JP5218430B2 - 断層撮影装置 - Google Patents

断層撮影装置 Download PDF

Info

Publication number
JP5218430B2
JP5218430B2 JP2009553300A JP2009553300A JP5218430B2 JP 5218430 B2 JP5218430 B2 JP 5218430B2 JP 2009553300 A JP2009553300 A JP 2009553300A JP 2009553300 A JP2009553300 A JP 2009553300A JP 5218430 B2 JP5218430 B2 JP 5218430B2
Authority
JP
Japan
Prior art keywords
subject
movement
fpd
irradiation source
ray tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009553300A
Other languages
English (en)
Other versions
JPWO2009101678A1 (ja
Inventor
功裕 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Publication of JPWO2009101678A1 publication Critical patent/JPWO2009101678A1/ja
Application granted granted Critical
Publication of JP5218430B2 publication Critical patent/JP5218430B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/027Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis characterised by the use of a particular data acquisition trajectory, e.g. helical or spiral

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Description

この発明は、医療分野や工業分野などに用いられる断層撮影装置に関する。
従来の断層撮影装置としては、例えばX線断層撮影装置がある。このX線断層撮影装置では、図13に示すように、被検体Mを挟んでX線管101とX線フィルム102とを対向配置して、X線管101を第1方向に直線移動させるのに同期して、X線フィルム102をその第1方向とは逆方向である第2方向に直線移動させるように連動させる。また、被検体Mの特定の断層面(基準面)上の任意の点がX線フィルム102上で常に同じ位置になるように、X線管101の被検体MへのX線照射角度を変えながら連続的に撮影を行っている。X線断層撮影装置では、このような直線移動(直線走査)以外にも、図14に示すような円移動(円走査)による円断層や、図15の平面図が示すような渦巻き移動(渦巻き走査)による渦巻き断層など各種の走査軌道が実現されている。
さらに、近年、X線フィルムの替わりに、フラットパネル型X線検出器(以下、適宜「FPD」と略記する)等の面検出器を使用したディジタル断層撮影装置が実用化されている。このディジタル断層では、基準面上の任意の点が面検出器上で常に同じ位置になるように、X線管の被検体へのX線照射角度を変えながら断続的に撮影を行っている。そして、各角度からの撮影により得られた複数枚の投影像を重ね合わせるようにX線検出信号の加算演算処理を行うことで、基準面での断層像を算出する。さらに、ディジタル断層では、各角度からの撮影により得られた複数枚の投影像をそれぞれ適量ずらしながら加算演算処理を行う「シフト加算法」と呼ばれる断層再構成法を用いることで、基準面以外の任意の断層面についても断層像を得ることができる(例えば、特許文献1参照)。
特開昭59−55241号公報(第2頁)
しかしながら、上述したシフト加算法による断層再構成を行った場合、基準面の断層像は、基準面以外の断層像に比べS/N比が悪くなる傾向がある。面検出器では各画素毎に感度バラツキを持つ。基準面以外の断層面では、上述したシフト加算を行うことで、断層像のある画素の生成には複数の投影像画素が寄与し、検出器画素の感度バラツキを均す効果が得られる。一方、基準面ではシフト量が“0”であるので、断層像のある画素の生成には、投影像の対応画素のみしか寄与せずに、検出器画素の感度バラツキがそのまま断層像に現れる。
この原因となる感度バラツキは、断層再構成前の感度補正によって補正されるべきものだが、実際には完全に補正することはできず、僅かに残った感度バラツキが断層像の基準面で現れる。特に、シフト加算法を一般化した周知のフィルタード・バックプロジェクション(FBP: Filtered Back Projection法)(「フィルタ補正逆投影法」とも呼ばれる)では、再構成関数と呼ばれる高周波通過フィルタを施す影響により、この感度バラツキが顕著に現れる。
この発明は、このような事情に鑑みてなされたものであって、感度バラツキに起因するS/N比劣化を改善することができる断層撮影装置を提供することを目的とする。
この発明は、このような目的を達成するために、次のような構成をとる。
