KR20110098734A - 투영 노광 장치에서의 광학 요소에 대한 중력 보상 - Google Patents

투영 노광 장치에서의 광학 요소에 대한 중력 보상 Download PDF

Info

Publication number
KR20110098734A
KR20110098734A KR1020117013184A KR20117013184A KR20110098734A KR 20110098734 A KR20110098734 A KR 20110098734A KR 1020117013184 A KR1020117013184 A KR 1020117013184A KR 20117013184 A KR20117013184 A KR 20117013184A KR 20110098734 A KR20110098734 A KR 20110098734A
Authority
KR
South Korea
Prior art keywords
force
compensator
gravity
magnetic
characteristic curve
Prior art date
Application number
KR1020117013184A
Other languages
English (en)
Other versions
KR101702145B1 (ko
Inventor
노르베르트 뮐베르거
토어스텐 라쎌
아르민 쇱파흐
이유르겐 피셔
마티아스 오르트
Original Assignee
칼 짜이스 에스엠테 게엠베하
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 칼 짜이스 에스엠테 게엠베하 filed Critical 칼 짜이스 에스엠테 게엠베하
Publication of KR20110098734A publication Critical patent/KR20110098734A/ko
Application granted granted Critical
Publication of KR101702145B1 publication Critical patent/KR101702145B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/001Counterbalanced structures, e.g. surgical microscopes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70758Drive means, e.g. actuators, motors for long- or short-stroke modules or fine or coarse driving
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/14Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation
    • G02B13/143Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation for use with ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/16Optical objectives specially designed for the purposes specified below for use in conjunction with image converters or intensifiers, or for use with projectors, e.g. objectives for projection TV
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • G03F7/70825Mounting of individual elements, e.g. mounts, holders or supports

Abstract

본 발명은 투영 노광 장치 내에 광학 요소를 장착하기 위한 중력 보상기 및 대응 투영 노광 장치에 관한 것이며, 장착된 광학 요소의 중력을 적어도 부분적으로 보상하는 중력 보상기(1, 2)는 동시에, 광학 요소의 위치 변화를 보상된 중력이 상기 위치 변화 중에 허용불가능한 방식으로 변화됨이 없이 가능하게 한다. 이는 특히 보상될 중력이 높은 경우에 적용된다. 본 발명에 따른 중력 보상기는 또한 다른 분위기에서의 사용을 가능하게 하며, 대응 에이징 효과의 보상을 가능하게 한다.

