KR20090129444A - 가스 공급 방법 및 가스 공급 장치 - Google Patents

가스 공급 방법 및 가스 공급 장치 Download PDF

Info

Publication number
KR20090129444A
KR20090129444A KR1020097020116A KR20097020116A KR20090129444A KR 20090129444 A KR20090129444 A KR 20090129444A KR 1020097020116 A KR1020097020116 A KR 1020097020116A KR 20097020116 A KR20097020116 A KR 20097020116A KR 20090129444 A KR20090129444 A KR 20090129444A
Authority
KR
South Korea
Prior art keywords
raw material
gas
gas supply
flow rate
processing
Prior art date
Application number
KR1020097020116A
Other languages
English (en)
Other versions
KR101052156B1 (ko
Inventor
마사미치 하라
아츠시 고미
오사무 요코야마
도시마사 다나카
신지 마에카와
사토시 다가
Original Assignee
도쿄엘렉트론가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도쿄엘렉트론가부시키가이샤 filed Critical 도쿄엘렉트론가부시키가이샤
Publication of KR20090129444A publication Critical patent/KR20090129444A/ko
Application granted granted Critical
Publication of KR101052156B1 publication Critical patent/KR101052156B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

본 발명은, 원료 용기내의 고체 원료를 가열하여 기화시킨 원료 가스를 소비 구역에 공급하는 가스 공급 방법에 있어서, 소비 구역에 연통하는 처리가스 공급로에 캐리어 가스를 통류시키는 동시에, 해당 처리가스 공급로내의 가스 압력을 측정하는 공정(a)과, 상기 원료 용기내의 고체원료를 가열하여, 원료 가스를 발생시키는 공정(b)과, 상기 공정(a)과 동일한 유량의 캐리어 가스를 상기 원료 용기내에 공급하여, 이 캐리어 가스와 함께 상기 원료 가스를 상기 처리가스 공급로에 통류시키면서 해당 처리가스 공급로내의 가스 압력을 측정하는 공정(c)과, 상기 공정(a)에서 취득한 압력 측정값과, 상기 공정(c)에서 취득한 압력 측정값과, 캐리어 가스의 유량에 근거하여, 상기 원료 가스의 유량을 연산하는 공정(d)을 구비한 것을 특징으로 하는 가스 공급 방법이다.

