의 변형이 생기기 쉬워지기 때문이다.
제1 불투명 실리카 유리 부분(11a)은, 제2 불투명 실리카 유리 부분(11b)에 비하여 보다 많은 기포를 포함하며, 그 비중은 비교적 작다. 구체적으로는, 제1 불투명 실리카 유리 부분(11a)의 비중은 1.4~1.8이며, 제2 불투명 실리카 유리 부분(11b)의 비중은 1.7~2.1이며 제1 불투명 실리카 유리 부분(11a)보다도 크다. 양자의 비중차는 0.1~0.3인 것이 바람직하며, 0.2~0.28인 것이 특히 바람직하다. 이와 같이, 제1 불투명 실리카 유리 부분(11a)의 비중이 작음으로써, 도가니 하부에 가해지는 하중(荷重)을 경감시킬 수 있으며, 도가니의 자중에 의해 특히 실리카 유리 도가니 하부가 변형되어 버리는 침입 현상을 억제할 수 있다. 또한, 도가니 내부의 상부 공간의 보온성을 향상시킬 수 있으며, 인상된 실리콘 단결정이 급냉각됨으로써 크랙이 발생하는 것을 방지할 수 있다. 한편, 불투명 실리카 유리의 비중의 측정 원리는 아르키메데스법에 따른다. JIS에 의한 시험 방법에서는, 예를 들면 JIS Z8807이 존재한다.
불투명 실리카 유리층(11)은 천연 실리카 유리로 이루어지는 것이 바람직하다. 천연 실리카 유리란, 천연 수정, 규석 등의 천연 원료를 용융하여 제조된 실리카 유리를 의미한다. 일반적으로 천연 실리카는 합성 실리카에 비하여 금속 불순물의 농도가 높고, OH기의 농도가 낮은 특성을 가진다. 예를 들면, 천연 실리카에 포함되는 Al의 함유량은 1ppm이상이고, 알칼리 금속(Na, K 및 Li)의 함유량은 각각 0.1ppm 이상이며, OH기의 함유량은 60ppm 미만이다. 한편, 천연 실리카인지 아닌지는 하나의 요소에 근거하여 판단되는 것이 아니며, 복수의 요소에 근거하여 종합적으로 판단되어야 한다. 천연 실리카는, 합성 실리카에 비하여 고온에서의 점성이 높기에, 도가니 전체의 내열강도를 높일 수 있다. 또한, 천연 원료는 합성 실리카에 비하여 저렴하기에, 코스트면에서도 유리하다.
투명 실리카 유리층(12)은, 실질적으로 기포를 포함하지 않는 비정질 실리카 유리층이다. 투명 실리카 유리층(12)에 의하면, 도가니 내표면으로부터 박리되는 실리카편(실리카 조각)의 증가를 방지할 수 있으며, 실리콘 단결정화율을 높일 수 있다. 여기에서, 「실질적으로 기포를 포함하지 않는다」라는 것은, 기포를 원인으로 단결정화율이 저하되지 않는 정도의 기포함유율 및 기포 사이즈인 것을 의미하며, 특별히 한정되지 않지만, 기포함유율이 0.1% 이하이며, 기포의 평균 직경이 100μm 이하인 것을 말한다. 불투명 실리카 유리층(11)으로부터 투명 실리카 유리층(12)에의 기포함유율의 변화는 비교적 급준하며, 투명 실리카 유리층(12)의 기포함유율이 증가되기 시작한 위치로부터 도가니의 외표면측을 향하여 30μm 정도 진행된 곳에서 거의 불투명 실리카 유리층(11)의 기포함유율에 달한다. 따라서, 불투명 실리카 유리층(11)과 투명 실리카 유리층(12)은 외관상에서 명확하게 구별될 수 있다.
투명 실리카 유리층(12)의 기포함유율은, 광학적 검출수단을 이용하여 비파괴적으로 측정할 수 있다. 광학적 검출수단은, 검사되는 실리카 유리 도가니의 내표면 및 내표면 부근의 내부에 조사(照射)된 빛의 반사광을 받는 수광장치(受光裝置)를 구비한다. 조사광의 발광수단은 내장된 것이어도 좋고, 또는 외부의 발광수단을 이용하는 것이어도 좋다. 또한, 광학적 검출수단은, 실리카 유리 도가니의 내표면에 따라 회동(回動) 조작될 수 있는 것을 이용할 수 있다. 조사광으로서는, 가시광, 자외선 및 적외선 이외, X선 혹은 레이저광 등을 이용할 수 있으며, 반사되어 기포를 검출할 수 있는 것이면 모두 적용될 수 있다. 수광장치는 조사광의 종류에 따라 선택되지만, 예를 들면 수광렌즈 및 촬상부를 포함하는 광학 카메라를 이용할 수 있다. 표면으로부터 일정 깊이에 있는 기포를 검출하기 위하여서는, 광학 렌즈의 초점을 표면으로부터 깊이 방향으로 주사(走査)하면 된다.
상기 광학검출 수단에 의한 측정 결과는 화상처리 장치에 입수되어, 기포함유율P(%)이 산출된다. 상세하게는, 광학 카메라를 이용하여 도가니 내표면의 화상을 촬상하고, 도가니 내표면을 일정한 면적마다 구분하여 기준면적 S1로 하고, 이 기준면적 S1마다 기포의 점유 면적 S2를 구하여, P(%)=(S2/S1)×100에 의해 산출된다.