Description

투영 노광 장치에서의 광학 요소에 대한 중력 보상{GRAVITATION COMPENSATION FOR OPTICAL ELEMENTS IN PROJECTION LIGHTING SYSTEMS}
본 발명은 투영 노광 장치 내의 광학 요소의 중력을 보상하거나 상기 광학 요소를 장착하기 위한 중력 보상기에 관한 것이며, 또한 대응 투영 노광 장치, 및 상기 보상기와 투영 노광 장치 양자를 작동하기 위한 방법에 관한 것이다.
특히 극자외선으로 작동되는 EUV(extreme ultraviolet) 투영 노광 장치와 같은 전기공학 또는 마이크로역학 분야에서 극소형 구조물을 생산하기 위한 마이크로리소그래피에 따른 현대 투영 노광 장치에서는, 대응적으로 정확히 배치되어야 하는 광학 요소가 요구된다. 대응 광학 요소의 위치를 변경해야할 필요가 있을 수 있어서 특히, EUV 투영 노광 장치 내의 미러와 같은 광학 요소의 위치 변화를 가능하게 하는 액추에이터가 제공되어야 한다. 광학 요소의 위치를 변화시키기 위한 이러한 투영 노광 장치는 DE 102006 038455 A1, WO 2008/122313 A1, DE 102005 057860 A1, DE 60126103 T2, DE 10339362 A1, DE 10140608 A1, DE 10053899 A1, WO 2008/012336 A1, EP 1503246 A2, EP 1720068 A1, US 7,046,335 B2, EP 1321823 A2, WO 2007/010011 A2에 기재되어 있다.
배치될 광학 요소의 크기와 중량으로 인해, 광학 요소의 운동 중에 액추에이터가 동시에 전체 지지 부하를 견딜 필요가 없도록 대응 광학 요소의 중력을 보상하는 중력 보상기를 사용할 필요가 있을 수 있다. 그 결과, 액추에이터에 의한 광학 요소의 작동이 간단해지고 액추에이터에 대한 에너지 입력이 덜 요구된다. 이는 결국, 예를 들어 액추에이터의 높은 에너지 소비로 인해 장치에 추가적인 열적 부하가 도입되지 않기 때문에 투영 노광 장치의 전체 거동에 대해 긍정적인 효과를 갖는다. 이러한 중력 보상기는 예를 들어 EP 1475669 A1 및 WO 2009/093907 A1에 기재되어 있다. 또한, 자기 베어링 장치는 DE 69825747 T2, US 2004/0212794 A1, WO 2006/087463 A1, JP 55060719 A 및 JP 58137618 A에 공지되어 있다.
그러나, 액추에이터의 작동의 결과로서 광학 요소의 운동은 중력 보상기 역시 대응 운동을 가능하게 하는 효과를 갖는다. 특히 예를 들어 EUV 투영 노광 장치 내의 대응 미러와 같은 크고 무거운 광학 요소의 경우에, 이는 높은 보상력 또는 보상 부하로 인해 문제를 초래할 수 있다.
이전 중력 보상기에서는, 특히, 중력 보상기가 사용될 때 광학 요소의 위치설정 정확도가 손상될 수 있다는 것과, 상기 위치설정 정확도가 특히 수소-함유 분위기와 같은 EUV 투영 노광 장치에 사용되는 특정 분위기에서 불리하게 영향받을 수 있다는 것이 확인되었다. 비교적 긴 시간에 걸친 위치설정 정확도 역시 부정적으로 영향받을 수 있다.
따라서, 본 발명의 목적은 광학 요소의 중력을 보상하거나 또는 전술한 단점을 갖지 않는 마이크로리소그래피용 투영 노광 장치에 광학 요소를 장착하기 위한 중력 보상기를 제공하는 것이다.
특히, 따라서 본 발명의 목적은 투영 노광 장치에 사용하기 위한 중력 보상기를 제공하고, 또한 광학 요소의 위치설정 정확도가 중력 보상기에 의해 부정적으로 영향받지 않으며 위치 안정성이 예를 들어 수소-함유 분위기와 같은 바람직하지 않은 분위기에서 장시간 동안 유지될 수 있는 대응 투영 노광 장치를 제공하는 것이다.
이 목적은 투영 노광 장치 내에 광학 요소를 장착하기 위한 중력 보상기에 의해 달성되고, 상기 중력 보상기는 장착된 광학 요소의 중력을 적어도 부분적으로 보상하는 동시에 광학 요소의 위치 변화를 가능하게 하며, 보상된 중력은 위치 변화 중에 대략 일정하게 유지되고, 100N 이상 또는 심지어 200N 이상의 보상된 중력의 경우에 250㎛ 이상의 위치 변화 및/또는 주로 수소-함유 분위기에서의 장착 및/또는 10h 이상의 장착된 시간에 걸친 경우의 보상력의 변화는 0.5N 이하이다. 반드시는 아니지만 바람직하게, 보상된 중력은 250N 이상 또는 300N 이상이며 위치 변화는 500㎛ 이상 또는 750㎛ 이상이다. 이 경우에, 보상된 힘의 변화는 0.2N 이하 또는 0.1N 이하인 것이 바람직하다. 대략 일정하다는 것은, 평형 위치 주위의 250㎛ 미만, 바람직하게는 500㎛ 미만의 위치 변화의 경우에 중력 보상기의 힘-거리 특성 곡선이 평형 위치에서의 힘 값의 0.25% 미만으로 편향되는 것을 의미하는 것으로 이해되어야 한다.
본 발명의 일 실시예에서, 중력 보상기는 전후로 및/또는 나란히 배치되는 상이한 힘-거리 특성 곡선을 갖는 적어도 두 개의 자기(magnetic) 보상기 요소(1, 2; 111, 112, 도 1, 도 2, 도 13 참조)를 포함한다. 투영 노광 장치 내에 광학 요소를 장착하기 위한 중력 보상기의 본 발명의 추가 실시예는 적어도 하나의 제1 자기 보상기 요소(1, 111, 도 1, 도 13 참조)를 포함하며, 여기에서는 제1 자기 보상기 요소에 비해 상이한 힘-거리 특성 곡선을 갖는 적어도 하나의 제2 자기 보상기 요소(2, 112, 도 1, 도 13 참조)가 제1 자기 보상기 요소와 직렬 및/또는 병렬로 배치되거나 제1 자기 보상기 요소와 서로 각지게 배치된다. 이 경우에, 일 실시예에서, 제1 및 제2 자기 보상기 요소(1, 2)는 직렬 연결의 경우에 강성 비자기 커플링(11)에 의해 연결될 수 있으며, 자기 보상기 요소 사이의 구역에는 적어도 하나의 플럭스 안내 요소 또는 강자성 플럭스 안내 요소(12)가 제공될 수 있다.
강성 비자기 커플링(11) 및 플럭스 안내 요소(12)에 의해 달성되는 것은, 두 개의 보상기 요소가 그 각각의 힘-거리 특성 곡선에 관하여 가능한 한 적게 상호 영향을 미침으로써 상기 특성 곡선이 각각의 보상기에 있어서 다른 보상기의 존재로 인해 변화하는 것이다. 상호 직렬 및/또는 병렬로 또는 서로 각지게 배치되고 상호 기계적으로 결합되는 두 개의 보상기 요소의 결과적인 힘-거리 특성 곡선은 따라서 개별 힘-거리 특성 곡선의 합계와 매우 근사하게 표현될 수 있다. 보상기의 치수화 과정은 예를 들어 이러한 조치에 의해 매우 단순화된다.
본 발명의 일 실시예에서, 중력 보상기는 보상기 요소로서 적어도 하나의 기계적 스프링 요소(2, 도 3 참조)를 포함하며, 상기 적어도 하나의 기계적 스프링 요소와 적어도 하나의 자기 보상기 요소는 소정 거리 범위에 걸쳐서 보상력이 기술적 스케일에 있어서 예를 들어 0.25% 이상으로 일정하도록 그 힘-거리 특성 곡선에 의해 상호 조정될 수 있다.
본 발명의 일 실시예에서, 투영 노광 장치 내에 광학 요소를 장착하기 위한 중력 보상기는 적어도 하나의 제1 자기 보상기 요소를 포함하고, 상기 중력 보상기는 보상기 요소로서 적어도 하나의 기계적 스프링 요소(27, 도 3 참조)를 포함하며, 상기 기계적 스프링 요소와 적어도 하나의 자기 보상기 요소는 소정 거리 범위에 걸쳐서 보상력이 기술적 스케일에 있어서 일정하도록 그 힘-거리 특성 곡선에 의해 상호 조정된다. 반드시는 아니지만 바람직하게, 기계적 스프링 요소는 선형 힘-거리 특성 곡선(도 4 참조)을 갖는 스프링을 포함하거나, 기계적 스프링 요소(62, 도 8, 도 9 참조)는 힘-거리 특성 곡선에서 적어도 하나의 대략 일정한 범위를 갖는 스프링을 포함한다. 이러한 스프링 요소는 예를 들어 좌굴 바(buckling bar)일 수 있으며, 이는 좌굴 스프링으로 지칭되기도 한다.
본 발명의 일 실시예에서, 전술한 실시예 중 하나에 따른 중력 보상기는 적어도 두 개의 내부 자석(91, 92, 도 11 참조) 및 적어도 하나의 외부 자석을 갖는 자기 보상기 요소를 포함하며, 상기 내부 자석 중 적어도 하나(102, 도 12 참조)는 공간 위치에 관하여 다른 내부 자석에 대해 변화될 수 있고 및/또는 자기 강도는 조절될 수 있다. 또한, 전술한 실시예 중 하나에 따른 중력 보상기의 경우에, 자기 보상기의 자석 중 적어도 하나는 중력 보상기의 근처에 존재하는 분위기로부터 분리되는 방식으로 배치될 수 있으며, 예를 들어 상기 분리는 기밀성 봉입(132, 도 14 참조), 기밀성 코팅(141, 도 15 참조) 및/또는 가스 주입(purging) 시스템(154, 도 16 참조)에 의해 실현될 수 있다. 경우에 따라, 전술한 실시예 중 하나에 따른 중력 보상기는 자기장에 영향을 주는 적어도 하나의 교체가능한 조절 요소(164, 도 17 참조)를 포함할 수 있다.
본 발명에 따른 중력 보상기의 추가 실시예는, 전술한 특징에 대해 추가적으로 또는 대안적으로, 장착될 요소에 대해 적어도 하나의 편향(deflection) 요소를 거쳐서 연결되는 적어도 하나의 균형추(32, 42, 52, 53, 도 5, 도 6, 도 7 참조)를 포함하는 적어도 하나의 보상기 요소를 포함하며, 상기 편향 요소는 적어도 하나의 중실 관절 또는 롤러를 갖는 적어도 하나의 케이블 풀(cable pull)을 포함할 수 있다.
본 발명에 따른 중력 보상기의 추가 실시예는, 전술한 특징에 대해 추가적으로 또는 대안적으로, 보상기 요소에 관계없이 장착될 광학 요소의 위치의 변화를 초래할 수 있는 적어도 하나의 위치설정 요소(78, 79, 도 10 참조)에 할당되는 적어도 하나의 보상기 요소를 포함한다.
따라서 본 발명은 전술한 일 실시예에 따른 적어도 하나의 중력 보상기를 포함하는 마이크로리소그래피용 투영 노광 장치를 포함한다. 이 경우에, 마이크로리소그래픽 투영 노광 장치는 소정의 분위기를 설정하기 위해 단수 또는 복수의 중력 보상기의 구역 주위에서 가스를 순환시키는 가스 주입 장치를 포함할 수 있으며, 상기 가스 주입 장치는 투영 노광 장치의 잔여부 또는 기타 부분과 다른 가스 분위기가 중력 보상기의 구역에 설정될 수 있도록 형성될 수 있다.
또한, 본 발명은 중력 보상기 또는 각각 투영 노광 장치를 작동시키기 위한 방법을 포함하고, 전술한 특징을 포함하는 적어도 하나의 중력 보상기 또는 각각 투영 노광 장치가 제공되며, 적어도 하나의 광학 요소가 중력 보상기와 함께 장착된다.
본 발명은 액추에이터 또는 베어링 구조의 잔여부가 중력 보상의 변화로 인해 지지될 부하의 예기치못한 변화에 의해 부정적으로 영향받지 않도록 비교적 큰 위치 변화 및 비교적 큰 중력이 보상되어야 하는 경우에도 중력 보상기가 보상력을 매우 안정하게 유지하는 것이 중요하다는 인식에 기초하고 있다. 이는 환경 영향 및 에이징(aging)에 의한 보상력의 변화에도 적용된다. 그 결과, 특히, 중력 보상의 변화로 인한 지지될 부하의 (예기치못한) 변화의 결과로서, 특히 EUV 투영 대물렌즈 내에서의 예를 들어 EUV 투영 노광 장치 내의 미러와 같은 장착된 광학 요소의 가능한 변형도 회피되거나 매우 크게 감소되며, 따라서 광학 요소의 치수 정확도 역시 실질적으로 조절 및/또는 위치설정 중에 유지된다. 일부 EUV 미러에서, 상기 치수 정확도는 10cm 초과 범위에서 0.1nm보다 양호하다.
따라서, 전술했듯이, 100N 또는 심지어 200N 이상, 특히 250N 이상, 바람직하게는 300N 이상의 보상될 중력의 경우에, 특히 장착될 요소 즉 광학 요소의 위치가 공간 방향을 따라서 250㎛ 이상, 특히 500㎛ 이상, 바람직하게는 750㎛ 이상 선형 변화하는 경우 및/또는 주로 수소-함유 분위기에서 및/또는 10시간 이상, 특히 20시간 이상, 특히 100시간 이상의 장착 시간에 걸쳐서 장착하는 경우에 0.5N 이하, 특히 0.2N 이하, 바람직하게 0.1N 이하의 보상된 힘 변화를 갖는 중력 보상기가 제안된다. 보상된 힘 변화의 이 한계가 준수되는 한, 베어링 구조 및/또는 액추에이터의 나머지는 이들 변화를 위치설정 정확도 없이, 광학 요소의 치수 정확도 없이, 또는 지나치게 불리하게 영향받는 투영 노광 장치에 적용 가능한 허용 범위 내에서 수용할 수 있다.
액추에이터에 의해 초래되는 광학 요소의 위치 변화를 보상하기 위한 중력 보상기의 추적 중에, 보상 부하 또는 보상력의 변화가 예를 들어 발생할 수 있다. 이 힘 변화 또는 힘 분산은 액추에이터의 과부하를 초래할 수 있기 때문에 불리하며, 이는 다시 위치설정 정확도에 부정적인 영향을 미치고, 추가로 위치 변화의 경우에 치수 정확도의 준수를 위태롭게 할 수 있다. 따라서, 특히 장착될 요소, 즉 광학 요소의 가능한 최대의 이동 범위에 걸쳐서 보상될 높은 중력의 경우에 보상력의 감지할 수 있는 정도의 변화가 전혀 발생하지 않는 중력 보상기를 사용하려는 시도가 있었다. 보상력의 대응 안정성 또한 특히 투영 노광 장치의 대응 분위기에서 긴 지지 시간에 걸쳐서 추구되었다. 이 역시 유리하게, 유지될 (광학) 요소의 가능한 미러 변형 또는 전반적인 변형도 마찬가지로 허용가능한 범위 내에 있도록 보장해준다.
충분한 위치설정 정확도를 위한 필요조건으로서 밝혀진 상기 사양을 충족할 수 있는 중력 보상기는 예를 들어 전술한 상이한 구성 변경에 의해 실현될 수 있다.
제1 태양에 따르면, 상이한 힘-거리 특성 곡선을 갖는 적어도 두 개의 자기 보상기 요소가 상호 직렬 및/또는 병렬로 또는 상호 나란히 각지게 배치되는 중력 보상기가 제공될 수 있다.
보상력의 변화를 특정하는 상이한 힘-거리 특성 곡선을 갖는 보상기 요소를 장착될 요소의 위치 변화와 조합함으로써, 상기 한계치는 보상기 요소의 대응적으로 정교한 조합에 의해 달성될 수 있다.
이는 임의의 소정 보상기 요소의 조합에 있어서 유효하지만, 자기 보상 요소 또는 보상기 요소의 조합은 자기 중력 보상기가 그 구조적 구성에 의해 주로 위치설정 변화의 넓은 범위에 걸쳐서 보상력의 매우 양호한 일관성을 갖기 때문에 특히 바람직하며, 특히, 보상될 부하의 넓은 범위가 커버될 수 있다. 자기 보상기 요소의 특성은 둘 이상의 자기 보상기 요소의 조합에 의해서 더욱 개선 및 최적화될 수 있다. 특히, 다수의 자기 보상 요소를 포함하는 중력 보상기의 힘-거리 특성 곡선은 예를 들어 힘-거리 특성 곡선이 소정 거리에 걸쳐서, 즉 광학 요소의 소정 변위에 걸쳐서, 상기 데이터의 허용 범위 내에 놓이는 거의 일정한 힘을 갖도록 요건에 잘 적합화될 수 있다. 이 결과, 보상될 중력의 방향과 대개 일치하는 소정 변위 방향으로 중력 보상기의 베어링 강성이 매우 낮아진다.