Description

가스 공급 방법 및 가스 공급 장치{GAS SUPPLY METHOD AND GAS SUPPLY DEVICE}
본 발명은, 고체 원료를 가열해서 기화시킨 원료 가스를 처리 용기내와 같은 가스 소비 구역에 공급하는 기술에 관한 것이다.
기판상에 예컨대 금속막 등을 성막하기 위한 장치로서, 예컨대 CVD 장치가 이용되고 있다. 이 CVD 장치에 있어서는, 기판이 탑재된 처리 용기내에 공급되는 처리 가스의 유량이 조정된다. 그 때, 매스플로우 컨트롤러(MFC) 혹은 매스플로우 미터(MFM) 등의 유량측정기에 의해, 처리 가스의 유량이 측정된다.
예컨대 MFC가 이용될 경우, 주된 가스 유로로부터 분기(分岐)하는 바이패스 라인(bypass line)이 마련되고, 해당 바이패스 라인에서 처리 가스가 가열되어, 예컨대 2점간에 있어서의 처리 가스의 온도차를 측정함으로써 처리 가스의 유량이 측정된다.
한편, 성막후의 결정의 치밀도를 높이는 동시에, 기판에(막중에) 취입되는 불순물의 양을 저감하기 위해서, 고체의 원료를 이용하여 성막하는 방법이 검토되 고 있다. 이러한 방법으로 성막하는 장치로서는, 예컨대 도 5에 도시하는 바와 같은 성막 장치(100)를 들 수 있다. 도 5의 성막 장치(100)는, 캐리어 가스원(101), 원료 용기(102) 및 처리 용기(103)를 구비하고 있다. 캐리어 가스원(101)으로부터, 예컨대 질소 가스가 캐리어 가스로서 원료 용기(102)내에 공급되면, 해당 원료 용기(102)내에 있어서 히터(112)에 의한 가열에 의해 고체 원료 예컨대 루테늄카르보닐(Ru3(CO)12)이 기화해서 생성되는 원료 가스가, 캐리어 가스와 함께 처리 용기(103)내에 공급된다. 처리 용기(103)내에서는, 이 원료 가스가 분해되어서, 기판(104)상에 있어서 예컨대 루테늄막으로서 성막된다.
이러한 성막 장치(100)에서는, 원료 용기(102)내에 캐리어 가스를 공급하기 전에, 캐리어 가스의 유량이 MFC(115)에 의해 측정된다. 또한, 처리 용기(103)에 캐리어 가스와 원료 가스를 공급하기 전에, 처리 가스 공급로(106)에 개설된 MFC(116)에 의해, 캐리어 가스 및 원료 가스의 유량이 측정된다. 이 유량으로부터, MFC(115)에 의해 측정된 캐리어 가스의 유량을 뺌으로써, 원료 가스의 유량이 연산된다.
상술과 같은 고체 원료는, 증기압이 낮기 때문에,상당히 기화하기 어렵고, 그 때문에, 유량을 쉽게 늘릴 수 없다는 문제가 있다. 그래서, 고체 원료의 기화를 촉진하기 위해서 원료 용기(102)내의 압력을 가능한 한 낮추고, 또한, 처리 가스 공급로(106)의 관의 직경을 예컨대 5 cm(2 인치)정도로 굵게하여 원료 가스의 공급량을 늘릴 필요가 있다. 그런데, 통상의 유량측정기(예컨대 시판되고 있는 MFC)를 설치할 수 있는 관의 직경은, 예컨대 0.95 cm(0.375 인치)정도로 상당히 작다. 그러한 관의 직경으로는, 원료 가스의 공급량이 지나치게 적어서, 프로세스에 따라서는 스루풋(throughput)의 저하가 현저해져, 실제의 성막 장치에는 적용하기 어렵다. 또한, 그러한 관의 직경의 경우, 그 일차측의 압력이 높아져버려, 고체 원료의 기화를 촉진할 수 없다는 불이익도 있다.
본 발명은, 이상과 같은 문제점에 착안하여, 이것을 유효하게 해결하고자 창안된 것이다. 본 발명의 목적은, 고체 원료를 가열해서 기화시킨 원료 가스를 처리 모듈(module)과 같은 가스 소비 구역에 공급하는 기술에 있어서, 원료 가스의 유량을 간편하게 조정할 수 있는 기술, 특히, 원료 가스의 소망하는 대(大)유량을 실현할 수 있는 기술을 제공하는 것이다.
본 발명은, 원료 용기내의 고체 원료를 가열해서 기화시킨 원료 가스를 소비 구역에 공급하는 가스 공급 방법에 있어서, 소비 구역에 연통하는 처리 가스 공급로에 캐리어 가스를 통류시키는 동시에, 해당 처리 가스 공급로내의 가스 압력을 측정하는 공정(a)과, 상기 원료 용기내의 고체 원료를 가열하여, 원료 가스를 발생시키는 공정(b)과, 상기 공정(a)과 동일한 유량의 캐리어 가스를 상기 원료 용기내에 공급하고, 이 캐리어 가스와 함께 상기 원료 가스를 상기 처리 가스 공급로에 유통시키면서 해당 처리 가스 공급로내의 가스 압력을 측정하는 공정(c)과, 상기 공정(a)에서 취득한 압력측정값과, 상기 공정(c)에서 취득한 압력측정값과, 캐리어 가스의 유량에 근거하여, 상기 원료 가스의 유량을 연산하는 공정(d)을 구비한 것을 특징으로 하는 가스 공급 방법이다.
본 발명에 의하면,원료 용기내의 압력을 낮게 해도 특별한 지장이 없기 때문에, 고체 원료의 기화 촉진 상태를 유지할 수 있는 한편, 원료 가스의 유량을 지극히 간편하게 산출할 수 있으므로, 결과적으로 원료 가스의 유량을 간편하게 조정할 수 있다. 또한, 본 발명에 의하면,매스플로우 컨트롤러 등의 통상의 유량 측정기를 이용하는 경우와 같은 배관의 관의 직경에 관한 제한도 없으므로, 원료 가스에 대해서 큰 유량을 확보할 수 있다. 이들 효과는, 예컨대 고체 원료를 이용한 성막 장치의 실현화에 있어서, 지극히 유효하다.
바람직하게는, 상기 공정(d) 후에, 해당 공정(d)에서 얻어진 상기 원료 가스의 유량 연산값과, 미리 설정한 상기 원료 가스의 유량 설정값에 근거하여, 상기 고체 원료의 가열 온도를 제어하고, 상기 원료 가스의 유량을 조정하는 공정이 실행된다.
또한, 바람직하게는, 상기 원료 용기로부터 상기 소비 구역까지의 처리 가스 공급로의 내측 직경은, 1.9 cm(0.75 인치) 이상이다.
또한, 바람직하게는, 상기 소비 구역은, 처리 용기내의 기판에 대하여 진공분위기하에서 상기 원료 가스를 분해시켜 성막 처리를 실행하기 위한 처리 모듈이다.