투명 실리카 유리층(12)은 합성 실리카 유리로부터 이루어지는 것이 바람직하다. 합성 실리카 유리라는 것은, 예를 들면 규소 알콕시드(silicon alkoxide)의 가수분해에 의해 합성된 원료를 용융하여 제조된 실리카 유리를 의미한다. 일반적으로 합성 실리카는 천연 실리카에 비하여 금속 불순물의 농도가 낮으며, OH기의 농도가 높은 특성을 가진다. 예를 들면, 합성 실리카에 포함되는 각 금속 불순물의 함유량은 0.05ppm 미만이며, OH기의 함유량은 30ppm 이상이다. 단지, Al 등의 금속 불순물이 첨가된 합성 실리카로 알려진 것으로부터, 합성 실리카인지 아닌지는 하나의 요소에 근거하여 판단되어야 하는 것이 아니며, 복수의 요소에 근거하여 종합적으로 판단되어야 한다. 이와 같이, 합성 실리카 유리는 천연 실리카 유리에 비하여 불순물이 적기에, 도가니로부터 실리콘 융액 중에 용출되는 불순물의 증가를 방지할 수 있어, 실리콘 단결정화율을 높일 수 있다.
불투명 실리카 유리층(11) 및 투명 실리카 유리층(12)은 함께 도가니의 측벽부(10A)로부터 저부(10B)까지의 도가니 전체에 설치되어 있다. 도가니의 측벽부(10A)는, 도가니의 중심축(Z축)과 평행되는 원통 형상의 부분이며, 도가니의 개구로부터 대략 바로 아래로 연장되어 있다. 그러나, 측벽부(10A)는 Z축에 대하여 완전히 평행될 필요는 없으며, 개구를 향하여 서서히 넓혀지도록 경사지어도 좋다. 또한, 측벽부(10A)는 직선적이어도 좋고, 완만하게 만곡되어도 좋다. 특별히 한정되지 않는 한, 측벽부(10A)는 Z축과 직교되는 XY평면에 대한 도가니 벽면의 접선경사각이 80도 이상으로 되는 영역으로 정의될 수 있다.
도가니의 저부(10B)는, 도가니의 Z축과의 교점을 포함하는 비교적 평탄한 부분이며, 저부(10B)와 측벽부(10A)의 사이에는 만곡부(10C)가 형성되어 있다. 저부(10B)는, 인상되는 실리콘 단결정의 투영면(投影面)을 커버하는 것이 바람직하다. 도가니 저부(10B)의 형상은 소위 둥근 밑바닥이어도 좋고, 평평한 밑바닥이어도 좋다. 또한, 만곡부(10C)의 곡률이나 각도도 임의로 설정될 수 있다. 도가니 저부(10B)가 둥근 밑바닥일 경우에는, 저부(10B)도 적당한 곡률을 가지지 때문에, 저부(10B)와 만곡부(10C)의 곡률차는 평평한 밑바닥에 비하여 매우 작다. 도가니 저부(10B)가 평평한 밑바닥일 경우에, 저부(10B)는 평탄하거나 또는 지극히 완만한 만곡면을 이루게 되며, 만곡부(10C)의 곡률은 매우 크다. 특별히 한정되는 것은 아니지만, 평탄한 밑바닥일 경우, 저부(10B)는, Z축과 직교되는 XY평면에 대하여 도가니 벽면의 접선경사각이 30도 이하로 되는 영역으로 정의될 수 있다.
도가니의 두께는 10mm 이상인 것이 바람직하고, 13mm 이상인 것이 보다 바람직하다. 보통, 구경이 812mm (32인치) 이상의 대형 도가니의 두께는 10mm 이상, 구경이 1016mm (40인치) 이상의 대형 도가니의 두께는 13mm 이상이며, 이것들의 대형 도가니는 대용량으로 장시간의 인상에 이용되기 때문에 침입이 생기기 쉽지만, 상기 범위로 하면 본 발명에 의한 효과가 현저하게 된다. 도가니의 두께는 측벽부(10A)로부터 저부(10B)까지 일정할 필요는 없으며, 예를 들면, 만곡부(10C)의 두께가 가장 두꺼우며, 측벽부(10A)의 상단이나 저부(10B)의 중심을 향하여 얇아지게 구성되어도 좋다.
투명 실리카 유리층(12)의 두께는, 0.5mm 이상인 것이 바람직하고, 1.0mm 이상인 것이 보다 바람직하다. 투명 실리카 유리층(12)이 0.5mm 보다도 얇을 경우에는, 실리콘 단결정의 인상 중에 투명 실리카 유리층(12)이 용손(溶損) 절단되어 불투명 실리카 유리층(11)이 노출될 우려가 있기 때문이다. 한편, 투명 실리카 유리층(12)의 두께는 측벽부(10A)로부터 저부(10B)까지 일정할 필요는 없으며, 예를 들면, 만곡부(10C)의 투명 실리카 유리층(12)의 두께가 가장 두껍고, 측벽부(10A)의 상단이나 저부(10B)의 중심을 향하여 얇게 구성되어도 좋다.