자기 보상기는 두 개의 자기적으로 동일하게 배향된 자석이 축을 따라서 상호 이격되어 배치되도록 구성될 수 있다. 이 축방향 자석 배치의 중심 구역에는, 외주 자기 링이 제공되며, 이는 내부 자석을 적어도 부분적으로 둘러싼다. 외부 자기 링은 내부 자석에 대해 횡방향으로 자기 배향되며, 따라서 외부 자석의 내부 폴(pole)은 제1 내부 자석의 유사 폴에 인접하고 제2 내부 자석의 대향 폴에 인접하다. 이 결과 내부 자석과 외부 자석 사이의 종축을 따라서 자력이 발생하며, 이 자력은 내부 자석에 대한 외부 자석의 넓은 변위 범위에서의 상대 변위에도 불구하고 거의 일정하게 유지된다. 상기 자력은 보상력으로서 사용될 수 있다. 축을 따라서 상호 이격 배치되는 동일하게 배향된 내부 자석을 사용하는 것의 추가 장점은, 상기 자석이 외부 자기 링에 대해 대략 대칭적으로 위치되는 경우에, 예를 들어 광학 요소를 장착하기 위한 지지력으로서 사용될 수 있는 최대 힘이 발생되는 것이다. 두 개의 대향 배향된 내부 자석을 사용하는 경우에, 전술한 대칭적인 위치설정에서는 힘 제로가 발생될 것이며, 따라서 이 위치에는 지지력이 전혀 존재하지 않을 것이다. 후자는 대향 배향된 내부 자석이 외부 자기 링에 대해 상당한 상대 변위를 하는 경우에만 발생되었으며, 그 결과 불리하게 구조 공간이 확대되고, 추가로 동일한 자석 치수의 사용에 의해 지지력은 동일 배향된 자석에 비해 현저히 감소된다. 방금 기술한 자기 보상기 요소의 이들 두 실시예 변형의 추가 장점 및 단점은 예시적인 실시예와 관련하여 설명된다.
자기 보상기의 조합을 위해서, 제1 및 제2 자기 보상기 요소 및/또는 추가 보상기 요소는 직렬로 연결될 수 있으며, 예를 들어 강성 비자기 커플링에 의해 상호 연결될 수 있다. 이 경우에, 직렬 연결은 자기 보상기(이하 전기자로도 지칭됨)의 가동 부분의 연결, 예를 들면 기계적 연결을 의미하는 것으로 이해되어야 하며, 따라서 상기 자기 보상기의 가동 부분은 사실상 공통 운동을 수행한다. 비자기 커플링은, 개별 자기 보상기 요소의 각 힘-거리 특성 곡선이 다른 자기 보상기 요소의 존재에 의해 가능한 한 적게 영향받는 전술한 장점을 갖는다. 자기 보상기 요소 사이의 구역에서 이러한 영향을 더 감소시키기 위해, 자기 보상기 요소 사이의 단락을 방지하고 자기장에 바람직하게 영향을 미칠 수 있는 플럭스 안내 요소, 특히 강자성 플럭스 안내 요소를 제공할 수 있다.
자기 보상기 요소의 조합과 함께, 추가적으로 또는 대안적으로, 스프링 요소 형태의 기계적 보상기 요소 또한, 자기 보상기 요소의 조합에 추가적으로 또는 단일 자기 보상기 요소와의 조합으로서 사용될 수 있다. 예를 들어 스프링 요소와 같은 다수의 기계적 보상기 요소와 하나 이상의 자기 보상기 요소의 조합도 고려될 수 있다. 여기에서 역시 필수적인 것은, 소정 거리 범위에 걸쳐서, 즉 장착될 광학 요소의 대응하는 위치 변화에 걸쳐서, 보상력이 일정하게 또는 거의 일정하게 유지되도록 힘-거리 특성 곡선이 상호 조정되는 것이다. 여기에서는, 특히 기술적 스케일이 가정되어야 하는 바, 즉 투영 노광 장치에서 통상 달성되어야 하는 위치설정 정확도에 대한 허용 범위 내에서 일관성이 있어야 한다.
기계적 보상기 요소로서 사용될 수 있는 기계적 스프링 요소는, 후크의 법칙(Hooke's law)에 따른 선형 힘-거리 특성 곡선을 갖는 스프링, 또는 힘-거리 특성 곡선에서의 힘 프로파일에 대해 적어도 하나의 대략 일정한 범위를 갖는 스프링 요소일 수 있다.
이러한 기계적 스프링 요소는 이후 그 자체가 중력 보상기로서 사용될 수도 있다. 한 가지 가능한 기계적 요소는, 힘-거리 특성 곡선이 추구되는 위치 변화에 대한 보상력의 일관성 또는 사실상의 일관성을 가능하게 하는 굴곡의 특정 범위, 즉 좌굴 막대의 대응 굴곡에 사용되는 탄성 좌굴 바이다.
자기 보상기 요소 또는 자기 중력 보상기는 조절 가능하도록 또는 변경 가능하도록 설계될 수 있다. 예로서, 적어도 하나의 자석, 특히 내부 자석 중 하나의 위치는 공간 위치에 대해, 예를 들면 다른 내부 자석에 대해 변경될 수 있으며, 및/또는 적어도 하나의 자석, 특히 내부 자석 중 하나의 자기 강도, 즉 자기장 강도 또는 자속은 조절될 수 있다. 이는 예를 들어 대응 자석에 배치되는 코일을 갖는 요크에 의해 달성될 수 있으며, 따라서 자기장 강도 또는 자속은 대응적으로 코일에 인가되는 전류에 의해 변경될 수 있다.
자기 보상기 요소 또는 자기 중력 보상기에 대해서는, 특히 자기장에 영향을 미치는 교체가능한 조절 요소 또한 제공될 수 있는 바, 예를 들면 자기 보상기의 자석의 대응하는 근처로 이동될 수 있는 강자성 요소가 제공될 수 있다.
중력 보상기 또는 대응 보상기 요소의 조절성 또는 가변성으로 인해, 보상력의 변화를 적합한 설정에 의해 해소할 수 있으며, 따라서 위치 변화 또는 에이징 현상 또는 환경 영향이 심각하지 않게 된다. 특히, 대응 센서에 의하면, 자동 제어(조정)를 가능하게 하는 제어 회로를 제어 회로 내의 피드백과 함께 설치하는 것도 가능하다.
주위 분위기의 영향에 관하여 대응 일관성을 얻기 위해서는, 특히 자기 보상기 요소에 있어서, 자기 보상기 요소의 자석을 중력 보상기의 근처에 존재하는 분위기로부터 분리되는 방식으로 배치할 수 있다.
이 경우에, 분리는 기밀성 봉입, 기밀성 코팅 및/또는 대응 가스 주입 시스템에 의해 실현될 수 있으며, 가스 주입 시스템의 경우에는 치명적이지 않은 예를 들면 비활성의 가스가 사용될 수 있고, 이는 보상기 요소 주위에서 순환하며, 따라서 그렇지 않을 경우 존재하게되는 유해한 분위기가 중력 보상기 주위 구역으로부터 추방된다.
자기 보상기와 함께, 예를 들어 적어도 하나의 편향 요소를 거쳐서 장착될 광학 요소에 연결되는 적어도 하나의 균형추를 구비하며 따라서 균형추와 광학 요소의 중량이 서로 상쇄되는 기계적 중력 보상기도 고려될 수 있다.
이 경우에, 적절한 편향 요소의 예로는 대응 롤러 등을 갖는 중실 관절 또는 케이블 풀이 포함된다.
보상될 힘에 대한 위치 변화의 영향을 제한하기 위한 추가 가능성은, 보상기 요소 또는 중력 보상기에 대한 위치 변화를 최소화하는 것으로 구성된다. 따라서, 장착될 광학 요소의 위치가 변화될 수 있다는 사실에 기여하는 위치설정 요소가, 보상기 요소가 이 위치 변화를 보상할 필요없이 제공될 수 있다. 따라서, 위치설정 요소는 보상기 요소와 독자적으로 위치 변화를 감당할 수 있다.
본 발명의 추가 태양은, 중력 보상기는 비교적 큰 위치 변화 및 비교적 큰 중력이 보상되어야 하는 경우에도 보상력을 대략 안정하게, 즉 일정하게 유지하기 위한 것이라는 상기 인식에 관하여, 중력 또는 중력 보상기의 베어링 강성을 감소시키기 위해 가능한 안내 수단이 유리하게 사용될 수 있다는 사실에 의해 상기 인식을 달성하는 것을 포함한다. 안내 수단은, 보상 요소 또는 보상기 요소의 일부가 보상될 힘의 방향으로 이동하는 경우에 중력 보상기가 상기 방향에 수직한 이동을 최소로 감소시키기 위해 상기 방향에 수직한 이 이동된 요소의 안내를 경험할 수 있게 해주는 기술적 실시예로서 이해되어야 한다. 이는 EUV 미러를 중력 보상기에 의해 EUV 투영 노광 장치에 장착하는 경우에 특히 중요한데, 왜냐면 이로 인해 EUV 미러가 추가 액추에이터에 의해 보다 정밀하게 위치설정될 수 있기 때문이다.
따라서, 본 발명은 추가로, 광학 요소를 장착하며, 방향(z)으로 작용하고 마이크로리소그래픽 투영 노광 장치 내의 힘 인가점에 인가되는 힘(F)을 보상하기 위한 중력 보상기를 포함한다. 바람직하게, 방향(z)은 광학 요소의 중력 방향으로 선택된다. 힘 인가점에 인가되는 힘은 광학 요소의 중력의 적어도 일부를 포함하거나, 상기 중력 또는 그 일부에 의해 형성된다. 본 발명에 따른 중력 보상기는 보상 요소의 전기자를 더 포함하며, 상기 전기자는 힘(F)의 역선(force line)의 방향(z)으로 이동할 수 있고 힘 인가점을 둘러싸며, 상기 보상 요소는 힘(F)의 방향(z)으로 제1 힘-거리 특성 곡선을 갖는다. 이 경우에, 전기자는 예를 들어 영구 자석과 같은 가동 자기 또는 자화 재료로 구성될 수 있거나, 또는 이러한 재료를 포함할 수 있다. 전기자는 또한, 적어도 힘 방향으로 힘 인가점의 이동을 허용하는 가동 스프링 또는 대체로 탄성 요소로 구성될 수 있거나, 또는 이러한 요소를 포함할 수 있다. 이 경우에, 탄성 요소는 예를 들어 선형 힘-거리 특성 곡선을 갖는 스프링일 수 있거나, 또는 대안적으로 적어도 하나의 거리 범위에서 다른 거리 범위로부터 벗어나는 구배, 바람직하게는 감소된 구배, 즉 편평한 프로파일을 갖는 힘-거리 특성 곡선을 갖는 좌굴 스프링 또는 좌굴 바일 수 있다. 본 발명에 따른 중력 보상기는 또한, 제1 힘-거리 특성 곡선에 의해 힘(F)이 할당되는 제1 지점(z0) 주위에서 제1 힘-거리 특성 곡선에 의해 제1 힘 인터벌(△F1)에 할당되는 제1 거리 인터벌(△z1)의 절대치와 힘(F)을 포함하는 제1 힘 인터벌(△F1)의 최대힘과 최소힘 사이의 차이(△FF1)의 몫(quotient)에 의해 부여되는, 보상 요소의 제1 베어링 강성(S1)을 갖는다. 이 경우에, 베어링 강성은 일반적으로, 광학 요소의 위치 변화의 경우에 중력 보상기에 의해 광학 요소에 작용하는 힘의 가능한 최대 변화를 특징짓는다. 이상적으로, 기생력 또는 토크를 힘 인가점을 거쳐서 가능한 한 적게 입력하기 위해서는 힘의 변화가 제로여야 한다. 따라서 광학 요소의 위치가 변위되는 경우의 광학 요소의 변형이 회피된다.
본 발명에 따른 중력 보상기는 또한, 보상 요소의 전기자를 안내하기 위해 힘(F) 방향으로 제2 힘-거리 특성 곡선을 갖고, 제1 지점(z0) 주위에서 제2 힘-거리 특성 곡선에 의해 제1 거리 인터벌(△z1)만큼 할당되는 제2 힘 인터벌(△F2)의 최대힘과 최소힘 사이의 차이(△FF2) 및 제1 거리 인터벌(△z1)의 절대치의 몫에 의해 부여되는 보상 요소의 제2 베어링 강성(S2)을 갖는 안내 수단을 포함한다. 이러한 안내 수단의 존재로 인해, 전기자는 보상될 힘의 방향으로의 운동이 사실상 1 자유도로 제한되고 예를 들어 상기 힘에 수직한 방향으로의 운동이 금지되도록 보장된다. 또한, 이 경우에, 힘 보상기의 힘은 제1 및 제2 힘-거리 특성 곡선으로부터의 힘 가산에 기인한다. 이 경우에, 힘 가산은 결과적인 힘-거리 특성 곡선을 초래하고, 중력 보상기는 적어도 하나의 지점(z0*) 주위의 제1 거리 인터벌(△z1)의 절대치와 힘(F)을 포함하는 적어도 하나의 제3 힘 인터벌(△F3)의 최대힘과 최소힘 사이의 차이(△FF3)의 몫으로 귀결되는 제3 베어링 강성(S3)을 가지며, 적어도 하나의 제3 힘 인터벌(△F3)은 적어도 하나의 지점(z0*) 주위의 제1 거리 인터벌(△z1)에 의한 결과적인 힘-거리 특성 곡선에 의해 정해지고, 이 경우, 적어도 하나의 지점(z0*)은 결과적인 힘-거리 특성 곡선에 의해 힘(F)에 할당된다. 이 경우에, 본 발명에 따른 중력 보상기는, 베어링 강성(S3)이 베어링 강성(S1) 이하이고, 및/또는 결과적인 힘-거리 특성 곡선이 제1 거리 인터벌(△z1)보다 크게 상호 이격되는 적어도 두 개의 지점(z0*)을 가지며, 및/또는 결과적인 힘-거리 특성 곡선에서 힘(F)에 관한 차이(△FF1)는 △z1보다 큰 거리 인터벌에 할당되는 사실에 의해 구별된다.
전술한 추가 중력 보상기의 장점은 전기자의 양호한 안내와 관련하여 감소된 베어링 강성이 달성된다는 점이다. 또한, 제1 및 제2 힘-거리 특성 곡선의 적합한 설계가 주어지면, 전기자의 이동 범위 및 그로인한 광학 요소의 이동 범위를 증가시킬 수 있으며, 여기에서 베어링 강성은 반드시 증가하지는 않으며 심지어 감소될 수 있다.
본 발명의 추가 중력 보상기의 추가 실시예를 후술한다. 이 경우에, 특히 보상 요소 및 안내 수단에 대해서는, 본 발명에 따른 중력 보상기의 상기 실시예와 관련한 보상기 요소 및 스프링 요소를 사용할 수 있다. 또한, 본 발명에 따른 중력 보상기의 상기 실시예로부터의 특징은 본 발명에 따른 중력 보상기의 추가 실시예에 포함될 수 있다. 일반적으로, 본 발명은 또한 상기 중력 보상기 및 본 발명에 따른 추가 중력 보상기의 특징의 조합 및 교환으로부터 유래하는 실시예를 포함하고, 후술하는 그 실시예도 포함한다.
추가 중력 보상기는, 전기자가 지점(z0*) 주위의 제1 거리 인터벌(△z1) 만큼 힘의 방향으로 이동가능하도록 설계되는 것이 바람직하며, 제1 거리 인터벌(△z1)은 3mm 미만 250㎛ 초과하는 것이 바람직하다. 대안적으로 또는 추가적으로, 제3 베어링 강성은 2N/mm 미만이며, 바람직하게는 0.2N/mm 미만이다.
마찬가지로 대안적으로 또는 추가적으로, 힘(F)에 수직한 전기자의 운동은 힘(F)에 수직한 방향으로 안내 수단에 의해 발생되는 횡방향 힘에 의해, 힘 방향으로의 전기자 운동의 절대치의 10% 미만으로 제한된다. 또한, 광학 요소는 전기자의 힘 인가점에서 적어도 부분적으로 지지 장치에 의해 직접적으로 또는 간접적으로 지지될 수 있다. 이 경우에, 지지 장치는 일반적으로 힘 방향으로 높은 강성을 갖는다. 이 경우에, 상기 강성은 베어링 강성과 차별화되어야 하는 바, 왜냐면 후자는 신장 강성의 가장 간단한 경우에, 예를 들어 지지 장치가 바-타입으로 구체화되면 지지 장치의 탄성율과 지지 장치의 단면적의 곱으로부터 결정되기 때문이다. 신장 강성과 더불어, 지지 장치는 또한 굽힘 강성 및 비틀림 강성을 갖는다. 힘 방향으로의 신장 강성은, 방향(z)으로 힘 인가점이 최대 허용가능한 변위를 하는, 예를 들어 절대치(△z1) 만큼 변위하는 경우에 제3 힘-거리 특성 곡선에서의 힘(F)의 최대 힘 변화에 대응하는 차이(△FF3)의 100배 초과 내지 1000배 초과이도록 선택되는 것이 바람직하다. 이는 광학 요소를 가능한 한 정확히 위치시키기 위해 중력 보상기의 전기자에서의 힘 인가점과 광학 요소 사이에 가능한 한 견고한 연결이 지배적이도록 보장한다.
또한, 지지 장치는 바람직하게 안내 수단이 200N 초과의 강성을 갖는 경우 힘(F) 방향에 수직한 방향으로 안내 수단보다 낮은 강성(신장 강성)을 갖는다. 대안적으로, 지지 장치는 바람직하게 안내 수단이 200N 미만의 강성을 갖는 경우 힘(F) 방향에 수직한 방향으로 안내 수단보다 높은 강성을 갖는다.
바람직하게, 광학 요소는 리소그래픽 EUV 투영 노광 장치의 미러이며, 힘(F)은 중력 또는 미러 중력의 일부이다.
대안적으로 또는 추가적으로, 추가 중력 보상기는 보상 요소가 제1 그룹으로부터의 적어도 하나의 요소를 포함하도록 상기 실시예중 하나에 따라 설계되며, 제1 그룹은 이하의 것으로 구성된다:
- 200N 이상 또는 300N 이상의 보상될 중력에 대한 보상 요소,
- 500㎛ 이상 3mm 이하의 광학 요소의 위치 변화를 허용하는 보상 요소,
- 자기 보상기,
- 중력 보상기의 근처에 존재하는 분위기로부터 예를 들어 기밀성 봉입 및/또는 기밀성 코팅 및/또는 가스 주입에 의해 분리되는 방식으로 배치되는 적어도 하나의 자기 보상기 요소를 갖는 자기 보상기 요소,
- 자기장에 영향을 미치는 적어도 하나의 교체가능한 조절 요소를 갖는 자기 보상기,
- 상호 전후로 및/또는 나란히 배치되는 상이한 힘-거리 특성 곡선을 갖는 적어도 두 개의 자기 보상기 요소,
- 강성 및 비자기 커플링에 의해 상호 연결되는 제1 및 제2 자기 보상 요소를 갖는 보상기 요소,
- 적어도 하나의 플럭스 안내 요소 또는 강자성 플럭스 안내 요소를 갖는 자기 보상 요소,
- 적어도 두 개의 내부 자석을 갖는 자기 보상기로서, 내부 자석 중 적어도 하나는 공간 위치에 관하여 다른 내부 자석에 대해 변경될 수 있고 및/또는 자기 강도가 조절될 수 있는 자기 보상기,
