KR20090017657A - 방사선 촬상 장치 - Google Patents

방사선 촬상 장치 Download PDF

Info

Publication number
KR20090017657A
KR20090017657A KR1020087032023A KR20087032023A KR20090017657A KR 20090017657 A KR20090017657 A KR 20090017657A KR 1020087032023 A KR1020087032023 A KR 1020087032023A KR 20087032023 A KR20087032023 A KR 20087032023A KR 20090017657 A KR20090017657 A KR 20090017657A
Authority
KR
South Korea
Prior art keywords
image
radiation
ray
fpd
subject
Prior art date
Application number
KR1020087032023A
Other languages
English (en)
Other versions
KR101040488B1 (ko
Inventor
코이치 시바타
카즈히로 모리
신고 바바
다이스케 노토하라
신야 히라사와
케이이치 고토
유키오 미시나
Original Assignee
가부시키가이샤 시마즈세이사쿠쇼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 시마즈세이사쿠쇼 filed Critical 가부시키가이샤 시마즈세이사쿠쇼
Publication of KR20090017657A publication Critical patent/KR20090017657A/ko
Application granted granted Critical
Publication of KR101040488B1 publication Critical patent/KR101040488B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/025Tomosynthesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/027Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis characterised by the use of a particular data acquisition trajectory, e.g. helical or spiral
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4233Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4435Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure
    • A61B6/4441Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure the rigid structure being a C-arm or U-arm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5205Devices using data or image processing specially adapted for radiation diagnosis involving processing of raw data to produce diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5229Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
    • A61B6/5235Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from the same or different ionising radiation imaging techniques, e.g. PET and CT
    • A61B6/5241Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from the same or different ionising radiation imaging techniques, e.g. PET and CT combining overlapping images of the same imaging modality, e.g. by stitching

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Mathematical Physics (AREA)
  • Pulmonology (AREA)
  • Theoretical Computer Science (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

X선관 및 플랫패널형 X선 검출기(FPD)가 피검체의 장방향인 몸축을 따라 서로 같은 방향으로 평행이동하도록 구성하는 것과 동시에, X선관 및 FPD가 피치마다 이동할 때마다 X선관으로부터 X선을 간헐적으로 조사하고, 간헐적으로 조사된 피검체를 투과한 X선을 FPD가 검출하도록 구성하여, X선 화상 O1, O2,…, OI,…, OM를 상술한 피치마다 분해하고, 그 분해된 화상을 동일의 투영각도마다 합성하여 투영 각도 마다의 투영 화상 P1, P2,…를 얻는다. 따라서, 그 합성된 투영 화상에 근거하여 재구성 처리를 실시하는 것으로, 장방향의 긴 시야의 단층 화상을 얻을 수 있다.
FPD, 방사선 조사수단, 방사선 검출수단, 천판, 화상 분해부, 화상 합성부, 재구성 처리부

