KR20090070338A - 반도체 소자의 플로팅 게이트 제조 방법 - Google Patents

반도체 소자의 플로팅 게이트 제조 방법 Download PDF

Info

Publication number
KR20090070338A
KR20090070338A KR1020070138317A KR20070138317A KR20090070338A KR 20090070338 A KR20090070338 A KR 20090070338A KR 1020070138317 A KR1020070138317 A KR 1020070138317A KR 20070138317 A KR20070138317 A KR 20070138317A KR 20090070338 A KR20090070338 A KR 20090070338A
Authority
KR
South Korea
Prior art keywords
floating gate
etching
polysilicon layer
forming
oxide film
Prior art date
Application number
KR1020070138317A
Other languages
English (en)
Inventor
김진호
이기민
Original Assignee
주식회사 동부하이텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 동부하이텍 filed Critical 주식회사 동부하이텍
Priority to KR1020070138317A priority Critical patent/KR20090070338A/ko
Priority to US12/344,504 priority patent/US20090176320A1/en
Publication of KR20090070338A publication Critical patent/KR20090070338A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28035Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas
    • H01L21/32137Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas of silicon-containing layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32139Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer using masks

Abstract

반도체 소자의 플로팅 게이트 제조 방법이 개시된다. 이 방법은, 반도체 기판상에 터널 산화막을 형성하는 단계와, 터널 산화막의 상부에 폴리 실리콘층을 형성하는 단계와, 폴리 실리콘층의 상부에 플로팅 게이트 형성용 감광막 패턴을 형성하는 단계와, 감광막 패턴에 부산물을 증착하여 부산물 마스크를 형성하는 단계 및 부산물 마스크를 식각 마스크로 이용하여, 폴리 실리콘층을 식각하여 플로팅 게이트를 형성하는 단계를 구비하는 것을 특징으로 한다. 플로팅 게이트를 형성하기 위해, 공정 단순화를 적용한 부산물 마스크를 이용하여 폴리 실리콘층을 식각할 수 있고, 폴리 실리콘층의 식각율을 증가시켜 생산성 증가에 이바지하고, 폴리 브릿지 문제를 해결할 수 있고, 폴리 실리콘층을 식각할 때 사용되는 총 가스량을 줄여 하드웨어의 마진을 증가시킬 수 있을 뿐만 아니라 사용되는 가스의 량도 줄일 수 있는 효과를 갖는다.
반도체 소자, 플래시 메모리, 플로팅 게이트, 반응성 이온 식각