또한, 본 발명은, 원료 용기내의 고체 원료를 가열해서 기화시킨 원료 가스를 소비 구역에 공급하는 가스 공급 장치에 있어서, 고체 원료를 저류하기 위한 원료 용기와, 원료 용기내의 고체 원료를 가열하는 가열 수단과, 캐리어 가스원과 상기 원료 용기의 사이에 마련된 캐리어 가스 도입로와, 상기 원료 용기와 상기 소비 구역의 사이에 마련된 처리 가스 공급로와, 상기 캐리어 가스 도입로와 상기 처리 가스 공급로의 사이에 개설된 바이패스로와, 상기 처리 가스 공급로에 있어서의 상기 바이패스로의 접속 위치보다도 하류측에 마련된 압력측정부와, 상기 캐리어 가스의 유로를, 상기 캐리어 가스 도입로에서 상기 바이패스로를 거쳐서 상기 처리 가스 공급로에 통류시키는 유로와, 상기 캐리어 가스 도입로에서 상기 원료 용기를 거쳐서 상기 처리 가스 공급로에 통류시키는 유로의 사이에서 전환하기 위한 유로 전환 수단과, 상기 처리 가스 공급로내를 통류하는 상기 원료 가스의 유량을 연산하는 제어부를 구비하고, 상기 제어부는, 상기 처리 가스 공급로내에 상기 바이패스로를 거쳐서 상기 캐리어 가스를 통류시킨 상태에서 상기 압력측정부에 의해 취득된 압력측정값과 이때의 캐리어 가스 유량으로 이루어지는 기준 데이터를 기억하고, 계속해서, 해당 캐리어 가스의 유량을 바꾸지 않고, 상기 처리 가스 공급로내에 상기 원료 용기를 거쳐서 캐리어 가스와 원료 가스를 통류시킨 상태에서 상기 압력측정부에 의해 압력측정값을 취득하고, 이때의 압력측정값과 상기 기준 데이터에 근거하여, 이때의 원료 가스의 유량을 연산하게 되어 있는 것을 특징으로 하는 가스 공급 장치이다.
본 발명에 의하면,원료 용기내의 압력을 낮게 해도 특별한 지장이 없으므로, 고체 원료의 기화 촉진 상태를 유지할 수 있는 한편, 원료 가스의 유량을 지극히 간편하게 산출할 수 있으므로, 결과적으로 원료 가스의 유량을 간편하게 조정할 수 있다. 또한, 본 발명에 의하면,매스플로우 컨트롤러(mass flow controller) 등의 통상의 유량측정기를 이용하는 경우와 같은 배관의 관의 직경에 관한 제한도 없으므로, 원료 가스에 대해서 큰 유량을 확보할 수 있다. 이들 효과는, 예컨대 고체 원료를 이용한 성막 장치의 실현화에 있어서, 지극히 유효하다.
바람직하게는, 상기 제어부는, 상기 원료 가스의 유량의 연산값과, 미리 설정한 상기 원료 가스의 유량설정값에 근거하여, 상기 가열 수단으로의 공급전력을 제어하고, 상기 원료 가스의 유량을 조정하도록 되어 있다.
또한, 바람직하게는, 상기 처리 가스 공급로의 내경은, 1.9 cm(0.75 인치)이상이다
또한, 본 발명은, 상기 어느 하나의 특징을 가지는 가스 공급 장치와, 상기 소비 구역으로서의 처리 용기를 가져 해당 처리 용기내에 있어서 진공분위기하에서 상기 원료 가스를 분해시켜서 기판에 대하여 성막 처리를 실행하기 위한 처리 모듈을 구비하고, 상기 제어부는, 상기 처리 모듈로 실행되는 복수의 성막 레시피마다, 상기 기준 데이터를 구비하고 있는 것을 특징으로 하는 반도체 제조 장치이다.
또한, 본 발명은, 원료 용기내의 고체 원료를 가열해서 기화시킨 원료 가스를 소비 구역에 공급하는 가스 공급 장치에 이용되는 프로그램을 저장한 기억 매체로서, 해당 프로그램은, 상기 어느 하나의 특징을 가지는 가스 공급 방법을 실시하는 스텝이 구성되어 있는 것을 특징으로 하는 기억 매체이다.
도 1은 본 발명에 따른 가스 공급 장치를 포함하는 반도체 제조 장치의 일실시 형태를 도시하는 개략종단면도.
도 2a 및 도 2b는 도 1의 반도체 제조 장치에 이용되는 압력계의 측정 가능 압력범위를 나타내는 특성도.
도 3은 도 1의 반도체 제조 장치에 있어서 성막이 실행되는 처리 용기의 일례를 나타내는 개략종단면도이다.
도 4a 및 도 4b는 도 1의 반도체 제조 장치에 있어서 원료 가스의 유량을 연산할 때의 모양을 설명하기 위한 개념도이다.
도 5는 종래의 성막 장치의 일례를 나타내는 개략종단면도이다.
본 발명에 따른 가스 공급 장치를 구비한 반도체 제조 장치의 일례에 대해서, 도 1을 참조해서 설명한다. 도 1의 반도체 제조 장치(10)는, 예컨대 알갱이 형상의 고체의 원료, 예컨대 루테늄카르보닐(Ru3(CO)12, 이하 「고체 원료」(20)라 한다 )이 저류(貯留)된 원료 용기(40)와, 상기 고체 원료(20)가 기화해서 생성되는 원료 가스를 예컨대 기판인 반도체 웨이퍼(이하,「웨이퍼(W)」라고 한다)상에서 열분해하여 예컨대 루테늄막을 성막하기 위한 처리 모듈(50)을 구비하고 있다.
원료 용기(40)에는, 내부의 고체 원료(20)를 가열해서 기화(승화)시켜 원료 가스를 얻기 위한, 예컨대 히터 등의 가열 수단(41)이 마련되어있다. 이 가열 수 단(41)에는, 전원(41a)이 접속되어 있다. 또한, 원료 용기(40)내에는, 원료 용기(40)내에 캐리어 가스를 도입하기 위한 캐리어 가스 도입로(42)의 일단측과, 원료 가스를 처리 용기(60)에 공급하기 위한 처리 가스 공급로(43)의 일단측이 개구되어 있다. 캐리어 가스 도입로(42)의 상류측에는, 밸브(V1)와 매스플로우 컨트롤러(MFC)(44)를 거쳐서, 예컨대 질소 가스 등의 캐리어 가스가 저류된 캐리어 가스원(45)이 접속되어 있다.
처리 가스 공급로(43)의 하류측(처리 용기(60)측)은, 밸브(V3, V4)를 거쳐서, 소비 구역인 처리 용기(60)에 접속되어 있다. 이 처리 가스 공급로(43)는, 고체 원료(20)가 저증기압이므로, 원료 용기(40)내의 도달 압력을 저하시켜서 원료 가스의 기화를 촉진하기 위해서, 1.9 cm(0.75 인치)이상 예컨대 5 cm(2 인치)의 대구경의 배관으로 형성되어 있다. 기술한 캐리어 가스 도입로(42)와 처리 가스 공급로(43)의 사이에는, 밸브(V1)의 상류측(캐리어 가스원(45)측)과 밸브(V3)의 하류측(처리 용기(60)측)의 사이를 접속하도록, 바이패스로(46)가 개설되어 있다. 이 바이패스로(46)에는, 밸브(V2)가 마련되어 있다. 이들 밸브(V1, V2, V3)는, 유로 전환 수단을 구성하고 있다. 또한,처리 가스 공급로(43)에는, 원료 가스의 석출(응고)을 억제하기 위해서, 내부를 통류하는 가스를 가열하기 위한 테이프 히터(tape heater) 등이 부착되어 있으나, 여기에서는 도시를 생략한다. 또한, 밸브(V3)와 밸브(V4)의 사이에는, 압력 측정부인 압력계(47)가 마련되어 있다. 이 압력계(47)는, 처리 가스 공급로(43)내의 가스 압력을 높은 정밀도로 측정하기 위한 것으로, 통상의 고진공 영역을 측정하기 위한 압력계의 압력측정범위를 플러스 측으로 시프트(shift)시킨 것이다.