Description

방사선 촬상 장치{RADIATION IMAGING DEVICE}
이 발명은, 검출된 방사선에 근거하여 방사선 화상을 얻는 것으로 방사선 촬상을 실시하는 방사선 촬상 장치에 관한 것이고, 특히 재구성 처리를 실시하여 단층 화상을 얻는 기술에 관한 것이다.
재구성 처리를 실시하여 단층 화상을 얻는 방사선 촬상 장치로서 X선 CT (computed tomography) 장치나 X선 단층촬영장치등이 있다. X선 CT 장치에서는, 피검체의 장방향인 몸축(體軸)의 축심 주위를 X선관(방사선조사수단)과 X선 검출기(방사선 검출수단)가 회전이동하여 단층 화상을 얻는다. X선 단층촬영장치에서는, 예를 들면 도 20에 나타내듯이, 피검체(M)의 몸축 z 방향을 따라서 X선관 (101) 및 X선검출기(102)가 서로 역방향으로 평행이동하여 단층 화상을 얻는다. X선 CT 장치와 비교하면 X선 단층촬영장치의 경우에는, 얻어진 단층 화상의 해상도는 뒤떨어지지만, 평행이동하는 것만으로 단층 화상을 얻을 수 있다는 이점이 있다. 이러한 X선 CT 장치나 X선 단층촬영장치로 행해지는 촬상 방식은, 흉부, 관절, 소화기관 등이 많은 부위에 유효한 촬상 방법이다.
한편, 근래에는, X선관 및 X선 검출기를 피검체의 몸축방향을 따라서 서로 같은방향으로 평행이동시켜서, 피검체의 몸축에 따른 X선 화상을 얻는 X선 촬영 장 치가 있다(예를 들면, 특허 문헌 1참조). 이 장치로 얻어진 X선 화상은, X선이 투영된 투영데이터(투영 화상)로, 몸축방향을 따라서 서로 같은 방향으로 X선관 및 X선 검출기가 평행이동 하므로, 투영 각도를 거의 같은 각도로 유지할 수 있다. 따라서, 몸축방향인 장방향에 장척(長尺) 영역의 X선 화상(장척 X선 화상)을 얻을 수 있다.
[특허 문헌 1]
특개 2004-236929호 공보( 제1-8페이지, 도 1, 6, 10)
[발명이 해결하려고 하는 과제]
그러나, 상술한 X선 단층촬영장치의 경우에는 시야가 한정되어 있다. X선 검출기로서 종래는 이미지 인텐시파이어(I.I)등이 이용되고 있었지만, 근래에는 도 20에 나타내듯이 플랫패널(Flat Panel) 형 X선 검출기(이하, 「FPD」라고 약기한다)가 이용되고 있다. FPD의 경우에는 검출면이 평면이므로 이미지 인텐시파이어보다 시야가 넓어지지만, X선 단층촬영장치에서는 관심영역으로부터 멀어질수록 상술한 해상도가 떨어져 버린다. X선관(101) 및 X선 검출기(102)는 서로 역방향으로 평행이동하므로, X선관(101)으로부터 X선 검출기(102)를 결합하는 조사(照射)축과 피검체의 몸축 z 와 이루는 각도(이하, 「투영각도」라고 한다)가 수직으로부터 멀어져 예각 혹은 둔각이 되는만큼, 해상도가 떨어진다. 그 결과, FPD를 X선 검출기로서 이용했을 경우에도 그 시야는 한정된다. 그래서, 몸축방향으로 긴 시야에서의 단층촬영이 바람직하다.
이 발명은, 이러한 상황을 고려하여 이루어진 것으로, 긴 시야의 단층 화상을 얻을 수 있는 방사선 촬상 장치를 제공하는 것을 목적으로 한다.
[과제를 해결하기 위한 수단]
발명자는, 상기의 문제를 해결하기 위해서 열심히 연구한 결과, 다음과 같은 지견(知見)을 얻었다. 즉, 상술한 특허 문헌 1과 같이 장방향으로 장척 X선 화상을 얻는 X선 촬영장치에 주목해 보았다. 그러면, 이 X선 촬영장치와 같이 X선관으로 대표되는 방사선조사수단 및 X선 검출기로 대표되는 방사선 검출수단이 피검체의 몸축방향인 장방향을 따라서 서로 같은 방향으로 평행이동하도록 구성하면 장방향으로 장척 X선 화상을 얻을 수 있다. 한편, 특허 문헌 1에서 얻어진 장척 X선 화상은 투영 화상이므로, 새로운 촬상 방식 및 단층 화상을 얻기 위한 구성이 필요하다.
그러므로, 전자의 새로운 촬상 방식으로서, 방사선조사수단 및 방사선 검출수단이 소정거리로 이동할 때마다 방사선조사수단으로부터 방사선을 간헐적으로 조사하고, 간헐적으로 조사된 피검체를 투과한 방사선을 방사선 검출수단이 검출하도록 구성한다. 후자의 단층 화상을 얻기 위한 구성으로서 방사선 화상을 상술한 소정거리마다 분해하고, 그 분해된 화상을 동일의 투영각도마다 합성하여 투영 각도 마다의 투영 화상을 얻는다. 그러므로, 그 합성된 투영 화상에 근거하여 재구성 처리를 실시하는 것으로, 장방향의 긴 시야의 단층 화상을 얻을 수 있다는 지견을 얻었다.
이러한 지견에 근거하는 이 발명은, 다음과 같은 구성을 취한다. 즉, 이 발명의 방사선 촬상 장치는, 피검체를 향해서 방사선을 조사하는 방사선조사수단과, 상기 피검체를 투과한 방사선을 검출하는 방사선 검출수단을 갖추고, 검출된 방사선에 근거하여 방사선 화상을 얻는 것으로 방사선 촬상을 실시하는 방사선 촬상 장치로, 상기 방사선조사수단 및 방사선 검출수단이 피검체의 장방향을 따라서 서로 같은 방향으로 상대적으로 평행이동 하도록 구성하는 것과 동시에, 방사선조사수단 및 방사선 검출수단이 피검체에 대해서 소정거리마다 상대이동 할 때마다 방사선조사수단으로부터 방사선을 간헐적으로 조사하고, 간헐적으로 조사된 피검체를 투과한 방사선을 방사선 검출수단이 검출하도록 구성하고, 상기 장치는, 상기 방사선 화상을 상기 소정거리마다 분해하는 화상 분해 수단과 그 분해된 화상을 동일의 투영각도마다 합성하여 투영각도마다의 투영 화상을 얻는 화상 합성 수단과, 그 합성된 투영 화상에 근거하여 재구성 처리를 실시하여 단층 화상을 얻는 재구성 처리 수단을 갖추는 것을 특징으로 하는 것이다.
이 발명의 방사선 촬상 장치에 의하면, 방사선 조사수단 및 방사선 검출수단이 피검체의 장방향을 따라서 서로 같은 방향으로 상대적으로 평행이동하도록 구성하는 것으로, 장방향의 긴 시야의 데이터를 방사선 검출수단으로부터 얻을 수 있다. 한편, 방사선조사수단 및 방사선 검출수단이 피검체에 대해서 소정거리마다 상대이동할 때마다 방사선조사수단으로부터 방사선을 간헐적으로 조사하고, 간헐적으로 조사된 피검체를 투과한 방사선을 방사선 검출수단이 검출하도록 구성한다. 그리고, 방사선 화상을 상술한 소정거리마다 화상 분해수단은 분해하고, 그 분해된 화상을 동일의 투영 각도마다 화상 합성수단이 합성하여 투영 각도마다의 투영화상을 얻는다. 따라서, 그 합성된 투영 화상에 근거하여 재구성 처리 수단이 재구성 처리를 실시하는 것으로, 장방향의 긴 시야의 단층 화상을 얻을 수 있다.
상술한 발명에 있어서, 방사선조사수단 및 방사선 검출수단은 피검체에 대해서 서로 같은 속도로 상대적으로 평행이동하는 것이 바람직하다. 방사선조사수단 및 방사선 검출수단이 피검체에 대해서 서로 같은 속도로 상대적으로 평행이동 하는 것으로, 투영 각도를 같은 각도로 유지할 수 있고, 방사선조사수단 및 방사선 검출수단을 보다 길게 상대이동 시킬 수 있다. 그 결과, 보다 긴 시야의 단층 화상을 얻을 수 있다.
또, 상술한 이러한 발명의 일례는, 재구성 처리 수단에 의해서 얻어진 단층 화상을 출력하는 출력 수단을 갖추는 것이다. 출력 수단을 갖추는 것으로 출력의 열람을 제공할 수 있다. 또한 출력 수단으로서는, 표시출력하는 모니터로 대표되는 표시 수단이어도 좋고, 인쇄출력하는 프린터로 대표되는 인쇄 수단이어도 좋다.
[발명의효과]
이 발명과 관련되는 방사선 촬상 장치에 의하면, 방사선조사수단 및 방사선 검출수단이 피검체의 장방향을 따라서 서로 같은 방향으로 상대적으로 평행이동 하도록 구성하는 것과 동시에, 방사선조사수단 및 방사선 검출수단이 피검체에 대해서 소정거리마다 상대이동할 때마다 방사선조사수단으로부터 방사선을 간헐적으로 조사하고, 간헐적으로 조사된 피검체를 투과한 방사선을 방사선 검출수단이 검출하도록 구성하고, 방사선 화상을 상술한 소정거리마다 화상 분해 수단은 분해 하고, 그 분해된 화상을 동일의 투영각도마다 화상 합성 수단이 합성하여 투영 각도마다의 투영 화상을 얻는다. 따라서, 그 합성된 투영 화상에 근거하여 재구성 처리 수단이 재구성 처리를 실시하는 것으로, 장방향의 긴 시야의 단층 화상을 얻을 수 있다.
도 1은 실시예와 관련되는 X선 단층촬영장치의 블록도이다.
도 2는 플랫패널형 X선 검출기(FPD)의 구동에 관한 FPD 구동 기구의 개략 구성을 나타내는 모식도이다.
도 3은 X선관의 구동에 관한 X선관 구동부의 개략 구성을 나타내는 모식도이다.
도 4는 측면시한 플랫패널형 X선 검출기(FPD)의 등가회로이다.
도 5는 평면시한 플랫패널형 X선 검출기(FPD)의 등가회로이다.
도 6 (a)~(i)는 X선관 및 플랫패널형 X선 검출기(FPD)에 의한 촬상 원리를 피치(소정거리)마다 나타낸 모식도이다.
도 7 (a)~(j)는 화상의 분리 및 투영 화상에의 합성을 나타낸 모식도이다.
도 8 (a)~(j)는 화상의 분리 및 투영 화상에의 합성을 나타낸 모식도이다.
도 9(a)는 원호(圓弧)궤도 단층촬영의 모식도이며, (b)는 직선 궤도 단층촬영의 모식도이다.
도 10은 실시예와 관련되는 펠드캠프(Feldkamp) 알고리즘의 설명에 제공하는 모식도이다.
도 11은 실시예와 관련되는 필터함수의 특성도이다.
도 12 실시예와 관련되는 재구성 처리부에서의 각 구성도의 블록도 및 데이터의 흐름을 나타낸 개략도이다.
도 13 (a), (b)는, 펠드캠프(Feldkamp)의 직선궤도 단층촬영에의 적용방법의 설명에 제공하는 모식도이다.
도 14는 펠드캠프(Feldkamp)의 장척 X선 화상에의 적용 방법의 설명에 제공하는 각 X선 조사의 공통 투영 각도의 화상과 투영 화상과의 관계를 나타낸 모식도이다.
도 15는 펠드캠프(Feldkamp)의 장척 X선 화상에의 적용 방법의 설명에 제공하는 각 X선 조사의 공통 투영 각도의 화상과 투영 화상과의 관계를 나타낸 모식도이다.
도 16은 펠드캠프(Feldkamp)의 장척 X선 화상에의 적용 방법의 설명에 제공하는 각 X선 조사의 공통 투영 각도의 화상과 투영 화상과의 관계를 나타낸 모식도이다.
도 17은 펠드캠프(Feldkamp)의 장척 X선 화상에의 적용 방법의 설명에 제공하는 N=8의 경우의 각 재단(裁斷)면과 투영 화상과의 관계를 나타낸 모식도이다.
도 18은 펠드캠프(Feldkamp)의 장척 X선 화상에의 적용 방법의 설명에 제공하는 재단면과 투영 화상과의 관계를 나타낸 표이다.
도 19 (a), (b)는, 펠드캠프(Feldkamp)의 장척 X선 화상에의 적용 방법의 설명에 제공하는 재단면과 투영 화상과의 관계를 나타낸 모식도이다.
도 20은 종래 X선 단층촬영장치의 개략 구성을 나타낸 측면도이다.
[부호의 설명]
2…X선관
3…플랫패널형 X선 검출기(FPD)
13…모니터
9b…화상 분해부
9c…화상 합성부
9d…재구성 처리부
d…피치
z…체 축
M…피검체
이하, 도면을 참조하여 이 발명의 실시예를 설명한다. 도 1은, 실시예와 관련되는 X선 단층촬영장치의 블록도이고, 도 2는, 플랫패널형 X선 검출기의 구동에 관한 FPD 구동 기구의 개략 구성을 나타내는 모식도이며, 도 3은, X선관의 구동에 관한 X선관 구동부의 개략 구성을 나타내는 모식도이다. 본 실시예에서는 방사선 검출수단으로서 플랫패널형 X선 검출기(이하, 「FPD」라고 약기한다)를 예로 채용함과 동시에, 방사선 촬상 장치로서 X선 단층촬영장치를 예로 들어 설명한다.
X선 단층촬영장치는, 도 1에 나타내듯이, 피검체(M)를 재치하는 천판(1)과 그 피검체(M)를 향해서 X선을 조사하는 X선관(2)과 피검체(M)를 투과한 X선을 검출 하는 FPD(3)를 갖추고 있다. X선관(2)은, 이 발명에 있어서 방사선조사수단에 상당 하고, FPD(3)는, 이 발명에 있어서의 방사선 검출수단에 상당한다.
X선 단층촬영장치는, 그 밖에, 천판(1)의 승강 및 수평이동을 제어하는 천판 제어부(4)나, FPD(3)의 주사(走査)를 제어하는 FPD 제어부(5)나, X선관(2)의 관전압이나 관전류를 발생시키는 고전압 발생부(6)를 가지는 X선관 제어부(7)나, FPD(3)로부터 전하 신호인 X선검출 신호를 디지털화하여 추려 내는 A/D 변환기(8)나, A/D 변환기(8)로부터 출력된 X선 검출 신호에 근거하여 여러 처리를 실시하는 화상 처리부(9)나, 이러한 각 구성부를 통괄하는 콘트롤러(10)나, 처리된 화상 등을 기억하는 메모리부(11)나, 오퍼레이터가 입력 설정을 실시하는 입력부(12)나, 처리된 화상 등을 표시하는 모니터(13)등을 갖추고 있다. 모니터(13)는, 이 발명에 있어서 출력 수단에 상당한다.
천판 제어부(4)는, 천판(1)을 수평이동시켜 피검체(M)를 촬상 위치에까지 수용하거나 승강, 회전 및 수평이동시켜 피검체(M)를 소망하는 위치에 설정하거나 수평이동시키면서 촬상을 실시하거나 촬상 종료 후에 수평이동시켜 촬상 위치로부터 퇴피시키는 제어 등을 실시한다. 이러한 제어는, 모터나 엔코더(도시 생략)등으로 이루어지는 천판 구동 기구(도시 생략)를 제어하는 것으로 실시한다.
FPD 제어부(5)는, FPD(3)를 피검체(M)의 장방향인 몸축 z 방향을 따라 평행이동시키는 제어를 실시한다. 이 제어는, 도 2에 나타내듯이, 랙(14a)이나 피니언 (14b)이나 모터(14c)나 엔코더(14d)등으로 이루어지는 FPD 구동기구(14)를 제어하는 것으로 실시한다. 구체적으로는, 랙(14a)은 피검체(M)의 몸축z 방향을 따라서 연재(延在)하고 있다. 피니언(14b)은 FPD(3)를 지지하고, 그 일부는 랙(14a)에 감 합(嵌合)하고 있고, 모터(14c)의 회전에 의해서 회전한다. 예를 들면, 모터(14c)를 정회전시키면, 도 2 중에 일점쇄선으로 나타내듯이 랙(14a)을 따라서 FPD(3)가 피검체(M)의 발밑 측으로 평행이동하고, 모터(14c)를 반전시키면, 도 2중의 이점쇄선으로 나타내듯이 랙(14a)을 따라서 FPD(3)가 피검체(M)의 머리 측으로 평행이동한다. 엔코더(14d)는 FPD(3)의 이동 방향과 이동량(이동 거리)에 대응한 모터(14c)의 회전방향 및 회전량을 검출한다. 엔코더(14d)에 의한 검출 결과를 FPD 제어부(5)에 전송한다.
고전압 발생부(6)는, X선을 조사시키기 위한 관전압이나 관전류를 발생하여 X선관(2)으로 공급한다. X선관 제어부(7)는, X선관(2)을 피검체(M)의 몸축 z 방향을 따라 평행이동시키는 제어를 실시한다. 이 제어는, 도 3에 나타내듯이, 지주(支柱)(15a)나 나사 봉(棒)(15b)이나 모터(15c)나 엔코더(15d)등으로 이루어지는 X선관 구동부(15)를 제어하는 것으로 실시한다. 구체적으로는, 지주(15a)는 X선관(2)을 상단 측에 장착 지지하고, 하단 측의 나사 봉(15b)에 나사 결합하고 있다. 나사 봉(15b)은 피검체(M)의 몸축 z 방향을 따라 연재하고 있고, 모터(15c)의 회전에 의해서 회전한다. 예를 들면, 모터(15c)를 정회전시키면, 도 3중의 일점쇄선으로 나타내듯이 지주(15a)와 함께 X선관(2)이 피검체(M)의 발밑 측으로 평행이동하고, 모터(15c)를 반전시키면, 도 3중의 이점쇄선으로 나타내듯이 지주(15a)와 함께 X선관(2)이 피검체(M)의 머리 측으로 평행이동한다. 엔코더(15d)는 X선관(2)의 이동 방향과 이동량(이동 거리)에 대응한 모터(15c)의 회전방향 및 회전량을 검출한다. 엔코더(15d)에 의한 검출 결과를 X선관 제어부(7)에 공급한다.
또한 도 1에 나타내듯이, X선관(2) 및 FPD(3)가 피검체(M)의 몸축z 방향을 따라 서로 같은 방향으로 평행이동하도록 구성하기 위해서, 도 2의 모터(14c)의 회전방향 및 도 3의 모터(15c)의 회전방향이 같게 되도록, FPD 제어부(5) 및 X선관 제어부(7)는 제어한다. 또, 본 실시예에서는, X선관(2) 및 FPD(3)는 서로 같은 속도로 평행이동하는 것이 바람직하다. 즉, X선관(2)의 이동량과 FPD(3)의 이동량이 같게 되도록, FPD 제어부(5)는 모터(14c)의 회전량을 제어함과 동시에, X선관 제어부(7)는 모터(15c)의 회전량을 제어한다.
또, X선관 제어부(7)는, X선관(2)측의 콜리메이터(collimator)(도시 생략)의 조시야의 설정의 제어를 실시한다. 본 실시예에서는, 피검체(M)의 장방향(몸축 z 방향) 및 단방향(몸축 z에 수평면 내에 직교하는 방향)으로 확장을 갖는 팬 빔(fan beam) 형상의 X선을 조사하도록 콜리메이터를 제어하여 조시야를 설정한다. 또, X선관(2) 및 FPD(3)가 후술하는 피치(소정 거리)마다 이동할 때마다 X선관(2)으로부터(팬 빔 형상의) X선을 간헐적으로 조사하도록 X선관 제어부(7)는 제어한다. 또, FPD 제어부(5)는, 간헐적으로 조사된 피검체(M)를 투과한 X선을 FPD(3)가 검출하도록 제어한다.
콘트롤러(10)는, 중앙연산처리장치(CPU)등으로 구성되어 있고, 메모리부(11)는, ROM(Read-only Memory)이나 RAM(Random-Access Memory) 등으로 대표되는 기억매체등으로 구성되고 있다. 또, 입력부(12)는, 마우스나 키 보드나 조이스틱이나 트랙볼이나 터치패널 등으로 대표되는 포인팅 디바이스로 구성되고 있다.
화상처리부(9)는, X선 검출 신호에 대해서 래그 보정이나 이득 보정 등을 실 시해서, FPD(3)의 검출면에 투영된 X선 화상을 출력하는 보정부(9a)와, 보정된 X선 화 상을 피치마다 분해하는 화상분해부(9b)와, 그 분해된 화상을 동일의 투영각도마다 합성하여 투영각도마다의 투영 화상을 얻는 화상 합성부(9c)와, 그 합성된 투영화상에 근거하여 재구성 처리를 실시하여 단층 화상을 얻는 재구성 처리부(9d)를 갖추고 있다. 화상분해부(9b)는, 이 발명에 있어서 화상 분해 수단에 상당하고, 화상 합성부(9c)는, 이 발명에 있어서의 화상 합성 수단에 상당하고, 재구성 처리부(9d)는, 이 발명에 있어서의 재구성 처리 수단에 상당한다. 화상 분해부(9b)나 화상 합성부(9c)나 재구성 처리부(9d)의 구체적인 기능에 대해서는, 도 6~도 8에서 후술 한다.
메모리부(11)는, 화상 처리부(9)에서 처리된 각각의 화상을 기록하여 기억하도록 구성되고 있다. FPD 제어부(5)나 X선관 제어부(7)도, 콘트롤러(10)와 마찬가지로 CPU등으로 구성되고 있다.
다음으로, 플랫패널형 X선 검출기(FPD)(3)의 구조에 대해서, 도 4 및 도 5를 참조하여 설명한다. 도 4는, 측면시한 플랫패널형 X선 검출기(FPD)의 등가회로이며, 도 5는, 평면시한 플랫패널형 X선 검출기(FPD)의 등가회로이다.
FPD(3)는, 도 4에 나타내듯이, 유리 기판(31)과 유리 기판(31)상에 형성된 박막트랜지스터(TFT)로부터 구성되고 있다. 박막트랜지스터(TFT)에 대해서는, 도 4, 도 5에 나타내듯이, 종·횡식 2차원 매트릭스 상태 배열로 스위칭 소자(32)가 다수 개(예를 들면, 1024개×1024개) 형성되어 있고, 캐리어수집 전극(33)마다 스위칭 소자(32)가 서로 분리형성 되고 있다. 즉, FPD(3)는, 2차원 배열 방사선검출 기이기도 하다.
도 4에 나타내듯이 캐리어수집 전극(33) 상에는 X선 감응형 반도체(34)가 적층 형성되고, 도 4, 도 5에 나타내듯이 캐리어수집 전극(33)은, 스위칭 소자(32)의 소스(S)에 접속되고 있다. 게이트 드라이버(35)에서는 복수개의 게이트 버스라인 (36)이 접속되고 있는 것과 동시에, 각 게이트 버스라인(36)은 스위칭 소자(32)의 게이트(G)에 접속되고 있다. 한편, 도 5에 나타내듯이, 전하 신호를 수집하여 하나로 출력하는 멀티플랙서(37)에는 증폭기(38)를 개입시켜 복수개의 데이터버스 라인 (39)이 접속되고 있는 것과 동시에, 도 4, 도 5에 나타내듯이 각 데이터버스 라인 (39)는 스위칭 소자(32)의 드레인(D)에 접속되고 있다.
도시를 생략하는 공통 전극에 바이어스 전압을 인가한 상태로, 게이트 버스라인(36)의 전압을 인가(또는 0 V로)하는 것으로 스위칭 소자(32)의 게이트가 ON 되고, 캐리어수집 전극(33)은, 검출면 측에서 입사한 X선으로부터 X선 감응형 반도체(34)를 개입시켜 변환된 전하 신호(캐리어)를, 스위칭 소자(32)의 소스(S)와 드레인(D)을 통하여 데이터버스 라인(39)에 판독한다. 또한, 스위칭 소자가 ON 될때까지는, 전하 신호는 캐패시터(도시 생략)에서 잠정적으로 축적되어 기억된다. 각 데이터버스 라인(39)에 판독된 전하 신호를 증폭기(38)로 증폭하고, 멀티플랙서(37)에서 하나의 전하 신호로 정리하여 출력한다. 출력된 전하 신호를 A/D 변환기(8)로 디지털화하여 X선 검출 신호로서 출력한다.
다음으로, 화상 분해부(9b)나 화상 합성부(9c)나 재구성 처리부(9d)의 구체적인 기능에 대해서, 도 6~도 8을 참조하여 설명한다. 도 6은, X선관 및 플랫패널 형 X선 검출기(FPD)에 의한 촬상 원리를 피치(소정 거리)마다 나타낸 모식도이며, 도 7, 도 8은, 화상의 분리 및 투영 화상에의 합성을 나타낸 모식도이다. 또한, FPD(3)의 검출면에 투영된 X선 화상은, 보정부(9a)에 의해서 래그 보정이나 이득보정 등의 처리가 이미 종료하고 있는 것으로서 설명한다.
FPD(3)의 검출면에 투영된 X선 화상을, 도 6(a)~도 6(d)에 나타내듯이, X선관(2) 및 FPD(3)가 피치(d)마다 이동할 때마다, 도 6(e)~도 6(h)에 나타내듯이, O1, O2,…, OI,…, OM로 한다(1≤I≤M). X선관(2) 및 FPD(3)가 피치(d)마다 이동할 때마다 X선관(2)은 X선을 간헐적으로 조사한다. 즉, 피치(d)마다 이동할 때마다 X선을 펄스 조사한다.
구체적으로는, 최초에 X선관(2) 및 FPD(3)가, 도 6(a)에 나타내는 위치에서 X선을 조사했을 경우에는, 다음에, 피치(d)를 이동시킨 도 6(b)에 나타내는 위치에서 X선을 조사한다. 도 6(a)에서 X선을 FPD(3)가 검출하는 것으로 X선 화상 O1(도 6(e)을 참조)을 얻을 수 있고, 도 6(b)에서 X선을 FPD(3)가 검출하는 것으로 X선 화 상 O2(도 6(f)을 참조)을 얻을 수 있다. 이하, 마찬가지로 X선관(2) 및 FPD(3)가 피치(d)마다 이동하면, (I-1) 번째에는, 도 6(c)에 나타내는 위치로 X선을 조사하고, 도 6(c)에서 X선을 FPD(3)가 검출하는 것으로 X선 화상 OI(도 6(g)을 참조)을 얻을 수 있다. 최종적으로는, (M-1) 번째에는, 도 6(d)에 나타내는 위치로 X선을 조사하고, 도 6(d)에서 X선을 FPD(3)가 검출하는 것으로 X선 화상 OM(도 6(h)을 참 조)을 얻을 수 있다. 본 실시예에서는 도 6(a)의 촬상 시작위치를 피검체(M)의 두부(頭部)로 하고, 도 6(d)의 촬상 종료 위치를 피검체(M)의 족부로 하며, 도 6(a)~도 6(d)와 X선관(2) 및 FPD(3)가 이동하는데 따라 두측으로부터 족부 측으로 순서로 이동한다.
X선관(2) 및 FPD(3)가 피치(d)마다 이동하는 것으로, 각 X선 화상 O1, O2,…, OI,…, OM를 피치(d)마다 화상 분해부(9b)는 분해할 수 있다. 구체적으로는, 도 6(i)의 확대도에 나타내듯이, X선관(2)으로부터 FPD(3)를 결합하는 조사축과 피검체의 몸축 z과 이루는 각도인 투영 각도를 피치(d)마다,θ12,…,θJ,…,θN-1N로 한다(1≤J≤N). 그러면, 피치(d)마다 분해된 화상은, 동일의 투영 각도 θ12,…,θJ,…,θN-1N로 나눠진 화상에 각각 일치한다.
도 6(e)에 나타내듯이 X선 화상 O1는, 피치(d)마다 O11, O12,…, O1J,…, O1(N-1), O1N으로 분해되어 분해된 화상 O11은 투영 각도θ1로 조사되어 얻어진 화상이 되고, 분해된 화상 O12은 투영 각도θ2로 조사되어 얻어진 화상이 되며, 이하, 마찬가지로 분해된 화상 O1J는 투영 각도θJ로 조사되어 얻어진 화상이 되어, 최종적으로 분해된 화상 O1N은 투영 각도θN로 조사되어 얻어진 화상이 된다.
마찬가지로, 도 6(f)에 나타내듯이 X선 화상 O2은, 피치(d)마다 O21, O22,…, O2J,…, O2(N-1), O2N으로 분해되어 분해된 화상 O21는 투영 각도θ1으로 조사되어 얻 어진 화상이 되고, 분해된 화상 O22는 투영 각도θ2로 조사되어 얻어진 화상이 되며, 이하, 마찬가지로 분해된 화상 O2J는 투영 각도θJ로 조사되어 얻어진 화상이 되고, 최종적으로 분해된 화상 O2N는 투영 각도θN로 조사되어 얻어진 화상이 된다.
(I-1)번째에는, 도 6(g)에 나타내듯이 X선 화상 OI는, 피치(d)마다 OI1, OI2,…, OIJ,…, OI(N-1), OIN로 분해되어 분해된 화상 OI1는 투영 각도θ1으로 조사되어 얻어진 화상이 되고, 분해된 화상 OI2는 투영 각도θ2로 조사되어 얻어진 화상이 되며, 이하, 마찬가지로 분해된 화상 OIJ는 투영 각도θJ로 조사되어 얻어진 화상이 되고, 최종적으로 분해된 화상 OIN는 투영 각도θN로 조사되어 얻어진 화상이 된다.
최종적으로는, (M-1) 번째에는, 도 6(h)에 나타내듯이 X선 화상 OM는, 피치(d)마다 OM1, OM2,…, OMJ,…, OM(N-1), OMN으로 분해되어 분해된 화상 OM1는 투영 각도θ1으로 조사되어 얻어진 화상이 되고, 분해된 화상 OM2는 투영 각도θ2로 조사되어 얻어진 화상이 되며, 이하, 마찬가지로 분해된 화상 OMJ는 투영 각도θJ로 조사되어 얻어진 화상이 되고, 최종적으로 분해된 화상 OMN는 투영 각도θN로 조사되어 얻어진 화상이 된다.
이와 같이 분해된 각 화상을, 도 7, 도 8에 나타내듯이 동일의 투영 각도 θ12,…,θJ,…,θN-1N마다 각각 화상 합성부(9c)는 합성한다. 상술한 것처럼 각 X선 화상 O1, O2,…, OI,…, OM는, 각 피트(d) 마다 분해된(즉 각 투영 각도θ12,…,θJ,…,θN-1N 마다 나눠진)화상을, 도 7(a)~도 7(d), 도 7(f)~도 7(i), 도 8(a)~도 8(d), 도 8(f)~도 8(i)에 나타내듯이 가지고 있다.
예를 들면, 투영 각도θ1의 경우에는, 도 7(a)에 나타내는 X선 화상 O1중의 화상 O11과 도 7(b)에 나타내는 X선 화상 O2중의 화상 O21과…, 도 7(c)에 나타내는 X선 화상 OI중의 화상 OI1와…, 도 7(d)에 나타내는 X선 화상 OM중의 화상 OM1를 합성 하는 것으로, 도 7(e)에 나타내듯이 투영 각도θ1으로의 투영 화상 P1을 얻는다.
마찬가지로, 투영 각도θ2의 경우에는, 도 7(f)에 나타내는 X선 화상 O1중의 화상 O12와 도 7(g)에 나타내는 X선 화상 O2 중의 화상 O22와…, 도 7(h)에 나타내는 X선 화상 OI중의 화상 OI2와…, 도 7(i)에 나타내는 X선 화상 OM중의 화상 OM2를 합성 하는 것으로, 도 7(j)에 나타내듯이 투영 각도θ2로의 투영 화상 P2를 얻는다.
(J-1)번째에는, 투영 각도θJ의 경우에는, 도 8(a)에 나타내는 X선 화상 O1중의 화상 O1J와 도 8(b)에 나타내는 X선 화상 O2중의 화상 O2J와…, 도 8(c)에 나타내는 X선 화상 OI중의 화상 OIJ와…, 도 8(d)에 나타내는 X선 화상 OM중의 화상 OMJ를 합성하는 것으로, 도 8(e)에 나타내듯이 투영 각도θJ로의 투영 화상 PJ를 얻는다.
최종적으로는, (N-1)번째에는, 투영 각도θN의 경우에는, 도 8(f)에 나타내는 X선 화상 O1중의 화상 O1N와 도 8(g)에 나타내는 X선 화상 O2중의 화상 O2N와…, 도 8(h)에 나타내는 X선 화상 OI중의 화상 OIN와…, 도 8(i)에 나타내는 X선 화상 OM중의 화상 OMN를 합성하는 것으로, 도 8(j)에 나타내듯이 투영 각도θN로의 투영화상 PN를 얻는다.
이상을 정리하면, 화상 합성부(9c)는, 분해된 각 화상을 동일의 투영 각도 θ12,…,θJ,…,θN-1N마다 합성하고, 도 7(e), 도 7(j), 도 8(e), 도 8(j)에 나타내듯이 투영 각도 θ12,…,θJ,…,θN-1N 마다의 투영 화상 P1, P2,…, PJ,…, PN를 얻는다.
재구성 처리부(9d)는, 그 합성된 투영 화상 P1, P2,…, PJ,…, PN에 근거해 재구성 처리를 실시해 단층 화상을 얻는다. 재구성 처리에 대해서는, 주지의 여과역투사 (FBP: Filtered Back Projection) ('필터보정역투영법'이라고도 불린다)를 이용한 펠드캠프(Feldkamp) 법을 실시하면 좋다. Feldkamp법에 대해서는, 도 9~도 19에서 후술한다.
투영 화상 P1, P2,…, PJ,…, PN의 매수는 N[Frame]이며, X선관(2) 및 FPD(3)의 영상계의 이동속도를 v[mm/sec]로 하고, FPD(3)의 시야 사이즈를 v[mm]로 하며, 촬상 주기('펄스시간 폭'이라고도 불린다)를 T[sec/Frame]로 하면, 이동속도 v[mm/sec]는 v[mm/sec]=v[mm]/N[Frame]×1/T[sec/Frame]로 나타내진다. 또, 촬상 주기의 역수는 촬상 속도로서, 촬상 속도를 F[Frame/sec]로 하면, 이동속도 v[mm/sec]는 v[mm/sec]=v[mm]/N[Frame]×F[Frame/sec]로도 나타내진다. 또, 피치(d)[mm]는 d[mm]=v[mm]/N[Frame]로 나타내진다.
예를 들면, 본 실시예에서 이용되는 시야 사이즈 v를 17인치(=430[mm])로 하고, 투영 화상 P1, P2,…, PJ,…, PN의 매수 N을 50[Frame]로 하며, 촬상 속도 F를 15[Frame/sec]로 하면, 이동속도 v는 v[mm/sec]=430[mm]/50[Frame]×15[Frame/sec]=129[mm/sec]가 되고, 피치(d)는 430[mm]/50[Frame]=8.6[mm/ Frame]가 된다. 따라서, X선관(2) 및 FPD(3)를 서로 같은 속도의 129[mm/sec]로 평행이동하고, 촬상 속도 15[Frame/sec]의 타이밍으로 X선을 간헐적으로 조사하는 것으로, X선관(2) 및 FPD(3)가 피치 8.6[mm/ Frame]마다 이동할 때마다 X선관(2)으로부터 X선을 간헐적으로 조사한다. 그리고, 50매의 투영 화상 P1, P2,…, PJ,…, P50를 얻을수 있다. 또, X선관(2) 및 FPD(3)가 이동하는 거리가 길어지는데 따라서, 도 7, 도 8에 나타내듯이 각 투영 화상 P1, P2,…, PJ,…, PN의 영역도 장척형상이 된다.
다음으로, 본 실시예를 Feldkamp법으로 적용했을 경우의 구체적인 수법에 대해서, 도 9~도 19를 참조하여 설명한다. 도 9(a)는, 원호 궤도 단층촬영의 모식도이며, 도 9(b)는, 직선 궤도 단층촬영의 모식도이며, 도 10은, 실시예와 관련되는 펠드캠프(Feldkamp) 알고리즘의 설명에 제공하는 모식도이며, 도 11은, 실시예와 관련되는 필터함수의 특성도이며, 도 12는, 실시예와 관련되는 재구성 처리부에서의 각 구성도의 블록도 및 데이터의 흐름을 나타낸 개략도이며, 도 13은, 펠드캠프(Feldkamp)의 직선 궤도 단층촬영에의 적용 방법의 설명에 제공하는 모식도이며, 도 14~도 16은, 펠드캠프(Feldkamp)의 장척 X선 화상에의 적용 방법의 설명에 제공하는 각 X선 조사의 공통 투영 각도의 화상과 투영 화상과의 관계를 나타낸 모식도이며, 도 17은, 펠드캠프(Feldkamp)의 장척 X선 화상에의 적용 방법의 설명에 제공하는 N=8의 경우의 각 재단면과 투영 화상과의 관계를 나타낸 모식도이며, 도 18은, 펠드캠프(Feldkamp)의 장척 X선 화상에의 적용 방법의 설명에 제공하는 재단면과 투영 화상과의 관계를 나타낸 표이며, 도 19는, 펠드캠프(Feldkamp)의 장척 X선 화상에의 적용 방법의 설명에 제공하는 재단면과 투영 화상과의 관계를 나타낸 모식도이다. 또한, 도 20, 도 1~도 8에서는, 몸축을 z로 하고 있었지만, 도 9~도 19에서는 Feldkamp법에 있어서의 3차원 좌표의 표기상, 몸축을 y로서 설명한다.
콘빔 CT(cone beam CT)에 이용되는 단층 화상 재구성 방법에는 Feldkamp법이 이용된다. 이것은, 도 9(a)에 나타내는 원호 궤도 단층촬영에 대해서 적용되지만, 도 9(b)에 나타내는 직선 궤도 단층촬영에도 확장가능하다. 우선은, Feldkamp법에 의한 원호 궤도 단층의 재구성 방법에 대해서 설명하고, 다음에, 그 직선 궤도 단층에의 확장에 대해서 설명한다.
(I) 원호 궤도 단층촬영
Feldkamp법에 의한 재구성 알고리즘은, 아래와 같이 (1)식~(3)식으로 나타내진다. 도 10에 좌표계의 취하는 방법을 나타낸다. 좌표계 x, y, z는 공간에 고정 된 좌표계이다. 이 z 축의 축심 주위를 X선관(2) 및 FPD(3)로 구성된 촬상계가 회전 한다. 즉, X선관(2)이 x, y 평면상의 원점을 중심으로 반경 D의 원운동을 한다.
[수 1]
Figure 112008090514854-PCT00001
여기서, gy는, 단층 화상의 재구성 시에 Y 방향으로 발생하는 장해 음영(陰影)(흐름 상)을 저감시키는 필터로, 그 예를 도 11에 나타낸다. 단, 도 1~도 8에서는, 투영 각도를 θ로 하고 있었지만, 도 9~도 19에서는 Feldkamp법에 있어서 알고리즘의 표기상, 투영 각도를 φ로서 설명한다. 또, 도 11에서는, 투영 각도φ=β이다. 그리고 상기 (1)식, (2)식 중의 W1(=D/(D2+Y′2+Z2) 1/2)의 항은, 콘빔 효과에 의해서 발생하는 화소 값의 변화분의 보정을 위해서이다.
f(r)의 적분식은, 3차원 좌표공간의 점 r을 고정했을 때, 각 각도φ로 투영 화상 위에 그 점이 비치는 좌표의 화소 값을 가산하는 것이다. 이것을 역설적으로 말하면, 투영 화상을 3차원 좌표공간에 역투영하고, 그것을 3차원 좌표공간 위에 가산해 가는 것이다. 다만, 콘빔 효과를 위해서 상기 (1)식, (3)식 중의 W2
(=D2/(D+r · x′)2)인 항만큼 화소값을 보정할 필요가 있다.
도 12에 이상의 처리를 실시하는 재구성 처리부(9d)(도 1도 참조)에서의 각 구성도의 블록도 및 데이터의 흐름을 나타낸다. 즉, 투영데이터에 대해서 제1의 중점 처리부(9A)에 의해서 W1로 중점을 두는 것을 행하고, 그에 대해 컨벌루션 처리부(9B)에 의해서 필터함수 gy에 의한 컨벌루션(합성적분)을 실시하고, 그에 대한 제2의 중점 처리부(9C)에 의해 W2로 중점을 두는 것을 행하고, 그에 대해 역투영 처리부(9D)에 의해서 역투영을 실시하는 것으로 재구성 화상(즉 단층 화상)을 취득한다.
(II) 직선 궤도 단층촬영에의 적용
콘빔 CT의 재구성 수법인 Feldkamp법에서는 X선관(2)으로부터 회전 중에 내린 수선(垂線)이, 도 9(a)에 나타내듯이 FPD(3)의 검출 평면과 직교하고 있다. 그러나, 직선 궤도 단층에서는, 도 9(b)나 도 13(b)에 나타내듯이, X선관(2)으로부터 조사되는 콘빔 형상 X선 빔의 중심은, 특정 단층면의 중심 C를 통과하고, 항상, FPD(3)의 검출 평면의 중심에 수직으로 입사되고 있지 않다. 즉, FPD(3)의 검출 평면의 중심점으로의 입사각도가 각 뷰마다 다른 각도로 되어 있으므로, 이대로는 직접 Feldkamp법을 적용할 수 없다.
그러므로, 도 13(b)에 나타내듯이, X선 빔의 중심이 FPD(3)의 검출 평면의 중심점에 수직으로 입사되는 직선에 직교함과 동시에, X선관(2) 및 FPD(3)의 이동 방향에 직교하는 것으로, 피검체(M)의 관심영역의 거의 중심의 단층면 안을 통과하는 축을, 가상(假想) 회전중심축 VC로 한다. 또, X선관(2)으로부터 FPD(3)의 검출 평면의 중심점에 내려지는 제1수선 길이를 SID로 하고, 또한, 이에 따라서 X선관(2)로부터 특정 단층면의 중심(C)까지의 거리를 SOD(=D)로 하고, 각 뷰에 있어서 FPD(3)의 중심점으로부터 상술한 제1수선에 내린 제2수선의 길이를 YA로 한다. 그 때, 제2수선의 길이 YA는, 하기 (4)식과 같이 나타내진다.
YA=SID·tanφ …(4)
따라서, 각 뷰의 역투영을 실시할 때에, 그때마다 이 가상 회전중심 축VC에 대응시켜 Y(r)를 YA=SID · tanφ(도 13에서는 「SID*tanφ」로 표기)에 따라 바꾸고, 재구성 처리를 실시하는 것으로, 원(元) 화상인 X선 화상에 대하여 수정하지 않아도, Feldkamp법을 적용할 수 있다.
상술한 Y(r)의 변경에 대해서 구체적으로 설명한다. 피검체(M)의 공간상에서는 가상 회전중심 축VC를 기준으로 생각하면, 피검체(M)의 동일점은, 도 13(b) 중 B′에서 vr(「r 벡터」라고 한다)로 나타나는 점과 C′에서 vrc(「rc 벡터」라고 한다)로 나타나는 점과는 동일점으로 한다. 가상 회전중심축 vc를 기준으로 생각하면, 상술한 2점의 Y 좌표의 관계는, 하기 (5)와 같이 나타내진다.
rcy=ry+SOD · tanφ …(5)
다만, rcy는 VC로부터 vrc까지의 길이로, r벡터의 길이이다(도 13에서는 SOD · tanφ를 「D*tanφ」로 표기).
그리고, X선관(2)으로부터 vrc를 통과한 X선이 FPD(3)의 검출평면 상에 투영 되는 점의(VC를 기준으로 한) Y 좌표를 Yc(r)로 한다. 실제의 FPD(3)는 YA=SID · tanφ만 시프트하여 생각하고 있으므로, 실제의 FPD(3)의 검출평면 상에서의 좌표는, 하기 (6)식으로 나타내진다.
Y(r)=Yc(r)-SID·tanφ …(6)
다만, Yc(r)는, Yc(r)=SID · rcy/SOD로 나타내진다.
이와 같이, 각 뷰의 역투영을 실시할 때에, 상술한 상기 (1)식의 파라미터 Y(r)를 상술한 상기 (6)식에 근거하여 바꾸고(즉 좌표 보정을 실시해서), 각 화소에 대해서 재구성 처리를 실시하는 것만으로 원활하게, 원 화상의 데이터를 수정하지 않고, Feldkamp법을 적용할 수 있다. 여기까지는, 「일본 특허 제3926574호」를 참조하여 설명했다.
(III) 장척 영상합성법(tomosynthesis)에의 적용
각 X선 조사의 일정한 투영 각도의 화상이, 각 X선 화상 O1, O2,…, OI,…, OM(도 6~도 8도 참조)로 나타나는 위치 관계를 도 14~도 16에 나타낸다. 각 X선 조사 마다의 X선관(2)·FPD(3)의 이동거리를 L로 하면, X선관(2)·FPD(3)는 각 X선 조사(X선 폭사(曝射)) 마다 이동거리 L만큼 이동하지만, 중심 재단면(도 19중의 몸축y에 평행이고 수평면 내에 평행한 면)에서는, 폭 L의 직사각형 형상의 화상이, FPD(3)의 검출평면 상에서 기하 확대되어 Ls=L×확대율의 폭으로 투영된다(도 19중의 Ls, L를 참조). 도 14~도 16 중의 OM의 하부 첨자(서픽스) M은 촬영매수(즉 X선 조사 회수)를 나타낸다.
중심 재단면의 하나의 섹션에 대해서 투영 화상과의 관계를 나타낸 것이 도 17이다. 도 17에서는 N=8(8번째)의 재단면T8를 예로 들어, T8를 투영하는 화상은, 분해된 화상 O81, O72, O63,…, O18인 것을 나타내고 있다. 도 17중의 N는 FPD(3)의 길이를 화상 OIJ로 나눗셈한(즉 FPD(3)의 길이/화상 OIJ의) 정수 부분으로, 1매의 검출 평면에서 몇 매의 OIJ가 취득가능한가를 나타낸다. 재단면과 투영 화상 OIJ과의 관계를 도 18에 나타낸다. TI의 투영상 군은 도 내의 화살표로 나타나는 이하의 상(像)이다. 이것을 도에 나타내면 도 19로 나타나게 된다. 도 19에서는 K번째, (K+1) 번째의 재단면 TK, TK+1에 대해 나타내고 있다.
X선관(2)·FPD(3)가 각 X선 조사마다 이동거리 L만큼 이동하면, 상술한 바와 같이 피검체면(즉 피검체(M)상의 재단면) T상에서는 폭 L의 직사각형 형상의 부분이, 도 19에 나타내듯이 Ls의 폭이 되어 투영 화상으로서 주어진다. 도 6~도 8에서도 기술한 바와 같이, OIJ는 I번째의 투영상의 J번째의 직사각형 화상, 즉, I번째에 피치이동하여 얻어진 투영 각도θN(도 9~도 19에서는 투영 각도φN)일 때의 분해 화상이고, 폭 L은, 상술한 피치(d)(도 6을 참조)이다.
피검체면TK의 주변(周邊)의 정보는, 도 19(a)에 나타내듯이 OKI, O(K-1)2, O(K-2)3,…O(K-(N-1))N로 재구성된다. 이 재구성에는 상술한 Feldkamp법이 적용된다. 그리고, 다음의 피검체면TK+1상의 주변의 정보는, 도 19(b)에 나타내듯이 O(K+1)I, OK2, O(K-1)3,…O(K+1-(N-1))N로 재구성되고, 마찬가지로 재구성에는 Feldkamp법이 적용된다.
피검체 면상의 최단(最端)(시점)의 직사각형 부분 T1로부터, 각 직사각형 부분 TI까지는 거리 L×(I-1)만큼 떨어져 있고, 따라서, 각 화상은 y 방향으로 L×(I-1)×SID/SOD만큼 벗어나 있다. 피검체(M)의 전체의 재구성 화상(단층 화상)을 얻기 위해서는, 각 직사각형 부분 TI의 주변의 재구성 화상에 대해서 구하고, 각각을 결합(합성) 시키는 처리를 실시하면 좋다. TI 주변의 재구성 화상을 fi(r)로 하면, 상기(1) 식으로부터 적용한 하기 (7)식으로 나타내진다.
[수 2]
Figure 112008090514854-PCT00002
fi(r)를 결합(합성)시킨 전체의 재구성 화상 f(r)는 하기 (8)식에서 나타내진다.
[수 3]
Figure 112008090514854-PCT00003
이 식에서 φ에 따른 역투영과 화상의 결합과의 순서를 바꾸는 것이 가능하고, 연산의 순서를 바꾸면, 하기 (9)식과 같이 된다.
[수 4]
Figure 112008090514854-PCT00004
여기서, 상기 (9)식 중의ΣO(I-(φ-1))φ(단,Σ은 서픽스가 I=N,…, M까지의 O(I-(φ-1))φ의 총합)는, 투영 각도 φ의 각도를 가진 화상의 합성, 즉 장척형상의 화상(장척 화상) Pφ이다. 따라서, f(f)는 하기 (10)식과 같이 최종적으로 나타내진다.
[수 5]
Figure 112008090514854-PCT00005
이것은, 이러한 장척 영상합성법의 경우, 장척방향(즉 피검체(M)의 장방향인 몸축방향)의 각 단편(섹션)은 Feldkamp법으로 재구성 가능하고, 또한, 그 재구성 결과를 합성(결합)시킨 것은, 장척 화상을 투영 화상으로 한 Feldkamp법에 의한 재구성과 동등하다고 말할 수 있다. 즉, 장척 화상을 구한 후에 재구성해도 같은 효과를 얻을 수 있다.
본 실시예와 관련되는 X선 단층촬영장치에 의하면, X선관(2) 및 플랫패널형 X선 검출기(FPD)(3)가 피검체(M)의 장방향인 몸축 z를 따라서 서로 같은 방향으로 평행이동 하도록 구성하는 것으로, 장방향인 몸축 z의 긴 시야의 데이터를 FPD(3)로부터 얻을 수 있다. 한편, X선관(2) 및 FPD(3)가 피치(소정 거리)마다 이동할 때마다 X선관(2)으로부터 X선을 간헐적으로 조사하고, 간헐적으로 조사된 피검체(M)를 투과한 X선을 FPD(3)가 검출하도록 구성한다. 그리고, X선 화상을 상술한 피치마다 화상 분해부(9b)는 분해하고, 그 분해된 화상을 동일의 투영각도마다 화상합성부 (9c)가 합성하여 투영각도마다의 투영 화상을 얻는다. 따라서, 그 합성된 투영 화상에 근거하여 재구성 처리부(9d)가 재구성 처리를 실시하는 것으로, 장방향 의 긴 시야의 단층 화상을 얻을 수 있다.
본 실시예에서는, X선관(2) 및 FPD(3)는 서로 같은 속도로 평행이동하고 있다. X선관(2) 및 FPD(3)가 서로 같은 속도로 평행이동하는 것으로, 투영 각도를 같은 각도로 유지할 수 있고, X선관(2) 및 FPD(3)를 보다 길게 이동시킬 수 있다. 그 결과, 보다 긴 시야의 단층 화상을 얻을 수 있다.
또, 본 실시예와 같이 피검체(M)가 인체의 경우에는, 넓은 범위에서의 병변(病變)의 3차원(3D)적 파악, 진단을 실시할 수 있어 진단능률 향상에 기여하는 효과도 있다. 또, 척추측만증의 3차원(3D)적 파악이나 하지(下肢) 볼루스 체이싱의 3차원(3D)적 파악 등도 실시할 수 있다는 효과도 있다. 여기서,하지 볼루스 체이싱이란, 하지를 재단면마다 주사(走査)하는 수법으로, 재단면에서의 화상을 상술한 투영 화상(도 7, 도 8을 참조)에 적용시키면, 간단하게 하지 볼루스 체이싱을 실시할 수 있다.
본 실시예에서는, 재구성 처리부(9d)에 의해서 얻어진 단층 화상을 표시출력 하는 모니터(13)를 갖추고 있다. 이러한 모니터(13)를 갖추는 것으로 표시의 열람에 제공할 수 있다. 또한, 모니터(13)와 같은 표시 수단으로 한정되지 않고, 프린터로 대표되는 인쇄 수단을 갖추어도 좋다. 이 경우에는, 인쇄 수단이, 이 발명에 있어서의 출력 수단에 상당하고, 단층 화상을 인쇄 수단이 인쇄 출력하는 것으로,인쇄의 열람을 제공할 수 있다. 또한 모니터(13) 및 프린터의 쌍방을 갖추어도 괜찮다.
이 발명은, 상기 실시 형태에 한정되지 않고, 하기와 같이 변형 실시할 수 있다.
(1) 상술한 실시예에서는, 방사선 촬상 장치로서 X선 단층촬영장치를 예로 들어 설명했지만, PET(Positron Emission Tomography) 장치나 SPECT(Single Photon Emission CT) 장치 등으로 대표되는 ECT(Emission Computed Tomography) 장치와 같이, X선 이외의 방사선(PET 장치의 경우에는γ선)을 검출하고, 검출된 방사선에 근거하여 방사선 화상을 얻는 것으로 방사선 촬상을 실시하는 방사선 촬상 장치에 적용해도 좋다.
(2) 상술한 실시예에서는, 방사선 검출수단으로서 플랫패널형 X선 검출기를 예로 들어 설명했지만, 이미지 인텐시파이어(I.I)와 같이, 통상 이용되는 X선 검출수단이면 특히 한정되지 않는다. 또, 상술한 변형예(1)와 같이 ECT 장치에 적용한 경우와 같이, 통상 이용되는 방사선 검출수단이면 특히 한정되지 않는다.
(3) 상술한 실시예에서는, 모니터(13)로 대표되는 출력 수단을 갖추었지만, 반드시 출력수단을 갖출 필요는 없다.
(4) 상술한 실시예에서는, X선관(2)으로 대표되는 방사선 조사수단 및 FPD(3)으로 대표되는 방사선 검출수단은 서로 같은 속도로 평행이동했지만, 방사선조사수단 및 방사선 검출수단이 피검체의 장방향을 따라서 서로 같은 방향으로 상대적으로 평행이동 한다면, 어느 쪽이든 한쪽을 빠르게 이동시키고, 다른 쪽을 늦게 이동시켜도 좋다.
(5) 상술한 실시예에서는, X선관(2)으로 대표되는 방사선조사수단 및 FPD(3)으로 대표되는 방사선 검출수단만을 이동시켜서, 피검체(M)를 재치하는 천판(1)을 고정하는 것으로, 방사선 조사수단 및 방사선 검출수단이 피검체의 장방향을 따라서 서로 같은 방향으로 상대적으로 평행이동 했지만, 방사선 조사수단 및 방사선 검출수단이 피검체의 장방향을 따라서 서로 같은 방향으로 상대적으로 평행이동 하는 것이 있으면, 구체적인 이동에 대해서는 한정되지 않는다. 예를 들면, X선관(2)으로 대표되는 방사선 조사수단 및 FPD(3)으로 대표되는 방사선 검출수단을 고정하고, 피검체(M)를 재치하는 천판(1)만을 장방향으로 이동시키는 것으로, 방사선 조사수단 및 방사선 검출수단이 피검체의 장방향을 따라서 서로 같은 방향으로 상대적으로 평행이동해도 좋다. 또, X선관(2)로 대표되는 방사선 조사수단 및 FPD(3)으로 대표되는 방사선 검출수단을 이동시키는 것과 동시에, 피검체(M)를 재치하는 천판(1)도 장방향으로 이동시키는 것으로, 방사선 조사수단 및 방사선 검출수단이 피검체의 장방향을 따라서 서로 같은 방향으로 상대적으로 평행이동해도 좋다.

Claims (3)

  1. 피검체를 향해서 방사선을 조사하는 방사선 조사수단과, 상기 피검체를 투과 한 방사선을 검출하는 방사선 검출수단을 구비하고, 검출된 방사선에 근거해서 방사선 화상을 얻는 것으로 방사선 촬상을 실시하는 방사선 촬상 장치에 있어서, 상기 방사선 조사수단 및 방사선 검출수단이 피검체의 장방향을 따라서 서로 같은 방향으로 상대적으로 평행이동 하도록 구성함과 동시에, 방사선 조사수단 및 방사선 검출수단이 피검체에 대해서 소정거리마다 상대이동할 때마다 방사선 조사수단으로부터 방사선을 간헐적으로 조사하고, 간헐적으로 조사된 피검체를 투과한 방사선을 방사선 검출수단이 검출하도록 구성하고, 상기 장치는, 상기 방사선 화상을 상기 소정 거리마다 분해하는 화상 분해 수단과 그 분해된 화상을 동일의 투영각도마다 합성 하여 투영각도마다의 투영 화상을 얻는 화상 합성 수단과 그 합성된 투영 화상에 근거하여 재구성 처리를 실시하여 단층 화상을 얻는 재구성 처리수단을 구비하는 것을 특징으로 하는 방사선 촬상 장치.
  2. 제1항에 있어서,
    상기 방사선 조사수단 및 방사선 검출수단은 상기 피검체에 대해서 서로 같은 속도로 상대적으로 평행이동 하는 것을 특징으로 하는 방사선 촬상 장치.
  3. 제1항 또는 제2항에 있어서,
    상기 재구성 처리수단에 의해서 얻어진 단층 화상을 출력하는 출력 수단을 구비하는 것을 특징으로 하는 방사선 촬상 장치.
KR1020087032023A 2006-08-08 2007-08-08 방사선 촬상 장치 KR101040488B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2006-215982 2006-08-08
JP2006215982 2006-08-08

Publications (2)

Publication Number Publication Date
KR20090017657A true KR20090017657A (ko) 2009-02-18
KR101040488B1 KR101040488B1 (ko) 2011-06-09

Family

ID=39033040

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020087032023A KR101040488B1 (ko) 2006-08-08 2007-08-08 방사선 촬상 장치

Country Status (7)

Country Link
US (1) US7940887B2 (ko)
EP (1) EP2050396B1 (ko)
JP (1) JP4788771B2 (ko)
KR (1) KR101040488B1 (ko)
CN (1) CN101489485B (ko)
HR (1) HRP20160483T1 (ko)
WO (1) WO2008018510A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101132855B1 (ko) * 2010-09-13 2012-04-05 주식회사 메도니카 조사(照射)거리 조정기능이 구비되는 엑스선 촬영장치 및 그 제어방법
US8923589B2 (en) 2010-11-22 2014-12-30 Canon Kabushiki Kaisha Apparatus, method, and non-transitory storage medium for performing tomosynthesis from projection data obtained from different geometric arrangements

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101674775B (zh) * 2007-08-13 2011-08-17 株式会社岛津制作所 放射线摄像装置
CN102014755B (zh) * 2008-05-01 2013-02-13 皇家飞利浦电子股份有限公司 辐射源和/或探测器定位系统
WO2011013164A1 (ja) * 2009-07-27 2011-02-03 株式会社島津製作所 放射線撮影装置
JP5348247B2 (ja) * 2009-07-27 2013-11-20 株式会社島津製作所 放射線撮影装置
US9220465B2 (en) * 2010-07-06 2015-12-29 Shimadzu Corporation Radiographic apparatus
JP2012016394A (ja) * 2010-07-06 2012-01-26 Shimadzu Corp 放射線断層撮影装置
WO2012023158A1 (ja) * 2010-08-17 2012-02-23 株式会社島津製作所 放射線撮像装置
JP6255743B2 (ja) * 2013-06-28 2018-01-10 コニカミノルタ株式会社 放射線断層撮影装置および放射線断層撮影システム
JP6747787B2 (ja) * 2014-08-22 2020-08-26 キヤノンメディカルシステムズ株式会社 光子計数型x線ct装置
US10980494B2 (en) 2014-10-20 2021-04-20 The University Of North Carolina At Chapel Hill Systems and related methods for stationary digital chest tomosynthesis (s-DCT) imaging
US10835199B2 (en) 2016-02-01 2020-11-17 The University Of North Carolina At Chapel Hill Optical geometry calibration devices, systems, and related methods for three dimensional x-ray imaging
CN109310386B (zh) 2016-06-07 2023-09-01 皇家飞利浦有限公司 无校准断层合成
JP6707048B2 (ja) * 2017-03-22 2020-06-10 富士フイルム株式会社 マンモグラフィ装置
DE102020204172A1 (de) * 2020-03-31 2021-09-30 Siemens Healthcare Gmbh Verfahren zur Aufnahme einer erweiterten Röntgenaufnahme
DE102020209714A1 (de) * 2020-07-31 2022-02-03 Siemens Healthcare Gmbh Verfahren zur abschnittsweisen Aufnahme einer Röntgenaufnahme

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2613809B2 (de) * 1976-03-31 1979-01-04 Siemens Ag, 1000 Berlin Und 8000 Muenchen Röntgenschichtgerät zur Herstellung von Transversal-Schichtbildern
US5305368A (en) * 1992-09-14 1994-04-19 Lunar Corporation Method and apparatus for piece-wise radiographic scanning
EP1074001B1 (en) 1999-02-18 2006-06-21 Koninklijke Philips Electronics N.V. Image processing method, system and apparatus for forming an overview image of an elongated scene
JP3491563B2 (ja) 1999-06-10 2004-01-26 株式会社島津製作所 X線撮影装置
JP2001269333A (ja) 2000-03-24 2001-10-02 Shimadzu Corp X線撮影装置
US6643351B2 (en) * 2001-03-12 2003-11-04 Shimadzu Corporation Radiographic apparatus
JP3926574B2 (ja) 2001-03-13 2007-06-06 株式会社島津製作所 断層撮影装置
JP2003052680A (ja) 2001-08-13 2003-02-25 Shimadzu Corp X線撮影装置
JP2004113408A (ja) 2002-09-26 2004-04-15 Aloka Co Ltd X線測定装置
US6970531B2 (en) * 2002-10-07 2005-11-29 General Electric Company Continuous scan RAD tomosynthesis system and method
JP4174628B2 (ja) 2003-02-07 2008-11-05 株式会社島津製作所 X線撮影装置
US6895076B2 (en) 2003-06-03 2005-05-17 Ge Medical Systems Global Technology Company, Llc Methods and apparatus for multiple image acquisition on a digital detector
SE527138C2 (sv) * 2003-07-08 2005-12-27 Xcounter Ab Skanningsbaserad detektering av joniserande strålning för tomosyntes
JP2005046444A (ja) 2003-07-30 2005-02-24 Hitachi Medical Corp 医療用x線装置
JP4041040B2 (ja) 2003-09-08 2008-01-30 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 放射線断層撮影装置
JP4603823B2 (ja) * 2003-10-14 2010-12-22 キヤノン株式会社 放射線撮像装置、放射線撮像方法及びプログラム
JP2005137390A (ja) 2003-11-04 2005-06-02 Ge Medical Systems Global Technology Co Llc Ct画像生成方法およびx線ct装置
JP4400249B2 (ja) * 2004-02-25 2010-01-20 株式会社島津製作所 放射線断層撮影装置
JP2005270277A (ja) * 2004-03-24 2005-10-06 Konica Minolta Medical & Graphic Inc 放射線画像撮影装置及び放射線画像生成方法
JP2005296332A (ja) 2004-04-12 2005-10-27 Toshiba Corp X線診断装置、画像生成装置及び画像生成方法
JP2006071472A (ja) 2004-09-02 2006-03-16 Yukihiro Nishikawa Ct法およびct装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101132855B1 (ko) * 2010-09-13 2012-04-05 주식회사 메도니카 조사(照射)거리 조정기능이 구비되는 엑스선 촬영장치 및 그 제어방법
US8923589B2 (en) 2010-11-22 2014-12-30 Canon Kabushiki Kaisha Apparatus, method, and non-transitory storage medium for performing tomosynthesis from projection data obtained from different geometric arrangements

Also Published As

Publication number Publication date
HRP20160483T1 (hr) 2016-06-17
KR101040488B1 (ko) 2011-06-09
EP2050396A4 (en) 2013-11-06
US20100189214A1 (en) 2010-07-29
JPWO2008018510A1 (ja) 2010-01-07
JP4788771B2 (ja) 2011-10-05
EP2050396A1 (en) 2009-04-22
WO2008018510A1 (en) 2008-02-14
CN101489485B (zh) 2011-06-08
EP2050396B1 (en) 2016-04-27
US7940887B2 (en) 2011-05-10
CN101489485A (zh) 2009-07-22

Similar Documents

Publication Publication Date Title
KR101040488B1 (ko) 방사선 촬상 장치
JP6036901B2 (ja) 放射線断層画像撮影装置
JPH10295680A (ja) X線断層撮影装置
US7583782B2 (en) X-ray CT apparatus and an image controlling method thereof
JP2006136741A (ja) X線断層撮影装置
JP2005013738A (ja) トモシンセシス用途における対象物を走査するためのシステム及び方法
JP4858616B2 (ja) 放射線撮像装置
JP4941558B2 (ja) 放射線撮像装置
JP2009089810A (ja) X線ct装置
JP5739115B2 (ja) X線診断装置
JP4924717B2 (ja) 放射線撮像装置
JP2009165705A (ja) 放射線撮像装置
JP7483654B2 (ja) 医用画像処理装置および医用画像処理方法
JP4998279B2 (ja) 放射線撮像装置
JP5218430B2 (ja) 断層撮影装置
WO2012023158A1 (ja) 放射線撮像装置
JP4873178B2 (ja) 放射線撮像装置
JP4613901B2 (ja) 放射線撮像装置
JP2968239B2 (ja) X線ct装置
JP2010000240A (ja) X線ct装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140530

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150430

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160517

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170522

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180517

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee