JP5072933B2 - シリコン単結晶引き上げ用石英ガラスルツボ及びその製造方法並びにシリコン単結晶の製造方法 - Google Patents

シリコン単結晶引き上げ用石英ガラスルツボ及びその製造方法並びにシリコン単結晶の製造方法 Download PDF

Info

Publication number
JP5072933B2
JP5072933B2 JP2009235028A JP2009235028A JP5072933B2 JP 5072933 B2 JP5072933 B2 JP 5072933B2 JP 2009235028 A JP2009235028 A JP 2009235028A JP 2009235028 A JP2009235028 A JP 2009235028A JP 5072933 B2 JP5072933 B2 JP 5072933B2
Authority
JP
Japan
Prior art keywords
quartz glass
single crystal
crucible
glass layer
natural
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009235028A
Other languages
English (en)
Other versions
JP2010132534A (ja
Inventor
正徳 福井
智司 工藤
正樹 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Japan Super Quartz Corp
Original Assignee
Sumco Corp
Japan Super Quartz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp, Japan Super Quartz Corp filed Critical Sumco Corp
Priority to JP2009235028A priority Critical patent/JP5072933B2/ja
Priority to US12/607,519 priority patent/US8506708B2/en
Priority to KR1020090103438A priority patent/KR101165598B1/ko
Publication of JP2010132534A publication Critical patent/JP2010132534A/ja
Application granted granted Critical
Publication of JP5072933B2 publication Critical patent/JP5072933B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/09Other methods of shaping glass by fusing powdered glass in a shaping mould
    • C03B19/095Other methods of shaping glass by fusing powdered glass in a shaping mould by centrifuging, e.g. arc discharge in rotating mould
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/09Other methods of shaping glass by fusing powdered glass in a shaping mould
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1004Apparatus with means for measuring, testing, or sensing
    • Y10T117/1008Apparatus with means for measuring, testing, or sensing with responsive control means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1032Seed pulling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1032Seed pulling
    • Y10T117/1052Seed pulling including a sectioned crucible [e.g., double crucible, baffle]