예컨대 금속 박막의 변형에 따른 금속 박막간의 정전 용량의 변화를 측정하는 것으로 압력을 측정하도록 구성된 캐패시턴스 마노미터(capacitance manometer)와 같은 압력계(진공도계)에서는, 압력측정범위의 하한이 0점부터로 되어 있지만, 도 2a의「A」와 같은 고진공 영역의 압력을 측정하는 압력계는, 압력측정범위가 그다지 넓지 않다.
한편, 도 2a의「B」와 같은 저진공 영역의 압력을 측정하는 압력계(이하, B압력계라고 기입하는 경우도 있다)는, 도 2a의「A」의 압력계(이하, A압력계라고 기입하는 경우도 있다)보다도, 압력측정범위가 넓게 되어 있다.
이들 압력계로부터 출력되는 전압은 예컨대 최대값이 10 V로 규격화되어 있다. 따라서, 저진공 영역의 압력을 측정하려고 하면, 압력측정범위가 넓은 압력계를 이용하지 않으면 안되기 때문에, 분해능이 저하해버린다. 한편,고진공 영역을 측정할 수 있는 압력계에서는, 높은 분해능을 얻을 수는 있지만, 그 측정범위의 상한이 낮다(예컨대 A압력계에 있어서는13.3 Pa(100 mTorr)이다). 그리고, 처리 가스 공급로(43)내의 가스 압력은, 예컨대 대체로 17.3 Pa(130 mTorr)로 되어있기 때문에, A압력계를 이용할 수는 없고, B압력계를 이용할 필요가 있다.
여기서, 고체 원료를 기화시켜, 이 원료 가스를 캐리어 가스와 함께 처리 용기(60)에 공급할 때, 고체 원료는 증기압이 낮기 때문에,캐리어 가스와 혼합한 원료 가스의 분압은 작다(예컨대 수 mTorr). 한편,B압력계는, 이러한 미소한 압력변동을 정확하게 측정하는 높은 분해능을 가지고 있지 않다.
그래서, 도 2b에 도시하는 바와 같이 A압력계의 측정범위를 플러스측으로 시프트시키는 것이 유효하다. 예컨대, 압력계(47)를 100 mTorr 내지 200 mTorr라는 측정 압력범위로 시프트시킴으로써, 처리 가스 공급로(43)내의 압력범위를 정밀도 높게 측정할 수 있다. 이 때, 압력계(47)(A압력계)는, 본래의 상한 정격인 100 mTorr에 있어서 10 V가 아니라 0 V를 출력하도록, 오프셋(offset) 조정되어 있다.
이러한 압력계(47)의 측정 압력범위의 플러스측으로의 시프트(오프셋 조정)에 대해서는, 출력 전압과 압력(진공도)의 직선성(리니어리티(linearity)이 유지되도록 게인(gain)이 조정된다. 또한, 본 실시의 형태에서는, 캐리어 가스원(45), MFC(44), 밸브(V1∼V3), 원료 용기(40), 캐리어 가스 도입로(42), 바이패스로(46), 처리 가스 공급로(43) 및 압력계(47)가, 본 발명의 가스 공급 장치(11)에 상당(相當)한다.
다음에, 처리 모듈(50)에 대해서, 도 3을 참조해서 설명한다. 처리 용기(60)는, 상측의 큰 직경원통부(60a)와 그 하측의 작은 직경원통부(60b)가 연결 설치된,이른바 버섯 형상(종단면 T자 형상)으로 형성되어 있다. 처리 용기(60)내에는, 웨이퍼(W)를 수평으로 탑재하기 위한 탑재부인 스테이지(Stage)(61)가 마련되어 있다. 스테이지(61)는, 작은 직경원통부(60b)의 바닥부에 지지 부재(62)를 거쳐서 지지되어 있다.
스테이지(61)내에는, 가스 분해 수단인 히터(61a)와, 웨이퍼(W)를 흡착하기 위한 도시하지 않는 정전척이 마련되어 있다. 또한 스테이지(61)에는, 웨이퍼(W)를 승강시켜 도시하지 않는 반송 수단과의 사이에서 웨이퍼(W)의 수수를 실행하기 위한 예컨대 3개의 승강핀(63)(편의상 2개만 도시)이, 스테이지(61)의 표면에 대하여 돌출 및 함몰이 자유롭게 마련되어 있다. 이 승강핀(63)은, 지지 부재(64)를 거쳐서, 처리 용기(60)의 외부의 승강 기구(65)에 접속되어 있다. 처리 용기(60)의 바닥부에는, 배기관(66)의 일단측이 접속되어 있다. 이 배기관(66)의 타단측에는, 진공배기 수단인 진공 펌프(67)가, 버터플라이밸브(butterfly valve)(80)를 거쳐서 접속되어 있다. 또한, 처리 용기(60)의 큰 직경 원통부(60a)의 측벽에는, 게이트밸브(G)에 의해 개폐되는 반송구(68)가 형성되어 있다.
처리 용기(60)의 천벽부의 중앙부에는, 스테이지(61)에 대향하도록, 가스 샤워헤드(gas shower head)(69)가 마련되어 있다. 가스 샤워헤드(69)의 하면에는, 가스 샤워헤드(69)내를 통류하는 가스를 웨이퍼(W)에 대하여 공급하기 위한 가스 공급구(69a)가 다수 개구되어 있다. 또한, 가스 샤워헤드(69)의 상면에는, 기술한 처리 가스 공급로(43)가 접속되어 있다. 또한, 처리 용기(60)의 측면에는, 기술한 압력계(47)와 동일하게 압력측정범위를 플러스측으로 시프트시킨 압력계(70)가 마련되어 있다. 압력계(70)는, 처리 용기(60)내의 압력을 정밀도 높게 측정할 수 있게 구성되어 있다. 다만, 여기에서는, 통상의 압력계(예컨대 200 mTorr계)가 이용되어도 좋다.
또한, 본 실시의 형태의 반도체 제조 장치(10)에는, 도 1에 도시하는 바와 같이 예컨대 컴퓨터로 이루어지는 제어부(2A)가 마련되어 있다. 이 제어부(2A)는, CPU(3), 프로그램(4), 메모리(5), 및, 기준 데이터를 기억하고 있는 테이블(6)을 구비하고 있다.
상기 프로그램(4)에는, 기준 데이터(DA)를 취득하기 위한 기준 데이터 취득 프로그램(4a), 원료 가스의 유량을 연산하기 위한 유량 연산 프로그램(4b), 고체 원료(20)의 온도를 조정하기 위한 온도 제어 프로그램(4c), 등이 포함되어 있다.
기준 데이터 취득 프로그램(4a)은, 캐리어 가스원(45)으로부터 처리 용기(60)내에 캐리어 가스만이 통류하도록, 즉 밸브(V1, V3)를 닫고 밸브(V2)를 개방하여, 캐리어 가스를 바이패스로(46)를 거쳐서 처리 용기(60)내에 공급하도록 동작하는 프로그램이다. 또한, 이 기준 데이터 취득 프로그램(4a)은, 유량기준값(QA)의 캐리어 가스를 처리 가스 공급로(43)내에 통류시켰을 때의 처리 가스 공급로(43)내의 압력기준값(PA)을, 압력계(47)에 의해 압력측정값으로서 측정하고, 해당 압력기준값(PA)과 캐리어 가스의 유량기준값(QA)으로 이루어지는 기준 데이터(DA)를 기억하도록 동작한다.