- 후크의 법칙을 따르는 기계적 보상기 요소,
- 힘-거리 특성 곡선에서 대략 일정한 힘의 범위를 갖는 기계적 스프링 요소,
- 액추에이터를 포함하는 보상기 요소,
- 스프링 요소,
- 좌굴 바,
- 예를 들면 케이블 풀 또는 롤러와 같은 적어도 하나의 편향 요소를 거쳐서 장착될 광학 요소에 연결되는 적어도 하나의 균형추를 포함하는 보상기 요소, 및
- 보상기 요소에 관계없이 장착될 광학 요소의 위치 변화를 가능하게 하는 적어도 하나의 위치설정 요소를 갖는 보상기 요소. 중력 보상기의 상기 실시예와 관련하여 설명된 장점은 따라서 추가 중력 보상기에 대해서도 발생한다.
또한, 추가 중력 보상기는 안내 수단이 대안적으로 또는 추가적으로 제2 그룹으로부터의 적어도 하나의 요소를 포함하도록 상기 실시예중 하나에 따라 설계되며, 제2 그룹은 이하의 것으로 구성된다:
- 자기 안내 수단,
- 중력 보상기의 근처에 존재하는 분위기로부터 예를 들어 기밀성 봉입 및/또는 기밀성 코팅 및/또는 가스 주입에 의해 분리되는 방식으로 배치되는 적어도 하나의 자기 안내 수단을 갖는 자기 안내 수단,
- 자기장에 영향을 미치는 적어도 하나의 교체가능한 조절 요소를 갖는 자기 안내 수단,
- 상호 전후로 및/또는 나란히 배치되는 상이한 힘-거리 특성 곡선을 갖는 적어도 두 개의 자기 안내 수단,
- 적어도 두 개의 내부 자석을 갖는 자기 안내 수단으로서, 내부 자석 중 적어도 하나는 공간 위치에 관하여 다른 내부 자석에 대해 변경될 수 있고 및/또는 자기 강도가 조절될 수 있는 자기 안내 수단,
- 후크의 법칙을 따르는 기계적 안내 수단,
- 힘-거리 특성 곡선에서 대략 일정한 힘의 범위를 갖는 기계적 스프링 요소,
- 액추에이터를 포함하는 안내 수단,
- 스프링 요소,
- 좌굴 바,
- 멤브레인,
- 힘에 의해 기계적으로 예비응력부여되는 스프링 요소 또는 좌굴 바 또는 멤브레인, 및
- 장착될 광학 요소의 위치 변화를 가능하게 하는 적어도 하나의 위치설정 요소를 갖는 안내 수단.
본 발명의 추가 장점, 특징 및 특색은 첨부도면을 참조한 이하의 예시적 실시예에 대한 상세한 설명으로부터 자명해질 것이다.
도 1은 본 발명에 따른 중력 보상기의 제1 실시예의 개략도이다.
도 2의 (a) 내지 (c)는 도 1로부터의 자기 보상기 요소의 힘-거리 특성 곡선[도 2의 (a) 및 (b)] 및 도 1로부터의 전체 중력 보상기의 대응 힘-거리 특성 곡선의 도시도이다.
도 3은 본 발명에 따른 중력 보상기의 제2 실시예의 개략도이다.
도 4는 보상기 요소 및 도 3으로부터의 전체 중력 보상기의 힘-거리 특성 곡선을 도시하는 도표이다.
도 5는 본 발명에 따른 중력 보상기의 제3 실시예의 개략도이다.
도 6은 본 발명에 따른 중력 보상기의 제4 실시예의 개략도이다.
도 7은 본 발명에 따른 중력 보상기의 제5 실시예의 개략도이다.
도 8은 본 발명에 따른 중력 보상기의 제6 실시예의 개략도이다.
도 9는 도 8로부터의 중력 보상기의 힘-거리 특성 곡선을 도시하는 도표이다.
도 10은 본 발명에 따른 중력 보상기의 제7 실시예의 개략도이다.
도 11은 본 발명에 따른 중력 보상기의 제8 실시예의 개략도이다.
도 12는 본 발명에 따른 중력 보상기의 제9 실시예의 개략도이다.
도 13은 본 발명에 따른 중력 보상기의 제10 실시예의 개략도이다.
도 14는 봉입된 자석의 단면도이다.
도 15는 본 발명에 따른 중력 보상기에 사용하기 위한 코팅된 자석의 단면도이다.
도 16은 본 발명에 따른 중력 보상기에 또는 본 발명에 따른 투영 노광 장치에 사용하기 위한 가스 주입 장치의 개략도이다.
도 17은 본 발명에 따른 중력 보상기의 제11 실시예의 개략도이다.
도 18은 본 발명에 따른 추가 중력 보상기의 제1 실시예의 개략도이다.
도 19는 도 18에 따른 중력 보상기용 힘-거리 특성 곡선 패밀리의 개략도이다.
도 20은 도 18에 대해 약간 수정된 중력 보상기용 힘-거리 특성 곡선 패밀리의 개략도이다.
도 21은 도 18에 대해 약간 수정된 추가 중력 보상기용 힘-거리 특성 곡선 패밀리의 개략도이다.
도 22는 동일 극성을 갖고 배치되는 두 개의 내부 자석을 갖는 자기 보상기 요소의 예시적 실시예의 개략도이다.
도 23은 도 22에 따른 실시예의 자기장 특성 곡선을 수직 단면으로 도시하는 도면이다.
도 24는 동일 극성의 두 개의 내부 자석을 갖는 자기 보상기 요소의 계산된 힘-거리 특성 곡선의 도시도이다.
도 25는 두 개의 기계적으로 결합된 자기 보상기 요소의 계산된 힘-거리 특성 곡선의 도시도이다.
도 26은 반대 극성의 두 개의 내부 자석을 갖는 자기 보상기 요소의 계산된 힘-거리 특성 곡선의 도시도이다.
도 1은 두 개의 자기 보상기 요소(1, 2)를 포함하는 본 발명에 따른 중력 보상기의 제1 실시예를 도시한다. 상기 자기 보상기 요소(1, 2)의 각각은 전용 자기 중력 보상기로서 사용될 수 있다.
자기 보상기 요소(1)는 제1 내부 자석(3) 및 제2 내부 자석(4)을 포함하며, 동일하게 향하는 그 자기 배향을 갖는 이들 내부 자석은 강성 연결 요소(6)에 의해 상호 단단히 연결된다. 내부 자석(3, 4) 옆에는, 자기 링으로서 구체화되고 내부 자석(3, 4)을 동축적으로 둘러싸는 외부 자석(5)이 존재한다. 도 1에서의 단면도는 내부 자석(3, 4)이 배치되는 중심 중간축의 좌우에 있는 자기 링(5)의 두 단면 영역을 나타낸다.
자석의 배향은, 외부 자기 링(5)의 자기 배향이 내부 자석(3, 4)의 자기 배향에 대해 횡방향으로 배향되도록 이루어진다. 도 1에 도시된 예시적인 실시예에서, 내부 자석(3, 4)의 북극은 상부에 배치되고 내부 자석(3, 4)의 남극은 하부에 배치된다. 외부 자기 링(5)의 자기 배향은 북극이 자기 링(5)의 내측에 제공되고 남극이 외측에 배치되도록 설정된다. 이러한 배치에 의하면, 외부 자기 링(5)은 연결 요소(6)에 평행한 중심 종축을 따라서 내부 자석(4)으로부터 밀려나고, 외부 자기 링(5)은 내부 자기 링(3)의 방향으로 끌려가며, 인력은 상부를 향한다. 따라서, 이 자력 또는 인력은 장착될 요소, 특히 광학 요소(도시되지 않음)의 중력을 보상하기 위해 사용될 수 있다. 이 경우에, 상부를 향하는 힘 성분은 외부 자기 링(5)이 내부 자석(3, 4)에 대해 좁은 범위에서 변위되는 경우에도 동일하게 또는 대략 동일하게 유지되는 바, 이는 예를 들어 z축 방향, 즉 연결 요소(6)의 종축에 평행한 방향의 변위의 경우에, 외부 자석(5)과 내부 자석(3) 사이의 강한 인력이 외부 자석(5)과 내부 자석(4) 간의 약한 척력에 의해 보상되기 때문이다. 도시된 예시적 실시예에서, 예를 들어 광학 요소는 내부 자석(3)에 지지될 수 있으며, 외부 자석(5, 98)은 마운트에 연결된다. 내부 자석(3, 4)은 이들 자석에 의해 발생된 힘이 광학 요소의 지지되는 중력과 평형을 이루도록 광학 요소의 지지를 수행한다.
대안적으로, 자석(3, 4, 7, 9)은 각 보상기 요소(1, 2)의 극성이 각각 보상기 요소 내에서 상호 반대되도록 그 극성에 관하여 교환될 수 있다. 이 경우에, 내부 자석(3, 4, 7, 8)은 마찬가지로 광학 요소를 지지하며, 외부 자석에 대해 이동 가능하다. 일반적으로, 외부 자기 링 및 그 연결 요소에 대해 이동 가능한 내부 자석은 전기자로서 지칭된다.
자기 보상기 요소 내에서 상이한 극성을 갖는 배치의 장단점을 도 22 내지 도 26을 참조하여 후술한다.
도 22는 도 1에서의 자기 보상 요소와 대응하지만 약간 수정되고 스케일 관계가 유사하며, 도 23에서 재현되는 관련 자력선 필드를 갖는 자기 보상 요소(1)를 도시한다. 내부 자석은 상부(양의 z방향)를 향하는 동일 방향으로 극성을 갖는다. 내부 자석(3, 4)과 연결 요소(6)로 구성되는 전기자에 있어서, 이는 z-방향으로 상부를 향하는 힘을 초래한다. 이 경우에, 연결 요소(6)의 효과는 명백한 바, 연결 요소는 내부 자석(3, 4)을 상호 이격 유지하며, 상부 내부 자석(3, 4)의 남극과 하부 내부 자석의 북극 사이에 자기 단락 회로 형태를 형성한다.
도 24는 도 22 및 도 23에 따른 배치에 있어서, FE 방법에 의해 계산된 하기 표 1로부터의 힘-거리 특성 곡선(2000)을 도시한다. 이 경우에, 방향(z)으로의 힘(Fz)은 전기자 변위(z)의 함수로서 표현되는 바, 여기에서 스텝은 연산 인터벌을 나타내고, Z Pos는 z위치(mm)를 나타내며, 칼럼 #1에서의 Fz는 힘(N: newton)을 나타낸다. 전기자 변위는 외부 자석(5)을 통한 xy 평면에 위치하는 대칭 평면(상기 대칭 평면은 도 23에서 5*에 의해 확인됨), 및 두 개의 내부 자석 사이의 중심에 놓이는 전기자의 대칭 평면에 대해 측정된다. 내부 자석(3, 4)이 동일 극성을 갖고 배치되는 경우에, 내부 자석이 외부 자석(5)에 대해 대략 대칭적으로 배치될 때 최대 힘이 달성되는 것은 명백하다. 또한, 힘이 z방향, 즉 상부를 향하고 따라서 광학 요소를 수용하기 위한 최대 지지력을 형성하는 것은 명백하다. 또한, 상부 또는 하부를 향한(마이너스 z값 방향) 변위가 증가할수록 힘(Fz)은 감소하고 대략 18mm의 z-변위의 경우에는 제로값에 달하는 것은 명백하다. 더 변위되면, 힘(Fz)은 역전되는 바, 즉 중력 방향으로 작용하고, 대략 26mm에서 그 절대치에 관하여 그 최대치에 도달한다. 더 변위되면, 힘(Fz)은 제로를 향하는 경향이 있다. 26mm의 높이와 11mm의 링 두께를 갖고 자기 링(5)에 대해 32mm의 외경을 갖는 자석을 산출 근거로 취하였다. 두 개의 내부 자석은 동일한 형태를 가지며, 12mm의 높이와 6mm의 두께를 갖는다. 이 경우에, 두 개의 내부 자석은 상호 대면하는 그 각각의 측면에서 연결 요소(6)에 의해 상호 2mm 이격되어 있다.
표 1에서, 추가로 칼럼 #2에서, 힘은 두 개의 내부 자석(3, 4) 대신에, 동일한 기하학적 형상을 갖는 하나의 자석(3 또는 4)만이 동일한 외부 자기 링(5) 내에 장착되는 경우에 산출되었다. 관련 힘-거리 특성 곡선은 도 24에서 2010으로 지칭된다. 이 특성 곡선은 특성 곡선(2000)과 유사한 거동을 나타내지만, z=0 주위에서 현저히 두드러지는 고원부(plateau)를 갖는다. 이는 z=0 주위의 대략 ±5mm의 이 범위에서 힘이 대략 83N 및 78N의 범위에서 변화함을 의미한다. 이는 대략 12mm의 전기자 변위 범위에 걸쳐서 5N의 힘 일관성과 대략 일치한다. 그러나, 불리한 것은, z=0에서의 힘이 두 개의 자석의 경우의 힘 크기에 비해 대략 절반 정도의 크기를 갖는다는 것이다.
Figure pct00001
EUV 리소그래피에서 EUV 투영 대물렌즈의 EUV 미러는 직경이 클수록 질량이 더 높아지고 전기자 거리가 3mm 미만이므로, 두 개의 내부 자석(3, 4)을 포함하는 해결책은 그럼에도 불구하고 적절한 바, 그 이유는 구조적 공간의 상당한 증가 없이 중력 보상기의 지지력이 현저히 증가될 수 있기 때문이다. 이러한 보상 요소(1)가 사용될 때에도 힘-거리 특성 곡선에 고원부가 형성될 수 있도록, 이러한 보상기의 적어도 두 개가 예를 들어 도 1에 도시하듯이 기계적으로 상호 연결된다.
이러한 보상기 요소에 대해서는, 도 2a에 개략 도시되거나 도 24의 예시적 실시예(2000)에 대해 구체적으로 산출된 것과 같은 힘-거리 특성 곡선이 발생한다. 이 경우에, 거리는 전기자로도 지칭되는 자기 보상기(1)의 내측 부분, 즉 내부 자석(3, 4)의, 연결 요소(6)에 의한 외부 자석(5)에 대한 상대 변위이다.
도 2a로부터 명백하듯이, 제로 위치 또는 이에 대해 약간 오프셋된 위치에서 최대 힘이 발생하며, 이 최대 힘은 중력의 보상을 위해 사용될 수 있고, 이 힘은 z축의 정방향으로 또는 부방향으로의 변위의 경우에 대응적으로 감소된다.
특히 예를 들어 극자외선 파장 범위의 파장을 갖는 광선으로 작동하는 EUV(극자외선) 투영 노광 장치의 경우의 무거운 부품에 대한 중력 보상의 경우에, 보상될 힘이 대응적으로 높은 경우에는, 자기 보상기 요소(1)의 내부 및 외부 부품이 변위될 때 보상력의 상당한 변화가 발생한다. 그러나 이는 바람직하지 않은 바, z축을 따르는 대응 변위가 발생할 수 있는 미러의 대응 배향의 경우에, 대응 액추에이터가 지나치게 큰 부하를 이동시켜야 하고 그 결과 대응하여 열이 발생하는 높은 에너지 입력이 장치에 도입되기 때문이며, 이는 정밀성이 요구되는 투영 노광 장치에 있어서 불리하다. 또한 힘 변화가 미러의 변형을 초래할 수 있는 것도 불리하다. EUV 미러의 경우의 통상적인 치수 정확도는 30cm까지의 구역에 걸쳐서 0.1nm 또는 10-10m의 범위에 있다. 작은 힘 변화도 미러를 변형시킬 수 있으므로 상기 치수 정확도는 더 이상 보장되지 않는다. 이러한 이유로, 중력 보상기는 z축을 따르는(중력 방향으로의) 미러의 위치 변화의 경우에도 가능한 한 일정한 힘을 가져야 한다.
따라서, 도 1의 실시예는 예를 들어 단단한 방식으로 구체화되는 바람직하게 비자성인 연결 요소(11)에 의해 제1 자기 보상기 요소(1)와 직렬 연결되는 제2 자기 보상기 요소(2)를 제공한다. 이 경우에, 직렬 연결은 자기 보상기(이하 전기자로도 지칭됨)의 가동 부분의 연결, 예를 들면 기계적 연결을 의미하는 것으로 이해되어야 하며, 따라서 상기 자기 보상기의 가동 부분은 사실상 공통 운동을 수행한다. 비자기 연결 요소(11)에 의한 보상 요소(1, 2)의 연결은, 보상 요소(1, 2)가 그 각각의 힘-거리 특성 곡선에 관하여 추가 보상 요소(1, 2)의 존재에 의해 거의 영향받지 않는다는 장점을 제공한다. 이러한 중력 보상기의 결과적인 힘-거리 특성 곡선은 따라서 개별 특성 곡선의 추가에 의해 양호한 근사로 계산될 수 있다.
그러나, 구조 측면에서, 제2 자기 보상기 요소(2)는 예를 들어 제1 자기 보상기 요소(1)와 반드시 동일하지는 않으며, 따라서 마찬가지로 제1 내부 자석(7), 제2 내부 자석(8), 외부 자기 링(9), 및 상기 제1 내부 자석(7)과 제2 내부 자석(8) 사이의 연결 요소(10)를 갖는다. 그러나, 제2 자기 보상기 요소(2)는 힘-거리 특성 곡선이 제1 자기 보상기 요소(1)의 힘-거리 특성 곡선과 다르도록 구체화되는 것이 바람직하지만 반드시 그렇지는 않다.
제2 자기 보상기 요소(2)의 힘-거리 특성 곡선은 도 2b에 도시되어 있으며, 그 최대치에 관하여 예를 들어 제1 보상기 요소(1)의 힘-거리 특성 곡선(도 2a)의 최대치에 대해 z방향으로 변위를 갖는다.