Description

本発明は、シリコン単結晶引き上げ用石英ガラスルツボ及びその製造方法に関し、特に、石英ガラスルツボの層構造に関するものである。また、本発明は、このような石英ガラスルツボを用いたシリコン単結晶の製造方法に関する。
シリコン単結晶の製造には石英ガラスルツボが使用される。チョクラルスキー法(CZ法)では、ポリシリコンを石英ガラスルツボに入れて加熱溶融し、このシリコン融液に種結晶を浸漬し、ルツボと種結晶とを相互に逆方向に回転させながら種結晶を徐々に引き上げて単結晶を成長させる。半導体デバイス用の高純度なシリコン単結晶を製造するためには、石英ガラスルツボの溶出によってシリコン単結晶が汚染されないことが求められ、また石英ガラスルツボには十分な耐熱強度も必要である。
石英ガラスルツボの原料には天然石英と合成石英があり、一般に天然石英は合成石英よりも純度は低いが耐熱強度に優れており、合成石英は天然石英よりも耐熱強度は劣るが純度が高い。そこで、ルツボの外層を天然石英で形成して高温下でのルツボの強度を高める一方、シリコン融液に接触するルツボの内層を合成石英で形成して不純物の混入を防止するようにした二層構造の石英ガラスルツボが一般に使用されている(特許文献1参照)。また、シリコン融液中の酸素溶解量を制御するため、ルツボの直胴部の内表面を合成石英で構成し、外層を構成する天然石英をルツボの底部にて露出させた石英ガラスルツボも提案されている。(特許文献2参照)。
ところで、近年のシリコンインゴットの大型化により、ルツボ内に装填されるシリコンの重量が大きくなっている。そのため、シリコン融液中に含まれる気泡がシリコン融液中から抜けにくくなっており、育成中のシリコン単結晶にこの気泡が取り込まれ、結晶内に空洞欠陥(ボイド又はエアポケットとも呼ばれる)が形成される問題が目立つようになってきた。空洞欠陥の原因としては、石英ガラスルツボの内表面に付着したアルゴン(Ar)ガスや、石英ガラスルツボとシリコン融液との反応によって生じる一酸化ケイ素(SiO)ガスが知られている。気泡に起因する空洞欠陥は概ね球状であり、その大きさ(直径)は300〜500μmが大部分を占めるが、150μm以下の小さな空洞欠陥や1mm以上の非常に大きな空洞欠陥が形成されることもある。このように、気泡に起因する空洞欠陥は、COP(Crystal Originated Particle)のようなGrown−in欠陥とは明らかに異なる特徴を有している。現在、このような空洞欠陥の有無を非破壊検査することはできず、インゴットからウェハーを切り出して初めて検出可能であり、空洞欠陥はウェハーの表面又は内部に貫通又は非貫通の穴(ピンホール)として表れる。
近年、ウェハー中のピンホールが半導体デバイスに対して与える影響は極めて大きい。ピンホールの影響は、その大きさ、個数、発生位置、半導体デバイスの種類によっても異なるが、ピンホールはCOPと比較して非常に大きいサイズであるため、ピンホールが存在する空間にはデバイスを全く形成できない。特に、ウェハー中のピンホールの個数が多い場合には歩留まりが著しく低下するため、ウェハー自体を廃棄せざるを得ない。したがって、ウェハー中にピンホールが含まれる確率を限りなくゼロに近づける必要がある。
この問題を解決するため、例えば特許文献3及び4では、ポリシリコンの融解時の炉内圧を調整する方法が提案されている。また特許文献5では、ルツボに振動を与えてルツボ内表面に付着した気泡を減少させてからシリコン単結晶の育成を開始する方法が提案されている。
特開平1−261293号公報 特開2002−284596号公報 特開平5−9097号公報 特開2000−169287号公報 特開2007−210803号公報
しかしながら、気泡に起因する空洞欠陥がない高品質なシリコン単結晶を製造するためには、上記のようなルツボ内での気泡の発生を防止するための環境や気泡を除去するための工程だけでは十分でなく、ルツボそのものが気泡を発生しにくい性質を有することが求められている。
本発明は上記課題を解決するものであり、シリコン単結晶中に気泡が取り込まれることによる空洞欠陥の発生を防止することが可能なシリコン単結晶引き上げ用石英ガラスルツボを提供することを目的とする。
また、本発明は、空洞欠陥がなく高品質なシリコン単結晶を製造することが可能な石英ガラスルツボの製造方法を提供することを目的とする。
さらに、本発明は、空洞欠陥がなく高品質なシリコン単結晶の製造方法を提供することを目的とする。
本発明者は、上記課題を解決すべく鋭意研究を重ねた結果、石英ガラスルツボとシリコン融液との反応によるSiOガスの発生にはルツボ内表面の微細な傷が大きく関与していることが判明した。ルツボの内表面に微細な傷が存在すると、この傷を核としてSiOガスが発生しやすくなり、このような微細な傷がルツボ内表面の底部に存在すると、この傷を核として発生したSiOガスがシリコン融液中を上昇し、引き上げ中のシリコン単結晶に取り込まれてしまう。つまり、ルツボ底部の内表面に存在する微細な傷は、シリコン単結晶中に空洞欠陥を生じさせる大きな原因であることが明らかとなった。
本発明はこのような技術的知見に基づきなされたものであって、本発明によるシリコン単結晶引き上げ用石英ガラスルツボは、直胴部及び底部を有するシリコン単結晶引き上げ用石英ガラスルツボであって、前記底部の内表面の少なくとも一部を構成する天然石英ガラス層と、少なくとも前記直胴部の内表面を構成する合成石英ガラス層とを備え、前記天然石英ガラス層に含まれるCaの濃度が0.5ppm以下であることを特徴とする。
ルツボ底部の内表面に設けられた天然石英ガラス層は、合成石英ガラス層に比べてシリコン融液への溶解速度が速い。このため、ルツボの底面に微細な傷が存在している場合であっても、ポリシリコンの溶融工程から単結晶の引き上げ開始までの短時間にこの傷を消滅させることができる。したがって、実際に引き上げ工程が開始される頃には、ルツボの底面を微細な傷のない状態とすることが可能となる。このため、微細な傷を核として発生したSiOガスがシリコン融液中を上昇し、シリコン単結晶に取り込まれるという問題を解決することが可能となる。さらに、天然石英ガラス層のCa濃度が0.5ppm以下であることから、失透点の増加を防止することができ、良好な単結晶収率を得ることができる。
本発明による石英ガラスルツボは、前記直胴部及び前記底部において外層を構成する第1の天然石英ガラス層と、前記直胴部及び前記底部において内層を構成し、少なくとも前記直胴部において露出する合成石英ガラス層と、前記合成石英ガラス層の内表面のうち、前記底部の中心を含む領域を覆う第2の天然石英ガラス層を含み、前記第2の天然石英ガラス層に含まれる前記Caの濃度が0.5ppm以下であり、前記第2の天然石英ガラス層の厚さが30μm以上200μm以下であることが好ましい。
ルツボ底部の内表面に設けられた第2の天然石英ガラス層は、合成石英ガラス層に比べてシリコン融液への溶解速度が速い。このため、ルツボの底面に微細な傷が存在している場合であっても、ポリシリコンの溶融工程から単結晶の引き上げ開始までの短時間にこの傷を消滅させることができる。したがって、実際に引き上げ工程が開始される頃には、ルツボの底面を微細な傷のない状態とすることが可能となる。このため、微細な傷を核として発生したSiOガスがシリコン融液中を上昇し、シリコン単結晶に取り込まれるという問題を解決することが可能となる。
また、本発明によるシリコン単結晶引き上げ用石英ガラスルツボは、第2の天然石英ガラス層のCa濃度が0.5ppm以下であることから、失透点の増加を防止することができ、良好な単結晶収率を得ることができる。しかも、第2の天然石英ガラス層の厚さが30μm以上であることから、ルツボの底面に存在する微細な傷を効果的に消滅させることができ、また第2の天然石英ガラス層の厚さが200μm以下であることから、天然石英ガラス層の過度な溶融による単結晶収率の低下を防止することも可能となる。
本発明において、第2の天然石英ガラス層は、底面のうち少なくともシリコン単結晶の投影面に対応する全領域を覆っていることが好ましい。シリコン単結晶の投影面に対応する領域にてSiOガスが発生すると、極めて高い確率でシリコン単結晶に取り込まれてしまうが、第2の天然石英ガラス層がシリコン単結晶の投影面全体を覆っている場合には、そのような問題を解決することができる。
本発明において、第2の天然石英ガラス層のCa濃度は0.4ppm以下であることが特に好ましい。また、第2の天然石英ガラス層の厚さは30μm以上100μm以下であることが特に好ましい。これらの条件によれば、より高い単結晶収率を得ることが可能となる。
本発明による石英ガラスルツボは、前記直胴部及び前記底部において外層を構成する天然石英ガラス層と、前記直胴部において内層を構成する合成石英ガラス層を含み、前記天然石英ガラス層の内表面が前記底部の中心を含む領域において露出しており、前記天然石英ガラス層に含まれる前記Caの濃度が0.5ppm以下であり、前記天然石英ガラス層に含まれるAlの濃度が20ppm以下であることもまた好ましい。
ルツボ底部の内表面を構成する天然石英ガラス層は、合成石英ガラス層に比べてシリコン融液への溶解速度が速い。このため、ルツボの底面に微細な傷が存在している場合であっても、ポリシリコンの溶融工程から単結晶の引き上げ開始までの短時間にこの傷を消滅させることができる。したがって、実際に引き上げ工程が開始される頃には、ルツボの底面を微細な傷のない状態にすることができる。このため、微細な傷を核として発生したSiOガスがシリコン融液中を上昇し、シリコン単結晶に取り込まれるという問題を解決することが可能となる。さらに、本発明によるシリコン単結晶引き上げ用石英ガラスルツボは、天然石英ガラス層のCa濃度が0.5ppm以下、Al濃度が20ppm以下であることから、失透点の増加を防止することができ、良好な単結晶収率を得ることができる。
本発明において、天然石英ガラス層の露出領域は、シリコン単結晶の投影面を含むことが好ましい。シリコン単結晶の投影面を含む領域でSiOガスの気泡が発生すると、極めて高い確率でシリコン単結晶に取り込まれてしまうが、シリコン単結晶の投影面を含む領域が天然石英ガラス層で構成されていれば、気泡の発生を確実に防止することができるからである。特に、天然石英ガラス層の露出領域の直径は、ルツボ口径Rに対して0.3R以上0.6R以下であることが好ましい。天然石英ガラス層の露出領域がルツボ口径に対して上記条件を満たしていれば、耐熱強度不足や不純物の過度な溶出によって単結晶収率を低下させることなく、気泡の発生を確実に防止することができる。
本発明において、天然石英ガラス層に含まれるCaの濃度は0.4ppm以下であることが好ましい。また、天然石英ガラス層に含まれるAlの濃度は10ppm以下であることが好ましい。これらによれば、失透点の増加を確実に防止することができ、さらに良好な単結晶収率を得ることができる。
また、本発明による石英ガラスルツボの製造方法は、回転しているモールドの内表面の略全面に第1の天然石英粉を堆積させる工程と、前記第1の天然石英粉による層の内表面の略全面に合成石英粉を堆積させる工程と、前記合成石英粉による層の内表面のうち底部の少なくとも一部に第2の天然石英粉を選択的に堆積させる工程と、前記第1の天然石英粉、前記合成石英粉及び前記第2の天然石英粉を溶融することにより、前記モールドの内表面全体に形成された第1の天然石英ガラス層と、前記第1の天然石英ガラス層の内表面全体に形成された合成石英ガラス層と、前記合成石英ガラス層の内表面のうち前記底部の中心を含む領域に形成された第2の天然石英ガラス層を有する石英ガラスルツボを成形する工程とを備え、前記第2の天然石英粉に含まれるCaの濃度が0.5ppm以下であることを特徴とする。