유량 연산 프로그램(4b)은, 기준 데이터(DA)취득시와 동일한 유량의 캐리어 가스를 원료 용기(40)에 공급하고, 원료 용기(40)로부터 처리 가스 공급로(43)내를 통류하는 캐리어 가스와 원료 가스로 이루어지는 처리 가스의 압력(PB)을 압력계(47)에 의해 압력측정값으로서 측정하고, 즉, 밸브(V2)를 닫고 밸브(V1, V3)을 개방했을 때의 압력(PB)을 비교 데이터로서 측정하고, 해당 비교 데이터를 메모리(5)에 보존하고, 기준 데이터 취득 프로그램(4a)에 의해 얻어진 기준 데이터(DA)와 이 비교 데이 터(PB)에 근거하여 처리 가스 공급로(43)내를 통류하는 원료 가스의 유량을 연산하도록 동작한다. 이 연산식은, 구체적으로는, 아래와 같이 표시된다.
우선, 처리 가스 공급로(43)내에 있어서의 가스 유량, 가스 압력 및 배기 속도를, 각각 Q(Pa·m3/sec), P(Pa) 및 S(m3/sec)로서, 압력계(47)보다도 상류의 가스유로의 용적을 V(m3), 단위 시간당의 가스 유로내의 압력변화를 dP/dt(Pa/sec)라고 하면, 이들 관계식은,
V·dP/dt = -P·S + Q ·······(1)
가 된다.
기준 데이터(DA)를 취득할 때의 가스 유량, 가스 압력 및 배기 속도를, 각각 QA, PA 및 SA라고 하면, 정상 상태에서는 압력의 변화가 없으므로, dP/dt=0이므로 식(1)은,
QA = SA · PA ·······(2)
가 된다.
또한, 비교 데이터(PB)를 취득할 때에 대해서도 동일하게, 가스 유량, 가스 압력 및 배기 속도를 각각 QB, PB 및 SB 로 하고, 정상 상태에 있을 때를 생각하면 동일하게 dP/dt=0이므로, 식(1)은,
QB = SB · PB ·······(3)
가 된다.
여기서, 기준 데이터(DA)를 취득할 때와, 비교 데이터(PB)를 취득할 때는 캐리어 가스의 유량을 바꾸지 않았다. 따라서, 비교 데이터(PB) 취득시의 원료 가스의 유량을 QC 라고 하면, 식(3)은,
QB = SB · PB = QA + QC ·······(4)
가 된다.
이 때, 캐리어 가스의 유량기준값(QA)에 비해서 원료 가스의 유량(QC)이 훨씬 작을 경우(1/100 이하)에는, SA ≒ SB로 가정할 수 있다. 따라서, 식(2) 및 식(4)을 정리하면,
QC = QA · (PB - PA)/PA ·······(5)
가 되고, ΔP = PB - PA 라고 하면, 식(5)은,
QC = QA · ΔP/PA ·······(6)
로 표시된다. 따라서, 기준 데이터(DA)(PA 및 QA)와 비교 데이터(PB)로부터, 원료 가스의 유량(QC)을 얻을 수 있다. 여기에서, 예컨대 유량(QA, QC (Pa·m3/sec))를, 실제로 이용되고 있는 유량(A, C (sccm))으로 단위를 바꾸게 되면, 식(6)은,
C = A·ΔP/PA ·······(7)
로 표시된다.
또한, 당연한 것이지만, 기준 데이터(DA)취득시와 비교 데이터(PB)취득시에는, 원료 용기(40)의 온도, 처리 용기(60)내의 압력은 동일하다. 또한, 상술과 같이, 원료 가스의 유량(QC) (C)의 연산은, 각 레시피의 변경시마다, 특히 처리 용기(60)의 압력이나 캐리어 가스의 유량의 변경시마다 실행된다. 따라서, 기준 데이터(DA)는 테이블(6)내에 기억되어도 좋다. 즉, 테이블(6)은, 예컨대 처리 모듈(50)에 있어서의 복수의 성막 조건(웨이퍼(W)의 온도, 처리 용기(60)내의 압력, 캐리어 가스의 유량 등)의 레시피마다에, 측정된 기준 데이터(DAl, DA2,… DAn (n:자연수))를 저장해 둘 수 있다. 그리고, 유량 연산 프로그램(4b)에 의해 원료 가스의 유량이 연산될 때에, 그 때의 레시피에 적합한 기준 데이터(DAn)가 메모리(5)에 읽어내어지면 좋다.
온도 제어 프로그램(4c)은, 처리 가스 공급로(43)내를 통류하는 원료 가스의 유량을 조정하도록, 즉, 유량 연산 프로그램(4b)에 의해 연산된 원료 가스의 유량(QC)을 조정하도록 작용한다. 구체적으로는, 온도 제어 프로그램(4c)에 의해, 원료 용기(40)의 가열 수단(41)의 전원(41a)의 출력이 조정된다. 이 온도 제어 프로그램(4c)에 의해, 처리 용기(60)내에 공급되는 원료 가스의 유량이 미리 설정된 유량이 되도록, 엄밀히 조정된다. 이 결과, 처리 용기(60)내에 있어서의 웨이퍼(W)로의 성막량이, 소정의 막두께가 되도록 조정될 수 있다.
일반적으로, 이들 프로그램(4)(처리 파라미터의 입력 조작이나 표시에 관한 프로그램도 포함한다)은, 컴퓨터 기억 매체, 예컨대 플렉시블 디스크(flexible disk), 컴팩트 디스크(compact disk), MO(magneto-optical)광자기 디스크), 하드 디스크 등으로 구성된 기억부(2B)에 저장되어, 제어부(2A)에 인스톨된다.
다음으로, 전술한 반도체 제조 장치(10)를 이용한 반도체 제조 방법에 대해서 설명한다.
(기준 데이터(DA)취득)
도 4a에 도시하는 바와 같이 MFC(44)에 의해, 캐리어 가스의 유량(A)이 예컨대 300 sccm으로 설정된다. 그리고, 밸브(V2)가 개방되고, 처리 용기(60)내의 압력이 소정의 압력(P') 예컨대 17.3 Pa(130 mTorr)이 되도록 버터플라이 밸브(80)(도 3 참조)의 개방도가 제어된다. 그리고, 처리 가스 공급로(43)를 통류하는 캐리어 가스의 압력기준값(PA)이, 압력계(47)에 의해 측정된다. 그리고, 해당 압력(PA)과 캐리어 가스의 유량(A)(QA)이, 기준 데이터(DA)로서 취득되어 기억된다. 여기에서, 기억되는 캐리어 가스의 유량은, 상기 설정값이라도 좋고, MFC(44)에서 측정되는 값이라도 좋다.
기본적으로는, 기준 데이터(DA)는, 새로운 레시피를 실시할 때에 취득된다. 상술과 같이, 각 레시피에 대응하는 기준 데이터(DA)를 테이블화해서 취득하여 기억(보존)해 두는 것이 바람직하다.