상이한 힘-거리 특성 곡선을 갖는 두 개의 자기 보상기 요소(1, 2)의 조합은, 자기 보상기 요소(1, 2)의 힘-거리 특성 곡선의 중첩에 의한 힘-거리 특성 곡선을 갖는 중력 보상기를 제공할 수 있다. 이는 도 2c에 도시되어 있다. 그 결과 예를 들어 대응 미러와 같은 장착된 요소의 위치가 변위되는 경우에 보상 가능한 부하의 변화가 작은 높은 부하가 얻어진다. 그 결과, 대응적으로 구비되는 투영 노광 장치, 특히 대응 조명 시스템 또는 투영 대물렌즈의 경우에, 대응 광학 요소의 위치 변화는 힘의 소모 없이 수행될 수 있으며, 따라서 고도의 정확도와 위치설정 정확도를 갖는 고에너지의 입력 없이 수행될 수 있다. 전체적으로, 도 2c는 조합된 보상기 요소(1, 2)의 힘-거리 특성 곡선이 그 최대치 주위에서 개별 보상기 요소의 각각의 힘-거리 특성 곡선에 비해 덜 구부러진 형상을 갖는 것을 보여준다. 따라서, 조합된 보상기 요소의 힘-거리 특성 곡선은 구배가 제로인 이상적인 힘-거리 특성 곡선에 매우 근사해진다. 구배가 제로인 이상적인 힘-거리 특성 곡선은, 예를 들어 EUV 미러와 같은 광학 요소가 z방향으로의 그 위치에 관계없이 이 방향으로 작용하는 일정한 힘을 겪는 결과를 유리하게 가질 것이다. 이 힘은 EUV 미러가 그 작동 위치에서 필요한 형상을 갖도록 미러 형상의 설계 시에 0.1nm(또는 심지어는 그 이상)까지 고려될 수 있다. 따라서 z방향으로의 미러 위치 변화에 의한 미러 형상의 일탈이 배제된다.
대안적으로, 보상 요소의 상기 이상적인 힘-거리 특성 곡선은 또한, 예를 들어 외부 자석(5)이 예를 들어 큰 직경을 갖는 경우와 같이 큰 체적 구역을 차지하도록 기하학적으로 변경되는 자석(3, 4, 5)에 의해 근사화될 수 있다. 이 자석에 의해 발생되는 자기장은 따라서 보다 균일해지며, 따라서 힘-거리 특성 곡선은 그 최대치 주위에서 덜 구부러진다. 이상적인 힘-거리 특성 곡선에 가능한 한 가까워지기 위한 추가 대안은, 전기자와 고정자 사이의 상대 변위의 경우에 실질적으로 변위-독립적인 힘이 초래되도록 전기자 및 고정자[예를 들면, 자기 링(5)]를 예를 들어 자석의 일반적으로 표면을 갖는 단부에 의해 영향받는 자기장 라인의 프로파일 및 밀도에 의해 기하학적으로 구성하는 것으로 구성된다. 그러나 상기 대안은 보상 요소가 보다 생산하기 어렵다는 단점을 가지며, 그 결과 이러한 요소는 상당히 더 비싸고, 심지어는 큰 형상으로 인해 EUV 투영 노광 장치의 제한된 구조적 공간에 사용될 수 없거나, 또는 공간 측면에서 증가된 경비에 의해서만 사용될 수 있는 바, 이 역시 고 비용을 초래한다.
도 1에 도시된 실시예에서, 제1 자기 보상기 요소(1)와 제2 자기 보상기 요소(2) 사이의 연결 요소의 구역에는 자기장에 영향을 미치거나 자속을 안내하기 위한 장치(12)가 제공된다. 상기 장치는 두 개의 자기 보상기 요소(1, 2)의 내부 자석(4, 7) 사이에서 자기 단락의 발생을 방지하거나 또는 각각의 다른 요소에 의한 개별 보상기 요소(1, 2)의 자기장의 영향을 방지하는 판(12) 형태의 강자성 재료를 포함한다. 개략 도시된 판(12)과 함께, 대응적으로 적합한 다른 형태의 요소를 채용하는 것도 물론 가능하다. 따라서, 이러한 중력 보상기의 결과적인 힘-거리 특성 곡선은 개별 특성 곡선의 추가에 의해 더 훌륭한 근사치로 계산될 수 있다.
도 2a 내지 도 2c를 참조하여 정성적으로 전술된 것을 정량적으로 도시하기 위해, 도 25 및 표 2를 참조해야 한다. 표 1과 유사하게, 연산 스텝은 스텝으로 설계되며, 여기에서 대응하는 z-위치에서의 힘(Fz)은 2mm 스텝에서 계산되었다. 이 경우에, 계산은 전술한 자석 형태에 대해 이루어졌으며, 자기 보상기 요소(1, 2)는 도 1 및 도 22에 도시된 것과 마찬가지로, 동일한 극 방향을 갖는 두 개의 내부 자석을 포함한다. 양 보상기 요소(1, 2)는 동일하게 치수화된다. 칼럼 #1은 표 1에서 이미 언급했듯이 두 개의 내부 자석을 갖는 보상기 요소에 대한 힘을 나타낸다. 연결 요소(11)에 의해, 두 개의 자기 보상기 요소(1, 2)는 상호 연결될 수 있으며 따라서 각각의 보상기 요소(1, 2)의 내부 자석(3, 4 및 7, 8)은 각각의 경우에 각 외부 자석(5, 9)에 대해 대칭적으로 배치된다. 내부 자석(3, 4, 7, 8)과 연결 요소(6, 11, 10)로 구성되는 전기자의 편향은 z방향으로 xy 평면에 평행하게 연장되는 평면에 대해 측정되며, z=0에서의 상기 평면은 두 개의 보상기 요소 사이의 연결 요소(11)의 길이를 이등분한다. 이 경우에, 결과적인 힘-거리 특성 곡선을 얻기 위해서는 칼럼 #1의 값만 배증되어야 한다. 이 결과 z=0에서는 대략 321N의 힘(Fz)이 얻어진다. 이러한 실시예의 경우에는, 구역 z=0 주위에서 힘-거리 특성 곡선이 특히 편평하지 않다는 단점을 갖지만 최대 힘(Fz)이 발생한다.
이 단점을 제거하기 위해, 여기에서 연결 요소(11)는 그 제로 위치인 z=0에서(z=0 위치에서 연결 요소는 내부 자석의 방향으로 이등분됨) 내부 자석을 각각의 외부 자석에 대해 각각의 보상 요소(1, 2)에 관하여 비대칭적으로 배치하도록 치수화된다. 이는 외부 자석(5, 9)의 대응 배치를 통해서 달성될 수 있다. 예시적인 일 실시예에서, 내부 자석은 두 개의 보상기 요소에서 반대 방향으로 변위가 발생하도록 보상기 요소(1, 2) 내의 대칭 위치에 대해 예를 들어 6mm 변위된다. 이는 예를 들어 연결 요소(11)가 대칭 설계에 비해 12mm 만큼 길어지거나 짧아짐으로써 이루어질 수 있다. 이 결과 각각의 보상 요소(1, 2)에 있어서 특성 곡선은 z방향으로 6mm 변위되며, 상기 특성 곡선은 표 2의 F(z+6) 및 F(z-6) 칼럼에서 위치 z에 대해 대응하는 힘 값을 갖는다. 결과적인 특성 곡선은, 그 값이 표 2에서 합계6 칼럼에 표시되어 있는 추가에 의해 다시 발생한다. 도 25에서, 결과적인 힘-거리 특성 곡선은 2030으로 지칭된다. 개별 보상기 요소의 각각의 특성 곡선은 2031 및 2032로 지칭된다.
추가 예에서, 연결 요소(11)는 내부 자석(3, 4, 7, 8)이 각각의 외부 자석(5, 9)에 대한 그 대칭 배치에 관해 2mm만 변위되도록 치수화되었다. 이는 연결 요소(11)를 대응하여 4mm 만큼 짧게하거나 길게함으로써 달성될 수 있다. 보상기 요소(1, 2)의 각각의 특성 곡선은 표 2에서 F(z+2) 및 F(z-2) 칼럼에 표시되어 있으며, 도 25에서 마찬가지로 곡선 2021 및 2022로 표시된다. 결과적인 특성 곡선은 합계2 칼럼으로부터 얻어지며, 이는 도 25에서 2020으로 지칭된다.
도 25는 연결 요소(11)에 의한 내부 자석의 변위의 경우에 고원부가 형성될 수 있음을 나타낸다. 따라서 [-6mm; +6mm]의 인터벌에 걸쳐서 각각의 경우에 6mm 변위하는 경우에는 대략 8N의 힘 변화만 발생하는 것은 명백하다.
Figure pct00002
본 발명에 따른 중력 보상기(20)의 추가 실시예가 도 3에 다시 개략 도시되어 있다. 중력 보상기(20)도 두 개의 보상기 요소(23, 27)를 포함하며, 이번에는 자기 보상기 요소(23)와 기계적 스프링 또는 비교적 탄성적인 요소 형태의 기계적 보상기 요소(27)의 조합이 수반된다. 도 3에 도시된 예시적 실시예의 경우에, 두 개의 보상기 요소는 순차적으로 직렬 연결되며, 따라서 장착될 광학 요소(21)는 대응 연결 요소(22)를 거쳐서 자기 보상기 요소(23) 상에 직접 장착되고 자기 보상기 요소를 거쳐서 기계적 보상기 요소(27) 상에 간접적으로 장착된다. 중력 보상기(20)는 다시 대응 하우징(28) 등에 장착된다.
자기 보상기 요소(23)는 다시 두 개의 내부 자석(24, 25)을 포함하고, 또한 대응적으로 다시 단면 도시되는 외부 자기 링(26)을 포함한다. 광학 요소(21)는 z방향으로 이동 가능하며, 따라서 도 4에 도시된 대응하는 힘-거리 특성 곡선은 보상기 요소(23, 27)에 대해 명백할 수 있고, 중력 보상기(20)에 대해서도 명백할 수 있다. 이 경우에, 내부 자석은 도 24에 따른 힘-거리 특성 곡선과 대응하여 동일한 극성 또는 반대 극성을 갖고 배치될 수 있다.
이 경우에, 자기 보상기 요소(23)는 광학 요소(21)의 중력을 보상하기 위해 보상력(Fm)을 제공하는 반면, 기계적 보상기 요소(27)는 이를 위해 힘 성분(FF)을 제공한다.
기계적 보상기 요소(27)의 힘-거리 특성 곡선은 후크의 법칙을 따르며, 따라서 z방향 보상력(Fz)과 거리(z) 사이에는 선형 관계가 초래된다.
자기 보상기 요소(23)는, 도 2에 도시된 것과 마찬가지로, 제로 위치 근처에서 최대치를 갖는 힘-거리 특성 곡선이 유효하게 만든다. 두 개의 조합된 보상기 요소의 힘-거리 특성 곡선의 중첩은 Fm+FF에 의해 확인되는 중력 보상기(20)의 특성 곡선을 초래한다. 광학 요소(21)의 조절 거리(z)에 걸쳐서 높은 부하가 보상될 수 있는 동시에 작은 상대 힘 차이가 관측될 수 있음을 알 수 있다.
도 5, 도 6, 도 7 및 도 8은 그러나 기계적 원리에 기초하는 중력 보상기의 추가 실시예를 제공한다.
도 5에 개략 도시된 중력 보상기(30)는, 한편으로는 광학 요소(31)에 연결되고 다른 한편으로는 대응 연결 요소(더 구체적으로 지칭되지 않음)를 거쳐서 균형추(32)에 연결되는 두 개의 중실 관절(33, 34)을 사용한다. 중실 관절(33, 34)은 이어서 하우징(35) 등에 장착될 수 있다. 광학 요소(31)에 의해 초래되는 중력이 중실 관절(33, 34)을 거쳐서 상방향 힘으로 전환됨으로써, 균형추(32)에 의해 대응 보상이 얻어질 수 있다.
유사한 원리가 도 6에서의 중력 보상기(40)의 실시예에 도시되어 있으며, 여기서는 빔 저울의 원리가 사용된다. 장착될 광학 요소(41), 예를 들어 EUV 투영 노광 장치의 미러는 저울 장치(43)의 하나의 레버 아암 상에 배치되며, 다른 레버 아암에는 균형추(42)가 제공된다. 이는 레버리지 비율 변화의 결과로서 보상될 중력의 대응적으로 강한 변화가 발생하게 될 특정 한계치를 광학 요소(41)가 초과할 경우에만 그러하다. 그러나, 평형 상태 근처의 특정 이동 범위 내에서는, 보상력의 작은 변화만이 관측될 수 있다.
도 7은 광학 요소(51)의 중력을 보상하기 위해 마찬가지로 두 개의 균형추(52, 53)를 사용하는 중력 보상기(50)의 일 실시예를 도시한다. 균형추(52, 53)는 편향 롤러(54, 55)를 거쳐서 인도되는 케이블 풀(59, 58)을 거쳐서 광학 요소에 연결되며, z축을 따르는 광학 요소(51)의 이동은 여기에서 다시 보상력의 변화 발생이 없이 가능하다. 대응 편향 롤러(55, 54)는 다시 예를 들어 조명 시스템 또는 투영 대물렌즈 내에서와 같은 투영 노광 장치의 대응 광학 배치의 하우징(56, 57)에 예를 들어 배치된다.
도 8은 기계적 스프링 요소(62)를 사용하는 중력 보상기(60)를 도시하며, 도 9에 도시된 그 힘-거리 특성 곡선은 기계적 스프링 요소(62)의 연장 범위에 걸쳐서 일정한 힘 프로파일 또는 거의 일정한 힘 프로파일이 관측될 수 있는 범위를 갖는다. 이는 예를 들어 특정 범위에서 좌굴 바에 대해 관측될 수 있고, 따라서 대응적으로 적합하게 선택된 작동 범위의 경우에 좌굴 바(62)는 굴곡된 상태의 소정 힘-거리 프로파일(63 참조)을 가지며, 따라서 광학 요소(64)가 z축을 따라서 변위하는 경우에 대응하는 좌굴 바(62, 63)의 굴곡 변화는 보상력의 상당한 변화를 수반하지 않는다.
도 10은 예를 들어 광학 요소를 z방향으로 변위시키기 위한 액추에이터(78, 79)와 조합하여 자기 보상기 요소(72)와 같은 보상기 요소가 제공되는 사실에 의해 광학 요소(71)의 변위 가능성, 즉 일정한 보상력에 의한 z축을 따르는 광학 요소(71)의 대응 위치설정을 실현하는 중력 보상기(70)의 추가 실시예를 도시한다. 이 경우에, 자기 보상기 요소는 하우징(80) 등에 장착되는 액추에이터(78, 79)에 베어링 요소(76, 77)를 거쳐서 연결된다. 액추에이터(78, 79)는 광학 요소(71)의 z방향 이동을 제공하며, 따라서 자기 보상기 요소(72) 자체는 본질적으로 거리 변화를 전혀 수용하지 않거나 약간만 수용해야 한다. 따라서, 내부 자석(73, 74)은 보상가능한 힘의 변화가 전혀 발생하지 않도록 외부 자기 링(75)에 대해 실질적으로 고정 유지될 수 있다.
도 11은 내부 자석(91, 92)을 포함하고 외부 자기 링(93)도 포함하는 자기 중력 보상기(90)를 개략 도시한다. 에이징 효과를 보상하기 위해서, 내부 자석(91, 92)은 조절 가능한 것으로, 특히 서로에 대해서 또는 심지어 외부 자기 링(93)에 대해 조절 가능한 것으로 구체화되며, 따라서 자석 조절을 통해서 재조절이 이루어질 수 있다. 따라서 에이징 현상으로 인해 보상가능한 힘에 관한 변화를 제거할 수 있다.
도 12에 도시된 중력 보상기(100)의 실시예는 코일(104)을 갖는 요크(105)가 내부 자석(102)에 할당되는 형태로 자기 중력 보상의 조절성을 가지며, 따라서 내부 자석(102)의 자기장 강도 또는 자속 밀도에서 경험되는 자기장의 강도는 가변적이고, 따라서 전체 자기 중력 보상기(100)는 코일(104)을 통한 전류의 변화에 의해 보상가능한 중력에 관해 조절될 수 있다. 내부 자석(102) 대신에 내부 자석(101) 및/또는 외부 자석(103) 또는 이들 모든 자석 또는 그 상이한 조합이 대응적으로 조작될 수 있게 되는 것도 가능함은 말할 것도 없다. 이러한 배치에 의하면, 역시 재조절이 가능하며, 따라서 장착될 광학 요소의 위치설정 운동의 결과로서 에이징 효과 및 보상력 변화를 둘 다 보상할 수 있다.
도 13은 장착될 광학 요소(113)를 위한 드라이브로도 사용될 수 있는 중력 보상기(110)를 도시한다.
중력 보상기(110)는, 그 각각이 내부 자석(114, 115 및 119, 120)과 외부 자기 링(117, 122)을 포함하는 두 개의 자기 보상기 요소(111, 112)를 포함한다. 자기 보상기 요소(111, 112)는 대응적으로 강성인 연결 요소(118, 123)를 거쳐서, 장착될 광학 요소(113)에 연결된다. 도 12에서의 실시예의 경우에서와 유사한 방식으로, 코일(116, 121)을 갖는 요크가 내부 자석(115, 120)에 각각 할당되며, 따라서 대응 내부 자석(115, 120)의 자기장의 강도는 가변적이다. 상호 나란히 각지게 배치되는 보상기 요소(111, 112)를 갖는 구조 또는 병렬 배치는 광학 요소(113)의 대응 조작 및 보상력을 갖는 대응 중력 보상을 일정하게 할 수 있다.
도 14 및 도 15의 도면은 개별 자석 및 이들 자석을 주위 영향으로부터 보호하기 위한 대응 수단을 도시한다. 예로서, EUV 광으로 작동하는 투영 노광 장치에서는, 수소-함유 분위기 또는 수소가 지배하는 분위기를 제공하는 것이 필요할 수 있는 바, 분자 수소 또는 수소 원자를 포함하는 대응 분위기는 자석의 손상을 초래할 수 있다. 이는 다시, 대응 분위기에서 자기 보상기 요소의 경우에 보상가능한 중력이 시간에 따라 불리하게 변화되는 효과를 갖는다.
자석(130)의 일 실시예에서, 도 14에 도시하듯이, 자석(131)은 대략 1mm 이하의 두께를 갖는 금속 박판으로 구성되는 하우징 내에 기밀하게 봉입되며, 따라서 봉입물 내에는 상이한 분위기가 설정될 수 있다. 봉입물(132)은, 용접 시임(135, 136)에서 함께 접합됨으로써 특히 대칭 구조를 초래하는 두 부분(133, 134)으로 구성된다.