また、本発明による石英ガラスルツボの製造方法は、直胴部及び底部において外層を構成する第1の天然石英ガラス層と、前記直胴部及び前記底部において内層を構成する合成石英ガラス層とを有する石英ガラスルツボの基本構造体を作製する工程と、前記石英ガラスルツボの基本構造体の底部の内表面の少なくとも一部に第2の天然石英ガラス層を溶射法によって形成する工程とを備え、前記天然石英ガラス層の原料となる天然石英粉のCa濃度が0.5ppm以下であることを特徴とする。
さらにまた、本発明による石英ガラスの製造方法は、回転しているモールドの内表面に天然石英粉を堆積させる工程と、前記天然石英粉による層の内表面に合成石英粉を堆積させる工程と、前記天然石英粉及び前記合成石英粉を溶融することにより、前記モールドの内表面全体に形成された天然石英ガラス層と、前記天然石英ガラス層の内表面のうち底部の中心を含む領域を除いた領域に形成された合成石英ガラス層を有する石英ガラスルツボを成形する工程とを備え、前記天然石英粉に含まれるCaの濃度が0.5ppm以下であり、前記天然石英粉に含まれるAlの濃度が20ppm以下であることを特徴とする。
本発明によるシリコン単結晶の製造方法は、直胴部及び底部を有し、前記底部の内表面の少なくとも一部が天然石英ガラスによって構成され、少なくとも前記直胴部の内表面が合成石英ガラスによって構成され、前記天然石英ガラスに含まれるCaの濃度が0.5ppm以下である石英ガラスルツボを用意し、前記石英ガラスルツボ内にポリシリコンを充填する工程と、前記石英ガラスルツボ内の前記ポリシリコンを融解させる工程と、前記石英ガラスルツボ内のシリコン融液からシリコン単結晶を引き上げる工程とを備え、前記シリコン単結晶を引き上げる工程は、前記ルツボの底部の内表面の少なくとも一部に露出する前記天然石英ガラスを30μm以上溶解した後、前記シリコン単結晶の胴部の引き上げを開始する工程を含むことを特徴とする。
このように、本発明によれば、シリコン単結晶中に気泡が取り込まれることによる空洞欠陥の発生を防止することができ、高品質のシリコン単結晶を製造することが可能な石英ガラスルツボを提供することができる。
また、本発明によれば、空洞欠陥がなく高品質なシリコン単結晶を製造することが可能な石英ガラスルツボの製造方法を提供することができる。
さらに、本発明によれば、空洞欠陥がなく高品質なシリコン単結晶を製造するための製造方法を提供することができる。
本発明の第1の実施形態によるシリコン単結晶引き上げ用石英ガラスルツボの構造を示す略断面図である。 石英ガラスルツボとシリコン単結晶との位置関係を示す断面図及び平面図である。 本発明の第1の実施形態によるシリコン単結晶引き上げ用石英ガラスルツボの製造方法を示すフローチャートである。 第1の実施形態による石英ガラスルツボを用いたシリコン単結晶の製造方法を示すフローチャートである。 本発明の第2の実施形態によるシリコン単結晶引き上げ用石英ガラスルツボの構造を示す略断面図である。 石英ガラスルツボとシリコン単結晶との位置関係を示す断面図及び平面図である。 本発明の第2の実施形態によるシリコン単結晶引き上げ用石英ガラスルツボの製造方法を示すフローチャートである。
以下、添付図面を参照しながら、本発明の好ましい実施の形態について詳細に説明する。
図1は、本発明の第1の実施の形態によるシリコン単結晶引き上げ用石英ガラスルツボ10の構造を示す略断面図である。
図1に示すように、石英ガラスルツボ10は、ルツボの外層を構成する第1の天然石英ガラス層11と、ルツボの内層を構成する合成石英ガラス層12からなる二層構造を有している。さらに、ルツボの底部10Bの内表面には第2の天然石英ガラス層13が形成されている。そのため、ルツボの直胴部10A及び湾曲部10Cは二層構造であるが、ルツボの底部10Bは三層構造となっている。
第1の天然石英ガラス層11は、天然石英粉を原料とする非晶質シリカガラス層であり、石英ガラスルツボ10の直胴部10Aから底部10Bにわたる全体に設けられている。一般に天然石英は合成石英に比べて金属不純物の濃度が高く、OH基の濃度が低いという特性を有している。例えば、天然石英に含まれるAlの濃度は1ppm以上、アルカリ金属(Na,K及びLi)の濃度はそれぞれ0.05ppm以上、OH基の濃度は50ppm未満である。また、天然石英はX線回折測定等においても合成石英と異なる特性が見られる。尚、天然石英ガラス層か否かは、一つの要素に基づいて判断されるべきものではなく、複数の要素に基づいて総合的に判断されるべきものである。第1の天然石英ガラス層11は、合成石英ガラス層12に比べて高温における粘性が高いことから、ルツボ全体の耐熱強度を高めることができる。また、天然石英は合成石英に比べて安価であり、コスト面でも有利である。
合成石英ガラス層12は、合成石英粉を原料とする非晶質シリカガラス層であり、第1の天然石英ガラス層11と同様、石英ガラスルツボ10の直胴部10Aから底部10Bにわたる全体に設けられている。合成石英としては、例えば、ケイ素アルコキシドの加水分解によって合成された高純度な合成シリカガラスを挙げることができる。一般に合成石英は天然石英に比べて金属不純物の濃度が低く、OH基の濃度が高いという特性を有している。例えば、合成石英に含まれる各金属不純物の濃度は0.05ppm未満であり、OH基の濃度は50ppm以上である。尚、合成石英ガラス層か否かは、一つの要素に基づいて判断されるべきものではなく、複数の要素に基づいて総合的に判断されるべきものである。このように、合成石英ガラス層12は、第1の天然石英ガラス層11と比べて不純物が少ないことから、ルツボからシリコン融液中へ溶出する不純物の増加を防止することができ、シリコン単結晶収率を高めることができる。
第2の天然石英ガラス層13もまた、天然石英粉を原料とする非晶質シリカガラス層であり、石英ガラスルツボ10の底部10Bの内表面に選択的に形成された層である。第2の天然石英ガラス層13は、石英ガラスルツボ10の直胴部10A及び湾曲部10Cには設けられておらず、したがって、石英ガラスルツボ10の内表面のうち、直胴部10A及び湾曲部10Cにおいては合成石英ガラス層12が露出している。第2の天然石英ガラス層13は、ルツボ底部10Bの内表面に形成された微細な傷をポリシリコンの溶融工程から種結晶の引き上げ開始までの期間に消滅させる役割を果たす。
石英ガラスルツボ10の内表面付近は、実質的に気泡を含まない透明層からなることが好ましく、透明層よりも外側は、多数の微小な気泡を含む不透明層からなることが好ましい。ルツボの内表面を透明層とした場合には、ルツボの内表面で剥離する石英片の増加を防止することができ、シリコン単結晶収率を高めることができる。また、ルツボの外側を不透明層とした場合には、ルツボの熱容量を高めることができ、シリコン融液の温度制御が容易となる。
「実質的に気泡を含まない」とは、気泡含有率が0.1%以下であり、気泡の平均直径が100μm以下であることをいう。ここで、気泡含有率は、単位面積(W)に対する気泡占有面積(W)の比(W/W)として定義される。透明層の厚さは、1.0mm以上であることが好ましい。シリコン単結晶の引き上げではルツボ内表面が0.3〜1.0mm程度溶損するが、透明層が1.0mmよりも薄い場合には、シリコン単結晶の引き上げ中に溶損しきって不透明層が露出するおそれがあるからである。不透明層の気泡含有率は0.7〜2%であることが好ましく、気泡の平均直径は100μm程度であることが好ましい。
第2の天然石英ガラス層13は、シリコン単結晶の引き上げ中に溶損しきるものであることから、全体が透明層として構成されていることが必要である。また、合成石英ガラス層12は、全体が透明層として構成されていていることが好ましいが、内側を透明層とし外側を不透明層とする二層構造として構成されていてもよい。合成石英ガラス層12の全体が透明層として構成されている場合、第1の天然石英ガラス層11は、全体が不透明層として構成されていていることが好ましいが、内側を透明層とし外側を不透明層とする二層構造として構成されていてもよい。また、合成石英層12が上記二層構造として構成されている場合、第1の天然石英ガラス層11は、全体が不透明層として構成されることになる。このように、第1の天然石英ガラス層11と合成石英ガラス層12の境界と、透明層と不透明層の境界とは必ずしも一致するものではない。また、透明層の厚さはルツボの部位によっても異なっている。
ルツボの直胴部10Aは、ルツボの中心軸(Z軸)と平行な円筒状の部分であって、ルツボの開口から略真下に延びている。但し、直胴部10AはZ軸に対して完全に平行である必要はなく、開口に向かって徐々に広がるように傾斜していてもよい。また、直胴部10Aは直線的であってもよく、緩やかに湾曲していてもよい。
ルツボの底部10Bは、ルツボのZ軸との交点Oを含む略円盤状の部分であり、底部10Bと直胴部10Aとの間には湾曲部10Cが形成されている。ルツボ底部10Bの形状はいわゆる丸底であってもよく、平底であってもよい。また、湾曲部10Cの曲率や角度も任意に設定することができる。ルツボ底部10Bが丸底の場合には、底部10Bも適度な曲率を有するため、底部10Bと湾曲部10Cとの曲率差は平底に比べて非常に小さい。ルツボ底部10Bが平底の場合には、底部10Bが平坦或いは極めて緩やかな湾曲面をなし、湾曲部10Cの曲率は非常に大きい。なお、底部10Bは、Z軸と直交するXY平面に対するルツボ壁面の接線傾斜角が30度以下となる領域として定義される。
ルツボ内表面には深さが50〜100μm程度の微細な傷が存在している。この微細な傷は、ルツボ製造時に発生するものの他、ルツボ内にポリシリコンを装填したときやポリシリコンの融解を開始したときにポリシリコンとルツボ内表面との接触によって発生するものと考えられる。このような傷があると、傷を核にしてSiOガスが発生し、SiOガスがシリコン融液中を浮上してシリコン単結晶中に取り込まれ、空洞欠陥となる。
しかし、ルツボの底部10Bの内表面が第2の天然石英ガラス層13で構成されている場合には、天然石英ガラス層11の溶解と共に傷を早期に消滅させることができる。天然石英の溶解速度は合成石英よりも大きく、例えば、シリコン融液の温度が1500℃であるとき、合成石英の溶解速度は3〜6μm/hr、天然石英の溶解速度は8〜12μm/hrである。天然石英の溶解速度が合成石英に比較して大きい理由は不明であるが、石英ガラス中の不純物によるものと推測される。このように、天然石英は合成石英と比べてシリコン融液への溶解速度が速いことから、第2の天然石英ガラス層13の表面に存在する微細な傷は、実際にシリコン単結晶の引き上げを行うまでの間の溶解によって消滅又は大幅に減少する。したがって、傷を起点とするSiOガスの発生を抑制することが可能となる。
一方、石英ガラスルツボ10の直胴部10A及び湾曲部10Cの内表面は合成石英ガラス層12で構成されている。そのため、直胴部10Aや湾曲部10Bの内表面に形成された傷は早期に消滅せず、シリコン単結晶の引き上げ中においても存在し続けるが、この傷から発生するSiOガスの気泡がシリコン単結晶中に取り込まれる可能性は極めて低い。これは、シリコン融液中におけるSiOガスの上昇速度が30〜60cm/secであるのに対し、シリコン融液の対流速度が数mm/secしかなく、発生したSiOガスの気泡は対流によって流されることなくシリコン融液中をほぼ垂直に上昇するからである。