Description

반도체 소자의 플로팅 게이트 제조 방법{Method for manufacturing floating gate of semiconductor device}
본 발명은 플래시 메모리(flash memory)와 같은 반도체 소자에 관한 것으로서, 특히, 40㎚ 이하 급의 플래시 메모리의 플로팅 게이트 제조 방법에 관한 것이다.
일반적으로 플래시 메모리는 터널 산화막(tunnel oxide), 플로팅 게이트(floating gate), 유전체 및 제어 게이트(control gate)가 적층된 형태의 게이트 패턴 구조를 갖는다.
이하, 전술한 플래시 메모리의 플로팅 게이트를 제조하는 일반적인 방법에 대해 다음과 같이 첨부된 도면들을 참조하여 설명한다.
도 1은 일반적인 플로팅 게이트 제조 방법의 식각률(etch rate)을 설명하기 위한 도면으로서, 횡축(X축)과 종축(Y축)은 웨이퍼의 좌표를 나타내며, (0,0)은 웨이퍼의 중심을 나타낸다.
일반적으로, 플로팅 게이트를 형성하기 위한 반응성 이온 식각(RIE:Reactive Ion Etching) 공정에 의해 폴리 실리콘(polysilicon)을 식각하는 식각율의 균일 도(uniformity)는 도 1에 도시된 바와 같이 대략 5 내지 6%에 불과하다. 이와 같이, 웨이퍼 내에서 플로팅 게이트의 임계 치수(CD:Critical Point)의 변화가 심해 에칭의 균일도를 높일 필요가 있다.
도 2는 일반적인 플로팅 게이트 제조 방법에서 폴리 실리콘을 식각을 위해 엔드 포인트 검출(EPD:End Point Detection) 방식의 적용 가능성을 조사한 임의의 파장을 나타내는 그래프로서, 횡축은 시간을 나타내고, 종축은 파장의 강도(intensity)를 각각 나타낸다.
일반적인 플로팅 게이트 제조 방법의 경우, 플로팅 게이트를 형성하기 위해 폴리 실리콘을 식각할 때 EPD 방식을 사용하는 대신에 시간 식각 방식을 이용한다. 왜냐하면, 플로팅 게이트 형성용 식각 마스크의 패턴의 조밀한 간격으로 인해, 도 2에 도시된 바와 같이 엔드 포인트(EP)를 검출할 파장(10)의 강도가 매우 작기 때문이다. 즉, 폴리 실리콘층을 식각하기 위해 사용되는 파장대는 3850, 4405 또는 3650Å로서, 이들의 강도는 매우 작고 고르기 때문에 일반적인 플로팅 게이트 제조 방법은 EPD 방식을 이용할 수 없다. 이러한 이유로 시간 식각 방식에 의해 폴리 실리콘층을 식각한다. 시간 식각 공정의 경우, 식각 장비의 문제 또는 전 공정의 문제 등으로 인해, 폴리 실리콘층이 제대로 식각되지 않을 수 있을 뿐만 아니라 제대로 식각되지 않음을 검출할 수도 없다. 결국, 플로팅 게이트 폴리 브릿지(bridge) 문제가 유발될 수 있다.
또한, 일반적인 플로팅 게이트 제조 방법은 폴리 실리콘층을 식각하기 위해 산화막 하드 마스크(oxide hard mask)를 이용한다. 그러므로, 식각 공정을 단순화 시키는 데 한계를 갖는다. 게다가, 일반적인 플로팅 게이트 제조 방법은 높은 압력하에서 브롬화 수소(HBr) 가스만을 사용하여 폴리 실리콘을 식각하므로 폴리 실리콘 식각율이 낮다. 따라서, 생산성이 저하되는 문제점이 있다.
본 발명이 이루고자 하는 기술적 과제는, 폴리 브릿지 문제를 해결하고 하드웨어 장비의 마진을 증가시키면서, 높은 식각율로 플로팅 게이트를 형성할 수 있는 반도체 소자의 플로팅 게이트 제조 방법을 제공하는 데 있다.
상기 과제를 이루기 위한 본 발명에 의한 반도체 소자의 플로팅 게이트 제조 방법은, 반도체 기판상에 터널 산화막을 형성하는 단계와, 상기 터널 산화막의 상부에 폴리 실리콘층을 형성하는 단계와, 상기 폴리 실리콘층의 상부에 플로팅 게이트 형성용 감광막 패턴을 형성하는 단계와, 상기 감광막 패턴에 부산물을 증착하여 부산물 마스크를 형성하는 단계 및 상기 부산물 마스크를 식각 마스크로 이용하여, 상기 폴리 실리콘층을 식각하여 상기 플로팅 게이트를 형성하는 단계로 이루어지는 것이 바람직하다.