すなわち、この発明の断層撮影装置は、電磁波に関する撮像系を備え、その撮像系によって断層撮影を行う断層撮影装置であって、前記撮像系は、被検体に対して透過性を有するビーム状の電磁波を被検体に照射する照射源と、前記被検体を透過した電磁波を検出する検出手段とを備えるとともに、前記装置は、前記照射源・検出手段の一方・他方の被検体に対する相対移動の接線方向が互いに異なった状態で、前記照射源・検出手段のそれぞれが断層面に平行な面内で相対移動するように撮像系を駆動させる駆動手段を備えていることを特徴とするものである。
この発明の断層撮影装置によれば照射源・検出手段の一方の被検体に対する相対移動を「主走査」と定義づけ、照射源・検出手段の他方の被検体に対する相対移動を「主走査」とそれに直交した「副走査」とで合成された走査と定義づける。すると、一方・他方の被検体に対する相対移動の接線方向が互いに異なった状態で照射源・検出手段のそれぞれが断層面に平行な面内で相対移動するように駆動手段は駆動させているので、一方のみに着目すると、たとえ基準面およびその近傍でも、副走査方向の寄与画素をもっている。したがって、その寄与画素でもって感度バラツキを均し、感度バラツキに起因するS/N比劣化を改善することができる。
この発明の断層撮影装置の一例(前者の一例)、照射源・検出手段の少なくとも一方の被検体に対する相対移動は曲線移動である。前者の一例において、照射源・検出手段一方の被検体に対する相対移動は直線移動であるとともに、照射源・検出手段の他方の被検体に対する相対移動は上述した曲線移動であり、その曲線移動の一部の上述した接線方向は直線移動の方向に一致することである。この発明の断層撮影装置の他の一例(後者の一例)は、照射源・検出手段の両方が被検体に対して相対的にそれぞれ直線移動してもよい
また、上述した前者の一例において、照射源・検出手段の両方が被検体に対して相対的にそれぞれ曲線移動してもよい
これらの相対移動については、直線運動の成分や円運動の成分を含んでいてもよい。すなわち照射源・検出手段の少なくとも一方の被検体に対する相対移動が直線運動の成分を含んでいてもよいし照射源・検出手段の少なくとも一方の被検体に対する相対移動が円運動の成分を含んでいてもよい。なお、(円運動も含め)曲線運動の成分を一切含まず、直線運動の成分のみを含んでいる場合には、合成された相対移動は上述した直線移動となり、円運動の成分を含んでいる場合には、たとえ他に直線運動の成分を含んでいたとしても、合成された相対移動は上述した曲線移動となる。各々の成分に分解する場合には、上述した主走査・副走査で分けてもよいし、それ以外のベクトルで分けてもよい。
この発明に係る断層撮影装置によれば照射源・検出手段の一方・他方の被検体に対する相対移動の接線方向が互いに異なった状態で照射源・検出手段のそれぞれが断層面に平行な面内で相対移動するように駆動手段は駆動させているので、たとえ基準面およびその近傍でも、寄与画素でもって感度バラツキを均し、感度バラツキに起因するS/N比劣化を改善することができる。
実施例に係る断層撮影装置のブロック図である。 フラットパネル型X線検出器(FPD)の駆動に関するFPD駆動機構の概略構成を示す模式図である。 X線管の駆動に関するX線管駆動部の概略構成を示す模式図である。 側面視したフラットパネル型X線検出器(FPD)の等価回路である。 平面視したフラットパネル型X線検出器(FPD)の等価回路である。 水平面内の主走査や副走査の説明に供する平面図である。 直線断層シフト量の説明に供するX線管およびフラットパネル型X線検出器(FPD)の概略側面図である。 断層高さを横軸とした場合における断層像1画素の生成に寄与する検出器画素数を縦軸としたグラフである。 主走査のみの移動の場合における断層像1画素の生成に寄与する画素の分布の模式図である。 副走査を考慮した場合における断層像1画素の生成に寄与する画素の分布の模式図である。 S/N比劣化の改善度を示した断層高さを横軸とした場合における断層像の標準偏差を縦軸としたグラフである。 (a),(b)は、変形例に係るX線管およびフラットパネル型X線検出器(FPD)の移動を模式的に示した平面図である。 従来の直線走査の断層撮影装置の概略構成を示した側面図である。 従来の円走査の断層撮影装置の概略構成を示した側面図である。 渦巻き走査を模式的に示した平面図である。
符号の説明
2 … X線管
3 … フラットパネル型X線検出器(FPD)
14 … FPD駆動機構
15 … X線管駆動部
A … 主走査
B … 副走査
H … 水平面
M … 被検体
以下、図面を参照してこの発明の実施例を説明する。図1は、実施例に係る断層撮影装置のブロック図であり、図2は、フラットパネル型X線検出器の駆動に関するFPD駆動機構の概略構成を示す模式図であり、図3は、X線管の駆動に関するX線管駆動部の概略構成を示す模式図である。本実施例では電磁波として放射線を例に採るとともに、検出手段としてフラットパネル型X線検出器(以下、「FPD」と略記する)を例に採って説明する。
断層撮影装置は、図1に示すように、被検体Mを載置する天板1と、その被検体Mに向けてX線を照射するX線管2と、被検体Mを透過したX線を検出するFPD3とを備えている。X線管2は、この発明における照射源に相当し、FPD3は、この発明における検出手段に相当する。