자석을 주위 분위기로부터 분리시키기 위한 다른 가능성이 도 15에 예시적인 실시예로 도시되어 있다. 자석(140)은 예를 들어 수소와 같은 가스가 자석의 재료에 침투하여 그 손상을 초래할 수 없도록 방지하는 기밀성 코팅(141)을 갖는다. 코팅은 최대 0.5mm의 두께를 가질 수 있다.
예를 들어 수소 분위기와 같은 환경이 중력 보상기에 대해 해로운 영향을 미치지 못하게 하기 위한 추가 가능성이 도 16에 도시되어 있다. 배치(150)의 경우에, 광학 요소(151)를 유지하는 중력 보상기(153) 상에는 중력 보상기에 대해 해롭지 않은 가스가 노즐(154)에 의해 송입되며, 예를 들어 수소-함유 분위기 또는 수소가 지배하는 분위기와 같은 광학 요소(151)에 요구되는 가스 분위기는 노즐(152)을 거쳐서 제공된다. 따라서, 배치(150)는 중력 보상기(153)에 보호 가스를 공급할 수 있는 퍼지 장치(154)를 갖는다.
도 17은 자기 중력 보상기의 추가 실시예(160)를 도시하며, 이는 다시 내부 자석(161, 162) 및 외부 자기 링(163)을 갖는다. 자기적 조건을 목표한 방식으로 변화시키고 따라서 에이징 영향, 주위 영향의 결과에 의한 중력 보상기(160)에서의 변화 또는 위치설정 작업의 결과에 의한 보상력의 변화를 보상하기 위해, 교체가능한 강자성 재료(164)가 제공될 수 있는 바, 이는 대응하는 재조절을 위해 사용된다. 도 17의 개략도는 외부 자기 링(163)에 대해 측방향으로 강자성 재료(164)의 판형 형태를 도시하며, 자성 재료(164)의 형태 및/또는 끼움 위치에 관하여 임의의 다른 구조도 고려될 수 있다. 양방향 화살표(165)는 조절을 수행할 수 있는 가변성 또는 교체가능성을 상징한다.
도 18은 광학 요소(21)를 장착하며, 방향(z)으로 작용하고 마이크로리소그래픽 투영 노광 장치(도시되지 않음) 내의 힘 인가점(1018)에 인가되는 힘(F)을 보상하기 위한 중력 보상기(1000) 형태의 본 발명의 추가 실시예를 도시한다. 중력 보상기는 도시된 예시적 실시예에서 도 1에 따른 예시적 실시예와 유사하게 연결 요소(1006)에 연결되는 두 개의 내부 자석(1003, 1004)을 포함하는 전기자(1020)를 가지며, 상기 연결 요소는 도 1에 도시된 연결 요소(6)와 유사하게 구체화될 수 있다. 도 1에 따른 실시예와 대조적으로, 내부 자석(1003, 1004)의 극성이 역전된다. 힘(F)은 따라서 반대 방향으로 작용한다. 전기자(1020)는 힘(F)의 방향(z)으로 거리 인터벌(△z1) 만큼 이동될 수 있다. 추가로, 중력 보상기(1000)는, 도 1에서와 유사하게 구체화될 수 있고 하우징(1100) 상에 바람직하게는 고정적으로 그러나 조작가능하게(도시되지 않음) 지지되는 외부 지지 링(1005)을 갖는다. 내부 및 외부 자석(1003, 1004, 1005)은 보상 요소의 가능한 일 실시예를 형성하는 영구 자석인 것이 바람직하다. 힘(F)의 z방향으로 이동가능하고 힘 인가점(1018)을 포함하는, 도시된 보상 요소의 전기자(1020)는 힘(F)의 z방향으로 제1 힘-거리 특성 곡선(1020')을 갖는다. 상기 특성 곡선은 두 개의 힘-거리 특성 곡선(1003', 1004')의 추가에 의해 초래되는 것으로서 도 19에 도시되어 있다. 두 개의 힘-거리 특성 곡선(1003', 1004')은 각각의 경우에 (z방향 변위와는 별개로) 전기자가 내부 자석(1003 또는 1004)만 포함하는 경우의 힘-거리 특성 곡선을 개략 도시한다. 이들 특성 곡선은 간단한 형태로 도시되어 있으며, 이는 또한 예를 들어 도 24로부터의 특성 곡선(2010) 형태를 가질 수 있다. 양 내부 자석(1003, 1004)이 연결 요소에 의해 연결 거리에서 상호 단단히 연결되므로, z축을 따르는 힘-거리 특성 곡선(1003, 1004)의 위치는 상기 연결 거리에 의해 동시에 결정되며, 따라서 결과적인 힘-거리 특성 곡선(1020')의 폭을(그리고 높이도) 결정한다. 도 19에 개략 도시하듯이, z-좌표(z1, z2) 사이의 고원형 범위의 폭 및 형태는 힘 방향(z)으로 이격되어 있는 전기자(1020)의 두 개의 내부 자석의 사용에 의해 결정된다. 전기자 상에 배치되는 추가 자석에 의해, 힘-거리 특성 곡선은 추가 성형될 수 있다. 마찬가지로, 추가 외부 자석에 의하면, 예를 들어 설명된 장점을 갖는 도 1과 관련하여 전술했듯이, 힘-거리 특성 곡선은 또한, 예를 들어 z1과 z2 사이의 고원형 범위가 넓어지고 및/또는 이 범위에서의 힘의 변동이 감소될 수 있다는 사실에 의해 유리하게 영향받을 수 있다.
내부 및 외부 자석(1003, 1004, 1005)에 의해 형성되는 보상 요소는 제1 베어링 강성(S1)을 갖는다. 후자의 강성은 제1 힘-거리 특성 곡선(도 19 참조)에 의해 힘(F)이 할당되는 제1 지점(z0) 주위에서 제1 힘-거리 특성 곡선에 의해 제1 힘 인터벌(△F1)에 할당되는 제1 거리 인터벌(△z1)의 절대치와 힘(F)을 포함하는 제1 힘 인터벌(△F1)의 최대힘과 최소힘 사이의 차이(△FF1)의 몫에 의해 부여된다.
도 18에 따른 중력 보상기는 보상 요소의 전기자(1020)를 안내하기 위해 힘(F)의 방향으로 제2 힘-거리 특성 곡선(1014')(도 19 참조)을 갖는 안내 수단(1014, 1015, 1016, 1017)을 더 포함한다. 상기 안내 수단은 하우징(1100)에 대해 단단히 또는 조작 가능하게(도시되지 않음) 연결될 수 있다. 또한, 상기 안내 수단은 제1 지점(z0) 주위에서 제2 힘-거리 특성 곡선(1014')에 의해 제1 거리 인터벌(△z1)만큼 할당되는 제2 힘 인터벌(△F2)의 최대힘과 최소힘 사이의 차이(△FF2) 및 제1 거리 인터벌(△z1)의 절대치의 몫에 의해 부여되는 제2 베어링 강성(S2)을 갖는다. 이 경우에, 반력(Fr)의 보상을 위해 발생되는, 힘 보상기의 힘(F)은 제1 및 제2 힘-거리 특성 곡선(1020', 1014')으로부터의 힘의 추가에 기인하며, 여기에서 힘 가산에 기인하는 힘-인가 특성 곡선(1021')은 제3 베어링 강성(S3)을 갖는다. 제3 베어링 강성은 적어도 하나의 지점(z0*) 주위의 제1 거리 인터벌(△z1)의 절대치와 힘(F)을 포함하는 적어도 하나의 제3 힘 인터벌(△F3)의 최대힘과 최소힘 사이의 차이(△FF3)의 몫으로 귀결되며, 적어도 하나의 제3 힘 인터벌(△F3)은 적어도 하나의 지점(z0*) 주위의 제1 거리 인터벌(△z1)에 의한 결과적인 힘-거리 특성 곡선(1021')에 의해 정해지고, 이 경우, 적어도 하나의 지점(z0*)은 결과적인 힘-거리 특성 곡선(1021')에 의해 힘(F)에 할당된다. 도 19에서, 좌표(z0, z0*)는 z0 주위 범위에서 제1 및 결과적인 힘-거리 특성 곡선(1020', 1021')이 그 힘의 측면에서 약간만 상이하기 때문에 매우 근접하다. 또한, 도 19에서, 제2 힘-거리 특성 곡선은 선형인 바, 즉 후크의 법칙에 일치한다. 이는 적어도 대략 안내 수단(1014 내지 1017)이 판스프링 형태로 구체화되는 경우이다. 따라서 전기자(1020)의 y방향 운동이 매우 제한된다. 유사한 판스프링이 마찬가지로 x방향 안내 수단으로 사용되면, 전기자 운동의 상당한 제한도 이 방향으로 이루어진다. 그 결과 전기자는 x-y 방향으로 유리하게 안내되며, 따라서 예를 들어 미러(21)에 대한 충돌 또는 조절의 결과로서 전기자가 z-운동하는 경우에 힘 인가점(1018)의 xy 위치 및 따라서 미러(21)의 xy 위치는 실질적으로 유지된다. 이는 제어 공학적인 측면에서 미러의 위치설정을 단순화시킨다. 도 18에 따른 추가 중력 보상기(1000)의 경우에, 베어링 강성(S3)은 베어링 강성(S1), 즉 안내 수단이 없는 베어링 강성 이하이고, 및/또는 결과적인 힘-거리 특성 곡선(1021')은 제1 거리 인터벌(△z1)보다 크게 상호 이격되는 적어도 두 개의 지점(z0*)을 갖는 것이 유리한 것으로 나타났다. 따라서 낮은 베어링 강도(S3)를 갖는 안내 수단의 강성의 정교한 치수화가 주어지면 전기자는 큰 거리 범위에 걸쳐서 이동될 수 있도록 거리 간격을 증가시키는 것이 유리하게 가능하다. 이는 도 20에 도시되어 있다.
도 20은 내부 자석(1004), 안내 수단(1016, 1017) 및 연결 요소(1006)가 제거된 도 18에 따른 중력 보상기의 일 실시예에 관한 것이다. 이 결과 내부 자석(1003)에 의해 주어지는 제1 힘-거리 특성 곡선(1003')이 얻어지며, 이는 동시에 안내 수단(1014, 1015)이 존재하지 않을 경우 전기자의 특성 곡선(1020')이기도 하다. 그러나, 도 19에 도시하듯이, 상기 안내 수단은 후크의 법칙에 따른 선형 제2 힘-거리 특성 곡선(1014')을 가지며, 그 결과 얻어지는 힘-거리 특성 곡선(1021')은 추가에 의해 발생한다. 이 특성 곡선은, 힘(F)에 할당되고 거리 인터벌(△z1)보다 크게 상호 이격되는 두 지점(z0*)을 갖는다. 이 결과 두 지점(z0*) 주위에서의 중력 보상기의 사용되는 범위가 얻어진다. 그러나 이 예시적 실시예에서, 이는 각각의 사용되는 범위가 전기자(1020)의 제1 거리 인터벌 만큼의 변위를 허용하도록 의도되는 경우 각 지점(z0*) 주위의 높은 베어링 강성과 연관된다.
도 21에서의 힘-거리 특성 곡선은 도 20에 따른 상기 실시예에 관한 것이지만, 안내 수단(1014, 1015)의 제2 힘-거리 특성 곡선(1014')이 비선형 프로파일을 갖는다는 차이가 있다. 결과적인 힘-거리 특성 곡선은 힘(F)이 지배적인 지점(z0*) 주위에 고원형 범위를 갖는다. 지점(z0*) 주위의 인터벌(△z1)은 힘(F)을 포함하는 제3 힘 인터벌(△F3)의 최대힘과 최소힘 사이의 차이(△FF3)를 결정하며, 이 차이는 실질적으로 차이(△FF1)와 일치하고, 따라서 베어링 강성은 안내 수단에 의한 전기자(1020)의 안내에도 불구하고 사실상 변함없이 유지된다. 그러나 이는 유리하게도, 전기자(1020)의 거리 인터벌이, 이 인터벌에서 최대힘과 최소힘 간의 차이가 증가하지 않으면서 상당히 증가될 수 있다는 결과를 갖는다. 이는 중력 보상기의 상당히 낮은 평균 베어링 강성을 초래한다. 제1 및 제2 힘-거리 특성 곡선(1003', 1014')의 추가 적합화에 의해, 결과적인 특성 곡선(1021')에는 더 편평한 고원부가 형성될 수 있으며, 따라서 베어링 강성(S3)은 제1 거리 인터벌(△z1)에 대해 상당히 감소되고, 추가로 전기자(1020)의 거리 인터벌은 이 인터벌에서 최대힘과 최소힘 간의 차이가 증가됨이 없이 상당히 증가되는 바, 즉 결과적인 힘-거리 특성 곡선에서 힘(F)에 관한 차이(△FF1)는 △z1보다 큰 거리 인터벌에 할당된다.
전술한 실시예에 따른 EUV 미러를 장착하기 위해 EUV 리소그래피에 사용되는 중력 보상기는 종종, 제1 거리 인터벌(△z1)이 3mm 미만이고 제3 베어링 강성이 2N/mm 미만이도록 치수화된다.
흔히, 힘(F)에 수직한 전기자의 이동은, 힘(F)에 수직한 방향으로의 안내 수단에 의해 발생되는 횡방향 힘에 의해, 힘 방향으로의 전기자 이동의 절대치의 10% 미만으로 제한된다. 이 결과 대략 0.3mm 이하의 최대 횡방향 이동이 얻어진다.
도 18에서는 예를 들어 리소그래픽 EUV 투영 노광 장치의 미러와 같은 광학 요소가 중력에 관하여 부분적으로만 중력 보상기에 의해 지지되는 것을 알 수 있다. 흔히, 적어도 세 개의 중력 보상기가 광학 요소를 그 중력에 관하여 지지한다. 이 경우에, "지지"라는 용어는 광학 요소가 중력 보상기로부터 현수되는 식으로 유지되는 경우를 망라한다. 또한, 광학 요소는 전기자(120)의 힘 인가점(1018)에서 적어도 부분적으로 지지 장치(1013)에 의해 직접 또는 간접적으로 지지된다. 이 경우에, 지지 장치(1013)는 힘(F)의 방향에 수직한 방향으로 즉 x방향 및/또는 y방향으로, 이 방향의 안내 수단(1014 내지 1018)에 비해 낮은 강성을 갖는다. 대안적으로, 지지 장치(1018)는 힘(F)의 방향에 수직한 방향으로, 이 방향의 안내 수단에 비해 높은 강성을 갖는다. 어느 경우가 존재하는지는 x방향 및/또는 y방향으로의 안내 수단의 강성에 종속되며, 따라서 안내 수단(1014 내지 1018) 및 지지 장치(1018)에 대한 높고 낮은 강성은 각각의 경우에 항상 쌍을 이룬다. 또한, 지지 장치(1013)는 힘(F)의 방향으로 차이(△FF3)보다 100배 높은 강성을 가지며, 이 결과 예를 들어 200N 초과의 강성이 얻어진다.
이전의 예시적인 실시예는 필수적으로, 보상 요소의 내부 자석이 동일 극성으로 배치되거나 하나의 자석만을 포함하는 사실을 이용하였다. 대안적으로 또는 추가적으로, 적어도 하나의 자기 보상기 요소는 극성이 반대되는 배향을 갖는 적어도 두 개의 자석을 더 포함할 수 있다. 이는 도 19에 따른 대응 예시적 실시예에서 달성될 수 있는 바, 예를 들면 상부 자석(1003)의 극성이 역전됨으로써, 즉 이 자석의 경우에는 북극이 상부에 위치함으로써 달성될 수 있다. 내부 자석(1003, 1004)의 이러한 극성이 주어지면, 이는 예를 들어 도 26에 도시된 특성 곡선(2100)을 초래한다. 전기자가 편향되지 않으면, 대칭으로 인해 힘 제로가 초래된다. 편향시에, 힘은 먼저 편향 방향과 반대로 증가하며, 배치는 대략 선형적인 특성 곡선을 갖는 스프링과 거의 유사하게 거동한다. 최대힘에 도달한 후, 힘은 다시 제로로 감소한다. 제로 교차점을 초과하고 전기자의 편향이 증가하면, 힘은 역전되어 편향 방향으로 작용한다. 자기 보상 요소의 상기 실시예는 반대 극성의 내부 자석에 의해 작동될 수도 있다. 그러나, 전기자는 최대힘이 발생하도록 상당한 정도로 편향되어야 한다. 이는 대개 더 큰 구조적 공간을 필요로 한다. 또한, 최대힘은 자석이 동일한 극성을 갖는 경우에 비해 대략 20% 내지 30% 낮다. 본 발명의 추가 실시예로서, 사용되는 자기 보상 요소는 또한, 특히 전술한 보상 요소 및 안내 장치와 조합되고 반대 극성의 내부 자석을 갖는 요소일 수 있다.
이전의 예시적 실시예에서, 개별 구성요소에 대해 설명한 특징은 특정 경우에 당업자에게 자명한 방식으로 역으로 사용될 수도 있음이 명백하며, 이는 또한 명세서 내용에 의해 망라된다. 예로서, 압축 로딩된 보상기로서 표현되는 중력 보상기는 대응적으로 적합한 경우에 인장-로딩된 보상기로서 사용될 수도 있으며, 따라서 장착될 광학 요소는 더 이상 대응 보상기 상에 지지되지 않지만, 오히려 이 대응 보상기에 의해 현수적으로 유지된다.
개별 구성요소가 조절 가능하거나 조작 가능한 것으로 묘사되었지만, 등가의 구성요소 또한 마찬가지로 조절 가능하거나 조작 가능한 것으로 구성될 수 있음은 당업자에게 자명한 일이다. 이는 특히 자기 보상기 요소의 조작 가능한 자석에 적용된다.
본 발명을 예시적 실시예에 기초하여 상세히 설명했지만, 본 발명이 이들 예시적 실시예에 한정되지 않으며 오히려 청구범위 내에서 보호범위를 벗어나지 않는 수정이나 변경이 가능함은 당업자에게 자명한 일이다. 특히, 예시적 실시예에서는 제시된 모든 특징의 다양한 조합이 이루어질 수 있거나 개별 특징이 생략될 수 있다.