본 발명에 의한 반도체 소자의 플로팅 게이트 제조 방법은 플로팅 게이트를 형성하기 위해, 공정 단순화를 적용한 부산물 마스크를 이용하여 폴리 실리콘층을 식각할 수 있고, 낮은 압력하에서 HBr가스 뿐만 아니라 염소(Cl2) 가스도 사용하므로 폴리 실리콘층의 식각율을 증가시켜 생산성 증가에 이바지하고, 시간 식각 방식 대신에 EPD 방식에 의해 폴리 실리콘층을 식각할 수 있으므로 폴리 브릿지 문제를 해결할 수 있고, 폴리 실리콘층을 식각할 때 사용되는 총 가스량을 줄여 하드웨어의 마진을 증가시킬 수 있을 뿐만 아니라 사용되는 가스의 량도 줄일 수 있는 효과를 갖는다.
이하, 본 발명에 의한 반도체 소자의 플로팅 게이트 제조 방법의 실시예를 첨부한 도면들을 참조하여 다음과 같이 설명한다.
도 3a 내지 도 3c들은 본 발명의 실시예에 의한 플로팅 게이트 제조 방법에 따른 공정 단면도이다.
도 3a를 참조하면, 반도체 기판(50) 상에 터널 산화막(tunnel oxide)(52)을 형성한다. 이후, 터널 산화막(52)의 상부에 폴리 실리콘층(54)을 형성한다. 이후, 폴리 실리콘층(54)의 상부에 플로팅 게이트 형성용 감광막 패턴(56)을 형성한다. 포토 레지스트를 폴리 실리콘층(54)의 상부에 도포하고, 포토 레지스트에 대해 사진 및 식각 공정을 진행하여 플로팅 게이트를 형성할 영역을 노출시키는 감광막 패턴(56)을 형성할 수 있다.
도 3b를 참조하면, 감광막 패턴(56)에 부산물(polymer 또는 by-product)(58)을 증착하여 부산물 마스크(BCM:By-product Capping Mask)(60)를 형성한다. 감광막 패턴(56)의 측부에 부산물(58)을 증착한다. 이 때, 부산물(58)은 감광막 패턴(56)의 상부에도 증착되어 형성될 수도 있다. 이와 같이 부산물(58)을 감광막 패턴(56)의 측부에 형성하는 이유는, 후속하는 공정에서 폴리 실리콘층(54)을 식각할 때 감광막 패턴(56)의 측부 아래에 있는 폴리 실리콘층(54)이 식각되지 않도록 하기 위 해서이다.
본 발명에 의하면, 부산물 마스크(60)를 형성하는 공정에서 유출되어 폴리 실리콘층(54) 상에 잔류하는 자연 산화막을 식각하여 제거할 수도 있다. 예를 들어, 반응성 이온 식각(RIE:Reactive Ion Etching)으로 자연 산화막을 식각하여 제거할 수 있다. 이하, 자연 산화막을 제거하기 위해 식각하는 공정을 브레이크 쓰루(BT:Break Through) 식각 공정이라 한다.
도 4는 본 발명에 의한 플로팅 제조 방법에서 BT 식각 공정 후의 반도체 소자의 단면도를 나타낸다.
도 4를 참조하면, BT 식각 공정을 수행한 후의 부산물 마스크(70)의 모습을 볼 수 있다. BT 공정에서 RIE 공정을 이용한다고 가정하면서, BT 식각 공정에 대해 살펴보면 다음과 같다.
BT 식각 공정은 CF4 가스 뿐만 아니라 아르곤(Ar) 가스를 이용하여 수행될 수 있다. CF4 만을 사용하는 것보다는 Ar가스를 사용하므로서, BT 식각 공정의 균일도를 향상시킬 수 있고 총 가스량을 일반적인(normal) BT 식각 공정에서 사용하는 량보다 늘림으로서 낮은 압력하에서 동작하는 제어 장비의 마진(margin)을 확보할 수 있다.
예를 들면, Ar을 이용하여 RIE 방식으로 자연 산화막을 제거할 수 있다.
도 3c를 참조하면, 부산물 마스크(60)를 식각 마스크로 이용하여, 폴리 실리콘층(54)을 식각하여, 플로팅 게이트(54A)를 형성한다. 이하, 플로팅 게이트(54A) 를 형성하기 위한 식각 공정을 메인 식각(ME:Main Etching) 공정이라 칭한다. 예를 들어, 반응성 이온 식각(RIE)으로 폴리 실리콘층(54)을 식각하여 플로팅 게이트(54A)를 형성할 수 있다. ME 공정에서 RIE 공정을 이용한다고 가정하면서, ME 공정에 대해 다음과 같이 설명한다.