이상에 설명된 바와 같이, 본 실시 형태에 의하면, 도가니 상부의 제1 불투명 실리카 유리 부분(11a)의 비중이 도가니 하부의 제2 불투명 실리카 유리 부분(11b)의 비중보다 작으므로, 도가니의 대형화로 인한 도가니의 침입을 억제할 수 있다. 또한, 제1 불투명 실리카 유리 부분(11a)이 보다 많은 기포를 포함하는 것으로부터, 도가니 상부의 보온성을 높일 수 있고, 인상 도중의 실리콘 단결정을 보온할 수 있으며, 급냉각에 의한 크랙의 발생을 방지할 수 있다.
다음에, 도2 내지 도4를 참조하면서, 실리카 유리 도가니(10)의 제조 방법에 대하여 상세히 설명한다.
도2는, 실리카 유리 도가니(10)의 제조 공정을 개략적으로 나타내는 플로우차트이다. 또한, 도3 및 도4는, 실리카 유리 도가니(10)의 제조 방법을 설명하기 위한 모식도이다.
실리카 유리 도가니(10)는 회전 몰드법에 의해 제조될 수 있다. 회전 몰드법에서는, 도3에 도시된 바와 같이, 실리카 유리 도가니(10)의 외형에 맞춘 캐비티를 가지는 카본 몰드(14)를 준비하고, 몰드(14)를 회전시키면서 실리카 분말을 공급하고, 몰드의 내면에 따른 실리카 분말층을 형성한다. 이때, 도가니 상부에 상당하는 캐비티 상부에 제1 실리카 분말(13a)을 공급하고, 도가니 하부에 상당하는 캐비티 하부에 제2 실리카 분말(13b)을 공급한다 (스텝S11). 제1 및 제2 실리카 분말(13a,13b)의 공급순서는 특별히 관계되지 않는다. 카본 몰드(14)는 일정 속도로 회전되고 있으므로, 공급된 실리카 분말은 원심력에 의해 내면에 붙은 채로 일정의 위치에 머물러, 그 형상이 유지된다.
제1 및 제2 실리카 분말(13a,13b)은 함께 불투명 실리카 유리층(11)으로 되지만, 특히, 제1 실리카 분말은 제1 불투명 실리카 유리 부분(11a)으로 되고, 제2 실리카 분말은 제2 불투명 실리카 유리 부분으로 된다. 때문에, 제1 실리카 분말(13a)은 제2 실리카 분말(13b)에 비하여 보다 많은 미분을 포함한다. 반대로, 제2 실리카 분말(13b)은 제1 실리카 분말(13a)보다도 다공질성이 높으며 입도(粒度)도 거칠다. 한편, 본 명세서에 있어서, 「미분」이라는 것은, 입경이 150μm 이하의 입자로 이루어지는 분말을 의미한다. 따라서, 「보다 많은 미분을 포함한다」라는 것은, 후술되는 입도 분포에 있어서 입경이 150μm 이하의 입자의 비율이 보다 큰 것을 의미한다.
본 실시 형태에 있어서, 제1 실리카 분말(13a)은, 입경이 50μm 이상 250μm 미만인 것을 60% 이상 포함하는 천연 실리카 분말인 것이 바람직하고, 제1 실리카 분말(13a)의 입도분포는, 50μm 미만이 5%~20%, 50μm 이상 250μm 미만이 60%~80%, 250μm 이상이 20% 이하인 것이 바람직하다. 또한, 제2 실리카 분말(13b)은, 입경이 150μm 이상 350μm 미만인 것을 60% 이상 포함하는 천연 실리카 분말인 것이 바람직하며, 제2 실리카 분말(13b)의 입도분포는, 150μm 미만이 20% 이하, 150μm 이상 350μm 미만이 60%~80%, 350μm 이상이 10%~20%인 것이 바람직하다.
다음, 도4에 도시된 바와 같이, 불투명 실리카 유리층(11)의 원료가 되는 제1 및 제2 실리카 분말(13a,13b)의 층이 형성된 몰드(14) 내에 투명 실리카 유리층(12)의 원료가 되는 제3 실리카 분말(13c)이 공급되어, 실리카 분말층이 더욱 두껍게 형성된다 (스텝S12). 제3 실리카 분말(13c)은, 몰드 내 전체에 소정의 두께로 공급된다. 제3 실리카 분말(13c)은, 입경이 200μm 이상 400μm 미만인 것을 50% 이상 포함하는 합성 실리카 분말인 것이 바람직하지만, 천연 실리카 분말이여도 좋다. 한편, 입경 및 입도 분포의 시험(試驗) 방법으로는, 예를 들면 JIS K8819-9-3을 들 수 있다.
상기 실리카 분말의 입도 분포는, 레이저 회절?산란식 입도 측정장치를 이용하여 구한 값이다. 이 입도 분포 측정장치는, 광학대(光學台), 시료 공급부, 제어용 컴퓨터를 구비하며, 파장이 일정한 레이저광을 입자에 비추어 그 산란광의 강도 패턴으로부터 체적기준의 입도분포를 컴퓨터로 계산한다. 레이저 회절?산란법의 경우에, 직경이 1μm인 구(球)와 동일한 회절?산란광의 패턴을 나타내는 피측정 입자의 직경은, 그 형상에 관계없이 직경이 1μm로 판별된다. 입도분포 측정장치에 의하면, 시료의 특성에 알맞는 시료 공급부를 선정(選定)함으로써, 건식(乾式)이나 습식(濕式)에 관계없이 시료를 최적인 상태로 측정할 수 있다.