断層撮影装置は、他に、天板1の昇降および水平移動を制御する天板制御部4や、FPD3の走査を制御するFPD制御部5や、X線管2の管電圧や管電流を発生させる高電圧発生部6を有するX線管制御部7や、FPD3から電荷信号であるX線検出信号をディジタル化して取り出すA/D変換器8や、A/D変換器8から出力されたX線検出信号に基づいて種々の処理を行う画像処理部9や、これらの各構成部を統括するコントローラ10や、処理された画像などを記憶するメモリ部11や、オペレータが入力設定を行う入力部12や、処理された画像などを表示するモニタ13などを備えている。
天板制御部4は、天板1を水平移動させて被検体Mを撮像位置にまで収容したり、昇降、回転および水平移動させて被検体Mを所望の位置に設定したり、水平移動させながら撮像を行ったり、撮像終了後に水平移動させて撮像位置から退避させる制御などを行う。これらの制御は、モータやエンコーダ(図示省略)などからなる天板駆動機構(図示省略)を制御することで行う。
FPD制御部5は、FPD3を被検体Mの長手方向である体軸z方向に沿って平行移動させる制御を行う。この制御は、図2に示すように、ラック14aやピニオン14bやモータ14cやエンコーダ14dなどからなるFPD駆動機構14を制御することで行う。具体的には、ラック14aは被検体Mの体軸z方向に沿って延在している。ピニオン14bはFPD3を支持し、その一部はラック14aに嵌合しており、モータ14cの回転によって回転する。例えば、モータ14cを正転させると、図2中の一点鎖線に示すようにラック14aに沿ってFPD3が被検体Mの頭側に平行移動し、モータ14cを逆転させると、図2中の二点鎖線に示すようにラック14aに沿ってFPD3が被検体Mの足元側に平行移動する。エンコーダ14dはFPD3の移動方向と移動量(移動距離)に対応したモータ14cの回転方向および回転量を検出する。エンコーダ14dによる検出結果をFPD制御部5に送る。
高電圧発生部6は、X線を照射させるための管電圧や管電流を発生してX線管2に与える。X線管制御部7は、X線管2を後述する主走査A(図6を参照)に沿って平行移動させる制御を行う。この制御は、図3に示すように、支柱15aやネジ棒15bやモータ15cやエンコーダ15dなどからなるX線管駆動部15を制御することで行う。具体的には、支柱15aはX線管2を上端側に装着支持し、下端側にネジ棒15bにネジ結合している。ネジ棒15bは被検体Mの主走査に沿って延在しており、モータ15cの回転によって回転する。例えば、モータ15cを正転させると、図3中の一点鎖線に示すように支柱15aとともにX線管2が被検体Mの足元側に主走査に沿って平行移動し、モータ15cを逆転させると、図3中の二点鎖線に示すように支柱15aとともにX線管2が被検体Mの頭側に主走査に沿って平行移動する。エンコーダ15dはX線管2の移動方向と移動量(移動距離)に対応したモータ15cの回転方向および回転量を検出する。エンコーダ15dによる検出結果をX線管制御部7に送る。
なお、図6に示すように、FPD3の平行移動を主走査Aおよび後述する副走査Bに分解したときに、図1に示すように、主走査に関してX線管2およびFPD3が互いに逆方向に平行移動するように構成するために、主走査に分解された図2のモータ14cの回転方向、および図3のモータ15cの回転方向が互いに逆方向になるように、FPD制御部5およびX線管制御部7は制御する。FPD駆動機構14およびX線管駆動部15は、この発明における駆動手段に相当する。
また、X線管制御部7は、X線管2側のコリメータ(図示省略)の照視野の設定の制御を行う。本実施例では、主走査A(図6を参照)および副走査B(図6を参照)に広がりを有するファンビーム状のX線を照射するようにコリメータを制御して照視野を設定する。
コントローラ10は、中央演算処理装置(CPU)などで構成されており、メモリ部11は、ROM(Read-only Memory)やRAM(Random-Access Memory)などに代表される記憶媒体などで構成されている。また、入力部12は、マウスやキーボードやジョイスティックやトラックボールやタッチパネルなどに代表されるポインティングデバイスで構成されている。
画像処理部9は、X線検出信号に対してラグ補正やゲイン補正などを行って、FPD3の検出面に投影されたX線画像を出力する補正部9aと、補正されたX線画像(投影像)についてシフト加算法を用いて断層再構成を行って断層像を出力する再構成処理部9bとを備えている。シフト加算法については、図7〜図11で後述する。
メモリ部11は、画像処理部9で処理された各々の画像を書き込んで記憶するように構成されている。FPD制御部5やX線管制御部7も、コントローラ10と同様にCPUなどで構成されている。
次に、フラットパネル型X線検出器(FPD)3の構造について、図4および図5を参照して説明する。図4は、側面視したフラットパネル型X線検出器(FPD)の等価回路であり、図5は、平面視したフラットパネル型X線検出器(FPD)の等価回路である。
FPD3は、図4に示すように、ガラス基板31と、ガラス基板31上に形成された薄膜トランジスタTFTとから構成されている。薄膜トランジスタTFTについては、図4、図5に示すように、縦・横式2次元マトリクス状配列でスイッチング素子32が多数個(例えば、1024個×1024個)形成されており、キャリア収集電極33ごとにスイッチング素子32が互いに分離形成されている。すなわち、FPD3は、2次元アレイ放射線検出器でもある。