Claims (12)

  1. 소정 방향(z)으로 작용하고 마이크로리소그래픽 투영 노광 장치 내의 힘 인가점에 인가되는 힘(F)을 보상하기 위한, 광학 요소 장착용 중력 보상기이며,
    - 보상 요소의 전기자로서, 상기 전기자는 힘(F)의 방향으로 이동할 수 있고 힘 인가점을 둘러싸며, 상기 보상 요소는 힘(F)의 방향(z)으로 제1 힘-거리 특성 곡선을 가지며, 제1 힘-거리 특성 곡선에 의해 힘(F)이 할당되는 제1 지점(z0) 주위에서 제1 힘-거리 특성 곡선에 의해 제1 힘 인터벌(△F1)에 할당되는 제1 거리 인터벌(△z1)의 절대치와 힘(F)을 포함하는 제1 힘 인터벌(△F1)의 최대힘과 최소힘 사이의 차이(△FF1)의 몫에 의해 부여되는 제1 베어링 강성(S1)을 갖는 보상 요소의 전기자, 및
    - 보상 요소의 전기자를 안내하기 위해 힘(F) 방향으로 제2 힘-거리 특성 곡선을 가지며, 제1 지점(z0) 주위에서 제2 힘-거리 특성 곡선에 의해 제1 거리 인터벌(△z1)만큼 할당되는 제2 힘 인터벌(△F2)의 최대힘과 최소힘 사이의 차이(△FF2) 및 제1 거리 인터벌(△z1)의 절대치의 몫에 의해 부여되는 제2 베어링 강성(S2)을 갖는 안내 수단을 포함하고,
    - 상기 힘 보상기의 힘은 제1 및 제2 힘-거리 특성 곡선으로부터의 힘 가산에 기인하며,
    - 상기 힘 가산에 기인하는 힘-거리 특성 곡선은 적어도 하나의 지점(z0*) 주위의 제1 거리 인터벌(△z1)의 절대치와 힘(F)을 포함하는 적어도 하나의 제3 힘 인터벌(△F3)의 최대힘과 최소힘 사이의 차이(△FF3)의 몫으로 귀결되는 제3 베어링 강성(S3)을 가지며, 적어도 하나의 제3 힘 인터벌(△F3)은 적어도 하나의 지점(z0*) 주위의 제1 거리 인터벌(△z1)에 의한 결과적인 힘-거리 특성 곡선에 의해 정해지고, 이 경우 적어도 하나의 지점(z0*)은 결과적인 힘-거리 특성 곡선에 의해 힘(F)에 할당되며,
    - 상기 베어링 강성(S3)은 베어링 강성(S1) 이하이고, 및/또는 결과적인 힘-거리 특성 곡선은 제1 거리 인터벌(△z1)보다 크게 상호 이격되는 적어도 두 개의 지점(z0*)을 가지며, 및/또는 결과적인 힘-거리 특성 곡선에서 힘(F)에 관한 차이(△FF1)는 △z1보다 큰 거리 인터벌에 할당되는 중력 보상기.
  2. 제1항에 있어서, 상기 전기자는 힘 방향으로 지점(z0*) 주위의 제1 거리 인터벌(△z1)만큼 이동 가능한 중력 보상기.
  3. 제1항 또는 제2항에 있어서, 상기 제1 거리 인터벌(△z1)은 3mm 미만인 중력 보상기.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 제3 베어링 강성은 2N/mm 미만인 중력 보상기.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서, 힘(F)에 수직한 전기자의 운동은 힘(F)에 수직한 방향으로 안내 수단에 의해 발생되는 횡방향 힘에 의해, 힘 방향으로의 전기자 운동의 절대치의 10% 미만으로 제한되는 중력 보상기.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서, 상기 광학 요소는 전기자의 힘 인가점에서 적어도 부분적으로 지지 장치에 의해 직접적으로 또는 간접적으로 지지되는 중력 보상기.
  7. 제6항에 있어서, 상기 광학 요소는 리소그래픽 EUV 투영 노광 장치의 미러이며, 힘(F)은 중력이거나 미러 중력의 일부인 중력 보상기.
  8. 제6항 또는 제7항에 있어서, 상기 지지 장치는 힘(F)의 방향에 수직한 방향으로 이 방향의 안내 수단에 비해 낮은 강성을 갖는 중력 보상기.
  9. 제6항 또는 제7항에 있어서, 상기 지지 장치는 힘(F)의 방향에 수직한 방향으로 이 방향의 안내 수단에 비해 높은 강성을 갖는 중력 보상기.
  10. 제6항 내지 제9항 중 어느 한 항에 있어서, 상기 지지 장치는 힘(F)의 방향으로 차이(△FF3)보다 100배 높은 강성을 갖는 중력 보상기.
  11. 제1항 내지 제10항 중 어느 한 항에 있어서, 상기 보상 요소는 제1 그룹으로부터의 적어도 하나의 요소를 포함하며, 제1 그룹은
    - 200N 이상 또는 300N 이상의 보상될 중력에 대한 보상 요소,
    - 500㎛ 이상 3mm 이하의 광학 요소의 위치 변화를 허용하는 보상 요소,
    - 자기 보상기,
    - 중력 보상기의 근처에 존재하는 분위기로부터 분리되는 방식으로 배치되는 적어도 하나의 자기 보상기 요소를 갖는 자기 보상기 요소,
    - 중력 보상기의 근처에 존재하는 분위기로부터 기밀성 봉입 및/또는 기밀성 코팅 및/또는 가스 주입에 의해 분리되는 방식으로 배치되는 적어도 하나의 자기 보상기 요소를 갖는 자기 보상기 요소,
    - 자기장에 영향을 미치는 적어도 하나의 교체가능한 조절 요소를 갖는 자기 보상기,
    - 상호 전후로 및/또는 나란히 배치되는 상이한 힘-거리 특성 곡선을 갖는 적어도 두 개의 자기 보상기 요소,
    - 강성 및 비자기 커플링에 의해 상호 연결되는 제1 및 제2 자기 보상 요소를 갖는 보상기 요소,
    - 적어도 하나의 플럭스 안내 요소 또는 강자성 플럭스 안내 요소를 갖는 자기 보상 요소,
    - 적어도 두 개의 내부 자석을 갖는 자기 보상기로서, 내부 자석 중 적어도 하나는 공간 위치에 관하여 다른 내부 자석에 대해 변경될 수 있고 및/또는 자기 강도가 조절될 수 있는 자기 보상기,
    - 후크의 법칙을 따르는 기계적 보상기 요소,
    - 힘-거리 특성 곡선에서 대략 일정한 힘의 범위를 갖는 기계적 스프링 요소,
    - 액추에이터를 포함하는 보상기 요소,
    - 스프링 요소,
    - 좌굴 바,
    - 적어도 하나의 편향 요소를 거쳐서 장착될 광학 요소에 연결되는 적어도 하나의 균형추를 포함하는 보상기 요소,
    - 케이블 풀 또는 롤러를 거쳐서 장착될 광학 요소에 연결되는 적어도 하나의 균형추를 포함하는 보상기 요소, 및
    - 보상기 요소에 관계없이 장착될 광학 요소의 위치 변화를 가능하게 하는 적어도 하나의 위치설정 요소를 갖는 보상기 요소로 구성되는 중력 보상기.
  12. 제1항 내지 제11항 중 어느 한 항에 있어서, 상기 안내 수단은 제2 그룹으로부터의 적어도 하나의 요소를 포함하며, 제2 그룹은
    - 자기 안내 수단,
    - 중력 보상기의 근처에 존재하는 분위기로부터 분리되는 방식으로 배치되는 적어도 하나의 자기 안내 수단을 갖는 자기 안내 수단,
    - 중력 보상기의 근처에 존재하는 분위기로부터 기밀성 봉입 및/또는 기밀성 코팅 및/또는 가스 주입에 의해 분리되는 방식으로 배치되는 적어도 하나의 자기 안내 수단을 갖는 자기 안내 수단,
    - 자기장에 영향을 미치는 적어도 하나의 교체가능한 조절 요소를 갖는 자기 안내 수단,
    - 상호 전후로 및/또는 나란히 배치되는 상이한 힘-거리 특성 곡선을 갖는 적어도 두 개의 자기 안내 수단,
    - 적어도 두 개의 내부 자석을 갖는 자기 안내 수단으로서, 내부 자석 중 적어도 하나는 공간 위치에 관하여 다른 내부 자석에 대해 변경될 수 있고 및/또는 자기 강도가 조절될 수 있는 자기 안내 수단,
    - 후크의 법칙을 따르는 기계적 안내 수단,
    - 힘-거리 특성 곡선에서 대략 일정한 힘의 범위를 갖는 기계적 스프링 요소,
    - 액추에이터를 포함하는 안내 수단,
    - 스프링 요소,
    - 좌굴 바,
    - 멤브레인,
    - 힘에 의해 기계적으로 예비응력부여되는 스프링 요소 또는 좌굴 바 또는 멤브레인, 및
    - 장착될 광학 요소의 위치 변화를 가능하게 하는 적어도 하나의 위치설정 요소를 갖는 안내 수단으로 구성되는 중력 보상기.
KR1020117013184A 2008-12-11 2009-12-11 투영 노광 장치에서의 광학 요소에 대한 중력 보상 KR101702145B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102008054550 2008-12-11
DE102008054550.3 2008-12-11
PCT/EP2009/066917 WO2010066873A1 (de) 2008-12-11 2009-12-11 Gravitationskompensation für optische elemente in projektionsbelichtungsanlagen