도5는, 상기 레이저 회절?산란식 입도 측정장치를 이용하여 제1, 제2 실리카 분말(13a,13b)의 입도분포를 측정한 결과를 나타내는 그래프이다. 도5에 있어서, 횡축은 실리카 분말의 입경(μm), 좌세로축(左縱軸)은 존재율(%), 우세로축(右縱軸)은 존재율의 누적치(累積値)(%)를 각각 나타내고 있다. 또한, 막대그래프는 입경마다의 존재율을 나타내며, 곡선 그래프는 존재율의 누적치를 나타낸다.
도5에 도시된 바와 같이, 제1 실리카 분말(13a)은, 140μm 부근에서 완만한 피크를 가지며, 입도 분포의 범위가 넓다. 즉, 제1 실리카 분말(13a)의 입도 분포는, 50μm 미만이 5%~20%, 50μm 이상 250μm 미만이 60%~80%, 250μm 이상이 20% 이하로 되어 있다. 한편, 제2 실리카 분말(13b)은, 약 170μm 부근에서 급준한 피크를 가지며, 입도 분포의 범위가 좁다. 즉, 제2 실리카 분말(13b)의 입도 분포는, 150μm 미만이 20% 이하, 150μm 이상 350μm 미만이 60%~80%, 350μm 이상이 10%~20%로 되어 있다. 한편, 입도분포의 범위란, 입도분포에 있어서의, 누적치 90%에서의 입경과 누적치 10%에서의 입경의 차(差)에 의해 정의되며, 상기 차가 큰 것을 「입도 분포가 넓다」라고 한다.
그 후, 캐비티내에 아크 전극(15)을 설치하고, 몰드의 내측으로부터 아크 방전을 실시하여, 실리카 분말층 전체를 1720℃ 이상으로 가열하여 용융한다. 또한, 가열하는 동시에 몰드측에서 감압(減壓)하여, 몰드에 설치된 통기공을 통하여 실리카 내부의 기체를 외층측에 흡인하여, 가열 중의 실리카 분말을 탈기 함으로써, 도가니 내표면의 기포를 제거하여, 실질적으로 기포를 포함하지 않는 투명 실리카 유리층(12)을 형성한다 (스텝S13). 여기에서, 「실질적으로 기포를 포함하지 않는다」라는 것은, 기포가 원인으로 인하여 단결정화율이 저하되지 않는 정도의 기포함유율 및 기포 사이즈인 것을 의미하며, 특별히 한정되는 것이 아니지만, 기포함유율이 0.1% 이하이며, 기포의 평균 직경이 100μm 이하인 것을 말한다. 그 후, 가열을 계속하면서, 탈기시키기 위한 감압을 약화 또는 정지하여, 기포를 잔류시킴으로써, 다수의 미소한 기포를 내포하는 불투명 실리카 유리층(11)을 형성한다 (스텝S14). 이때, 원료의 차이로 인하여, 제1 불투명 실리카 유리 부분(11a)의 기포함유율은 제2 불투명 실리카 유리 부분(11b)보다도 높으며, 제1 불투명 실리카 유리 부분(11a)의 비중은 제2 불투명 실리카 유리 부분(11b)보다도 작게 된다. 이상과 같이, 본 실시 형태에 의한 실리카 유리 도가니가 완성된다.
이와 같이, 본 실시 형태에 의한 실리카 유리 도가니의 제조 방법은, 불투명 실리카 유리층(11)의 원료 분말의 입도분포를 도가니의 상부와 하부에서 다르게 하는 것으로써, 제1 불투명 실리카 유리 부분(11a)과 제2 불투명 실리카 유리 부분(11b)으로 분리되기 때문에, 도가니에 대하여 부분적인 가열이나 흡인을 행할 필요가 없고, 도가니 상부의 불투명 실리카 유리층의 비중과 도가니 하부의 불투명 실리카 유리층의 비중을 극히 간단히 다르게 할 수 있다.
상기 제1 실시 형태에 있어서, 불투명 실리카 유리층(11)의 비중을 도가니 상부와 도가니 하부 2단계로 나누어 구성되어 있지만, 본 발명은 2단계에 한정되는 것이 아니며, 3단계 이상으로 분리되어 구성될 수도 있다.
도6은, 본 발명의 제2 실시 형태에 의한 실리콘 단결정 인상용 실리카 유리 도가니의 구조를 나타내는 개략 단면도이다.
도6에 도시된 바와 같이, 본 실시 형태에 의한 실리카 유리 도가니(20)는, 도가니 상부에 위치하는 제1 불투명 실리카 유리 부분(11a), 도가니 하부에 위치하는 제2 불투명 실리카 유리 부분(11b), 도가니 중간부에 위치하는 제3 불투명 실리카 유리 부분(11c)을 가지며, 각 부분의 기포함유율 및 비중이 다른 것을 특징으로 한다. 즉, 불투명 실리카 유리층(11)의 비중의 변화가 높이 방향으로 3단계로 되어 있으며, 아래쪽일수록 비중이 높은 것을 특징으로 한다.