(비교 데이터(PB)취득)
도 4b에 도시하는 바와 같이 MFC(44)에 의해, 캐리어 가스의 유량이 상기의 기준 데이터(DA) 취득시와 같은 유량(A)으로 설정된다. 그리고, 밸브(V2)를 닫을 수 있어, 밸브(V1, V3)가 개방된다. 이 조작에 의해, 캐리어 가스가 원료 용기(40)내에 통류하여, 미리 소정의 온도 예컨대 80℃로 가열된 원료 용기로부터, 원료 가스와 캐리어 가스가 처리 가스로서 처리 가스 공급로(43)에 통류한다. 그리고, 처리 가스 공급로(43)를 통류하는 처리 가스의 압력이, 압력계(47)에 의해 측정된다. 이것이, 비교 데이터(PB)로서 취득된다.
그리고, 기술한 바와 같이, 유량 연산 프로그램(4b)에 의해, 처리 가스 공급로(43)내를 통류하는 원료 가스의 유량이 연산된다.
(원료 가스의 유량조정)
연산된 원료 가스의 유량(C)이 레시피에 따른 설정 유량과 다른 경우, 기술한 온도 제어 프로그램(4c)에 의해, 가열 수단(41)의 전원(41a)의 출력값이 변경된다. 이렇게 하여 원료 용기(40)내의 온도를 조정하는 것으로, 원료 가스의 유량이 조정된다.
설정된 원료 가스의 유량을 얻을 수 없을 경우에는, 캐리어 가스의 유량을 변경하는 등 하여, 재차, 기준 데이터(DA)취득, 비교 데이터(PB)취득, 원료 가스의 유량조정의 사이클이 실행된다.
소정의 원료 가스의 유량이 얻어지면, 스테이지(61)상에 웨이퍼(W)가 탑재되 어, 예컨대 루테늄의 성막 처리가 실행된다. 그 후, 원료 가스의 유량(C)이 일정하게 되도록 조정되면서, 윈하는 막두께가 되도록 소정의 시간, 성막 처리가 실행된다.
이상의 실시의 형태에 의하면,처리 용기(60)내에 고체 원료(20)를 기화시킨 원료 가스를 공급하는데 있어서, 우선 캐리어 가스만을 바이패스로(46)를 거쳐서 처리 가스 공급로(43)로부터 처리 용기(60)내에 공급하고, 이 때의 압력기준값(PA)과 유량기준값(QA)으로 이루어지는 기준 데이터(DA)을 취득하고, 그 후 캐리어 가스를 유량을 바꾸지 않고 원료 용기(40)를 거쳐서 원료 가스와 함께 처리 용기(60)내에 공급하고, 이 때의 압력을 비교 데이터(PB)로서 취득하고, 해당 비교 데이터(PB)와 기준 데이터(DA)에 근거하여 원료 가스의 유량(C)을 연산한다. 이에 의해, 매스플로우 컨트롤러나 매스플로우 미터라고 하는 유량계를 이용하지 않아도, 원료 가스의 유량(C)을 간편하게 구할 수 있다. 이 때문에, 배관으로서 세관(細管)을 이용한다고 하는 상기 유량계의 설치 제한으로부터 개방되어서, 처리 가스 공급로(43)로서 구경이 큰 배관을 이용할 수 있다.
따라서, 처리 가스 공급로(43)의 컨덕턴스를 크게 할 수 있고, 원료 용기(40)내의 압력을 낮은 상태로 유지할 수 있어, 원료 가스의 기화가 촉진된다.
그리고, 원료의 기화의 촉진과 처리 가스 공급로(43)의 컨덕턴스가 크다는 것이 서로 작용하여, 원료 가스의 공급량을 많게 할 수 있어, 빠른 성막 레이트(rate)를 확보할 수 있다.
또한, 예컨대 성막의 도중에 고체 원료(20)의 양이 적어져, 고체 원료(20)의 기화량이 저하한 경우나, 예컨대 고체 원료(20)의 기화에 의해 고체 원료(20)의 표면적이 증가하여, 고체 원료(20)의 기화량이 증가했을 경우에 있어서도, 고체 원료(20)의 온도를 조정하는 것으로, 신속하게 원료 가스의 유량을 원하는 양으로 조정할 수 있다. 이 때문에,세밀한 유량조정을 실행할 수 있고, 그 결과, 웨이퍼(W)간에 있어서 균일한 막두께를 얻을 수 있어, 양품률의 저하를 억제할 수 있다.
본 실시의 형태에서는, 증기압이 매우 낮은 고체 원료(20)를 기화시킨 원료 가스의 유량(C)에 대하여, 캐리어 가스의 유량(A)이 상당히 많다. 이에 근거하여, 기준 데이터(DA)취득시와 비교 데이터(PB)취득시에 있어서의 배기 유량(SA 와 SB)이 대략 동일하다고 고려될 수 있다 . 이 결과, 상기와 같이, 간편하게 원료 가스의 유량(C)을 연산할 수 있다. 또한, 이와 같이 원료 가스의 유량(C)을 직접 구하고 있으므로(MFC과 같이 가스의 온도로부터 유량을 산출하고 있지 않으므로), 가스의 비열, 밀도 및 열전도율 등의 영향을 보정하기 위한 환산이 불필요하다. 그 결과, 계산 공정을 간략화할 수 있고, 또한, 어떤 종류의 가스에 대해서도 적용할 수 있다.
또한, 통상의 저진공 영역용의 압력계에서는, 저진공 영역에서의 미량인 가스 압력의 변화를 측정하는 것은 곤란하지만, 고진공 영역에서 이용되는 분해능이 높은 압력계의 측정범위를 플러스측으로 시프트시킨 압력계(47)를 이용함으로써, 저진공 영역에서의 압력 측정값의 정밀도를 높게 할 수 있다. 따라서, 유량측정기를 이용하지 않더라도, 원료 가스의 유량(C)을 높은 정밀도로 취득할 수 있다.
원료 가스의 유량(C)을 정확하게 연산할 수 있음으로써, 고체 원료(20)의 소비량(잔량)을 알 수 있다. 이에 의해, 고체 원료(20)의 보충 시기나 원료 용기(40)의 교환 시기 등을 정확하게 파악할 수 있다.
또한, 본 실시의 형태의 가스 공급 장치(11)는, 처리 가스 공급로(43)로서 대구경의 배관을 이용하고 있지만, 본 발명은 이 형태에 한정되는 것은 아니다. 유량계(MFC) 등의 기기를 설치할 수 있을 정도로 가느다란 배관이 채용될 경우이더라도, 유량계 등이 설치되지 않는 것에 의해, 유량계 등의 일차측의 압력이 높아진다고 하는 좋지않은 상태로부터는 개방된다.
또한, 스테이지(61)의 히터(61a)에 의해 웨이퍼(W)를 가열해서 성막을 실행하는 형태가 설명되어 있지만, 예컨대 가스 샤워헤드(69)에 고주파 전원 등을 접속하고, 원료 가스를 플라즈마화하는 것에 의해 성막이 실행되어도 좋다. 그 경우에는, 이 고주파 전원이, 기술한 가스 분해 수단이 된다.
상기의 예에 있어서는, 고체 원료(20)로서, 루테늄카르보닐이 이용되고 있었지만, 이것에 한정되지 않고, 예컨대 텅스텐카르보닐 등, 고체를 기화시켜 원료 가스로서 이용할 수 있는 임의의 화합물이 이용될 수 있다.