Publications (2)

Publication Number Publication Date
KR20110098734A true KR20110098734A (ko) 2011-09-01
KR101702145B1 KR101702145B1 (ko) 2017-02-03

Family

ID=41559606

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020117013184A KR101702145B1 (ko) 2008-12-11 2009-12-11 투영 노광 장치에서의 광학 요소에 대한 중력 보상

Country Status (6)

Country Link
US (2) US8854603B2 (ko)
JP (1) JP5612595B2 (ko)
KR (1) KR101702145B1 (ko)
CN (1) CN102265219B (ko)
DE (1) DE102009054549A1 (ko)
WO (1) WO2010066873A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101523366B1 (ko) * 2013-05-14 2015-05-29 한국표준과학연구원 광학거울의 공압시스템에 적용되는 중력보상장치, 중력보상방법 및 그 중력보상장치가 구비된 광학거울의 공압시스템
KR20170105578A (ko) * 2015-01-22 2017-09-19 칼 짜이스 에스엠테 게엠베하 리소그래피 시스템 내에 구성요소를 유지하기 위한 조립체 및 리소그래피 시스템
US10471610B2 (en) 2015-06-16 2019-11-12 Samsung Electronics Co., Ltd. Robot arm having weight compensation mechanism
KR20190133106A (ko) * 2018-05-22 2019-12-02 칼 짜이스 에스엠테 게엠베하 마이크로리소그래피 투영 노광 장치의 조립체

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010066873A1 (de) 2008-12-11 2010-06-17 Carl Zeiss Smt Ag Gravitationskompensation für optische elemente in projektionsbelichtungsanlagen
DE102009008209A1 (de) * 2009-02-10 2010-08-19 Carl Zeiss Smt Ag Aktuator mit mindestens einem Magneten für eine Projektionsbelichtungsanlage sowie Projektionsbelichtungsanlage mit einem Magneten und Herstellungsverfahren hierfür
TW201115280A (en) * 2009-05-15 2011-05-01 Nikon Corp Exposure apparatus and device manufacturing method
WO2012084675A1 (en) * 2010-12-20 2012-06-28 Carl Zeiss Smt Gmbh Arrangement for mounting an optical element
US9083227B2 (en) * 2011-09-09 2015-07-14 Asml Holding N.V. Linear motor and lithography arrangement including linear motor
KR101688906B1 (ko) * 2012-07-12 2016-12-22 에이에스엠엘 네델란즈 비.브이. 이동가능 요소를 위한 지지대, 지지대 시스템, 리소그래피 장치, 이동가능 요소를 지지하는 방법, 및 디바이스 제조 방법
JP6293136B2 (ja) 2012-07-18 2018-03-14 エーエスエムエル ネザーランズ ビー.ブイ. 磁気デバイスおよびリソグラフィ装置
JP2016500838A (ja) * 2012-10-15 2016-01-14 エーエスエムエル ネザーランズ ビー.ブイ. 作動機構、光学装置、リソグラフィ装置、およびデバイス製造方法
CN102929301B (zh) * 2012-11-26 2015-02-18 中国科学院长春光学精密机械与物理研究所 光测设备望远系统的动平衡控制装置
DE102012221831A1 (de) 2012-11-29 2014-06-05 Carl Zeiss Smt Gmbh Anordnung zur Aktuierung wenigstens eines optischen Elementes in einem optischen System
CA2907181C (en) 2013-03-15 2023-10-17 Viktor Roschke Multivalent and monovalent multispecific complexes and their uses
DE102013209028A1 (de) 2013-05-15 2014-05-15 Carl Zeiss Smt Gmbh Baugruppe einer mikrolithographischen Projektionsbelichtungsanlage
DE102014218969A1 (de) 2014-09-22 2016-04-28 Carl Zeiss Smt Gmbh Optische Anordnung einer mikrolithographischen Projektionsbelichtungsanlage
DE102014224217A1 (de) * 2014-11-27 2016-06-02 Carl Zeiss Smt Gmbh Projektionsbelichtungsanlage mit Aktuatorseilen
DE102015201255A1 (de) * 2015-01-26 2016-03-10 Carl Zeiss Smt Gmbh Anordnung und Lithographieanlage mit Anordnung
DE102015225537B4 (de) 2015-12-17 2019-11-14 Carl Zeiss Smt Gmbh Vorrichtung zur Ausrichtung eines Bauteils, Betätigungseinrichtung und Projektionsbelichtungsanlage
ES2603655B1 (es) * 2016-04-21 2017-09-25 Consorci Per A La Construcció, Equipament I Explotació Del Laboratori De Llum De Sincrotró Dispositivo y método de aplicación de fuerza en un objeto
DE102016214785A1 (de) * 2016-08-09 2018-02-15 Carl Zeiss Smt Gmbh Optisches Modul mit einer Antikollisionseinrichtung für Modulkomponenten
CN107885039B (zh) * 2016-09-30 2019-07-23 上海微电子装备(集团)股份有限公司 可变磁浮力重力补偿器
DE102017207433A1 (de) * 2017-05-03 2018-04-19 Carl Zeiss Smt Gmbh Abstützung eines optischen Elements
DE102017209794B4 (de) 2017-06-09 2023-05-17 Carl Zeiss Smt Gmbh Vorrichtung und Verfahren zur Ausrichtung eines optischen Elements, sowie Projektionsbelichtungsanlage
DE102017217946B4 (de) * 2017-10-09 2019-08-01 Universität Stuttgart Aktuatorvorrichtung zur leistungslosen Gewichtskraftkompensation
CN108168669B (zh) * 2018-02-12 2023-11-03 西南交通大学 一种货车货物的称重装置
DE102018202694A1 (de) 2018-02-22 2018-04-19 Carl Zeiss Smt Gmbh Baugruppe, insbesondere in einer mikrolithographischen Projektionsbelichtungsanlage
JP7051261B2 (ja) * 2018-03-09 2022-04-11 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置のための位置決めシステム
DE102018208373A1 (de) * 2018-05-28 2019-06-19 Carl Zeiss Smt Gmbh Optisches Element zur Strahlführung von Abbildungslicht bei der Projektionslithographie
RU2691622C2 (ru) * 2018-08-01 2019-06-17 Олег Всеволодович Карагиоз Способ определения гравитационной постоянной с учётом вклада кареток в моменты притяжения
WO2020154816A1 (en) 2019-02-01 2020-08-06 Zaber Technologies Inc. Adjustable magnetic counterbalance
RU2714518C2 (ru) * 2019-07-01 2020-02-18 Олег Всеволодович Карагиоз Способ определения гравитационной постоянной с добавлением периода колебаний при отсутствии кареток
FR3108692B1 (fr) * 2020-03-24 2022-06-24 Skf Magnetic Mechatronics Système de compensation des efforts appliqués sur un palier supportant un arbre de rotor d’une machine tournante
WO2024061736A1 (en) * 2022-09-23 2024-03-28 Asml Netherlands B.V. Positioning system for an optical element of a metrology apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09275069A (ja) * 1996-04-04 1997-10-21 Nikon Corp ステージ装置及びこれを用いた露光装置
KR20010098545A (ko) * 2000-04-17 2001-11-08 에이에스엠 리소그라피 비.브이. 전사장치, 디바이스 제조방법, 및 그 제조방법에 의해제조된 디바이스
US7564636B2 (en) * 2003-08-27 2009-07-21 Carl Zeiss Smt Ag Device for preventing the displacement of an optical element
US8199315B2 (en) * 2005-12-03 2012-06-12 Carl Zeiss Smt Gmbh Projection objective for semiconductor lithography

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5560719A (en) 1978-10-27 1980-05-08 Toshiba Corp Magnetic bearing
JPS58137618A (ja) 1982-02-10 1983-08-16 Natl Aerospace Lab 磁気軸受
US5780943A (en) * 1996-04-04 1998-07-14 Nikon Corporation Exposure apparatus and method
SE9701959D0 (sv) 1997-05-26 1997-05-26 Global Hemostasis Inst Mgr Ab Bearing device
JP2000306981A (ja) * 1999-04-21 2000-11-02 Nikon Corp 反力キャンセラー及び重量キャンセラー
JP4428799B2 (ja) * 2000-04-03 2010-03-10 キヤノン株式会社 磁気支持機構、位置決め装置および半導体デバイス製造方法
DE60126103T2 (de) 2000-08-18 2007-11-15 Nikon Corp. Haltevorrichtung für optisches Element
DE10053899A1 (de) 2000-10-31 2002-05-08 Zeiss Carl Vorrichtung zur Lagerung eines optischen Elementes
EP1265105B1 (en) * 2001-05-31 2009-04-22 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
DE10140608A1 (de) 2001-08-18 2003-03-06 Zeiss Carl Vorrichtung zur Justage eines optischen Elements
EP1321822A1 (en) * 2001-12-21 2003-06-25 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2004281654A (ja) * 2003-03-14 2004-10-07 Canon Inc 駆動機構及びそれを用いた露光装置、デバイスの製造方法
JP4314054B2 (ja) * 2003-04-15 2009-08-12 キヤノン株式会社 露光装置及びデバイスの製造方法
JP4574206B2 (ja) 2003-04-25 2010-11-04 キヤノン株式会社 駆動装置、それを用いた露光装置、デバイスの製造方法
EP1475669A1 (en) 2003-05-06 2004-11-10 ASML Netherlands B.V. Lithographic apparatus, device manufacturing method, and device manufactured thereby
JP4649136B2 (ja) 2003-07-31 2011-03-09 キヤノン株式会社 アクチュエータ、露光装置及びデバイス製造方法
US7259832B2 (en) * 2003-09-26 2007-08-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2005140185A (ja) * 2003-11-05 2005-06-02 Nikon Corp パラレルリンク機構、ステージ装置及び露光装置
US7604359B2 (en) 2004-05-04 2009-10-20 Carl Zeiss Smt Ag High positioning reproducible low torque mirror-actuator interface
JP2006040927A (ja) * 2004-07-22 2006-02-09 Nikon Corp 支持装置、ステージ装置、露光装置、及びデバイスの製造方法
FR2882203B1 (fr) 2005-02-15 2007-06-22 Levisys Sarl Procede de stabilisation d'un objet en suspension dans un champ magnetique
KR101266566B1 (ko) * 2005-05-02 2013-05-22 가부시키가이샤 니콘 광학 요소 구동장치, 투영 광학계, 노광 장치, 및디바이스의 제조 방법
WO2007010011A2 (en) 2005-07-19 2007-01-25 Carl Zeiss Smt Ag Optical element module
EP1882983A1 (en) * 2006-07-25 2008-01-30 Carl Zeiss SMT AG Gravity compensating support for an optical element
DE102006038455A1 (de) 2006-08-16 2008-02-21 Carl Zeiss Smt Ag Optisches System für die Halbleiterlithographie
US8416386B2 (en) * 2007-03-13 2013-04-09 Nikon Corporation Conforming seats for clamps used in mounting an optical element, and optical systems comprising same
WO2008122313A1 (en) 2007-04-05 2008-10-16 Carl Zeiss Smt Ag Optical element module with imaging error and position correction
NL2001216C2 (nl) 2008-01-25 2009-07-30 Dams Beheer B V J Magnetische actuator.
WO2010066873A1 (de) 2008-12-11 2010-06-17 Carl Zeiss Smt Ag Gravitationskompensation für optische elemente in projektionsbelichtungsanlagen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09275069A (ja) * 1996-04-04 1997-10-21 Nikon Corp ステージ装置及びこれを用いた露光装置
KR20010098545A (ko) * 2000-04-17 2001-11-08 에이에스엠 리소그라피 비.브이. 전사장치, 디바이스 제조방법, 및 그 제조방법에 의해제조된 디바이스
US7564636B2 (en) * 2003-08-27 2009-07-21 Carl Zeiss Smt Ag Device for preventing the displacement of an optical element
US8199315B2 (en) * 2005-12-03 2012-06-12 Carl Zeiss Smt Gmbh Projection objective for semiconductor lithography

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101523366B1 (ko) * 2013-05-14 2015-05-29 한국표준과학연구원 광학거울의 공압시스템에 적용되는 중력보상장치, 중력보상방법 및 그 중력보상장치가 구비된 광학거울의 공압시스템
KR20170105578A (ko) * 2015-01-22 2017-09-19 칼 짜이스 에스엠테 게엠베하 리소그래피 시스템 내에 구성요소를 유지하기 위한 조립체 및 리소그래피 시스템
US10471610B2 (en) 2015-06-16 2019-11-12 Samsung Electronics Co., Ltd. Robot arm having weight compensation mechanism
KR20190133106A (ko) * 2018-05-22 2019-12-02 칼 짜이스 에스엠테 게엠베하 마이크로리소그래피 투영 노광 장치의 조립체

Also Published As

Publication number Publication date
KR101702145B1 (ko) 2017-02-03
JP5612595B2 (ja) 2014-10-22
WO2010066873A1 (de) 2010-06-17
US20150009557A1 (en) 2015-01-08
US8854603B2 (en) 2014-10-07
CN102265219B (zh) 2014-07-16
US20110267596A1 (en) 2011-11-03
US9341807B2 (en) 2016-05-17
CN102265219A (zh) 2011-11-30
DE102009054549A1 (de) 2010-06-17
JP2012511821A (ja) 2012-05-24

Similar Documents

Publication Publication Date Title
KR20110098734A (ko) 투영 노광 장치에서의 광학 요소에 대한 중력 보상
US5883742A (en) Image vibration reduction device
KR101764514B1 (ko) 광학 시스템에서 적어도 하나의 광학 요소를 작동시키기 위한 배열체
US6355994B1 (en) Precision stage
KR101900955B1 (ko) 중력을 보상하는 수직 액츄에이터 구동장치
TWI360675B (en) Apparatus for manipulation of an optical element,p
CN111133385B (zh) 重力补偿装置
US5731896A (en) Microscope
US6927838B2 (en) Multiple stage, stage assembly having independent stage bases
KR102609748B1 (ko) 리소그래피 시스템 내에 구성요소를 유지하기 위한 조립체 및 리소그래피 시스템
US9632421B2 (en) Arrangement and lithography apparatus with arrangement
EP4007136A1 (en) Magnetic levitation stage device, and charged particle beam device or vacuum device in which magnetic levitation stage device is used
US20210389681A1 (en) Actuator device and method for aligning an optical element, optical assembly and projection exposure apparatus
KR100774543B1 (ko) 디지털 카메라의 떨림 보정장치

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right