여기에서, 「도가니 상부」라는 것은, 도가니의 상단 P0으로부터 제1 중간위치 P11까지의 범위에 속하는 부분을 말하며, 「도가니 하부」라는 것은, 「도가니 상부」보다 아래쪽에 위치하며, 제1 중간위치 P11보다도 낮은 제2 중간위치 P12로부터 도가니의 하단 P2까지의 범위에 속하는 부분을 말하며, 「도가니 중간부」라는 것은, 제1 중간위치 P11로부터 제2 중간위치 P12까지의 범위에 속하는 부분을 말한다. 바꿔 말하면, 「도가니 상부」와 「도가니 하부」 이외의 부분이 「도가니 중간부」이며, 「도가니 중간부」는, 1단계 (이 경우, 도가니 중간부 내에서 비중이 변화되지 않는다)여도 좋고 복수단계 (이 경우, 도가니 중간부내에서 비중이 변화된다)여도 좋다. 그리고, 「도가니 중간부」와 「도가니 하부」의 경계위치는 제2 중간위치 P12이다.
구체적으로는, 제1 불투명 실리카 유리 부분(11a)의 높이(h1)를 0.3h0, 제2 불투명 실리카 유리 부분(11a)의 높이를 0.4h0, 제3 불투명 실리카 유리 부분(11c)의 높이를 0.3h0로 설정할 수 있다. 또한, 제1 불투명 실리카 유리 부분(11a)의 높이(h1)를 0.1h0, 제2 불투명 실리카 유리 부분(11b)의 높이를 0.4h0, 제3 불투명 실리카 유리 부분(11c)의 높이를 0.5h0로 설정해도 좋다. 이것들의 구체적인 예는 모두, 제1 실시 형태에서 나타내는 제1 불투명 실리카 유리 부분(11a)의 높이 h1이 0.1h0~0.6h0인 조건을 만족시킨다.
제1, 제2 불투명 실리카 유리 부분(11a,11b)의 기포함유율 및 비중은, 제1 실시 형태에 의한 실리카 유리 도가니(10)와 동일하다. 즉, 제1 불투명 실리카 유리 부분(11a)의 비중은 1.4~1.8이며, 제2 불투명 실리카 유리 부분(11b)의 비중은 1.7~2.1이며, 제1 불투명 실리카 유리 부분(11a)보다도 크다. 제3 불투명 실리카 유리 부분(11c)의 기포함유율 및 비중은, 제1, 제2 불투명 실리카 유리 부분(11a,11b)의 중간치이며, 제1 불투명 실리카 유리 부분(11a)의 비중보다도 크며, 제2 불투명 실리카 유리 부분(11b)의 비중보다도 작다.
제1 불투명 실리카 유리 부분(11a)의 원료인 제1 실리카 분말(13a)은, 입경이 50μm 이상 250μm 미만인 것을 60% 이상 포함하는 천연 실리카 분말인 것이 바람직하며, 제1 실리카 분말(13a)의 입도 분포는, 50μm 미만이 5%~20%, 50μm 이상 250μm 미만이 60%~80%, 250μm 이상이 20% 이하인 것이 바람직하다. 또한, 제2 불투명 실리카 유리 부분(11b)의 원료인 제2 실리카 분말(13b)은, 입경이 150μm 이상 350μm 미만인 것을 60% 이상 포함하는 천연 실리카 분말인 것이 바람직하며, 제2 실리카 분말(13b)의 입도 분포는, 150μm 미만이 20% 이하, 150μm 이상 350μm 미만이 60%~80%, 350μm 이상이 10%~20%인 것이 바람직하다.
더욱이, 제3 불투명 실리카 유리 부분(11c)의 원료는, 제1 실리카 분말(13a)과 제2 실리카 분말(13b)이 소정의 비율로 혼합된 것을 이용하는 것이 바람직하다. 이렇게 하면, 제1 불투명 실리카 유리 부분(11a)보다도 크며 또한 제2 불투명 실리카 유리 부분(11b)보다도 작은 비중을 가지는 제3 불투명 실리카 유리 부분(11c)을 용이하게 형성할 수 있다.
이상에 설명한 바와 같이, 본 실시 형태에 의한 실리카 유리 도가니(20)는, 도가니 상부와 도가니 하부의 사이에 도가니 중간부를 설치하며, 도가니 중간부에 위치하는 제3 불투명 실리카 유리 부분(11c)의 비중을 도가니 상부보다도 크게 하는 동시에 도가니 하부보다도 작게 하기에, 제1 실시 형태와 동일한 작용 효과를 얻을 수 있다.
이상과 같이, 본 발명의 바람직한 실시 형태에 대하여 설명하였지만, 본 발명은, 상기 실시 형태에 한정되는 것이 아니며, 본 발명의 취지를 벗어나지 않는 범위에서 여러 가지 변경이 가능하며, 이것들도 본 발명의 범위에 포함된다.
(실시예1)