Claims (9)

  1. 원료 용기내의 고체 원료를 가열해서 기화시킨 원료 가스를 소비 구역에 공급하는 가스 공급 방법에 있어서,
    소비 구역에 연통하는 처리 가스 공급로에 캐리어 가스를 통류시킴과 동시에, 해당 처리 가스 공급로내의 가스 압력을 측정하는 공정(a)과,
    상기 원료 용기내의 고체 원료를 가열하여, 원료 가스를 발생시키는 공정(b)과,
    상기 공정(a)과 동일한 유량의 캐리어 가스를 상기 원료 용기내에 공급하여, 이 캐리어 가스와 함께 상기 원료 가스를 상기 처리 가스 공급로에 통류시키면서 해당 처리 가스 공급로내의 가스 압력을 측정하는 공정(c)과,
    상기 공정(a)에서 취득한 압력측정값과, 상기 공정(c)에서 취득한 압력측정값과, 캐리어 가스의 유량에 근거하여, 상기 원료 가스의 유량을 연산하는 공정(d)을 구비한 것을 특징으로 하는
    가스 공급 방법.
  2. 제 1 항에 있어서,
    상기 공정(d) 후에,
    해당 공정(d)에서 얻어진 상기 원료 가스의 유량의 연산값과, 미리 설정한 상기 원료 가스의 유량설정값에 근거하여, 상기 고체 원료의 가열 온도를 제어하여, 상기 원료 가스의 유량을 조정하는 공정이 실행되는
    것을 특징으로 하는
    가스 공급 방법.
  3. 제 1 항 또는 제 2 항에 있어서,
    상기 원료 용기로부터 상기 소비 구역까지의 처리 가스 공급로의 내경은, 1.9 cm(0.75 인치)이상인 것을 특징으로 하는
    가스 공급 방법.
  4. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
    상기 소비 구역은, 처리 용기내의 기판에 대하여 진공분위기하에서 상기 원료 가스를 분해시켜 성막 처리를 실행하기 위한 처리 모듈인 것을 특징으로 하는
    가스 공급 방법.
  5. 원료 용기내의 고체 원료를 가열해서 기화시킨 원료 가스를 소비 구역에 공급하는 가스 공급 장치에 있어서,
    고체 원료를 저류하기 위한 원료 용기와,
    원료 용기내의 고체 원료를 가열하는 가열 수단과,
    캐리어 가스원과 상기 원료 용기의 사이에 마련된 캐리어 가스 도입로와,
    상기 원료 용기와 상기 소비 구역의 사이에 마련된 처리 가스 공급로와,
    상기 캐리어 가스 도입로와 상기 처리 가스 공급로의 사이에 개설된 바이패스로와,
    상기 처리 가스 공급로에 있어서의 상기 바이패스로와의 접속 위치보다도 하류측에 마련된 압력측정부와,
    상기 캐리어 가스의 유로를, 상기 캐리어 가스 도입로에서 상기 바이패스로를 거쳐서 상기 처리 가스 공급로에 통류시키는 유로와, 상기 캐리어 가스 도입로에서 상기 원료 용기를 거쳐서 상기 처리 가스 공급로에 통류시키는 유로의 사이에서 전환하기 위한 유로 전환 수단과,
    상기 처리 가스 공급로내를 통류하는 상기 원료 가스의 유량을 연산하는 제어부를 구비하고,
    상기 제어부는,
    상기 처리 가스 공급로내에 상기 바이패스로를 거쳐서 상기 캐리어 가스를 통류시킨 상태에서 상기 압력측정부에 의해 취득된 압력측정값과 이때의 캐리어 가스 유량으로 이루어지는 기준 데이터를 기억하고,
    계속해서, 해당 캐리어 가스의 유량을 바꾸지 않고, 상기 처리 가스 공급로내에 상기 원료 용기를 거쳐서 캐리어 가스와 원료 가스를 통류시킨 상태로 상기 압력측정부에 의해 압력측정값을 취득하고,
    이때의 압력측정값과 상기 기준 데이터에 근거하여, 이때의 원료 가스의 유량을 연산하도록 되어 있는 것을 특징으로 하는
    가스 공급 장치.
  6. 제 5 항에 있어서,
    상기 제어부는, 상기 원료 가스의 유량의 연산값과, 미리 설정한 상기 원료 가스의 유량설정값에 근거하여, 상기 가열 수단으로의 공급 전력을 제어하여, 상기 원료 가스의 유량을 조정하도록 되어 있는 것을 특징으로 하는
    가스 공급 장치.
  7. 제 5 항 또는 제 6 항에 있어서,
    상기 처리 가스 공급로의 내경은, 1.9 cm(0.75 인치)이상인 것을 특징으로 하는
    가스 공급 장치.
  8. 제 5 항 내지 제 7 항 중 어느 한 항에 기재된 가스 공급 장치와,
    상기 소비 구역으로서의 처리 용기를 가지고, 해당 처리 용기내에 있어서 진공분위기하에서 상기 원료 가스를 분해시켜 기판에 대하여 성막 처리를 실행하기 위한 처리 모듈을 구비하고,
    상기 제어부는, 상기 처리 모듈에서 실행되는 복수의 성막 레시피마다, 상기 기준 데이터를 구비하고 있는 것을 특징으로 하는
    반도체 제조 장치.
  9. 원료 용기내의 고체 원료를 가열해서 기화시킨 원료 가스를 소비 구역에 공급하는 가스 공급 장치에 이용되는 프로그램을 저장한 기억 매체에 있어서,
    상기 프로그램은, 제 1 항 내지 제 4 항 중 어느 한 항에 기재된 가스 공급 방법을 실시하는 스텝이 구성되어 있는 것을 특징으로 하는
    기억 매체.
KR1020097020116A 2007-03-28 2008-03-26 가스 공급 방법 및 가스 공급 장치 KR101052156B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2007-085652 2007-03-28
JP2007085652A JP5103983B2 (ja) 2007-03-28 2007-03-28 ガス供給方法、ガス供給装置、半導体製造装置及び記憶媒体
PCT/JP2008/055747 WO2008123309A1 (ja) 2007-03-28 2008-03-26 ガス供給方法及びガス供給装置