도 5a 및 도 5b는 ME 공정의 분위기 압력이 다를 때의 플로팅 게이트의 단면 사진을 나타낸다. 도 5a에 도시된 플로팅 게이트를 위한 ME 공정의 분위기 압력은 도 5b에 도시된 플로팅 게이트를 위한 ME 공정의 분위기 압력보다 낮다.
도 3a에 도시된 마스크(56)의 오픈된 간격(space)의 CD는 작으므로 종횡비(aspect ratio)가 적다. 즉, 수직적인 식각을 위해 이온들의 에너지가 최대한 잘 전달되도록 평균 자유 경로(mean free path)를 길게 해 주어야 한다. 그러나, ME 공정의 분위기 압력이 높으면 체류 시간(residence time)이 길어져서 식각 마스크 손실이 길어질 수 있다. 도 5a 및 도 5b에 도시된 바와 같이 비슷한 폴리 식각률을 가지고 있음에도 불구하고 ME 공정의 압력이 높으면 플로팅 게이트가 경사지게 형성됨을 알 수 있다. 따라서, ME 공정에서의 압력을 낮출 필요가 있다. 본 발명에 의하면, 폴리 실리콘층(54)과 부산물 마스크(60) 간의 식각 선택비를 높이도록, 식각 공정의 압력을 결정한다.
도 6a 및 도 6b들은 ME 공정에서의 바이어스 전력이 다를 때의 플로팅 게이트의 단면 사진을 나타낸다. 도 6a에 도시된 플로팅 게이트를 위한 ME 공정의 바이어스 전력은 도 6b에 도시된 플로팅 게이트를 위한 ME 공정의 바이어스 전력보다 높다.
기본적으로 폴리 실리콘층(54)의 수직 식각을 위해 ME 공정의 바이어스 전력은 어느 정도 높여줘야 한다. 만일, 바이어스 전력이 낮으면 이온의 직진성이 저하되어, ME 공정시 마스크 측면이 식각될 수 있기 때문이다. 도 6a 및 도 6b를 참조하면, 바이어스 전력이 낮을 때 마스크의 측면 식각이 증가하게 되어, 마스크 마진 확보에 문제가 생길 수 있다. 이는 도 6b에 도시된 골의 폭(wb)이 도 6a에 도시된 골의 폭(wa)보다 넓고, 도 6b의 경우 마진이 없는 부분(80)이 발생할 수 있고, 도 6b에 도시된 높이(hb)가 도 6a에 도시된 높이(ha)보다 크다는 사실을 통해 알 수 있다. 즉, 반응성 이온 식각 공정에서 이온의 직진성을 확보하도록, ME 공정의 바이어스 전력을 결정할 필요가 있다.
도 7a 및 도 7b는 ME 공정에서 Cl2의 량이 다를 때의 플로팅 게이트의 단면도를 나타낸다. 도 7a에 도시된 플로팅 게이트를 위한 ME 공정에서의 Cl2의 량은 도 7b에 도시된 플로팅 게이트를 위한 ME 공정에서의 Cl2의 량보다 높다.
ME 공정에서 원하는 범위의 식각률을 얻기 위해, Cl2와 HBr을 이용하여 폴리 실리콘층(54)을 식각할 수 있다. 단지 HBr만을 사용하면 HBr이 할로겐족 원소에서 반응성이 F > Cl > HBR 이므로 식각률이 저하된다. 이와 같이 플루오르(F) 계열의 가스는 반응성이 너무 좋아 측면 식각이 강하다.
게다가, Cl2와 HBr을 사용할 때 Cl2와 HBr의 가스 비율은 매우 중요하다. 왜냐하면, Cl2와 HBr의 총 가스량이 동일하다고 하더라도 Cl2 량이 많다면 도 7a에 도 시된 바와 같이 마스크의 손실이 도 7b의 경우보다 심해지기 때문이다. 그러나, Cl2의 량이 너무 줄어들면 식각률이 저하되어 생산량이 떨어지므로 이를 고려하여 Cl2와 HBr의 적정 비율을 결정할 수 있다. 예를 들어, Cl2와 HBr의 적정 비율은 2 : 7인 것이 바람직하다. 또한, Cl2와 HBr의 총 가스량이 많아지면 저 압력 제어에 문제가 생기고 체류시간이 길어져 좋지 않다. 예를 들면, Cl2와 HBr의 총 가스량은 110 내지 250 sccm인 상태에서 Cl2와 HBr의 적정 비율은 2 : 7인 것이 바람직하다.
도 8은 ME 공정에서의 폴리 실리콘의 식각률을 보이는 그래프로서, 횡축은 웨이퍼내의 측정 포인트(point)를 나타내고, 종축은 식각률을 각각 나타낸다.
도 9는 도 8에 도시된 측정 포인트를 웨이퍼에서 나타내는 도면이다.
도 8에 도시된 그래프는 Cl2와 HBr의 비율을 2:7로 유지하면서 Cl2와 HBr의 총 가스량이 150인 경우와 220인 경우에 획득한 식각률을 보인다. 도 8로부터, 총 가스량이 어느 정도 이상유지되면 총 가스량이 많다고 하더라도 식각률은 빨라지지 않음을 알 수 있다.
도 10은 426.5㎚ 파장의 강도를 나타내는 그래프로서, 종축은 강도를 나타내고, 횡축은 시간을 각각 나타낸다.
일반적으로 426.5㎚의 파장대는 Cr의 EPD용 파형으로 알려져 있다. 그러나, 도 10에 도시된 바와 같이, 426.5㎚ 파장(80)은 폴리 실리콘층(54)을 식각한 후, 터널 산화막(52)이 노출될 때 신호의 강도 세기가 갑자기 떨어짐을 알 수 있다. 이 는, 426.5㎚의 파장을 폴리 실리콘층(54)을 식각할 때 EPD 용으로 이용할 수 있음을 시사한다. 이러한 현상은 에천트(etchant)로서 다음 화학식 1과 같은 반응에 기인할 수 있다.
2Cl2 + Si --> SiCl4
그러므로, 본 발명에 의하면, 426.5㎚파장을 이용하는 엔드 포인트 검출(EPD) 방식에 의해 폴리 실리콘층(54)을 식각할 수 있다.
도 11은 본 발명에 의한 플로팅 게이트 제조 방법에 의해 최종적으로 획득된 반도체 소자의 공정 단면 사진으로서, 활성 영역(AA:Active Area)의 TEOS(Tetraethly Orthosilicate)(90), 소자 분리막(92) 및 플로팅 게이트(94)를 나타낸다.
도 4, 도 5a, 도 5b, 도 6a, 도 6b, 도 7a 및 도 7b에 도시된 사진들은 테스트 웨이퍼를 사용하여 획득한 사진이므로 서브 층이 존재하지 않지만, 도 11에 도시된 사진은 웨이퍼의 생산 초기 때부터 만들어진 실 웨이퍼의 사진으로서 서브 층이 존재한다.
예를 들어, 33sccm의 Cl2와 117sccm의 HBr을 이용하여 ME 공정으로 EPD+ 72%의 오버 식각 시간 동안 폴리 실리콘층을 식각하여, 도 11에 도시된 바와 같은 플로팅 게이트(94)를 형성할 수 있다. 여기서, EPD+ 72% 오버 식각 시간이란, 엔드 포인트를 찾을 때까지 식각한 시간을 T라고 할 때, 1.72T시간을 의미한다.
이상에서 설명한 본 발명은 상술한 실시예 및 첨부된 도면에 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명백할 것이다.
도 1은 일반적인 플로팅 게이트 제조 방법의 식각률을 설명하기 위한 도면이다.
도 2는 일반적인 플로팅 게이트 제조 방법에서 폴리 실리콘을 식각을 위해 EPD 방식의 적용 가능성을 조사한 임의의 파장을 나타내는 그래프이다.
도 3a 내지 도 3c들은 본 발명의 실시예에 의한 플로팅 게이트 제조 방법에 따른 공정 단면도이다.
도 4는 본 발명에 의한 플로팅 제조 방법에서 BT 식각 공정 후의 반도체 소자의 단면도를 나타낸다.
도 5a 및 도 5b는 ME 공정의 분위기 압력이 각각 5mT 및 8mT일 때의 플로팅 게이트의 단면 사진을 나타낸다.
도 6a 및 도 6b들은 ME 공정에서의 바이어스 전력이 130W 및 115W 일 때의 플로팅 게이트의 단면 사진을 나타낸다.
도 7a 및 도 7b는 ME 공정에서 Cl2의 량이 각각 68 및 30 일때의 플로팅 게이트의 단면도를 나타낸다.
도 8은 ME 공정에서의 폴리 실리콘의 식각률을 보이는 그래프이다.
도 9는 도 8에 도시된 측정 포인트를 웨이퍼에서 나타내는 도면이다.
도 10은 426.5㎚ 파장의 강도를 나타내는 그래프이다.
도 11은 본 발명에 의한 플로팅 게이트 제조 방법에 의해 최종적으로 획득된 반도체 소자의 공정 단면 사진이다.
* 도면의 주요부분에 대한 부호의 설명
50 : 반도체 기판 52 : 터널 산화막
54 : 폴리 실리콘층 56 : 감광막 패턴
60 : 부산물 마스크

Claims (12)

  1. 반도체 기판상에 터널 산화막을 형성하는 단계;
    상기 터널 산화막의 상부에 폴리 실리콘층을 형성하는 단계;
    상기 폴리 실리콘층의 상부에 플로팅 게이트 형성용 감광막 패턴을 형성하는 단계;
    상기 감광막 패턴에 부산물을 증착하여 부산물 마스크를 형성하는 단계; 및
    상기 부산물 마스크를 식각 마스크로 이용하여, 상기 폴리 실리콘층을 식각하여 상기 플로팅 게이트를 형성하는 단계를 구비하는 것을 특징으로 하는 반도체 소자의 플로팅 게이트 제조 방법.
  2. 제1 항에 있어서, 상기 플로팅 게이트 제조 방법은
    상기 부산물 마스크를 형성하는 공정에서 유출되어 상기 폴리 실리콘층 상에 잔류하는 자연 산화막을 식각하여 제거하는 단계를 더 구비하는 것을 특징으로 하는 반도체 소자의 플로팅 게이트 제조 방법.
  3. 제2 항에 있어서, 아르곤(Ar) 가스를 이용하여 상기 자연 산화막을 제거하는 것을 특징으로 하는 반도체 소자의 플로팅 게이트 제조 방법.
  4. 제3 항에 있어서, 30sccm의 상기 아르곤 가스와 50sccm의 CF4 가스를 이용하여 상기 자연 산화막을 제거하는 것을 특징으로 하는 반도체 소자의 플로팅 게이트 제조 방법.
  5. 제1 항에 있어서, 상기 플로팅 게이트를 형성하는 단계는
    상기 폴리 실리콘층과 상기 부산물 마스크 간의 식각 선택비를 높이도록, 상기 식각 공정의 압력을 결정하는 것을 특징으로 하는 반도체 소자의 플로팅 게이트 제조 방법.
  6. 제1 항에 있어서, 상기 플로팅 게이트를 형성하는 식각 공정은 반응성 이온 식각인 것을 특징으로 하는 반도체 소자의 플로팅 게이트 제조 방법.
  7. 제6 항에 있어서, 상기 반응성 이온 식각 공정에서 이온의 직진성을 확보하도록 바이어스 전력을 결정하는 것을 특징으로 하는 반도체 소자의 플로팅 게이트 제조 방법.
  8. 제1 항에 있어서, Cl2와 HBr을 이용하여 상기 폴리 실리콘층을 식각하는 것을 특징으로 하는 반도체 소자의 플로팅 게이트 제조 방법.
  9. 제8 항에 있어서, 상기 Cl2와 HBr의 가스 비율은 2 : 7인 것을 특징으로 하는 반도체 소자의 플로팅 게이트 제조 방법.
  10. 제8 항 또는 제9 항에 있어서, 상기 Cl2와 HBr의 총 가스량은 110 내지 250 sccm인 것을 특징으로 하는 반도체 소자의 플로팅 게이트 제조 방법.
  11. 제1 항에 있어서, 상기 폴리 실리콘층을 엔드 포인트 검출 방식에 의해 식각하는 것을 특징으로 하는 반도체 소자의 플로팅 게이트 제조 방법.
  12. 제11 항에 있어서, 상기 엔드 포인트 검출 방식에서, 엔드 포인트를 검출할 파장은 426.5㎚인 것을 특징으로 하는 반도체 소자의 플로팅 게이트 제조 방법.
KR1020070138317A 2007-12-27 2007-12-27 반도체 소자의 플로팅 게이트 제조 방법 KR20090070338A (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020070138317A KR20090070338A (ko) 2007-12-27 2007-12-27 반도체 소자의 플로팅 게이트 제조 방법
US12/344,504 US20090176320A1 (en) 2007-12-27 2008-12-27 Method for fabrication of floating gate in semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070138317A KR20090070338A (ko) 2007-12-27 2007-12-27 반도체 소자의 플로팅 게이트 제조 방법

Publications (1)

Publication Number Publication Date
KR20090070338A true KR20090070338A (ko) 2009-07-01

Family

ID=40844904

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070138317A KR20090070338A (ko) 2007-12-27 2007-12-27 반도체 소자의 플로팅 게이트 제조 방법

Country Status (2)

Country Link
US (1) US20090176320A1 (ko)
KR (1) KR20090070338A (ko)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100454132B1 (ko) * 2002-09-09 2004-10-26 삼성전자주식회사 비휘발성 기억소자 및 그 형성방법
KR100784083B1 (ko) * 2005-06-13 2007-12-10 주식회사 하이닉스반도체 플래시 메모리 소자의 플로팅 게이트 형성방법
KR20060135247A (ko) * 2005-06-24 2006-12-29 동부일렉트로닉스 주식회사 플래시 메모리 소자의 플로팅 게이트 형성방법
KR100854897B1 (ko) * 2006-12-28 2008-08-28 주식회사 하이닉스반도체 반도체 소자의 게이트 형성 방법
US7723774B2 (en) * 2007-07-10 2010-05-25 Silicon Storage Technology, Inc. Non-diffusion junction split-gate nonvolatile memory cells and arrays, methods of programming, erasing, and reading thereof, and methods of manufacture

Also Published As

Publication number Publication date
US20090176320A1 (en) 2009-07-09

Similar Documents

Publication Publication Date Title
KR100853485B1 (ko) 리세스 게이트를 갖는 반도체 소자의 제조 방법
US20080233730A1 (en) Method for fabricating semiconductor device
JP2009152243A (ja) 半導体装置の製造方法
JP2007059531A (ja) 半導体装置の製造方法
JP4614995B2 (ja) 半導体装置の製造方法
US6500727B1 (en) Silicon shallow trench etching with round top corner by photoresist-free process
KR100824995B1 (ko) 리세스 게이트를 갖는 반도체 소자의 제조 방법
JP2004119905A (ja) ポリシリコンエッチング方法
KR20090070338A (ko) 반도체 소자의 플로팅 게이트 제조 방법
JP2006324615A (ja) 半導体素子の導電配線形成方法
JP3116276B2 (ja) 感光膜のエッチング方法
CN113035699A (zh) 半导体器件的制造方法
KR20090045754A (ko) 하드마스크를 이용하는 반도체 소자의 패턴 형성 방법
KR20060122578A (ko) 반도체 메모리 소자의 하드 마스크 형성방법
JP4360393B2 (ja) ポリシリコンエッチング方法
JP2005136097A (ja) 半導体装置の製造方法
JP4033086B2 (ja) ドライエッチング方法
US20070004105A1 (en) Method for fabricating semiconductor device
JPH07201830A (ja) 半導体装置の製造方法
JPH09321024A (ja) 半導体装置の製造方法
US20070004152A1 (en) Method for fabricating semiconductor device with step gated asymmetric recess
KR100673195B1 (ko) 플래쉬 메모리 소자의 게이트 패턴 형성방법
KR100721591B1 (ko) 반도체소자의 제조방법
US20080124914A1 (en) Method of fabricating flash memory device
JP3111501B2 (ja) エッチング方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application