したがって、直胴部10A及び湾曲部10Cにおける微細な傷は、空洞欠陥の原因とはならない。むしろ、ルツボの内表面全体を第2の天然石英ガラス層13で構成した場合には、シリコン融液中へ溶出する不純物が増加し、シリコン単結晶収率を低下させる原因となる。このような観点から、本実施形態においては、底部10Bの内表面にのみ第2の天然石英ガラス層13を形成し、直胴部10A及び湾曲部10Cにおいては合成石英ガラス層12を露出させている。但し、本発明において、湾曲部10Cの合成石英ガラス層12を露出させることは必須でなく、少なくとも直胴部10Aの合成石英ガラス層12を露出させれば足りる。
第2の天然石英ガラス層13のカルシウム(Ca)濃度は0.5ppm以下であることが必要である。天然石英には不純物としてのCaが主として酸化カルシウム(CaO)の形で含まれているが、元素レベルでのCa濃度が0.5ppmを超えると局所的な結晶生成による失透点が急激に増加し、その結果として単結晶収率の低下を招くからである。さらに、シリコン融液への不純物の混入を最小限に抑える必要もある。第2の天然石英ガラス層13のCa濃度は、0.4ppm以下であることが好ましい。Ca濃度が0.4ppm以下であれば、より高い単結晶収率を得ることが可能となる。
第1の天然石英ガラス層11はルツボの内表面を構成しないので、Ca濃度は特に限定されない。したがって、第1の天然石英ガラス層11は0.5ppm以下であってもよく、0.5ppmを超えていてもよい。
ルツボの肉厚は8〜30mm程度であることが好ましく、そのうち第1の天然石英ガラス層11の厚さは、ルツボの機械的強度を確保できる限りにおいて特に限定されず、7〜29mm程度であることが好ましい。第1の天然石英ガラス層11の厚さは均一であってもよく、直胴部10Aと底部10Bの厚さが異なっていてもよい。
一方、合成石英ガラス層12の厚さは1.0mm以上であることが必要である。上記のように、シリコン単結晶の引き上げではルツボ内表面が0.3〜1.0mm程度溶損するが、合成石英ガラス層12が1.0mmよりも薄い場合には、シリコン単結晶の引き上げ中に合成石英ガラス層12が溶損しきって天然石英ガラス層11が露出するおそれがあるからである。
第2の天然石英ガラス層13の厚さtは、中心軸Zがルツボ底部10Bを通過する位置における厚さとして定義される。当該位置における厚さは、第2の天然石英ガラス層13の最大厚さである。第2の天然石英ガラス層13の厚さtは、30μm以上200μm以下である必要がある。第2の天然石英ガラス層13の厚さtが30μmよりも小さい場合には石英ガラスルツボ10の底部10Bの微細な傷を十分に消滅又は減少させることができず、底部10BからのSiOガスの発生を十分に抑制できないからである。一方、第2の天然石英ガラス層13の厚さtが200mmよりも大きい場合には、シリコン融液へ溶出する不純物が増加し、シリコン単結晶収率を低下させる原因となるからである。
さらに、第2の天然石英ガラス層13の厚さtは、50μm以上100μm以下であることがより好ましい。これは、SiOガスの発生起点となる微細な傷の深さが50〜100μm程度であり、第2の天然石英ガラス層13の厚さtを上記の範囲に設定すれば、石英ガラスルツボ10の底部10Bの微細な傷をほぼ完全に消滅させることができるからである。しかも、第2の天然石英ガラス層13が必要以上に厚くないことから、シリコン融液への不純物の溶出を抑制することができ、シリコン単結晶収率を高めることができる。
図2は、石英ガラスルツボ10とシリコン単結晶21との位置関係を示す断面図及び平面図である。
図2に示すように、第2の天然石英ガラス層13の平面領域をZ軸方向から見た形状は、Z軸との交点Oを中心とする円形であり、その直径Rは、引き上げられるシリコン単結晶21の直径R以上であることがより好ましい。換言すれば、第2の天然石英ガラス層13の平面領域は、シリコン単結晶21の投影面21Sをカバーしていることが好ましい。尚、シリコン単結晶21の直径Rは、最終製品であるシリコンウェハーの直径よりも数mm〜数十mm大きい。
シリコン単結晶21の直径Rは、石英ガラスルツボ10の形状及びサイズから一義的に定まるものではないが、石英ガラスルツボ10の口径Rに大きく依存する。ルツボの口径Rがシリコン単結晶の直径Rに対して小さすぎると単結晶の酸素濃度や酸素面内分布などといった結晶品質の制御が困難となり、逆に大きすぎると装置や部材を大きくする必要があるのでコスト高になるからである。そのため、シリコン単結晶21の直径Rは、0.3R〜0.6Rに設定されることが通例である。
このような点を考慮すれば、第2の天然石英ガラス層13の平面領域の直径Rは、石英ガラスルツボ10の口径Rに対して、0.3R以上0.6R以下であることが好ましい。第2の天然石英ガラス層13の平面領域の直径Rが0.3Rよりも小さい場合には、シリコン単結晶21の投影面21Sをカバーすることができず、合成石英ガラス層12から発生したSiOガスの気泡がシリコン単結晶21に取り込まれる可能性が高まるからである。一方、第2の天然石英ガラス13の平面領域の直径Rが0.6Rよりも大きい場合には、シリコン単結晶21の投影面21Sを確実にカバーすることができるものの、シリコン融液22中へ溶出する不純物が増加し、シリコン単結晶収率を低下させる原因となるからである。
第2の天然石英ガラス層13の平面領域の直径Rについて具体的に説明すると、例えば32インチ(口径R≒800mm)の石英ガラスルツボを使用して直径約300mmのシリコン単結晶を引き上げる場合、ルツボの底面10Bに形成される第2の天然石英ガラス層13の円形領域の直径Rの下限は0.3R=240mm、上限は0.6R=480mmとなる。通常、32インチルツボは直径約300mmのシリコン単結晶の引き上げに使用され、この場合の第2の天然石英ガラス層13の平面領域の直径Rは300mm程度であることが好ましいが、この値は240mm以上480mm以下という上記条件を満たしている。このように、第2の天然石英ガラス層13の平面領域の直径Rが0.3R以上0.6R以下であれば、単結晶収率をほとんど低下させることなく、引き上げ途中のシリコン単結晶に取り込まれる可能性のあるSiOガスの気泡の発生を効果的に抑制することができる。
上述したように、SiOガスの気泡はほぼ垂直に浮上するが、引き上げ途中のシリコン単結晶21の投影面21Sよりも外側(第2の天然石英ガラス層13が形成されていない領域)で発生した気泡が何らかの原因で水平方向に僅かにシフトしながら浮上し、その結果、シリコン単結晶21に取り込まることも考えられる。しかし、そのような気泡の位置はシリコン単結晶21の外周付近であり、シリコン単結晶21の外周付近は不要な部分として後に研削されるため、たとえ気泡が取り込まれたとしても問題はない。
以上説明したように、本実施形態による石英ガラスルツボ10は、ルツボ底部10Bの内表面に一定の厚さの天然石英ガラス層13が形成されているので、ルツボ底部10Bの内表面にある微細な傷をポリシリコンの溶融開始からシリコン単結晶の引き上げ開始までの短時間のうちに消滅させることができる。したがって、ルツボ内表面の傷に起因するSiOガスの発生を抑制することができ、シリコン単結晶内の空洞欠陥の発生を防止することができる。
次に、図3のフローチャートを参照しながら、石英ガラスルツボ10の製造方法について説明する。
石英ガラスルツボ10は回転モールド法によって製造することができる。回転モールド法では、回転しているカーボンモールドの内表面に第1の天然石英ガラス層11の原料となる天然石英粉(第1の天然石英粉)を所定の厚さにて堆積させ(ステップS11)、次いで第1の天然石英粉による層の内表面に合成石英ガラス層12の原料となる合成石英粉を所定の厚さにて堆積させ(ステップS12)、さらに合成石英粉による層の内表面の底部に第2の天然石英ガラス層13の原料となる天然石英粉(第2の天然石英粉)を所定の厚さにて堆積させる(ステップS13)。このとき、第2の天然石英粉は合成石英粉による層の底部にのみ堆積され、直胴部には堆積されない。
このとき用いられる第2の天然石英粉のCa濃度は、第1の天然石英粉のCa濃度よりも低いことが好ましく、Ca濃度は0.5ppm以下である必要がある。第1の天然石英粉のCa濃度は特に限定されず、0.5ppm以上であってもよい。第2の天然石英ガラス層13の面積(直径)及び厚さは、第2の天然石英粉の充填位置や充填重量によって調整することができ、モールドの回転速度によっても調整することができる。第2の天然石英ガラス層13はルツボ底部10Bにのみ形成すればよいことから、そのための天然石英粉の充填量は、第1の天然石英ガラス層11の形成時よりも少なくてよい。
その後、モールド中央上部に設置したアーク電極による放電加熱によって、モールドの内側から石英粉の内表面全体を1720℃以上に加熱し、石英粉をアーク溶融する(ステップS14)。また、この加熱と同時にモールド側から減圧し、モールドに設けた通気口を通じて溶融石英内の気体を外層側に吸引し、通気口を通じて外部に排出することにより、ルツボ内表面の気泡を部分的に除去し、実質的に気泡のない透明層を形成する。その後、減圧を弱めるか又は停止し、さらに加熱を続けて気泡を残留させることにより、多数の微小な気泡を含む不透明層を形成する。
以上により、ルツボの底部及び直胴部において外層を構成する第1の天然石英ガラス層11と、ルツボの直胴部において内表面を構成する合成石英ガラス層12と、ルツボの底部において内表面を構成する第2の天然石英ガラス層13とを備えた石英ガラスルツボ10が完成する。
石英ガラスルツボ10の第2の天然石英ガラス層13はいわゆる溶射法によっても製造することができる。具体的には、アーク溶融法によって第1の天然石英ガラス層11及び合成石英ガラス層12からなる石英ガラスルツボの基本構造を作製した後、この石英ガラスルツボの底部の内表面に天然石英粉を溶射し、第2の天然石英ガラス層13を形成する。このとき、原料としてはCa濃度が0.5ppm以下の天然石英粉が用いられる。このように、既存の二層構造の石英ガラスルツボに対する追加的な加工によって本実施形態による石英ガラスルツボ10を製造することができる。
次に、図4のフローチャートを参照しながら、石英ガラスルツボ10を用いたシリコン単結晶の製造方法について説明する。
まず、図3に示した方法によって製造した石英ガラスルツボ10を用意し(ステップS21)、ルツボの内部にシリコン単結晶の原料となるポリシリコン砕片を充填する(ステップS22)。この時、石英ガラスルツボ10の内表面には、ポリシリコン砕片の重みによって微細な傷が生じることがある。
次に、石英ガラスルツボ10を単結晶引き上げ装置に装填し、ヒータによって加熱を行うことにより、石英ガラスルツボ10内に充填されたポリシリコンを融解させる(ステップS23)。この加熱によってポリシリコンが融解すると共に、石英ガラスルツボ10の内表面も徐々に溶解する。上述の通り、天然石英ガラスの溶解速度は合成石英ガラスよりも大きいことから、溶解は主に第2の天然石英ガラス層13にて生じ、石英ガラスルツボ10の底面に生じている微細な傷は徐々に浅くなる。ただし、この融解時においても、ポリシリコンの重みや崩れによって石英ガラスルツボの内表面に新たな傷が生じることがある。以上により、石英ガラスルツボ10の内部はシリコン融液で満たされる。
次に、シリコン融液が1500℃程度に安定するまで温度調整を行った後(ステップS24)、シリコン単結晶の引き上げが行われる(ステップS25〜S28)。シリコン単結晶の引き上げでは、シリコン融液中に種結晶を浸漬し、ダッシュ法によりネック部の形成を行った後(ステップS25)、シリコン単結晶の肩部、胴部、及びテール部を順次形成する(ステップS26〜S28)。シリコン融液の温度調整中やシリコン単結晶の引き上げ中においても第2の天然石英ガラス層13は徐々に溶解し、石英ガラスルツボ10の底面に生じている微細な傷は除去される。微細な傷の深さは50〜100μmであり、天然石英ガラスの溶解速度は8〜12μm/hrであることから、およそ4〜12時間経過すれば微細な傷の大部分は消滅するものと考えられる。