Publications (2)

Publication Number Publication Date
KR20090129444A true KR20090129444A (ko) 2009-12-16
KR101052156B1 KR101052156B1 (ko) 2011-07-26

Family

ID=39830797

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020097020116A KR101052156B1 (ko) 2007-03-28 2008-03-26 가스 공급 방법 및 가스 공급 장치

Country Status (5)

Country Link
US (1) US20100062158A1 (ko)
JP (1) JP5103983B2 (ko)
KR (1) KR101052156B1 (ko)
CN (1) CN101646803B (ko)
WO (1) WO2008123309A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160115767A (ko) * 2015-03-27 2016-10-06 도쿄엘렉트론가부시키가이샤 원료 공급 장치, 원료 공급 방법 및 기억 매체
KR20170038730A (ko) * 2015-09-30 2017-04-07 도쿄엘렉트론가부시키가이샤 원료 가스 공급 장치, 원료 가스 공급 방법 및 기억 매체

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4845782B2 (ja) 2007-03-16 2011-12-28 東京エレクトロン株式会社 成膜原料
JP2010144221A (ja) * 2008-12-18 2010-07-01 Tokyo Electron Ltd 原料ガス発生装置及び成膜装置
US20130284090A1 (en) * 2012-04-26 2013-10-31 Ganesh Balasubramanian Compensating concentration uncertainity
JP6142629B2 (ja) * 2013-03-29 2017-06-07 東京エレクトロン株式会社 原料ガス供給装置、成膜装置及び原料ガス供給方法
CN104150431A (zh) * 2013-05-14 2014-11-19 北京北方微电子基地设备工艺研究中心有限责任公司 进气系统及基片处理设备
JP2015190035A (ja) * 2014-03-28 2015-11-02 東京エレクトロン株式会社 ガス供給機構およびガス供給方法、ならびにそれを用いた成膜装置および成膜方法
JP2016040402A (ja) * 2014-08-12 2016-03-24 東京エレクトロン株式会社 原料ガス供給装置
JP6370198B2 (ja) * 2014-11-07 2018-08-08 株式会社ニューフレアテクノロジー 気相成長装置および気相成長方法
JP2016186111A (ja) 2015-03-27 2016-10-27 東京エレクトロン株式会社 原料供給方法、原料供給装置及び記憶媒体
JP6693106B2 (ja) * 2015-03-27 2020-05-13 東京エレクトロン株式会社 原料供給装置、原料供給方法及び記憶媒体
CN107026066B (zh) * 2015-06-23 2018-10-23 上海凯世通半导体股份有限公司 供料装置、离子源装置及供料方法
JP6565645B2 (ja) * 2015-12-02 2019-08-28 東京エレクトロン株式会社 原料ガス供給装置、原料ガス供給方法及び記憶媒体
US11255017B2 (en) 2017-03-16 2022-02-22 Lam Research Corporation Systems and methods for flow monitoring in a precursor vapor supply system of a substrate processing system
CN107779846A (zh) * 2017-10-27 2018-03-09 君泰创新(北京)科技有限公司 一种pecvd设备的工艺气体流量的调整方法和系统
US11009455B2 (en) 2018-07-31 2021-05-18 Applied Materials, Inc. Precursor delivery system and methods related thereto
WO2020082282A1 (en) * 2018-10-25 2020-04-30 China Triumph International Engineering Co., Ltd. Vapor deposition apparatus and use thereof
CN117646198B (zh) * 2024-01-30 2024-04-23 浙江大学 一种原子级精度的cvd设备压力自动控制方法及系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8603999D0 (en) * 1986-02-18 1986-03-26 Vg Instr Group Vacuum monitoring apparatus
JP2934883B2 (ja) * 1989-05-31 1999-08-16 株式会社エステック 気化方式によるガス発生装置
JPH0347526A (ja) * 1989-07-14 1991-02-28 Fujikura Ltd 原料供給装置
US5966499A (en) * 1997-07-28 1999-10-12 Mks Instruments, Inc. System for delivering a substantially constant vapor flow to a chemical process reactor
US6296711B1 (en) * 1998-04-14 2001-10-02 Cvd Systems, Inc. Film processing system
JP4365785B2 (ja) * 2002-07-10 2009-11-18 東京エレクトロン株式会社 成膜装置
JP3973605B2 (ja) * 2002-07-10 2007-09-12 東京エレクトロン株式会社 成膜装置及びこれに使用する原料供給装置、成膜方法
US7003417B2 (en) * 2003-06-06 2006-02-21 Invensys Systems, Inc. Multiple calibration ranges stored in a process transmitter
US8435351B2 (en) * 2004-11-29 2013-05-07 Tokyo Electron Limited Method and system for measuring a flow rate in a solid precursor delivery system
JP2006241516A (ja) * 2005-03-03 2006-09-14 National Institute Of Advanced Industrial & Technology 混合ガスによる薄膜作製方法とその装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160115767A (ko) * 2015-03-27 2016-10-06 도쿄엘렉트론가부시키가이샤 원료 공급 장치, 원료 공급 방법 및 기억 매체
KR20170038730A (ko) * 2015-09-30 2017-04-07 도쿄엘렉트론가부시키가이샤 원료 가스 공급 장치, 원료 가스 공급 방법 및 기억 매체

Also Published As

Publication number Publication date
US20100062158A1 (en) 2010-03-11
JP2008240119A (ja) 2008-10-09
WO2008123309A1 (ja) 2008-10-16
KR101052156B1 (ko) 2011-07-26
CN101646803A (zh) 2010-02-10
CN101646803B (zh) 2011-11-30
JP5103983B2 (ja) 2012-12-19

Similar Documents

Publication Publication Date Title
KR101052156B1 (ko) 가스 공급 방법 및 가스 공급 장치
JP5949586B2 (ja) 原料ガス供給装置、成膜装置、原料の供給方法及び記憶媒体
WO2013035232A1 (ja) 原料濃度検出機構を備えた原料気化供給装置
JP4605790B2 (ja) 原料の気化供給装置及びこれに用いる圧力自動調整装置。
JP5652960B2 (ja) 原料気化供給装置
US9777377B2 (en) Film forming method and film forming device
JP2016040402A (ja) 原料ガス供給装置
TW201934797A (zh) 基板處理方法、記憶媒體及原料氣體供給裝置
JP2020013966A (ja) 成膜装置、原料供給装置及び成膜方法
Choo et al. Development of a spatially controllable chemical vapor deposition reactor with combinatorial processing capabilities
JP3809146B2 (ja) 流量制御方法および流量制御装置
JP2000200780A (ja) 半導体又は液晶製造用装置並びに液体材料ガスの気化方法
CN115198251A (zh) 气体供给装置、气体供给方法以及基板处理装置
JP7344944B2 (ja) ガス供給システム、基板処理装置、半導体装置の製造方法及びプログラム
JP3070728B2 (ja) 薄膜気相成長装置
WO2021060116A1 (ja) ガス供給装置及びガス供給方法
CN111341689B (zh) 气体流量控制装置和控制方法及应用该装置的半导体设备
TW202343571A (zh) 基板處理裝置、氣體供給系統、基板處理方法、半導體裝置之製造方法及程式
JP2019080013A (ja) 気体原料供給装置

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140716

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150618

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160617

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170616

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180628

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190627

Year of fee payment: 9