구경이 812mm인 실리카 유리 도가니 샘플 A1을 준비했다. 실리카 유리 도가니 샘플 A1의 사이즈는, 직경이 812mm, 높이가 500mm이다. 또한, 도가니의 두께는 측벽부에서 18mm, 만곡부에서 20mm, 저부에서 18mm이며, 측벽부의 투명 실리카 유리층(12)의 두께는 1.0mm로 했다.
실리카 유리 도가니 샘플 A1은 회전 몰드법에 의해 제조되며, 제1 불투명 실리카 유리 부분(11a)의 원료에는 입경이 50μm 이상 250μm 미만인 것을 60% 포함하는 천연 실리카 분말을 이용하며, 제2 불투명 실리카 유리 부분(11b)의 원료에는 입경이 150μm 이상 350μm 미만인 것을 60% 이상 포함하는 천연 실리카 분말을 이용했다. 더욱이, 투명 실리카 유리층(12)의 원료에는 입경이 200μm 이상 400μm 미만인 것을 60% 포함하는 합성 실리카 분말을 이용했다. 한편, 상기 원료 분말의 입도분포 측정에는 레이저 회절?산란식 입도 측정장치를 이용했다. 이 입도분포 측정장치는, 파장이 일정한 레이저광을 입자에 비추어 그 산란광의 강도 패턴으로부터 체적기준의 입도 분포를 산출하는 것이다.
상기 도가니 샘플 A1과 동일한 조건으로 제조된 다른 샘플에서 제1 및 제2 불투명 실리카 유리 부분(11a, 11b)의 비중을 구한 바, 제1 불투명 실리카 유리 부분(11a)의 비중은 1.62이며, 제2 불투명 실리카 유리 부분(11b)의 비중은 1.86이었다.
다음에, 상기 실리카 유리 도가니에 다결정 실리콘 쇄편 300kg을 공급한 후, 실리카 유리 도가니를 단결정 인상장치에 장착하고, 도가니 내의 다결정 실리콘을 로 내에서 융해하여, 직경이 약 300mm의 실리콘 단결정 잉곳의 인상을 행했다.
그 뒤, 사용 후의 도가니 변형을 확인했다. 또한, 인상된 실리콘 단결정의 단결정화율을 구했다. 그 결과를 표1에 나타낸다. 단결정화율은, 실리콘 원료에 대한 단결정의 중량비로 정의된다. 단지, 도가니 내의 모든 실리콘 융액이 사용되는 것은 아니며, 또한 실리콘 단결정 잉곳의 상부(top부)와 말단부(tail부)를 제외한 직동부만이 단결정화율의 계산 대상이 되기에, 충분한 실리콘 단결정이 인상되어도 단결정화율이 100% 이하 80% 이상이면 양호하다.
표1에 나타내는 바와 같이, 실시예1에 의한 실리카 유리 도가니 샘플 A1은, 인상 사용 후에 있어서, 도가니의 침입이 거의 없었다. 또한, 상기 실리카 유리 도가니 샘플 A1을 사용하여 인상된 실리콘 잉곳의 단결정화율은 88%가 되어, 양호한 단결정화율을 얻을 수 있었다.
(비교예1)
실시예1에 의한 실리카 유리 도가니 샘플 A1과 동일한 형상을 가지는 샘플 B1을 준비했다. 샘플 B1은 회전 몰드법에 의해 제조되었지만, 실시예1과 다르며, 제1 불투명 실리카 유리 부분(11a)의 원료에는 입경이 100μm 이상 300μm 미만인 것을 60% 포함하는 천연 실리카 분말을 이용하며, 제2 불투명 실리카 유리 부분(11b)의 원료에는, 입경이 200μm 이상 400μm 미만인 것을 60% 포함하는 천연 실리카 분말을 이용했다. 더욱이, 투명 실리카 유리층(12)의 원료로서, 입경이 250μm 이상 450μm 미만인 것을 60% 포함하는 합성 실리카 분말을 이용했다. 그 후, 상기 실리카 유리 도가니 A2을 이용하여 실리콘 단결정 잉곳의 인상을 실시하여, 사용 후의 도가니의 변형의 확인 및 실리콘 단결정화율을 구했다. 그 결과를 표1에 나타낸다.
표1에 나타내는 바와 같이, 비교예1에 의한 실리카 유리 도가니 샘플 B1은, 인상 사용 후에 침입이 40mm 정도 생겼다. 또한, 이 실리카 유리 도가니 샘플 B1을 이용하여 인상된 실리콘 잉곳의 단결정화율은 62%로 되어, 단결정화율이 대폭 저하되었다.
Figure pct00001
10…실리카 유리 도가니
10A…도가니의 측벽부
10B…도가니의 저부
10C…도가니의 만곡부
11…불투명 실리카 유리층
11a…제1 불투명 실리카 유리 부분
11b…제2 불투명 실리카 유리 부분
11c…제3 불투명 실리카 유리 부분
12…투명 실리카 유리층
13a…제1 실리카 분말
13b…제2 실리카 분말
13c…제3 실리카 분말
14…카본 몰드
14a…통기공
15…아크 전극
10…실리카 유리 도가니
h0…도가니의 전체 높이
h1…도가니 상부의 높이
h2…도가니 하부의 높이
h3…도가니 중간부의 높이
P0…도가니의 상단
P11…도가니의 제1 중간위치
P12…도가니의 제2 중간위치
P2…도가니의 하단