よって、空洞欠陥の発生を効果的に防止するためには、石英ガラスルツボ10の底部に生じている微細な傷の深さ(50μm〜100μm程度)や、第2の天然石英ガラス層13の厚さ(30μm〜200μm)を考慮すれば、ポリシリコンの融解開始から肩部を形成するまでにかかる時間が4〜12時間を超えるように制御する必要があり、第2の天然石英ガラス層13の表面を30μm以上溶解させてから、シリコン単結晶の胴部の引き上げを開始する必要がある。
このように、本実施形態では、石英ガラスルツボ10の底面の内表面に存在する微細な傷を消滅又は十分に減少させてからシリコン単結晶の胴部の引き上げを行うため、シリコン単結晶の投影面にほとんど傷のない状態で引き上げを行うことができる。そのため、微細な傷を起点とするSiOガスの発生を防止することができ、SiOガスによる空洞欠陥の発生を効果的に防止することが可能となる。なお天然石英ガラス層13の溶解によって不純物が溶出するが、不純物の溶出による悪影響に比べると空洞欠陥の防止による利点のほうが非常に大きいことから、シリコン単結晶の製造において大きな効果が得られる。
次に、本発明の第2の実施の形態について詳細に説明する。
図5は、本発明の第2の実施の形態によるシリコン単結晶引き上げ用石英ガラスルツボ20の構造を示す略断面図である。
図5に示すように、石英ガラスルツボ20は、外層を構成する天然石英ガラス層14と、ルツボの直胴部10A及び湾曲部10Cにおいて内層を構成する合成石英ガラス層15を有している。天然石英ガラス層14はルツボの直胴部10Aから底部10Bにわたる全体に設けられているが、合成石英ガラス層15は底部10Bには形成されていない。そのため、ルツボの直胴部10Aでは二層構造であるが、ルツボの底部10Bでは単層構造となっている。
天然石英ガラス層14は、天然石英を原料とする非晶質ガラス層であり、合成石英ガラス層15は、合成石英を原料とする非晶質シリカガラス層である。合成石英ガラス層15はルツボの底部10Bの中心から一定範囲を除いた領域に設けられているため、天然石英ガラス層14は底部10Bにおいて露出し、底部10Bの内表面を構成している。天然石英ガラス層14の露出領域14aは、ルツボ底部10Bの内表面に形成された微細な傷をポリシリコンの融解開始から種結晶の引き上げ開始までの間に消滅させる役割を果たす。
石英ガラスルツボ20の内表面付近は、天然石英ガラス層か合成石英ガラス層かによらず、実質的に気泡を含まない透明層からなることが好ましく、透明層よりも外側は、多数の微小な気泡を含む不透明層からなることが好ましい。ルツボの内表面を透明層とした場合には、ルツボの内表面で剥離する石英片の増加を防止することができ、シリコン単結晶収率を高めることができる。また、ルツボの外側を不透明層とした場合には、ルツボの熱容量を高めることができ、シリコン融液の温度制御が容易となる。
透明層12Bの厚さは、1.0mm以上であることが必要である。上記のように、シリコン単結晶の引き上げではルツボ内表面が0.3〜1.0mm程度溶損するが、透明層12Bが1.0mmよりも薄い場合には、シリコン単結晶の引き上げ中に溶損しきって不透明層12Aが露出するおそれがあるからである。不透明層12Aが露出すると、不透明層12Aに含まれる気泡がルツボ内表面を部分的に剥離させ、剥離した石英小片が単結晶に混入して単結晶化率を低下させる原因となる。
ルツボ内表面には深さが50〜100μm程度の微細な傷が存在している。この微細な傷は、ルツボ製造時に発生するものの他、ルツボ内にポリシリコンを装填したときやポリシリコンの融解を開始したときにポリシリコンとルツボ内表面との接触によって発生するものと考えられる。このような傷があると、傷を核にしてSiOガスが発生し、SiOガスがシリコン融液中を浮上してシリコン単結晶中に取り込まれ、空洞欠陥となる。
しかし、ルツボの底部10Bの内表面が天然石英ガラス層14で構成されている場合には、第1の実施形態と同様、天然石英ガラス層14の溶解と共に傷を早期に消滅させることができる。既に説明したように、天然石英は合成石英と比べてシリコン融液への溶解速度が速いことから、天然石英ガラス層15の表面に存在する微細な傷は、実際にシリコン単結晶の引き上げを行うまでの間の溶解によって消滅又は大幅に減少する。したがって、傷を起点とするSiOガスの発生を抑制することが可能となる。
一方、石英ガラスルツボ20の直胴部10A及び湾曲部10Cの内表面は合成石英ガラス層15で構成されている。そのため、直胴部10Aや湾曲部10Bの内表面に形成された傷は早期に消滅せず、シリコン単結晶の引き上げ中においても存在し続けるが、この傷から発生するSiOガスの気泡がシリコン単結晶中に取り込まれる可能性は極めて低いことは第1の実施形態で説明したとおりである。
したがって、直胴部10A及び湾曲部10Cにおける微細な傷は、空洞欠陥の原因とはならない。むしろ、ルツボの内表面全体を天然石英ガラス層14で構成した場合には、シリコン融液中へ溶出する不純物が増加し、シリコン単結晶収率を低下させる原因となる。このような観点から、本実施形態においては、直胴部10A及び湾曲部10Cの内表面を合成石英ガラス層15で構成し、底部10Bの天然石英ガラス層15のみを露出させている。但し、本発明において、直胴部10A及び湾曲部10Cの両方に合成石英ガラス層15を設けることは必須でなく、少なくとも直胴部10Aに合成石英ガラス層15を設ければ足りる。
第1の実施形態と同様、天然石英ガラス層14のカルシウム(Ca)濃度は0.5ppm以下であることが必要である。天然石英には不純物としてのCaが主として酸化カルシウム(CaO)の形で含まれているが、元素レベルでのCa濃度が0.5ppmを超えると局所的な結晶生成による失透点が急激に増加し、その結果として単結晶収率の低下を招くからである。さらに、シリコン融液への不純物の混入を最小限に抑える必要もある。天然石英ガラス層14のCa濃度は、0.4ppm以下であることが好ましい。Ca濃度が0.4ppm以下であれば、より高い単結晶収率を得ることが可能となる。
天然石英ガラス層14のアルミニウム(Al)濃度は20ppm以下であることが必要である。天然石英には不純物としてのAlが主として酸化アルミニウム(Al)の形で含まれているが、元素レベルでのAl濃度が20ppmを超えると局所的な結晶生成による失透点が急激に増加し、その結果として単結晶収率の低下を招くからである。さらに、シリコン融液への不純物の混入を最小限に抑える必要もある。天然石英ガラス層14のAl濃度は、10ppm以下であることが好ましい。Al濃度が10ppm以下であれば、より高い単結晶収率を得ることが可能となる。
ルツボの肉厚は8〜30mm程度であることが好ましく、そのうち天然石英ガラス層14の厚さは、ルツボの機械的強度を確保できる限りにおいて特に限定されず、7〜29mm程度であることが好ましい。天然石英ガラス層14の厚さは均一であってもよく、直胴部10Aと底部10Bの厚さが異なっていてもよい。なお、シリコン単結晶の引き上げでは、通常、ルツボ内表面が0.3〜1.0mm程度溶損するが、この程度の溶損であればルツボの強度不足が問題となることはない。
一方、合成石英ガラス層15の厚さは1.0mm以上であることが必要である。上記のように、シリコン単結晶の引き上げではルツボ内表面が0.3〜1.0mm程度溶損するが、合成石英ガラス層15が1.0mmよりも薄い場合には、シリコン単結晶の引き上げ中に溶損しきって天然石英ガラス層14が露出するおそれがあるからである。
図6は、石英ガラスルツボ20とシリコン単結晶21との位置関係を示す断面図及び平面図である。
図6に示すように、天然石英ガラス層14の露出領域14aをZ軸方向から見た形状は、Z軸との交点を中心とする円形であり、その直径Rは、引き上げられるシリコン単結晶21の直径R以上であることがより好ましい。換言すれば、天然石英ガラス層14の露出領域14aは、シリコン単結晶21の投影面21Sをカバーしていることが好ましい。尚、シリコン単結晶21の直径Rは、最終製品であるシリコンウェハーの直径よりも数mm〜数十mm大きい。
シリコン単結晶21の直径Rは、石英ガラスルツボ20の形状及びサイズから一義的に定まるものではないが、石英ガラスルツボ20の口径Rに大きく依存する。ルツボの口径Rがシリコン単結晶の直径Rに対して小さすぎると単結晶の酸素濃度や酸素面内分布などといった結晶品質の制御が困難となり、逆に大きすぎると装置や部材を大きくする必要があるのでコスト高になるからである。そのため、シリコン単結晶21の直径Rは、0.3R〜0.6Rに設定されることが通例である。
このような点を考慮すれば、天然石英ガラス層14の露出領域14aの直径Rは、石英ガラスルツボ20の口径Rに対して、0.3R以上0.6R以下であることが好ましい。天然石英ガラス層14の露出領域の直径Rが0.3Rよりも小さい場合には、シリコン単結晶21の投影面21Sをカバーすることができず、合成石英ガラス層15から発生したSiOガスの気泡がシリコン単結晶21に取り込まれる可能性が高まるからである。一方、天然石英ガラス層14の露出領域14aの直径Rが0.6Rよりも大きい場合には、シリコン単結晶21の投影面21Sを確実にカバーすることができるものの、シリコン融液22中へ溶出する不純物が増加し、シリコン単結晶収率を低下させる原因となるからである。
以上説明したように、本実施形態による石英ガラスルツボ20は、ルツボ底部10Bの内表面に天然石英ガラス層14の露出領域14aが形成されているので、ルツボ底部10Bの内表面にある微細な傷をポリシリコンの溶融開始からシリコン単結晶の引き上げ開始までの短時間のうちに消滅させることができる。したがって、ルツボ内表面の傷に起因するSiOガスの発生を抑制することができ、シリコン単結晶内の空洞欠陥の発生を防止することができる。
次に、図7のフローチャートを参照しながら、石英ガラスルツボ20の製造方法について説明する。
石英ガラスルツボ20は回転モールド法によって製造することができる。回転モールド法では、回転しているカーボンモールドの内表面に天然石英ガラス層14の原料となる天然石英粉を所定の厚さにて堆積させ(ステップS11)、次いで天然石英粉による層の内表面のうち底部の中心から一定範囲内を除いた領域に合成石英ガラス層15の原料となる合成石英粉を所定の厚さにて堆積させる(ステップS12)。このとき、天然石英粉による層の内表面のうち底部の中心から一定範囲内を除いた領域に合成石英ガラス層15の原料となる合成石英粉を所定の厚さにて堆積させることが好ましいが、必ずしもそのようにする必要はなく、内表面の全面に合成石英粉を堆積しても構わない。底部中心を除いた領域に合成石英粉を堆積させた場合、合成石英粉は天然石英粉による層の直胴部及び湾曲部にのみ堆積され、底部には堆積されない。
このとき用いられる天然石英粉のCa濃度は0.5ppm以下、Al濃度は20ppm以下である必要がある。天然石英ガラス層14の面積(直径)及び厚さは、天然石英粉の充填位置や充填重量によって調整することができ、モールドの回転速度によっても調整することができる。合成石英ガラス層15はルツボの直胴部及び湾曲部にのみ形成すればよいことから、合成石英粉の充填量は天然石英粉よりも少なくてよい。