図4に示すようにキャリア収集電極33の上にはX線感応型半導体34が積層形成されており、図4、図5に示すようにキャリア収集電極33は、スイッチング素子32のソースSに接続されている。ゲートドライバ35からは複数本のゲートバスライン36が接続されているとともに、各ゲートバスライン36はスイッチング素子32のゲートGに接続されている。一方、図5に示すように、電荷信号を収集して1つに出力するマルチプレクサ37には増幅器38を介して複数本のデータバスライン39が接続されているとともに、図4、図5に示すように各データバスライン39はスイッチング素子32のドレインDに接続されている。
図示を省略する共通電極にバイアス電圧を印加した状態で、ゲートバスライン36の電圧を印加(または0Vに)することでスイッチング素子32のゲートがONされて、キャリア収集電極33は、検出面側で入射したX線からX線感応型半導体34を介して変換された電荷信号(キャリア)を、スイッチング素子32のソースSとドレインDとを介してデータバスライン39に読み出す。なお、スイッチング素子がONされるまでは、電荷信号はキャパシタ(図示省略)で暫定的に蓄積されて記憶される。各データバスライン39に読み出された電荷信号を増幅器38で増幅して、マルチプレクサ37で1つの電荷信号にまとめて出力する。出力された電荷信号をA/D変換器8でディジタル化してX線検出信号として出力する。
次に、主走査や副走査について、図6を参照して説明する。図6は、水平面内の主走査や副走査の説明に供する平面図である。
本明細書では、「課題を解決するための手段」の段落でも述べたように、撮像系からなる照射源(本実施例ではX線管2)・検出手段(本実施例ではFPD3)の一方の被検体Mに対する相対移動を「主走査」と定義づけ、照射源(X線管2)・検出手段(FPD3)の他方の被検体Mに対する相対移動を「主走査」とそれに直交した「副走査」とで合成された走査と定義づける。本実施例では、撮像系からなる照射源・検出手段の一方をX線管2とするとともに、他方をFPD3とする。そして、図6に示すように、一方であるX線管2の平行移動を主走査Aとするとともに、体軸zに沿った他方であるFPD3の平行移動を主走査Aとそれに直交した副走査Bとで合成された走査とする。つまり、体軸zに沿ったFPD3の平行移動は、X線管2の平行移動に平行である主走査Aと、副走査Bとに分解される。
また、上述したように、FPD3の平行移動を主走査Aおよび副走査Bに分解したときに、主走査Aに関してX線管2およびFPD3が互いに逆方向に平行移動している。これらのX線管2およびFPD3は、合成された体軸zも含み、主走査Aおよび副走査Bを含んだ水平面H内でそれぞれ移動(走査)する。したがって、水平面Hは、この発明における断層面に相当する。
なお、本明細書での断層面とは、横断像に平行な面、すなわちアキシャル(Axial)像に平行な面のみならず、冠状断像に平行な面(本実施例のような水平面H)、すなわちコロナル(coronal)像に平行な面や、矢状断像に平行な面、すなわちサジタル(sagittal)像に平行な面、あるいはそれ以外の斜め方向での面なども示すことに留意されたい。したがって、本明細書では、後述する相対移動の接線方向も含んで、撮像系からなる照射源(本実施例ではX線管2)・検出手段(本実施例ではFPD3)の被検体Mに対する相対移動の軌跡によって断層面が決定される。このように、撮像系からなる照射源(X線管2)・検出手段(FPD3)の被検体Mに対する相対移動を含む断層面として、本実施例のようなコロナル像に平行な面(水平面H)に限定されず、アキシャル像に平行な面、サジタル像に平行な面あるいはそれ以外の斜め方向の面を採用してもよい。
また、本実施例では、図6に示すように、X線管2・FPD3の両方が直線移動している。したがって、X線管2・FPD3の移動の接線方向も上述した直線移動の方向に一致する。また、本実施例では、(円運動も含め)曲線運動の成分を一切含まず、直線運動の成分のみを含んでいる。このように、直線運動の成分のみを含んでいる場合には、合成された相対移動は上述した直線移動となる。FPD3の移動を例に採ると、主走査Aでは直線運動の成分のみを含み、副走査Bでも直線運動の成分のみを含んでおり、その他の曲線運動の成分を一切含んでいない。したがって、合成されたFPD3の移動は直線移動となる。
本実施例に係る断層撮影装置によれば、撮像系からなるX線管2・フラットパネル型X線検出器(FPD)3の一方(ここではX線管2)・他方(ここではFPD3)の被検体Mに対する相対移動の接線方向が互いに異なった状態で、撮像系からなるX線管2・FPD3のそれぞれが断層面(本実施例では水平面H)に平行な面内で相対移動するようにFPD駆動機構14およびX線管駆動部15は駆動させているので、一方であるX線管2のみに着目すると、たとえ基準面およびその近傍でも、副走査方向の寄与画素をもっている。したがって、その寄与画素でもって感度バラツキを均し、感度バラツキに起因するS/N比劣化を改善することができる。
具体的に、副走査方向の寄与画素について、シフト加算法とともに、図7〜図11を参照して説明する。図7は、直線断層シフト量の説明に供するX線管およびフラットパネル型X線検出器の概略側面図であり、図8は、断層高さを横軸とした場合における断層像1画素の生成に寄与する検出器画素数を縦軸としたグラフであり、図9は、主走査のみの移動の場合における断層像1画素の生成に寄与する画素の分布の模式図であり、図10は、副走査を考慮した場合における断層像1画素の生成に寄与する画素の分布の模式図であり、図11は、S/N比劣化の改善度を示した断層高さを横軸とした場合における断層像の標準偏差を縦軸としたグラフである。
[従来のシフト加算法に用いられるパラメータ・寄与画素範囲]