Claims (6)

  1. 측벽부, 만곡부 및 저부를 가지는 실리콘 단결정 인상용 실리카 유리 도가니에 있어서,
    도가니의 외표면측에 설치된 다수의 기포를 포함하는 불투명 실리카 유리층과, 도가니의 내표면측에 설치된 투명 실리카 유리층을 구비하고,
    상기 불투명 실리카 유리층은, 도가니의 상단으로부터 상기 상단보다도 아래쪽의 제1 중간위치까지의 범위에 속하는 도가니 상부에 설치된 제1 불투명 실리카 유리 부분과, 상기 제1 중간위치로부터 도가니의 하단까지의 범위, 또는 상기 제1 중간위치보다도 아래쪽의 제2 중간위치로부터 도가니의 하단까지의 범위에 속하는 도가니 하부에 설치된 제2 불투명 실리카 유리 부분을 가지며,
    상기 제1 실리카 유리 부분의 높이 h1는 도가니 전체의 높이 h0에 대하여 0.1h0 이상 0.6h0 이하이며,
    제2 불투명 실리카 유리 부분의 비중은 1.7 이상 2.1 이하이며,
    제1 불투명 실리카 유리 부분의 비중은 1.4 이상 1.8 이하이며, 상기 제2 불투명 실리카 유리 부분의 비중보다도 작은 것을 특징으로 하는 실리카 유리 도가니.
  2. 측벽부, 만곡부 및 저부를 가지는 실리콘 단결정 인상용 실리카 유리 도가니의 제조 방법에 있어서,
    상기 실리카 유리 도가니의 외형에 대응되는 내면을 가지는 중공형상의 몰드를 회전시키면서 상기 몰드 내에 실리카 분말을 공급하여 상기 몰드의 내면에 따른 실리카 분말층을 형성하는 공정과,
    상기 실리카 분말층을 가열하여 상기 실리카 분말을 용융하는 것으로써 실리카 유리층을 형성하는 공정을 구비하고,
    상기 실리카 분말층을 형성하는 공정은,
    도가니의 상단으로부터 상기 상단보다도 아래쪽의 제1 중간위치까지의 범위에 속하는 도가니 상부에 상당하는 상기 몰드 내의 소정의 위치에 제1 실리카 분말을 공급하는 공정과,
    상기 제1 중간위치로부터 도가니의 하단까지의 범위, 또는 상기 제1 중간위치보다도 아래쪽의 제2 중간위치로부터 도가니의 하단까지의 범위에 속하는 도가니 하부에 상당하는 상기 몰드 내의 소정의 위치에 제2 실리카 분말을 공급하는 공정과,
    상기 제1 및 제2 실리카 분말에 의해 덮여진 상기 몰드의 내면에 제3 실리카 분말을 공급하는 공정을 포함하며,
    제1 실리카 분말의 입도 분포는 제2 실리카 분말의 입도 분포보다도 넓으며, 또한 보다 많은 미분을 포함하는 것을 특징으로 하는 실리카 유리 도가니의 제조 방법.
  3. 청구항 2에 있어서,
    제1 실리카 분말은 입경이 50μm 이상 250μm 미만인 것을 60% 이상 포함하는 천연 실리카 분말이며,
    제2 실리카 분말은 입경이 150μm 이상 350μm 미만인 것을 60% 이상 포함하는 천연 실리카 분말인 것을 특징으로 하는 실리카 유리 도가니의 제조 방법.
  4. 청구항 3에 있어서
    제1 실리카 분말의 입도 분포는, 50μm 미만이 5%~20%, 50μm 이상 250μm 미만이 60%~80%, 250μm 이상이 20% 이하이며,
    제2 실리카 분말의 입도 분포는, 150μm 미만이 20% 이하, 150μm 이상 350μm 미만이 60%~80%, 350μm 이상이 10%~20%인 것을 특징으로 하는 실리카 유리 도가니의 제조 방법.
  5. 청구항 2에 있어서,
    상기 제3 실리카 분말은, 입경이 200μm 이상 400μm 미만인 것을 50% 이상 포함하는 합성 실리카 분말인 것을 특징으로 하는 실리카 유리 도가니의 제조 방법.
  6. 청구항 2에 있어서,
    상기 실리카 분말층을 가열하여 상기 실리카 분말을 용융할 때, 상기 몰드에 설치된 통기공으로부터 가열 중의 실리카 분말을 탈기함으로써 도가니의 내표면측에 투명 실리카 유리층을 형성하는 공정과,
    상기 탈기를 위한 감압을 약화 또는 정지함으로써 도가니의 외표면측에 불투명 실리카 유리층을 형성하는 공정을 포함하는 것을 특징으로 하는 실리카 유리 도가니의 제조 방법.
KR1020127006751A 2009-09-10 2010-08-20 실리콘 단결정 인상용 실리카 유리 도가니 및 그 제조 방법 KR101395859B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009208853 2009-09-10
JPJP-P-2009-208853 2009-09-10
PCT/JP2010/064053 WO2011030657A1 (ja) 2009-09-10 2010-08-20 シリコン単結晶引き上げ用シリカガラスルツボ及びその製造方法

Publications (2)

Publication Number Publication Date
KR20120055695A true KR20120055695A (ko) 2012-05-31
KR101395859B1 KR101395859B1 (ko) 2014-05-15

Family

ID=43732331

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020127006751A KR101395859B1 (ko) 2009-09-10 2010-08-20 실리콘 단결정 인상용 실리카 유리 도가니 및 그 제조 방법

Country Status (7)

Country Link
US (1) US8936685B2 (ko)
EP (1) EP2476786B1 (ko)
JP (2) JP5022519B2 (ko)
KR (1) KR101395859B1 (ko)
CN (1) CN102575381B (ko)
TW (1) TWI418669B (ko)
WO (1) WO2011030657A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101488594B1 (ko) * 2012-04-28 2015-01-30 루오양 하이-테크 메탈스 컴퍼니 리미티드 비 일체형 도가니
KR20210052346A (ko) * 2019-10-31 2021-05-10 쿠어스택 가부시키가이샤 석영 유리 도가니 및 그의 제조 방법

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4922355B2 (ja) * 2009-07-15 2012-04-25 信越石英株式会社 シリカ容器及びその製造方法
EP2835452A4 (en) * 2013-04-08 2016-02-24 Shinetsu Quartz Prod SILICON DIOXIDE TIP FOR PULLING A SILICONE INCRISTAL AND METHOD FOR THE PRODUCTION THEREOF
JP6605784B2 (ja) * 2013-09-25 2019-11-13 株式会社日本触媒 固体微粒子の分級方法
CN105849320B (zh) * 2013-12-28 2018-07-06 胜高股份有限公司 石英玻璃坩埚及其制造方法
JP5925348B2 (ja) * 2015-03-03 2016-05-25 株式会社Sumco シリコン単結晶の製造方法
JP6162848B2 (ja) * 2016-04-19 2017-07-12 株式会社Sumco シリコン単結晶の製造方法
JP7141844B2 (ja) * 2018-04-06 2022-09-26 信越石英株式会社 石英ガラスるつぼの製造方法
JP7150250B2 (ja) * 2018-08-07 2022-10-11 株式会社Sumco 石英ガラスルツボおよび石英ガラスルツボの製造方法
CN109537046A (zh) * 2018-11-30 2019-03-29 邢台晶龙新能源有限责任公司 一种大热场单晶炉
CN114197060A (zh) * 2022-01-07 2022-03-18 上海康碳复合材料科技有限公司 一种碳碳复合材料整体埚托、直筒埚邦及其制备方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8801535A (nl) 1987-09-04 1989-04-03 Nl Omroepproduktie Bedrijf Verbindingsorgaan voor elektrische, informatie bevattende signalen, alsmede werkwijze voor het vervaardigen daarvan.
US4935046A (en) * 1987-12-03 1990-06-19 Shin-Etsu Handotai Company, Limited Manufacture of a quartz glass vessel for the growth of single crystal semiconductor
JPH0692276B2 (ja) 1988-02-03 1994-11-16 三菱マテリアル株式会社 シリコン単結晶引上げ用石英ルツボ
JPH01261293A (ja) 1988-04-12 1989-10-18 Mitsubishi Metal Corp シリコン単結晶引上げ用石英ルツボ
JPH068237B2 (ja) 1988-04-28 1994-02-02 三菱マテリアル株式会社 シリコン単結晶引上げ用石英ルツボ
JPH0781498B2 (ja) 1988-08-29 1995-08-30 大豊建設株式会社 多連形トンネルの築造方法
JP2714860B2 (ja) * 1989-07-28 1998-02-16 東芝セラミックス株式会社 半導体巣結晶引上げ用石英ガラスルツボ
JP3215992B2 (ja) * 1993-05-24 2001-10-09 三菱マテリアルクォーツ株式会社 シリコン単結晶引上げ用石英ルツボ
JP3154916B2 (ja) * 1995-03-13 2001-04-09 東芝セラミックス株式会社 石英ガラス質ルツボ
US5976247A (en) 1995-06-14 1999-11-02 Memc Electronic Materials, Inc. Surface-treated crucibles for improved zero dislocation performance
JPH10203893A (ja) 1997-01-20 1998-08-04 Mitsubishi Materials Shilicon Corp 高強度石英ガラスルツボ及びその製造方法
JP3717151B2 (ja) 2000-03-13 2005-11-16 東芝セラミックス株式会社 シリコン単結晶引上げ用石英ガラスルツボの製造方法
JP2002326889A (ja) * 2001-04-27 2002-11-12 Toshiba Ceramics Co Ltd シリコン単結晶引上げ用石英ガラスルツボ
JP4086283B2 (ja) * 2002-07-31 2008-05-14 信越石英株式会社 シリコン単結晶引上げ用石英ガラスルツボおよびその製造方法
KR100774606B1 (ko) * 2003-05-01 2007-11-09 신에쯔 세끼에이 가부시키가이샤 실리콘 단결정 인상용 석영유리 도가니 및 그 제조방법
FR2858611B1 (fr) * 2003-08-07 2006-11-24 Saint Gobain Ct Recherches Procede de fabrication d'une piece en silice amorphe frittee, moule et barbotine mis en oeuvre dans ce procede
JP2005330157A (ja) * 2004-05-20 2005-12-02 Toshiba Ceramics Co Ltd シリカガラスルツボ
EP2251460B1 (en) 2008-02-29 2017-01-18 Japan Super Quartz Corporation Silica crucible for pulling silicon single crystal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101488594B1 (ko) * 2012-04-28 2015-01-30 루오양 하이-테크 메탈스 컴퍼니 리미티드 비 일체형 도가니
KR20210052346A (ko) * 2019-10-31 2021-05-10 쿠어스택 가부시키가이샤 석영 유리 도가니 및 그의 제조 방법

Also Published As

Publication number Publication date
US20120160159A1 (en) 2012-06-28
JPWO2011030657A1 (ja) 2013-02-07
EP2476786A4 (en) 2013-02-13
EP2476786B1 (en) 2014-02-19
JP5459804B2 (ja) 2014-04-02
TW201131026A (en) 2011-09-16
EP2476786A1 (en) 2012-07-18
JP5022519B2 (ja) 2012-09-12
TWI418669B (zh) 2013-12-11
KR101395859B1 (ko) 2014-05-15
CN102575381A (zh) 2012-07-11
WO2011030657A1 (ja) 2011-03-17
JP2012176895A (ja) 2012-09-13
US8936685B2 (en) 2015-01-20
CN102575381B (zh) 2015-04-01

Similar Documents

Publication Publication Date Title
KR20120055695A (ko) 실리콘 단결정 인상용 실리카 유리 도가니 및 그 제조 방법
KR101133576B1 (ko) 실리콘 단결정 인상용 석영 유리 도가니
JP5072933B2 (ja) シリコン単結晶引き上げ用石英ガラスルツボ及びその製造方法並びにシリコン単結晶の製造方法
KR101165703B1 (ko) 실리콘 단결정 인상용 석영 유리 도가니 및 그 제조 방법
US10822716B2 (en) Quartz glass crucible and manufacturing method thereof
JP5473878B2 (ja) シリコン単結晶引き上げ用石英ガラスルツボの製造方法
KR101234195B1 (ko) 실리콘 단결정 인상용 석영 유리 도가니 및 그 제조 방법
US8394198B2 (en) Silica glass crucible for pulling up silicon single crystal and method for manufacturing thereof
JP5036735B2 (ja) シリコン単結晶引き上げ用石英ガラスルツボ及びその製造方法
CN113348275B (zh) 石英玻璃坩埚、及使用该石英玻璃坩埚的单晶硅的制造方法
KR102342042B1 (ko) 석영 유리 도가니
WO2019193851A1 (ja) 石英ガラスるつぼ及びその製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180427

Year of fee payment: 5