その後、モールド中央上部に設置したアーク電極による放電加熱によって、モールドの内側か石英粉の内表面全体を1720℃以上に加熱し、石英粉をアーク溶融する(ステップS13)。また、この加熱と同時にモールド側から減圧し、モールドに設けた通気口を通じて溶融石英内の気体を外層側に吸引し、通気口を通じて外部に排出することにより、ルツボ内表面の気泡を部分的に除去し、実質的に気泡のない透明層を形成する。その後、減圧を弱めるか又は停止し、さらに加熱を続けて気泡を残留させることにより、多数の微小な気泡を含む不透明層を形成する。以上により、ルツボの底部及び直胴部において外層を構成する天然石英ガラス層14と、ルツボの直胴部において内層を構成する合成石英ガラス層15とを備えた石英ガラスルツボ20が完成する。
なお、合成石英ガラス層15の形成では、天然石英ガラス層14を露出させたい領域に合成石英粉を堆積させないようにする必要は必ずしもない。堆積した合成石英粉をアーク溶融中に取り除くことも可能であり、強加熱することにより合成石英ガラス層を蒸発させることも可能であり、モールドの回転数を調整することで合成石英粉を湾曲部側に寄せることも可能である。
石英ガラスルツボ20の合成石英ガラス層15はいわゆる溶射法によっても製造することができる。具体的には、アーク溶融法によって天然石英ガラス層14のみからなる石英ガラスルツボの基本構造を作製した後、この石英ガラスルツボの直胴部10A及び湾曲部10Cの内表面に天然石英粉を溶射し、合成石英ガラス層15を形成する。このように、既存の単層構造の石英ガラスルツボに対する追加的な加工によって本実施形態による石英ガラスルツボ20を製造することができる。
石英ガラスルツボ20を用いたシリコン単結晶の製造方法は、石英ガラスルツボ10を用いたシリコン単結晶の製造方法と実質的に同一である。石英ガラスルツボ20の場合、ルツボ底部には天然石英ガラス層15の露出領域15aが存在していることから、上記シリコン単結晶の製造方法の説明において、第2の天然石英ガラス層13を天然石英ガラス層15に読み替えればよい。
石英ガラスルツボ20を用いた場合でも、ルツボ底部の内表面に存在する微細な傷を消滅又は十分に減少させた後にシリコン単結晶の胴部の引き上げを行うため、シリコン単結晶の投影面にほとんど傷のない状態で引き上げを行うことができる。これにより、傷を起点とするSiOガスの発生を防止することができ、SiOガスによる空洞欠陥の発生を効果的に防止することが可能となる。なお天然石英ガラス層15の溶解によって不純物が溶出するが、不純物の溶出による悪影響に比べると空洞欠陥の防止による利点のほうが非常に大きいことから、シリコン単結晶の製造において大きな効果が得られる。
以上、本発明の好ましい実施の形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の変更を加えることが可能であり、それらも本発明に包含されるものであることは言うまでもない。
例えば、上記第1の実施形態においては、直胴部10A及び湾曲部10Cにおいて第1の天然石英ガラス層11及び合成石英ガラス層12の二層構造、底部10Bにおいて天然石英ガラス層11、合成石英ガラス層12及び第2の天然石英ガラス層13の三層構造としているが、第1の天然石英ガラス層11の外側にさらに別の層を形成してもよく、また、第1の天然石英ガラス層11と合成石英ガラス層12との間に中間層を形成してもよく、第2の天然石英ガラス層13の内側にさらに別の層を形成してもよい。また、シリコン融液の湯面振動を防止する目的で、初期湯面位置付近から直胴部10Aの上端(開口)までを第1の天然石英ガラス層11のみからなる単層構造としてもよく、さらに、初期湯面位置におけるルツボ直胴部10Aの内表面近傍の気泡含有率を任意に調整することも可能である。
また、上記第2の実施形態においては、直胴部10A及び湾曲部10Cにおいて天然石英ガラス層14及び合成石英ガラス層14の二層構造、底部において天然石英ガラス層14の単層構造としているが、天然石英ガラス層14の外側にさらに別の層を形成してもよく、また、天然石英ガラス層14と合成石英ガラス層14との間に中間層を形成してもよく、合成石英ガラス層14の内側にさらに別の層を形成してもよい。また、シリコン融液の湯面振動を防止する目的で、初期湯面位置付近から直胴部10Aの上端(開口)までを天然石英ガラス層14のみからなる単層構造としてもよく、さらに、初期湯面位置におけるルツボ直胴部10Aの内表面近傍の気泡含有率を任意に調整することも可能である。
(実施例1)
図1に示した石英ガラスルツボ10と同じ構造を有し、第2の天然石英ガラス層の厚さt1が異なる石英ガラスルツボのサンプルA1〜A7を用意した。各サンプルA1〜A7は、口径32インチ、ルツボの高さ500mm、ルツボ内表面から外表面までの厚さは直胴部17mm、湾曲部25mm、底部14mmとした。各サンプルの詳細な条件は表1に示す通りである。表1に示すように、サンプルA1〜A7に設けられた第2の天然石英ガラス層は、直径R及びCa濃度が互いに同一であるが、厚さtが互いに異なっている。
次に、これらの石英ガラスルツボのサンプルA1〜A7を用いて、ポリシリコン400kgを各サンプルに充填した後、単結晶引き上げ装置に装填し、ポリシリコンを融解し、シリコン単結晶の引き上げを行った。
その後、引き上げられたシリコン単結晶インゴットから厚さ1mm程度のウェハーをワイヤソーにより切り出し、CMP工程を経て、表面が鏡面研磨されたポリッシュドウェハーを作製した。そして、このポリッシュドウェハーのピンホール発生率を測定した。ピンホール発生率の測定にはパーティクル測定装置を使用し、ポリッシュドウェハーの表面のピンホールの数を測定した。ピンホール発生率は、1本のシリコン単結晶から得られる多数のウェハー中に含まれるピンホールの総数をそのウェハーの枚数で割った値である。
また、得られたシリコン単結晶インゴットの単結晶収率も求めた。単結晶収率は、原料のポリシリコンに対するシリコン単結晶の重量比として定義される。ルツボ内に投入されたすべてのポリシリコンが完全に消費されることはなく、引き上げ終了後にはルツボ内にシリコン融液がわずかに残ることから、単結晶化率は、十分な量のシリコン単結晶が引き上げられたとしても100%以下であり、80%以上であれば良好である。測定結果を表1に示す。
Figure 0005072933
表1に示すように、第2の天然石英ガラス層の厚さtが30μm以上200μm以下であるサンプルA3〜A6では、ピンホール発生率が0%となり、単結晶収率は80%以上となった。特に、第2の天然石英ガラス層の厚さtが30μm以上100μm以下であるサンプルA3〜A5では単結晶収率は90%であり、特に高い単結晶収率が得られた。
これに対し、厚さtが10μmであるサンプルA1では、単結晶収率は90%であったが、ピンホール発生率が8.1%と増加した。また、厚さtが20μmであるサンプルA2でも単結晶収率は90%であったが、ピンホール発生率は5.3%と増加した。さらに、厚さtが250μmであるサンプルA7では、ピンホール発生率は0%であったが、単結晶収率が45%と大幅に低下した。
(実施例2)
図1に示した石英ガラスルツボ10と同じ構造を有し、第2の天然石英ガラス層13のCa濃度が異なる石英ガラスルツボのサンプルB1〜B6と、第2の天然石英ガラス層13の代わりに合成石英ガラスを用いたサンプルC1を用意した。Ca濃度は結合誘導プラズマ発光分光分析法(ICP−AES)により測定した。各サンプルB1〜B6,C1は、口径32インチ、直胴部の長さ300mm、ルツボ内表面から外表面までの厚さ10mmとした。各サンプルの詳細な条件は表2に示す通りである。表2に示すように、サンプルB1〜B6に設けられた第2の天然石英ガラス層は、直径R及び厚さtが互いに同一であるが、Ca濃度が互いに異なっている。
次に、これらの石英ガラスルツボのサンプルB1〜B6,C1を用いて、実施例1と同じ条件でシリコン単結晶の引き上げを行い、得られたシリコン単結晶インゴットからポリッシュドウェハーを作製し、このポリッシュドウェハーのピンホール発生率を測定した。また、得られたシリコン単結晶インゴットの単結晶収率も求めた。その測定結果を表2に示す。
Figure 0005072933
表2に示すように、第2の天然石英ガラス層のCa濃度が0.50ppm以下であるサンプルB1〜B4では、ピンホール発生率が0%となり、単結晶収率は80%以上となった。特に、第2の天然石英ガラス層のCa濃度が0.4ppm以下であるサンプルB1〜B3では単結晶収率は90%であり、特に高い単結晶収率が得られた。
これに対し、Ca濃度が0.55ppmであるサンプルB5では、ピンホール発生率は0%であったが、単結晶収率が55%と大幅に低下した。また、Ca濃度が0.61ppmであるサンプルB6では、ピンホール発生率は0%であったが、単結晶収率が50%と大幅に低下した。また、第2の天然石英ガラスの代わりに合成石英ガラスを用いたサンプルC1では、単結晶収率は90%であったが、ピンホール発生率が9.7%と増加した。
(実施例3)
図5に示した石英ガラスルツボ20と同じ構造を有し、天然石英ガラス層14のCa濃度及びAl濃度が異なる石英ガラスルツボのサンプルA1〜A6と、ルツボ全体が二層構造の石英ガラスルツボ(すなわち、内層が全て合成石英ガラスからなるルツボ)のサンプルB1を用意した。Ca及びAlの濃度は結合誘導プラズマ発光分光分析法(ICP−AES)により測定した。各サンプルA1〜A6,B1は、直径32インチ(口径800mm)、直胴部の長さ300mm、ルツボの肉厚は直胴部で17mm、底部で14mm、湾曲部で25mmとした。
次に、石英ガラスルツボのサンプルA1〜A6,B1にポリシリコン砕片400kgを充填した後、石英ガラスルツボを単結晶引き上げ装置に装填し、ルツボ内のポリシリコンを炉内で融解し、直径約320mmのシリコン単結晶インゴットの引き上げを行った。
その後、得られたシリコン単結晶インゴットから厚さ1mm程度のウェハーをワイヤソーにより切り出し、CMP工程を経て、表面が鏡面研磨されたポリッシュドウェハーを作製した。そして、このポリッシュドウェハーのピンホール発生率を測定した。また、得られたシリコン単結晶インゴットの単結晶収率も求めた。その測定結果を表3に示す。
Figure 0005072933
表3に示すように、天然石英ガラス層のCa濃度が0.5ppm以下であり且つAl濃度が20ppm以下であるサンプルA1〜A4では、ピンホール発生率が0%となり、単結晶収率は85%以上となった。特に、天然石英ガラス層のCa濃度が0.4ppm以下であるサンプルA1〜A3では単結晶収率は90%以上であり、高い単結晶収率が得られた。さらに、天然石英ガラス層のCa濃度が0.3ppmでありAl濃度が6ppmであるサンプルA1では単結晶収率は95%であり、特に高い単結晶収率が得られた。
これに対し、Ca濃度が0.6ppmであるサンプルA5では、ピンホール発生率は0%であったが、単結晶収率が45%と大幅に低下した。また、Al濃度が25ppmであるサンプルA6では、ピンホール発生率は0%であったが、単結晶収率が50%と大幅に低下した。また、ルツボ底部にも合成石英ガラスを形成したサンプルB1では、単結晶収率は90%であったが、ピンホール発生率が3.5%と増加した。
10,20 石英ガラスルツボ
10A ルツボの直胴部
10B ルツボの底部
10C ルツボの湾曲部
11 第1の天然石英ガラス層
12 合成石英ガラス層
13 第2の天然石英ガラス層
14 天然石英ガラス層
14a 天然石英ガラス層の露出領域
15 合成石英ガラス層
21 シリコン単結晶
21S シリコン単結晶の投影面
22 シリコン融液
Z ルツボの中心軸

Claims (14)

  1. 直胴部及び底部を有するシリコン単結晶引き上げ用石英ガラスルツボであって、
    前記底部の内表面の少なくとも一部を構成する天然石英ガラス層と、
    少なくとも前記直胴部の内表面を構成する合成石英ガラス層とを備え、
    前記天然石英ガラス層に含まれるCaの濃度が0.5ppm以下であることを特徴とするシリコン単結晶引き上げ用石英ガラスルツボ。
  2. 前記直胴部及び前記底部において外層を構成する第1の天然石英ガラス層と、
    前記直胴部及び前記底部において内層を構成し、少なくとも前記直胴部において露出する合成石英ガラス層と、
    前記合成石英ガラス層の内表面のうち、前記底部の中心を含む領域を覆う第2の天然石英ガラス層を含み、
    前記第2の天然石英ガラス層に含まれる前記Caの濃度が0.5ppm以下であり、
    前記第2の天然石英ガラス層の厚さが30μm以上200μm以下であることを特徴とする請求項1に記載のシリコン単結晶引き上げ用石英ガラスルツボ。
  3. 前記第2の天然石英ガラス層の平面領域は、前記シリコン単結晶の投影面を含むことを特徴とする請求項2に記載のシリコン単結晶引き上げ用石英ガラスルツボ。
  4. 前記第2の天然石英ガラス層の平面領域の直径は、ルツボ口径Rに対して0.3R以上0.6R以下であることを特徴とする請求項3に記載のシリコン単結晶引き上げ用石英ガラスルツボ。
  5. 前記第2の天然石英ガラス層に含まれるCaの濃度が0.4ppm以下であることを特徴とする請求項2乃至4のいずれか一項に記載のシリコン単結晶引き上げ用石英ガラスルツボ。
  6. 前記第2の天然石英ガラス層の厚さが30μm以上100μm以下であることを特徴とする請求項2乃至5のいずれか一項に記載のシリコン単結晶引き上げ用石英ガラスルツボ。
  7. 前記直胴部及び前記底部において外層を構成する天然石英ガラス層と、
    前記直胴部において内層を構成する合成石英ガラス層を含み、
    前記天然石英ガラス層の内表面が前記底部の中心を含む領域において露出しており、
    前記天然石英ガラス層に含まれる前記Caの濃度が0.5ppm以下であり、
    前記天然石英ガラス層に含まれるAlの濃度が20ppm以下であることを特徴とする請求項1に記載のシリコン単結晶引き上げ用石英ガラスルツボ。
  8. 前記天然石英ガラス層の露出領域は、平面視にて前記シリコン単結晶の投影面を含むことを特徴とする請求項7に記載のシリコン単結晶引き上げ用石英ガラスルツボ。
  9. 前記天然石英ガラス層の露出領域の直径は、ルツボ口径Rに対して0.3R以上0.6R以下であることを特徴とする請求項8に記載のシリコン単結晶引き上げ用石英ガラスルツボ。
  10. 前記天然石英ガラス層に含まれるCaの濃度が0.4ppm以下であることを特徴とする請求項7乃至9のいずれか一項に記載のシリコン単結晶引き上げ用石英ガラスルツボ。
  11. 前記天然石英ガラス層に含まれるAlの濃度が10ppm以下であることを特徴とする請求項7乃至10のいずれか一項に記載のシリコン単結晶引き上げ用石英ガラスルツボ。
  12. 回転しているモールドの内表面の略全面に第1の天然石英粉を堆積させる工程と、
    前記第1の天然石英粉による層の内表面の略全面に合成石英粉を堆積させる工程と、
    前記合成石英粉による層の内表面のうち底部の少なくとも一部に第2の天然石英粉を選択的に堆積させる工程と、
    前記第1の天然石英粉、前記合成石英粉及び前記第2の天然石英粉を溶融することにより、前記モールドの内表面全体に形成された第1の天然石英ガラス層と、前記第1の天然石英ガラス層の内表面全体に形成された合成石英ガラス層と、前記合成石英ガラス層の内表面のうち前記底部の中心を含む領域に形成された第2の天然石英ガラス層を有する石英ガラスルツボを成形する工程とを備え、
    前記第2の天然石英粉に含まれるCaの濃度が0.5ppm以下であることを特徴とするシリコン単結晶引き上げ用石英ガラスルツボの製造方法。
  13. 回転しているモールドの内表面に天然石英粉を堆積させる工程と、
    前記天然石英粉による層の内表面に合成石英粉を堆積させる工程と、
    前記天然石英粉及び前記合成石英粉を溶融することにより、前記モールドの内表面全体に形成された天然石英ガラス層と、前記天然石英ガラス層の内表面のうち底部の中心を含む領域を除いた領域に形成された合成石英ガラス層を有する石英ガラスルツボを成形する工程とを備え、
    前記天然石英粉に含まれるCaの濃度が0.5ppm以下であり、前記天然石英粉に含まれるAlの濃度が20ppm以下とすることを特徴とするシリコン単結晶引き上げ用石英ガラスルツボの製造方法。
  14. 直胴部及び底部を有し、前記底部の内表面の少なくとも一部が天然石英ガラスによって構成され、少なくとも前記直胴部の内表面が合成石英ガラスによって構成され、前記天然石英ガラスに含まれるCaの濃度が0.5ppm以下である石英ガラスルツボを用意し、前記石英ガラスルツボ内にポリシリコンを充填する工程と、
    前記石英ガラスルツボ内の前記ポリシリコンを融解させる工程と、
    前記石英ガラスルツボ内のシリコン融液からシリコン単結晶を引き上げる工程とを備え、
    前記シリコン単結晶を引き上げる工程は、前記ルツボの底部の内表面の少なくとも一部に露出する前記天然石英ガラスを30μm以上溶解した後、前記シリコン単結晶の胴部の引き上げを開始する工程を含むことを特徴とするシリコン単結晶の製造方法。
JP2009235028A 2008-10-31 2009-10-09 シリコン単結晶引き上げ用石英ガラスルツボ及びその製造方法並びにシリコン単結晶の製造方法 Active JP5072933B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009235028A JP5072933B2 (ja) 2008-10-31 2009-10-09 シリコン単結晶引き上げ用石英ガラスルツボ及びその製造方法並びにシリコン単結晶の製造方法
US12/607,519 US8506708B2 (en) 2008-10-31 2009-10-28 Silica glass crucible for pulling up silicon single crystal, method for manufacturing thereof and method for manufacturing silicon single crystal
KR1020090103438A KR101165598B1 (ko) 2008-10-31 2009-10-29 실리콘 단결정 인상용 석영 유리 도가니 및 그 제조 방법 그리고 실리콘 단결정의 제조 방법

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2008282244 2008-10-31
JP2008282244 2008-10-31
JP2008282245 2008-10-31
JP2008282245 2008-10-31
JP2009235028A JP5072933B2 (ja) 2008-10-31 2009-10-09 シリコン単結晶引き上げ用石英ガラスルツボ及びその製造方法並びにシリコン単結晶の製造方法

Publications (2)

Publication Number Publication Date
JP2010132534A JP2010132534A (ja) 2010-06-17
JP5072933B2 true JP5072933B2 (ja) 2012-11-14

Family

ID=42129901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009235028A Active JP5072933B2 (ja) 2008-10-31 2009-10-09 シリコン単結晶引き上げ用石英ガラスルツボ及びその製造方法並びにシリコン単結晶の製造方法

Country Status (3)

Country Link
US (1) US8506708B2 (ja)
JP (1) JP5072933B2 (ja)
KR (1) KR101165598B1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5047227B2 (ja) * 2009-05-27 2012-10-10 ジャパンスーパークォーツ株式会社 シリコン単結晶の製造方法及びシリコン単結晶引き上げ装置
JP5453677B2 (ja) * 2010-06-25 2014-03-26 株式会社Sumco シリカガラスルツボ、シリコンインゴットの製造方法
JP5610570B2 (ja) * 2010-07-20 2014-10-22 株式会社Sumco シリカガラスルツボ、シリコンインゴットの製造方法
JP5557334B2 (ja) * 2010-12-27 2014-07-23 コバレントマテリアル株式会社 シリコン単結晶引上げ用シリカガラスルツボ
JP5557333B2 (ja) * 2010-12-27 2014-07-23 コバレントマテリアル株式会社 シリコン単結晶引上げ用シリカガラスルツボ
DE102011002599B4 (de) * 2011-01-12 2016-06-23 Solarworld Innovations Gmbh Verfahren zur Herstellung eines Silizium-Ingots und Silizium-Ingot
EP2703526A4 (en) 2012-03-23 2014-12-31 Shinetsu Quartz Prod SILICONE CONTAINER FOR BREEDING A SILICON CRYSTAL AND MANUFACTURING METHOD THEREFOR
JP5773496B2 (ja) * 2012-03-30 2015-09-02 コバレントマテリアル株式会社 石英ガラスルツボ
EP2835452A4 (en) * 2013-04-08 2016-02-24 Shinetsu Quartz Prod SILICON DIOXIDE TIP FOR PULLING A SILICONE INCRISTAL AND METHOD FOR THE PRODUCTION THEREOF
JP6451333B2 (ja) * 2015-01-14 2019-01-16 株式会社Sumco シリコン単結晶の製造方法
JP6586388B2 (ja) * 2016-04-08 2019-10-02 クアーズテック株式会社 石英ガラスルツボ及びその製造方法
JP7379054B2 (ja) * 2018-12-27 2023-11-14 モメンティブ・テクノロジーズ・山形株式会社 石英ガラスるつぼの製造方法および光学ガラス溶融用石英ガラスるつぼ
KR102243264B1 (ko) * 2018-12-13 2021-04-21 쿠어스택 가부시키가이샤 실리카 유리 도가니 및 그의 제조 방법
JP7280160B2 (ja) * 2018-12-13 2023-05-23 モメンティブ・テクノロジーズ・山形株式会社 シリカガラスルツボ
WO2022103416A1 (en) * 2020-11-11 2022-05-19 Globalwafers Co., Ltd. Methods for forming a single crystal silicon ingot with reduced crucible erosion

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01261293A (ja) 1988-04-12 1989-10-18 Mitsubishi Metal Corp シリコン単結晶引上げ用石英ルツボ
JP2635456B2 (ja) * 1991-06-28 1997-07-30 信越半導体株式会社 シリコン単結晶の引上方法
JPH0545066A (ja) * 1991-08-09 1993-02-23 Nippon Steel Corp シリコン単結晶の引上げ用石英るつぼおよびその製造方法
JP2840195B2 (ja) * 1994-05-31 1998-12-24 信越石英株式会社 単結晶引上用石英ガラスルツボの製造方法
JP3360626B2 (ja) * 1998-12-01 2002-12-24 三菱住友シリコン株式会社 シリコン単結晶の製造方法
JP4437368B2 (ja) * 2000-12-12 2010-03-24 コバレントマテリアル株式会社 シリコン単結晶引上げ用石英ガラスルツボの製造方法
JP4548962B2 (ja) * 2001-03-28 2010-09-22 ジャパンスーパークォーツ株式会社 石英ガラスルツボ及びこれを用いたシリコン単結晶の引き上げ方法
JP4086283B2 (ja) * 2002-07-31 2008-05-14 信越石英株式会社 シリコン単結晶引上げ用石英ガラスルツボおよびその製造方法
JP4233059B2 (ja) 2003-05-01 2009-03-04 信越石英株式会社 シリコン単結晶引上げ用石英ガラスルツボ及びその製造方法
JP4678667B2 (ja) * 2004-06-07 2011-04-27 信越石英株式会社 シリコン単結晶引上げ用石英ガラスルツボ及びその製造方法
JP4789437B2 (ja) 2004-07-16 2011-10-12 信越石英株式会社 シリコン単結晶引上げ用石英ガラスるつぼおよびその製造方法
JP4931106B2 (ja) * 2005-09-29 2012-05-16 コバレントマテリアル株式会社 シリカガラスルツボ
JP5266616B2 (ja) * 2006-02-07 2013-08-21 信越半導体株式会社 シリコン単結晶インゴットの製造方法

Also Published As

Publication number Publication date
KR20100048913A (ko) 2010-05-11
US20100107965A1 (en) 2010-05-06
KR101165598B1 (ko) 2012-07-23
JP2010132534A (ja) 2010-06-17
US8506708B2 (en) 2013-08-13

Similar Documents

Publication Publication Date Title
JP5072933B2 (ja) シリコン単結晶引き上げ用石英ガラスルツボ及びその製造方法並びにシリコン単結晶の製造方法
EP2251460B1 (en) Silica crucible for pulling silicon single crystal
JP5022519B2 (ja) シリコン単結晶引き上げ用石英ガラスルツボ
JP4975012B2 (ja) シリコン単結晶引き上げ用石英ガラスルツボ及びその製造方法
JP5058138B2 (ja) シリコン単結晶引き上げ用石英ガラスルツボ
JP5042971B2 (ja) シリコン単結晶引き上げ用石英ガラスルツボ及びその製造方法
JP5043048B2 (ja) シリコン単結晶引き上げ用石英ガラスルツボ及びその製造方法
JP5473878B2 (ja) シリコン単結晶引き上げ用石英ガラスルツボの製造方法
JP5036735B2 (ja) シリコン単結晶引き上げ用石英ガラスルツボ及びその製造方法
JP4726138B2 (ja) 石英ガラスルツボ
JP7280160B2 (ja) シリカガラスルツボ
JP6451333B2 (ja) シリコン単結晶の製造方法
WO2021131321A1 (ja) 石英ガラスルツボ及びその製造方法
WO2020031481A1 (ja) 石英ガラスるつぼ
TW201943663A (zh) 石英玻璃坩堝及其製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120821

R150 Certificate of patent or registration of utility model

Ref document number: 5072933

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250