図7に示すように、主走査Aに関してX線管2およびFPD3が互いに逆方向に平行移動した場合に、X線管2の焦点からFPD3の検出面までの距離をSID(Source Image Distance)とし、X線管2の焦点から基準面までの距離をSOD(Source Object Distance)とし、基準面から任意裁断面までの距離(断層高さ)をhとし、投影角度をθとし、シフト量をs(θ,h)(図7では「s」で表記)とする。本実施例のような副走査を考慮せずに、FPD3も主走査のみに沿って平行移動する場合には、従来のシフト量s(θ,h)は、下記(1)式のように表される。
s(θ,h)=SID×(h×tanθ)/(SOD+h) …(1)
シフト加算法では、図7に示すように、投影角度θの各投影像について、上記(1)式で求められたシフト量s(θ,h)をそれぞれずらして全投影像を加算する。シフト加算法自体は周知であるので、その説明を省略する。そして、シフト加算法によって断層像を得る。
さて、断層像の1画素の生成に寄与する検出器画素の範囲は、断層の最大偏角θmaxでのシフト量s(すなわちs(θmax,h))を画素サイズdで割ることにより見積もることができる。寄与画素範囲をpとすると、寄与画素範囲pは、下記(2)式のように表される。なお、下記(2)式中の|2×s(θmax,h)/d|は「2×s(θmax,h)/d」の絶対値を示す。
p(h)=|2×s(θmax,h)/d|+1 …(2)
断層高さhの絶対値が大きくなれば大きくなるほど、シフト量s(θ,h)の絶対値も大きくなるので、図8、図9に示すように、基準面(図9ではh=0)から離れるのにしたがって、寄与画素範囲pが増えるのがわかる(図9では灰色部分が寄与画素範囲)。なお、図8、図11では、試算条件として、SID=1200mm、SOD=1000mm、投影角度=±20°(断層角=40°)、投影像数=120frame/40°、検出器画素サイズ=0.2mmとしている。
検出器感度バラツキに起因するノイズは、寄与画素範囲pが大きくなると均される。したがって、本実施例のような副走査を考慮せずに、FPD3も主走査のみに沿って平行移動する場合には、図11の黒塗りの菱形に示すように、基準面およびその近傍での断層像はS/N比が悪く、基準面から離れるのにしたがって、寄与画素範囲pが大きくなりS/N比が良くなるという傾向を持つ(図11では縦軸は断層像の標準偏差)。
[副走査を考慮したシフト加算法に用いられるパラメータ・寄与画素範囲]
そこで、断層高さhの違いによるS/N比の変動を緩和するために、図6に示すように、副走査Bも考慮して、FPD3は、主走査Aおよび副走査Bで合成された体軸zで平行移動する。上述した試算条件(SID=1200mm、SOD=1000mm、投影角度=±20°(断層角=40°)、投影像数=120frame/40°、検出器画素サイズ=0.2mm)では、FPD3の検出器の1画素が0.2mm正方の条件で試算している。主走査については、SOD×tan(20°)×2=728mmでX線管2は移動し、(SID−SOD)×tan(20°)×2=146mmでFPD3は移動する。副走査については、図11の「40画素」の場合には、検出器の1画素が0.2mm正方の条件では0.2mm/画素×40画素=8mmとなる。すなわち、FPD3では、主走査方向に146mm移動する間に、副走査方向に8mm移動する。
副走査での移動量をx(θ)とし、副走査での投影像に対するシフト量をt(θ)とすると、シフト量t(θ)は、下記(3)式のように表される。なお、副走査は主走査に直交しており、副走査方向に移動しても投影角度θは変化しないので、シフト量t(θ)は、断層高さhに依存せずに、各投影角θごとでの移動量で決定される。
t(θ)=−f(θ) …(3)
副走査を考慮したシフト加算法では、主走査については、上記(1)式で求められたシフト量s(θ,h)をそれぞれずらして全投影像を加算するとともに、副走査については、上記(3)式で求められたシフト量s(θ,h)をそれぞれずらして全投影像を加算する。そして、シフト加算法によって断層像を得る。
同様に、副走査において断層像の1画素の生成に寄与する検出器画素の範囲は、断層の最大偏角θmaxでのシフト量t(すなわちt(θmax))を画素サイズdで割ることにより見積もることができる。寄与画素範囲をqとすると、寄与画素範囲qは、下記(4)式のように表される。なお、下記(4)式中の|2×t(θmax)/d|は「2×t(θmax)/d」の絶対値を示す。
q=|2×t(θmax)/d|+1 …(4)
上記(4)式は、上記(2)式中の主走査でのシフト量s(θmax,h)を副走査でのシフト量t(θmax)に置き換えた式となる。そして、合成後の寄与画素範囲は、上記(2)式で求められた主走査における寄与画素範囲p、上記(4)式で求められた副走査における寄与画素範囲qを用いて、max(p(h),q)で表される。なお、max(p(h),q)は、p(h),qのいずれか大きい方の値を示す。
副走査を考慮することで、シフト量は、上記(1)式で求められた主走査でのシフト量s(θ,h)の成分だけでなく、上記(3)式で求められた副走査でのシフト量t(θ)の成分をも持つことになる。例えば、主走査方向に移動している間に、副走査方向に5画素分シフトするようにFPD3を動かした場合には、図10に示すように、基準面(図10ではh=0)およびその近傍であっても、少なくとも5画素分の寄与画素を持つことになる。したがって、本実施例のように副走査を考慮する場合には、図11の黒塗りの方形(図11では「■」で表記)やアスタリスク(図11では「*」で表記)や白塗りの三角(図11では「△」で表記)に示すように、基準面およびその近傍でのS/N比劣化を緩和することができる。
なお、図11の黒塗りの方形は副走査シフト範囲が10画素のときであり、図11のアスタリスクは副走査シフト範囲が20画素のときであり、図11の白塗りの三角は副走査シフト範囲が40画素のときである。本実施例のような副走査を考慮しない図11の黒塗りの菱形のグラフと比較すると、本実施例のように副走査を考慮した図11の黒塗りの方形やアスタリスクや白塗りの三角のグラフでは、基準面およびその近傍であっても標準偏差がさほどに大きくならないことがわかる。また、副走査シフト範囲が大きくなれば大きくなるほど、標準偏差がさほどに大きくならずにS/N比劣化改善が確認できる。
この発明は、上記実施形態に限られることはなく、下記のように変形実施することができる。
(1)上述した実施例では、X線などに代表される放射線を検出して、その放射線から断層画像を取得するものであったが、放射線以外にも、被検体に対して透過性を有する電磁波であれば特に限定されない。例えば光を検出して、その光から断層画像を取得するものであってもよい。この場合には、フラットパネル型検出器(FPD)は、光の入射によりキャリアが生成される光感応型の検出器となる。また、放射線についても、X線以外のα線やβ線やγ線に適用してもよい。
(2)上述した実施例では、検出手段としてフラットパネル型X線検出器(FPD)を例に採って説明したが、電磁波を検出する手段であれば、特に限定されない。また、X線を検出する手段についても、従来のX線フィルムやイメージインテンシファイア(I.I)であってもよい。
(3)上述した実施例では、照射源としてX線管を例に採って説明したが、透過性を有する電磁波を照射する手段であれば、特に限定されない。
(4)上述した実施例では、撮像中では被検体Mを固定しており、撮像系からなる照射源(実施例ではX線管)・検出手段(実施例ではFPD)の両方が移動したが、撮像系からなる照射源・検出手段の一方・他方の被検体に対する相対移動の接線方向が互いに異なった状態で、撮像系からなる照射源・検出手段のそれぞれが断層面に平行な面内で相対移動するのであれば、被検体の方を移動させてもよい。例えば、図12(a)の平面図に示すように、FPD3のみを固定させて、被検体Mを載せた天板1を主走査方向に移動させて、X線管2を主走査および副走査方向に移動させてもよい。逆に、X線管2のみを固定させて、天板1を主走査方向に移動させて、FPD3を主走査および副走査方向に移動させてもよい。このように移動しても、撮像系からなる照射源・検出手段の一方・他方の被検体に対する相対移動の接線方向が互いに異なった状態で、撮像系からなる照射源・検出手段のそれぞれが断層面に平行な面内で相対移動する。
(5)上述した実施例では、撮像系からなる照射源・検出手段の一方を照射源(実施例ではX線管)とするとともに、他方を検出手段(実施例ではFPD)としたが、逆に、撮像系からなる照射源・検出手段の一方を検出手段とするとともに、他方を照射源としてもよい。
(6)上述した実施例では、撮像系からなる照射源(実施例ではX線管)・検出手段(実施例ではFPD)の両方が直線移動していたが、撮像系からなる照射源・検出手段の一方・他方の被検体に対する相対移動の接線方向が互いに異なった状態で、撮像系からなる照射源・検出手段のそれぞれが断層面に平行な面内で相対移動するのであれば、撮像系からなる照射源・検出手段の少なくとも一方の被検体に対する相対移動を直線運動にして、上述した接線方向は直線移動の方向に一致してもよいし、撮像系からなる照射源・検出手段の一方の被検体に対する相対移動が直線移動で、撮像系からなる照射源・検出手段の他方の被検体に対する相対移動が曲線移動であってもよい。例えば、図12(b)の平面図に示すように、FPD3を直線移動させて、X線管2を曲線運動させてもよい。逆に、X線管2を直線運動させて、FPD3を曲線運動させてもよい。このように移動しても、撮像系からなる照射源・検出手段の一方・他方の被検体に対する相対移動の接線方向(図12(b)の一点鎖線を参照)が互いに異なった状態で、撮像系からなる照射源・検出手段のそれぞれが断層面に平行な面内で相対移動する。もちろん、撮像系からなる照射源・検出手段の両方が曲線移動してもよい。なお、曲線移動は上述した渦巻き移動などに例示されるように特に限定されない。
(7)上述した実施例では、撮像系からなる照射源(実施例ではX線管)・検出手段(実施例ではFPD)の両方は、曲線運動の成分を一切含まず、直線運動の成分のみを含んでいたが、これに限定されない。すなわち、撮像系からなる照射源・検出手段の少なくとも一方の被検体に対する相対移動が直線運動の成分を含んでいてもよいし、撮像系からなる照射源・検出手段の少なくとも一方の被検体に対する相対移動が円運動の成分を含んでいてもよい。なお、(円運動も含め)曲線運動の成分を一切含まず、直線運動の成分のみを含んでいる場合には、合成された相対移動は上述した直線移動となり、円運動の成分を含んでいる場合には、たとえ他に直線運動の成分を含んでいたとしても、合成された相対移動は上述した曲線移動となる。各々の成分に分解する場合には、上述した主走査・副走査で分けてもよいし、それ以外のベクトルで分けてもよい。もちろん、円運動以外の曲線運動の成分を含んでもよい。
(8)上述した実施例では、主走査および副走査で合成された方向を体軸方向としたが、これに限定されない。主走査方向を体軸方向としてもよいし、主走査方向、主走査および副走査で合成された方向のいずれも体軸方向とは別の方向にしてもよい。

Claims (7)

  1. 電磁波に関する撮像系を備え、その撮像系によって断層撮影を行う断層撮影装置であって、前記撮像系は、被検体に対して透過性を有するビーム状の電磁波を被検体に照射する照射源と、前記被検体を透過した電磁波を検出する検出手段とを備えるとともに、前記装置は、前記照射源・検出手段の一方・他方の被検体に対する相対移動の接線方向が互いに異なった状態で、前記照射源・検出手段のそれぞれが断層面に平行な面内で相対移動するように撮像系を駆動させる駆動手段を備えていることを特徴とする断層撮影装置。
  2. 請求項1に記載の断層撮影装置において、前記照射源・検出手段の少なくとも一方の前記被検体に対する相対移動は曲線移動であることを特徴とする断層撮影装置。
  3. 請求項1に記載の断層撮影装置において、前記照射源・検出手段の両方が前記被検体に対して相対的にそれぞれ前記直線移動することを特徴とする断層撮影装置。
  4. 請求項2に記載の断層撮影装置において、前記照射源・検出手段の一方の前記被検体に対する相対移動は直線移動であるとともに、前記照射源・検出手段の他方の前記被検体に対する相対移動は前記曲線移動であり、その曲線移動の一部の前記接線方向は前記直線移動の方向に一致することを特徴とする断層撮影装置。
  5. 請求項2に記載の断層撮影装置において、前記照射源・検出手段の両方が前記被検体に対して相対的にそれぞれ前記曲線移動することを特徴とする断層撮影装置。
  6. 請求項1から請求項5のいずれかに記載の断層撮影装置において、前記照射源・検出手段の少なくとも一方の前記被検体に対する相対移動が直線運動の成分を含んでいることを特徴とする断層撮影装置。
  7. 請求項1、請求項2、請求項4または請求項5のいずれかに記載の断層撮影装置において、前記照射源・検出手段の少なくとも一方の前記被検体に対する相対移動が円運動の成分を含んでいることを特徴とする断層撮影装置。
JP2009553300A 2008-02-13 2008-02-13 断層撮影装置 Expired - Fee Related JP5218430B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/052348 WO2009101678A1 (ja) 2008-02-13 2008-02-13 断層撮影装置

Publications (2)

Publication Number Publication Date
JPWO2009101678A1 JPWO2009101678A1 (ja) 2011-06-02
JP5218430B2 true JP5218430B2 (ja) 2013-06-26

Family

ID=40956725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009553300A Expired - Fee Related JP5218430B2 (ja) 2008-02-13 2008-02-13 断層撮影装置

Country Status (2)

Country Link
JP (1) JP5218430B2 (ja)
WO (1) WO2009101678A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9895068B2 (en) 2008-06-30 2018-02-20 Covidien Lp Pulse oximeter with wait-time indication
US8494786B2 (en) 2009-07-30 2013-07-23 Covidien Lp Exponential sampling of red and infrared signals
JP5995743B2 (ja) * 2013-02-18 2016-09-21 三菱重工業株式会社 画像生成装置、画像生成方法及びプログラム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000333939A (ja) * 1999-05-14 2000-12-05 Siemens Ag X線診断装置
JP2005021328A (ja) * 2003-07-01 2005-01-27 Shimadzu Corp X線断層撮影システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000333939A (ja) * 1999-05-14 2000-12-05 Siemens Ag X線診断装置
JP2005021328A (ja) * 2003-07-01 2005-01-27 Shimadzu Corp X線断層撮影システム

Also Published As

Publication number Publication date
JPWO2009101678A1 (ja) 2011-06-02
WO2009101678A1 (ja) 2009-08-20

Similar Documents

Publication Publication Date Title
KR101040488B1 (ko) 방사선 촬상 장치
JP6036901B2 (ja) 放射線断層画像撮影装置
JP4858613B2 (ja) 放射線撮像装置
WO2011013164A1 (ja) 放射線撮影装置
US20100239146A1 (en) X-ray computed tomography scanner, data processing device, and data processing method
JP6335001B2 (ja) X線診断装置
JP4858616B2 (ja) 放射線撮像装置
JP5218430B2 (ja) 断層撮影装置
JP6881682B2 (ja) X線イメージング装置
JP4941558B2 (ja) 放射線撮像装置
JP4924717B2 (ja) 放射線撮像装置
JP2012148143A (ja) 放射線撮像装置
JP4998279B2 (ja) 放射線撮像装置
WO2012023158A1 (ja) 放射線撮像装置
JP6595656B2 (ja) X線診断装置
JP2012120650A (ja) 放射線撮影システム及び放射線位相コントラスト画像生成方法
JP2011172847A (ja) 放射線画像生成装置及び放射線画像生成方法
JP4613901B2 (ja) 放射線撮像装置
JP2010110374A (ja) 放射線撮影装置および処理方法
JP6079588B2 (ja) X線撮影装置
JP2008245999A (ja) 放射線撮影装置
JP6127935B2 (ja) X線撮影装置
JP2011072502A (ja) 放射線撮影装置
WO2013084657A1 (ja) 放射線撮影装置
WO2012133553A1 (ja) 放射線撮影システム及び放射線撮影方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5218430

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees