JP2011172847A - 放射線画像生成装置及び放射線画像生成方法 - Google Patents

放射線画像生成装置及び放射線画像生成方法 Download PDF

Info

Publication number
JP2011172847A
JP2011172847A JP2010040899A JP2010040899A JP2011172847A JP 2011172847 A JP2011172847 A JP 2011172847A JP 2010040899 A JP2010040899 A JP 2010040899A JP 2010040899 A JP2010040899 A JP 2010040899A JP 2011172847 A JP2011172847 A JP 2011172847A
Authority
JP
Japan
Prior art keywords
radiation
irradiation
unit
dose
image generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010040899A
Other languages
English (en)
Inventor
Koichi Hirasawa
耕一 平澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2010040899A priority Critical patent/JP2011172847A/ja
Priority to US13/005,341 priority patent/US20110206177A1/en
Publication of JP2011172847A publication Critical patent/JP2011172847A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/025Tomosynthesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4435Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure
    • A61B6/4441Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure the rigid structure being a C-arm or U-arm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4476Constructional features of apparatus for radiation diagnosis related to motor-assisted motion of the source unit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/542Control of apparatus or devices for radiation diagnosis involving control of exposure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/542Control of apparatus or devices for radiation diagnosis involving control of exposure
    • A61B6/544Control of apparatus or devices for radiation diagnosis involving control of exposure dependent on patient size
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4488Means for cooling

Abstract

【課題】放射線検出装置に対向して設けられた放射線照射部を複数の位置に移動する場合であっても、放射線の吸収コントラストが低い部位における画像描写能の低下を抑止することができる放射線画像生成装置及び放射線画像生成方法を提供する。
【解決手段】放射線検出装置12上の基準位置110での到達線量が一定になるように各照射位置での照射線量を決定する照射線量決定部120と、照射線量決定部120により決定された前記照射線量に基づいて前記照射位置に応じた放射線26を放射線照射部20から照射させる放射線制御部28とを有する。
【選択図】図1

Description

本発明は、放射線照射部を複数の位置に移動させながら、各位置において前記放射線照射部から放射線検出装置上の被写体に対して放射線を照射して、前記放射線検出装置から出力される複数枚の放射線画像を取得し、前記複数枚の放射線画像を再構成して、前記被写体の診断画像を生成する放射線画像生成装置及び放射線画像生成方法に関する。
近年、放射線撮影装置において、患部をより詳しく観察するために、放射線照射部(例えば、X線管)を移動させて異なる角度から被写体に放射線を照射して撮影を行い、得られた放射線画像を演算して所望の断層面を強調した断層画像を得ることができるトモシンセシス撮影(Tomosynthesis)が提案されている。
トモシンセシス撮影では、異なる角度で被写体を撮影した複数の放射線画像を取得して、これらの放射線画像を再構成して断層画像を作成する。この断層画像は、複数の放射線画像に対して所定の画像処理を施した後に加算することにより取得することができる。異なる角度で撮影して放射線画像を取得する方法の一例として、CT(Computed Tomography)撮影と同様に、放射線照射部を円軌道上に移動させる方法が挙げられる。
特許文献1には、一次抽出された腫瘤や微小石灰化等の陰影を3D画像で詳細に検出するためのシステムが開示されている。具体的には、前記陰影の検出に適した放射線量の角度分布を決定し、予め決定された総線量から照射角度毎に分配するものである(段落[0076]、図5bを参照)。これにより、関心領域内における焦点深度の低下を防止し、画像の鮮鋭度を維持することができる。
特許文献2には、放射線照射部と放射線検出器との距離及び角度関係に応じて、各照射角度で取得された放射線画像の各画素値を補正する装置が開示されている(段落[0064]〜[0074]、図6を参照)。これにより、放射線検出器により検出された線量が略一定となるように換算された各放射線画像を取得可能であり、再構成画像上の濃度むらを抑制することができる。
特開2008−62058号公報 特開2009−11639号公報
ところで、トモシンセシス撮影や長尺撮影では、放射線照射部に対向して設けられた放射線検出器を複数の位置に移動させながら前記放射線照射部から一定の線量の放射線を照射するので、撮影の都度、放射線照射部と放射線検出器(の所定位置)との距離が変化する場合がある。また、放射線検出器を固定し、放射線照射部を複数の位置に移動させながら放射線を照射する方法もあるが、これも撮影の都度両者の距離が変化する場合がある。これによって、前記距離が長いほど被写体に照射・透過される線量が少なくなり、前記距離が短いほど被写体に照射・透過される線量が多くなる。すなわち、前記放射線照射部と前記放射線検出器との相対的位置関係に応じて各放射線画像の形成に寄与する線量が異なってくる。
放射線検出器で検出される線量が相対的に少ない場合は、画像情報としての信号値そのものが小さくなるから、画像生成システムとしてのSN比(Signal to Noise Ratio)が小さくなる。その結果、特に放射線の吸収コントラストが低い部位における画像描写能が低下するという問題がある。放射線照射部と放射線検出器(の所定位置)との距離が長くなる場合には、特にこの問題が顕在化する。
しかしながら、特許文献1に開示された装置は、関心領域の優先度に応じて線量の配分を決定するように構成しており、診断画像全体としての画像描画能の向上を図ったものではない。
さらに、特許文献2に開示された装置は、ある放射線画像の画像領域間における線量むらを均一になるように事後的に補正するように構成しており、上記したSN比を向上させることができない。したがって、放射線の吸収コントラストが低い部位における画像描写能を向上する効果を奏するものではない。
本発明は上記した問題を解決するためになされたもので、放射線検出装置に対向して設けられた放射線照射部を複数の位置に移動する場合であっても、放射線の吸収コントラストが低い部位における画像描写能の低下を抑止することができる放射線画像生成装置及び放射線画像生成方法を提供することを目的とする。
本発明に係る放射線画像生成装置は、放射線照射部を複数の位置に移動する移動機構と、前記移動機構により前記放射線照射部を移動させながら、各照射位置において前記放射線照射部から放射線検出装置上の被写体に対して放射線を照射して、前記放射線検出装置から出力される複数枚の放射線画像を取得する放射線画像取得部と、前記放射線画像取得部により取得された前記複数枚の放射線画像を再構成して前記被写体の診断画像を生成する再構成部と、前記放射線検出装置上の基準位置での到達線量が一定になるように各前記照射位置での照射線量を決定する照射線量決定部と、前記照射線量決定部により決定された前記照射線量に基づいて前記照射位置に応じた放射線を前記放射線照射部から照射させる放射線制御部とを有することを特徴とする。
このように、放射線検出装置上の基準位置での到達線量が一定になるように各前記照射位置での照射線量を決定する照射線量決定部を設けたので、各照射位置から照射された放射線の到達線量は放射線照射部と放射線検出器との距離によらず略一定となり、画像生成システムとしてのSN比も前記距離によらず略一定となる。これにより、放射線検出装置に対向して設けられた放射線照射部を複数の位置に移動する場合であっても、放射線の吸収コントラストが低い部位における画像描写能の低下を抑止することができる。
また、前記照射位置と前記照射線量とを対応付けた照射情報を記録する記録部を有し、前記照射線量決定部は、前記記録部に記録された前記照射情報を参照して前記照射位置に応じた前記照射線量を決定することが好ましい。
さらに、前記移動機構は、前記放射線照射部と前記基準位置との距離が変化する位置関係下で前記放射線照射部を移動することが好ましい。
さらに、前記移動機構は、前記放射線照射部を所定の直線軌道上に移動することが好ましい。これにより、移動機構の構成を他の軌道と比較して簡素化できるとともに、放射線照射部を移動する際の振動に起因する放射線画像のぶれ(すなわち、画質の劣化)を抑制できる。
さらに、前記照射情報は、前記照射位置に応じて順次配列されたテーブルデータであり、前記照射線量決定部は、前記放射線照射部の移動に応じた所定のタイミングで前記テーブルデータを順次読み出すことにより前記照射線量を決定することを特徴とする。これにより、放射線照射部の位置情報をその都度取得することなく、照射位置に応じた照射線量を適切に決定できる。
さらに、前記放射線検出装置の種類を設定する第1の設定部を有し、前記記録部は、前記放射線検出装置の種類に応じた前記テーブルデータをそれぞれ記憶することが好ましい。
さらに、前記被写体のサイズを設定する第2の設定部を有し、前記記録部は、前記被写体のサイズに応じた前記テーブルデータをそれぞれ記憶することが好ましい。
さらに、前記テーブルデータは、前記放射線のmAs値で定義されたデータであることが好ましい。
さらに、前記テーブルデータは、前記放射線照射部に印加する管電流で定義されたデータであることが好ましい。
さらに、前記テーブルデータは、前記放射線の照射時間で定義されたデータであることが好ましい。
さらに、上記した放射線画像生成装置は、トモシンセシス撮影又は長尺撮影に用いられることが好ましい。
本発明に係る放射線画像生成方法は、放射線照射部を複数の位置に移動する移動ステップと、放射線検出装置上の基準位置での到達線量が一定になるように各照射位置での照射線量を決定する決定ステップと、前記放射線検出装置上の被写体に対して、決定された前記照射線量の放射線を前記放射線照射部から照射する照射ステップと、前記放射線検出装置から出力される複数枚の放射線画像を取得し、該複数枚の放射線画像を再構成して前記被写体の診断画像を生成する再構成ステップとを備えることを特徴とする。
本発明に係る放射線画像生成装置及び放射線画像生成方法によれば、放射線検出装置上の基準位置での到達線量が一定になるように各照射位置での照射線量を決定する構成にしたので、各照射位置から照射された放射線の到達線量は放射線照射部と放射線検出器との距離によらず略一定となり、画像生成システムとしてのSN比も前記距離によらず略一定となる。これにより、放射線検出装置に対向して設けられた放射線照射部を複数の位置に移動する場合であっても、放射線の吸収コントラストが低い部位における画像描写能の低下を抑止することができる。
本実施の形態に係る放射線画像生成装置を示す構成図である。 図1の放射線検出装置に内蔵される放射線検出器の構成を示す回路図である。 放射線照射部、被写体及び放射線検出装置の位置関係を示す第1の説明図である。 図1の放射線画像生成装置の動作を示すフローチャートである。 放射線照射部、被写体及び放射線検出装置の位置関係を示す第2の説明図である。 放射線照射部、被写体及び放射線検出装置の位置関係を示す第3の説明図である。
以下、本発明に係る放射線画像生成方法についてそれを実施する放射線画像生成装置との関係において好適な実施形態を挙げ、図1〜図4を参照しながら詳細に説明する。
本実施の形態に係る放射線画像生成装置としての画像生成装置10は、放射線検出装置12と、放射線画像取得部14と、画像再構成部16(再構成部)と、モニタ17と、これらを制御するコンソール18(制御部)とを有する。
放射線画像取得部14は、放射線検出装置12に対向して設けられた放射線照射部20と、該放射線照射部20を予め設定された複数の位置に移動させる移動機構22と、放射線照射部20が所定の位置(以下、照射位置という。)に到達した時点で、放射線照射部20から放射線検出装置12上の被写体24に対して放射線26を照射するように制御する放射線制御部28と、放射線検出装置12から順次送られてくる放射線画像を画像メモリ30に例えば経時に記憶する画像記憶部32とを有する。すなわち、この放射線画像取得部14は、放射線検出装置12に対向して設けられた放射線照射部20を複数の位置に移動しながら各照射位置において放射線照射部20から放射線検出装置12上の被写体24に対して異なる方向より放射線26を照射することによって、放射線検出装置12から複数枚の放射線画像を取得するように動作する。図1の例では、移動機構22によって放射線照射部20を直線軌道に沿って移動させた例を示しているが、その他、放射線照射部20と放射線検出装置12とを被写体24を挟んで互いに反対方向に同期移動させるようにしてもよい。
なお、放射線画像取得部14での撮影は、放射線照射部20が予め設定された複数の位置に到達した時点で行われる個々の撮影という概念と、これら個々の撮影全体を1つの撮影として捉える概念が存在する。そこで、個々の撮影を「放射線撮影」と記し、個々の撮影全体を1つの撮影として捉えた撮影を「トモシンセシス撮影」と記す。
画像再構成部16は、画像メモリ30に記憶された複数の放射線画像を再構成して、被写体24の断層画像、特に、被写体24の関心部位34における放射線検出装置12の検出面に平行な断層画像を生成する。再構成方法としては、例えば単純逆投影法やフィルタ逆投影法を採用することができる。ここで、単純逆投影法は、複数の放射線画像に再構成フィルタをかけずにそのまま複数の放射線画像をそれぞれ逆投影した後、加算処理して再構成画像を得る方法である。一方、フィルタ逆投影法は、複数の放射線画像に再構成フィルタを畳み込みフィルタとしてかけてから逆投影した後、加算処理して再構成画像を得る方法と、複数の放射線画像を一旦フーリエ変換して周波数空間のデータに置き換え、該データに再構成フィルタをかけてから逆投影した後、加算処理して再構成画像を得る方法とがあるが、いずれを採用してもよい。なお、単純逆投影法及びフィルタ逆投影法を総称して逆投影法と記す。
一方、放射線検出装置12は、筐体36と、該筐体36内に収容されたバッテリ38(図2参照)と、放射線検出器40と、検出器制御部42とを有する。
図2に示すように、放射線検出器40は、放射線26を感知して電荷を発生させるアモルファスセレン(a−Se)等の物質からなる光電変換層51を行列状のTFT(薄膜トランジスタ:Thin Film Transistor)52のアレイの上に配置した構造を有し、発生した電荷を蓄積容量53に蓄積した後、各行毎にTFT52を順次オンにして、電荷を画像信号として読み出す。図2では、光電変換層51及び蓄積容量53からなる1つの画素50と1つのTFT52との接続関係のみを示し、その他の画素50の構成については省略している。なお、アモルファスセレンは、高温になると構造が変化して機能が低下してしまうため、所定の温度範囲内で使用する必要がある。従って、筐体36内に放射線検出器40を冷却する手段を配設することが好ましい。
各画素50に接続されるTFT52には、行方向と平行に延びるゲート線54と、列方向と平行に延びる信号線56とが接続される。各ゲート線54は、ライン走査駆動部58に接続され、各信号線56は、読取回路を構成するマルチプレクサ66に接続される。
ゲート線54には、行方向に配列されたTFT52をオンオフ制御する制御信号Von、Voffがライン走査駆動部58から供給される。この場合、ライン走査駆動部58は、ゲート線54を切り替える複数の第1スイッチSW1と、第1スイッチSW1の1つを選択する選択信号を出力する行アドレスデコーダ60とを備える。行アドレスデコーダ60には、検出器制御部42からアドレス信号が供給される。
また、信号線56には、列方向に配列されたTFT52を介して各画素50の蓄積容量53に保持されている電荷が流出する。この電荷は、増幅器62によって増幅される。増幅器62には、サンプルホールド回路64を介してマルチプレクサ66が接続される。マルチプレクサ66は、信号線56を切り替える複数の第2スイッチSW2と、第2スイッチSW2の1つを選択する選択信号を出力する列アドレスデコーダ68とを備える。列アドレスデコーダ68には、検出器制御部46からアドレス信号が供給される。マルチプレクサ66には、A/D変換器70が接続され、A/D変換器70によってデジタル信号に変換された放射線画像が検出器制御部42を介して出力され、図1に示すように、画像メモリ30に記憶されることになる。つまり、画像生成装置10において放射線撮影が行われるたびに放射線検出装置12から放射線画像が出力され、出力された放射線画像が画像メモリ30に例えば経時で記憶される。
図1に戻って、この画像生成装置10は、コンソール18からの操作入力等に基づいて撮影条件を設定する設定部100と、該設定部100から供給された撮影条件等に基づいて放射線照射部20に関する移動条件102及び照射条件基本量104を決定する移動・照射条件決定部106と、該移動・照射条件決定部106により決定された移動条件102及び照射条件基本量104等を記憶するデータメモリ108と、該データメモリ108に格納された移動条件102に基づいて、放射線検出装置12上の基準位置110(図3参照)での放射線26の線量(以下、到達線量という。)が一定になるような照射情報としての照射情報112を作成する照射情報作成部114と、放射線照射部20の現在位置116(図3参照)を移動機構22から取得する位置取得部118と、該位置取得部118から供給された前記現在位置に基づいて放射線照射部20から照射する放射線26の線量(以下、照射線量という。)を決定する照射線量決定部120とを有する。
ここで、移動条件102及び照射条件基本量104について、図3を参照しながら説明する。図3に示す例では、放射線照射部20は、放射線検出装置12の検出面に対して平行な直線軌道(すなわちX軸方向)に沿って一定の速度vで移動する。具体的には、放射線照射部20は、時点t=0、位置X=−Lから放射線撮影を開始し、時点t=(2L/v)、位置X=+Lまでに放射線撮影を終了する。また、放射線照射部20は、放射線検出器40が形成する面(基準位置110)に対してDだけ離間している。
移動条件102とは、放射線検出装置12と放射線照射部20との相対的位置関係を特定する種々の変数である。放射線照射部20の移動制御に関するパラメータとして、放射線照射部20の移動方向(図3の例ではX軸の正方向)、移動速度(図3の例ではv)、軌道の形状を特定する各変数(図3の例では、X軸とのなす角が0°の直線、開始位置が−L、終了位置が+L)が含まれる。なお、放射線撮影の際に、放射線照射部20の移動と同期させて放射線検出装置12を移動又は回動させる場合には、その動作を特定できる種々のパラメータも含まれる。
また、照射条件基本量104とは、放射線照射部20が原点Oに位置する場合での、放射線26(図1参照)の照射条件パラメータである。例えば、放射線照射部20の照射線量(mAs値)、管電流(mA)、照射時間(s)等が挙げられる。なお、この一連の撮影の際に、設定変更を行わない条件、例えば、管電圧(kV)、フィルタの種類、所定の位置からの距離(図3の例ではD)等が含まれてもよい。
本実施形態に係る画像生成装置10は、基本的には以上のように構成されるものであり、次にその動作について説明する。
図4は、本実施の形態に係る画像生成装置10を用いて適切な診断画像を得るためのフローチャートである。主に図1を参照しながら説明する。
先ず、ステップS1において、撮影対象である患者(被写体24)の患者情報が、撮影に先立ち、コンソール18に予め登録される。撮影部位や撮影方法が予め決まっている場合には、これらの撮影条件も予め登録しておく。ここで、撮影条件として、放射線検出器40の変換方式の種類、放射線検出器40のサイズ、被写体24のサイズ(身長や胸囲等)を含めてもよい。
コンソール18から入力された撮影条件は、設定部100に設定された後、移動・照射条件決定部106に供給され、移動条件102及び照射条件基本量104が決定される。そして、決定された移動条件102及び照射条件基本量104は、データメモリ108に一旦記憶される。
なお、本実施の形態では、移動条件102として、放射線照射部20の移動方向(X軸の正方向の直線軌道)、移動速度(v)、開始位置(−L)、終了位置(+L)が決定される。また、照射条件基本量104として、放射線照射部20が原点Oに位置する場合での、放射線照射部20の照射線量(mAs値)、管電流(mA)、照射時間(s)、管電圧(kV)、フィルタの種類、距離Dが決定される。
その後、ステップS2において、照射情報112が作成される。データメモリ108に一旦格納された移動条件102は、照射情報作成部114に供給される。そして、前記照射情報作成部114により照射情報112が作成される。照射情報112は、放射線照射部20の各照射位置と、該各照射位置での放射線26の照射線量とを対応付ける情報であればデータ形式を問わない。例えば、テーブルデータであってもよいし、変換式の関数形及び係数データであってもよい。
また、種々の撮影条件に適した照射情報112をデータメモリ108にそれぞれ記録しておき、設定部100に設定された撮影条件に応じて最適な照射情報112を選択できるようにしてもよい。
第1の例として、放射線検出装置12が備える放射線検出器40の変換方式の種類に応じて照射情報112を複数個記憶してもよい。変換方式の一例として、入射した放射線26の線量を光電変換層51によって直接電気信号に変換する直接変換方式、入射した放射線26をシンチレータによって一旦可視光に変換した後、この可視光をアモルファスシリコン(a−Si)等の固体検出素子を用いて電気信号に変換する間接変換方式(特許第3494683号公報参照)、蓄積性蛍光体を用いたIP(Imaging Plate)等が挙げられる。また、同種の放射線検出装置12であっても、機体差を考慮した固有の照射情報112をもつようにしてもよい。
第2の例として、放射線検出器40のサイズ(検出サイズ)に応じて照射情報112を複数個記憶してもよい。例えば、各テーブルデータ間でデータ間隔の定義を共通化しておき、放射線照射部20による移動長さ(図3の例では2L)に応じてデータ量を可変にしてもよい。このようにすれば、演算処理が容易となる。
第3の例として、被写体24の身長に応じて照射情報112を複数個記憶してもよい。例えば、各テーブルデータ間でデータ間隔の定義を共通化しておき、被写体24の身長に応じてデータ量を可変にしてもよい。このようにすれば、演算処理が容易となる。
第4の例として、被写体24の胸囲等に応じて照射情報112を複数個記憶してもよい。例えば、被写体24の胸囲等の情報に基づいて被写体24の厚さ(Z方向高さ)を予め推定することにより、照射線量を調整することができる。ここで、胸囲のみならず、性別、年齢等の患者情報をあわせて参照してもよい。
その後、ステップS3において、図示しないカウンタは、計数値nを0にリセットする。
その後、ステップS4において、被写体24(患者)を画像生成装置10に誘導し、撮影部位等に応じたポジショニングを行う。
ポジショニングが終了した段階で、ステップS5に進み、オペレータのコンソール18への操作指示に基づいてトモシンセシス撮影を開始する。
ステップS6において、放射線画像取得部14は、放射線照射部20がn番目の位置に到達させるように移動機構22を制御する。
放射線照射部20がn番目の位置に到達した段階で、次のステップS7に進み、n番目の放射線撮影を行う。n番目の位置(各照射位置)における照射線量の決定方法について以下説明する。
放射線照射部20の位置情報は、位置取得部118により取得される。位置情報として、例えば、位置座標、角度、経過時間が挙げられる。
放射線照射部20の位置座標(図3に示す現在位置116)を取得する場合は、既存の位置センサを用いて取得してもよい。また、放射線照射部20の角度(図3に示すθ)を取得する場合は、既存の角度センサを用いて取得してもよい。
さらに、放射線撮影の開始時点からの経過時間tを用いて、放射線照射部20の位置又は角度を推定してもよい。具体的には、移動機構22等から取得された経過時間tと、データメモリ108に格納された移動条件102とを用いて、放射線照射部20の現在位置116又は角度θを推定することができる。
さらにまた、図示しないタイマを用いてタイミング制御を行うことにより、移動機構22を介さずに経過時間t(位置情報)を取得することができる。
そして、位置取得部118に取得された位置情報と、データメモリ108に格納された照射条件基本量104及び照射情報112とが、照射線量決定部120に供給される。そして、前記照射線量決定部120により、現在位置116に適切な放射線26の線量を決定する。
照射条件基本量104は、例えば、原点O(図3参照)の位置における照射線量Ao(=Io×To)[mAs]、管電流Io[mA]、照射時間To[s]を有している。一方、照射情報112は、各照射位置(図3の角度θ)に対する照射線量の修正係数f(θ)に関する情報を有している。
図3に示す例では、幾何学的考察により、時点tでの現在位置116における座標X、角度θは、X=−L+vt、θ=tan-1(−L+vt/D)でそれぞれ与えられることが諒解される。被写体24が存在しない状態下において、到達線量が放射線照射部20からの距離の2乗に反比例することを考慮すると、照射線量の修正係数f(θ)は、f(θ)=1/cos2θと求めることができる。
図5に示す他の例では、図3と比較して、基準位置110の座標がX軸方向にSだけ移動している点が異なる。この場合は、幾何学的考察により、時点tでの現在位置116における座標X、角度θ’は、X=−L+vt、θ’=tan-1(−L−S+vt/D)でそれぞれ与えられることが諒解される。このとき、照射線量の修正係数f(θ’)は、f(θ’)=1/cos2θ’である。
図6に示す他の例では、図3と比較して、放射線照射部20の直線軌道X’がX軸に対してφだけ傾斜している点が異なる。この場合は、幾何学的考察により、時点tでの現在位置116における座標X、角度θは、X=(−L+vt)cosφ、θ=tan-1[(−L+vt)cosφ/{D+(L−vt)sinφ}]でそれぞれ与えられることが諒解される。このとき、照射線量の修正係数f(θ)は、f(θ)={1+sinφ・(L−vt)/D}2/cos2θである。
照射情報112のデータ形式は、各照射位置に応じた適切な線量を決定できるものであればよく、種々の定義を設けることができる。
例えば、テーブルデータにおけるデータ間隔の定義は、位置取得部118により取得される位置情報(位置座標、角度、経過時間)と対応させて定義しておくことが好ましい。また、データの多少は問わず、あるいは各テーブルデータの間を補間演算により算出するようにしてもよい。
一方、テーブルデータにおけるデータ値の定義は、線量を直接的に表すデータ(具体的には、mAs値)として定義してもよい。この場合、照射情報112を取得した照射線量決定部120は、その取得値に基づいて照射条件である管電流や照射時間を決定することができる。仮に、管電流及び照射時間の各変数が離散的な値のみを採り得る場合は、これらの積算値がその取得値に最も近くなるように変数の組合せを選択するようにしてもよい。
また、mAs値を決定する際には、管電流を固定値とし、照射時間を可変値としてもよい。その際、照射情報112として、可変である照射時間を表すテーブルデータで定義してもよい。
さらに、mAs値を決定する際には、管電流を可変値とし、照射時間を固定値とする。その際、照射情報112として、可変である管電流を表すテーブルデータで定義してもよい。
さらにまた、管電流及び照射時間を表す照射情報112をデータメモリ108に別個に記憶しておき、照射線量決定部120に同時に供給してもよいことはいうまでもない。
このn番目の放射線撮影により得られたn枚目の放射線画像は、放射線検出装置12から出力され、画像記憶部32に経時に記憶された後に、画像メモリ30に記憶される。すなわち、n番目の放射線画像が取得されることになる(ステップS7)。
その後、ステップS8において、図示しないカウンタの計数値nが+1更新される。
その後、ステップS9において、放射線撮影が規定の回数(例えば100回)行われたか否かが判別される。例えば、この判別は、図示しないカウンタの計数値nが100以上であるかどうかで行われる。
放射線撮影の回数が規定の回数未満であれば、ステップS6に戻り、該ステップS6以降の処理を繰り返す。
そして、ステップS9において、放射線撮影の回数が規定の回数となった段階で、次のステップS10に進み、画像メモリ30に記憶された規定の回数分の放射線画像を、逆投影方法を用いて再構成することによって、被写体の断層画像を生成する。生成された断層画像は、画像生成装置10に接続されたモニタ17に表示される。
以上のように、放射線検出装置12上の基準位置110での到達線量が一定になるように各照射位置での照射線量を決定する構成にしたので、各照射位置から照射された放射線26の到達線量は放射線照射部20と放射線検出器40(基準位置110)との距離によらず略一定となり、画像生成装置10のSN比も前記距離によらず略一定となる。これにより、放射線検出装置12に対向して設けられた放射線照射部20を複数の位置に移動する場合であっても、放射線26の吸収コントラストが低い部位における画像描写能の低下を抑止することができる。
ところで、本実施の形態では主にトモシンセシス撮影について説明したが、全脊柱撮影や全下肢撮影のような放射線検出器40の全長より長い撮影部位の撮影、いわゆる長尺撮影の場合にも本発明を適用してもよいことはいうまでもない。例えば、放射線照射部20の位置を移動させず、その指向角を変化させて複数枚の放射線画像を得る撮影形態であっても同様に適用できる。
なお、この発明は、上述した実施形態に限定されるものではなく、この発明の主旨を逸脱しない範囲で自由に変更できることは勿論である。
例えば、光読出方式の放射線検出器を利用して放射線画像情報を取得することもできる。この光読出方式の放射線検出器では、マトリクス状に配列された各固体検出素子に放射線が入射すると、その線量に応じた静電潜像が固体検出素子に蓄積記録される。静電潜像を読み取る際には、放射線検出器に読取光を照射し、発生した電流の値を放射線画像情報として取得する。なお、放射線検出器は、消去光を放射線検出器に照射することで、残存する静電潜像である放射線画像情報を消去して再使用することができる(特開2000−105297号公報参照)。
また、上述した放射線検出器40では、TFT52を用いた例を示したが、その他、CMOS(Complementary Metal−Oxside Semiconductor)イメージセンサ等、他の撮像素子と組み合わせて実現してもよい。さらにまた、TFT52で言うところのゲート信号に相当するシフトパルスにより電荷をシフトしながら転送するCCD(Charge−Coupled Device)イメージセンサに置き換えることも可能である。
10…画像生成装置 12…放射線検出装置
14…放射線画像取得部 16…画像再構成部
17…モニタ 18…コンソール
20…放射線照射部 24…被写体
26…放射線 30…画像メモリ
40…放射線検出器 100…設定部
102…移動条件 104…照射条件基本量
106…移動・照射条件決定部 108…データメモリ
110…基準位置 112…照射情報
114…照射情報作成部 116…現在位置
118…位置取得部 120…照射線量決定部

Claims (12)

  1. 放射線照射部を複数の位置に移動する移動機構と、
    前記移動機構により前記放射線照射部を移動させながら、各照射位置において前記放射線照射部から放射線検出装置上の被写体に対して放射線を照射して、前記放射線検出装置から出力される複数枚の放射線画像を取得する放射線画像取得部と、
    前記放射線画像取得部により取得された前記複数枚の放射線画像を再構成して前記被写体の診断画像を生成する再構成部と、
    前記放射線検出装置上の基準位置での到達線量が一定になるように各前記照射位置での照射線量を決定する照射線量決定部と、
    前記照射線量決定部により決定された前記照射線量に基づいて前記照射位置に応じた放射線を前記放射線照射部から照射させる放射線制御部と
    を有することを特徴とする放射線画像生成装置。
  2. 請求項1記載の放射線画像生成装置において、
    前記照射位置と前記照射線量とを対応付けた照射情報を記録する記録部を有し、
    前記照射線量決定部は、前記記録部に記録された前記照射情報を参照して前記照射位置に応じた前記照射線量を決定する
    ことを特徴とする放射線画像生成装置。
  3. 請求項1又は2に記載の放射線画像生成装置において、
    前記移動機構は、前記放射線照射部と前記基準位置との距離が変化する位置関係下で前記放射線照射部を移動する
    ことを特徴とする放射線画像生成装置。
  4. 請求項3に記載の放射線画像生成装置において、
    前記移動機構は、前記放射線照射部を所定の直線軌道上に移動する
    ことを特徴とする放射線画像生成装置。
  5. 請求項2〜4のいずれか1項に記載の放射線画像生成装置において、
    前記照射情報は、前記照射位置に応じて順次配列されたテーブルデータであり、
    前記照射線量決定部は、前記放射線照射部の移動に応じた所定のタイミングで前記テーブルデータを順次読み出すことにより前記照射線量を決定する
    ことを特徴とする放射線画像生成装置。
  6. 請求項5記載の放射線画像生成装置において、
    前記放射線検出装置の種類を設定する第1の設定部を有し、
    前記記録部は、前記放射線検出装置の種類に応じた前記テーブルデータをそれぞれ記憶する
    ことを特徴とする放射線画像生成装置。
  7. 請求項5又は6に記載の放射線画像生成装置において、
    前記被写体のサイズを設定する第2の設定部を有し、
    前記記録部は、前記被写体のサイズに応じた前記テーブルデータをそれぞれ記憶する
    ことを特徴とする放射線画像生成装置。
  8. 請求項5〜7のいずれか1項に記載の放射線画像生成装置において、
    前記テーブルデータは、前記放射線のmAs値で定義されたデータである
    ことを特徴とする放射線画像生成装置。
  9. 請求項5〜7のいずれか1項に記載の放射線画像生成装置において、
    前記テーブルデータは、前記放射線照射部に印加する管電流で定義されたデータである
    ことを特徴とする放射線画像生成装置。
  10. 請求項5〜7のいずれか1項に記載の放射線画像生成装置において、
    前記テーブルデータは、前記放射線の照射時間で定義されたデータである
    ことを特徴とする放射線画像生成装置。
  11. 請求項1〜10のいずれか1項に記載の放射線画像生成装置は、トモシンセシス撮影又は長尺撮影に用いられる
    ことを特徴とする放射線画像生成装置。
  12. 放射線照射部を複数の位置に移動する移動ステップと、
    放射線検出装置上の基準位置での到達線量が一定になるように各照射位置での照射線量を決定する決定ステップと、
    前記放射線検出装置上の被写体に対して、決定された前記照射線量の放射線を前記放射線照射部から照射する照射ステップと、
    前記放射線検出装置から出力される複数枚の放射線画像を取得し、該複数枚の放射線画像を再構成して前記被写体の診断画像を生成する再構成ステップと
    を備えることを特徴とする放射線画像生成方法。
JP2010040899A 2010-02-25 2010-02-25 放射線画像生成装置及び放射線画像生成方法 Withdrawn JP2011172847A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010040899A JP2011172847A (ja) 2010-02-25 2010-02-25 放射線画像生成装置及び放射線画像生成方法
US13/005,341 US20110206177A1 (en) 2010-02-25 2011-01-12 Radiographic image generating apparatus and radiographic image generating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010040899A JP2011172847A (ja) 2010-02-25 2010-02-25 放射線画像生成装置及び放射線画像生成方法

Publications (1)

Publication Number Publication Date
JP2011172847A true JP2011172847A (ja) 2011-09-08

Family

ID=44476490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010040899A Withdrawn JP2011172847A (ja) 2010-02-25 2010-02-25 放射線画像生成装置及び放射線画像生成方法

Country Status (2)

Country Link
US (1) US20110206177A1 (ja)
JP (1) JP2011172847A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015019987A (ja) * 2013-07-23 2015-02-02 キヤノン株式会社 マルチ放射線発生装置及び放射線撮影システム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101875847B1 (ko) * 2016-12-07 2018-07-06 주식회사 디알텍 방사선 촬영 장치 및 이를 이용한 방사선 촬영 방법
CN110432917B (zh) * 2018-05-04 2023-07-25 上海西门子医疗器械有限公司 曝光剂量修正方法和设备、存储介质及x-射线医疗系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5365560A (en) * 1991-07-29 1994-11-15 General Electric Company Method and apparatus for acquiring a uniform distribution of radon data sufficiently dense to constitute a complete set for exact image reconstruction of an object irradiated by a cone beam source
US5867553A (en) * 1995-11-02 1999-02-02 Analogic Corporation Computed tomography scanner with reduced power x-ray source
US5680430A (en) * 1996-04-23 1997-10-21 Continental X-Ray Corporation Method and apparatus for controlling and optimizing output of an x-ray source
EP0932363B1 (en) * 1996-07-23 2010-09-15 The General Hospital Corporation Tomosynthesis system for breast imaging
US6744848B2 (en) * 2000-02-11 2004-06-01 Brandeis University Method and system for low-dose three-dimensional imaging of a scene
JP4532005B2 (ja) * 2001-03-09 2010-08-25 株式会社日立メディコ X線ct装置及びその画像表示方法
RU2397623C2 (ru) * 2005-02-11 2010-08-20 Конинклейке Филипс Электроникс Н.В. Регулирование мощности дозы в рентгенографической системе
WO2007047114A1 (en) * 2005-10-19 2007-04-26 The General Hospital Corporation Imaging system and related techniques
EP1951119A2 (en) * 2005-11-09 2008-08-06 Dexela Limited Methods and apparatus for obtaining low-dose imaging
FR2905256B1 (fr) * 2006-09-05 2008-11-21 Gen Electric Procede d'obtention d'une image de tomosynthese
JP2010119507A (ja) * 2008-11-18 2010-06-03 Fujifilm Corp 断層画像撮影装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015019987A (ja) * 2013-07-23 2015-02-02 キヤノン株式会社 マルチ放射線発生装置及び放射線撮影システム

Also Published As

Publication number Publication date
US20110206177A1 (en) 2011-08-25

Similar Documents

Publication Publication Date Title
JP5544152B2 (ja) 放射線断層画像生成装置
JP6154021B2 (ja) 放射線画像撮影装置、放射線画像撮影方法、及び放射線画像撮影プログラム
WO2015022888A1 (ja) 放射線断層像撮影装置
JP2012120652A (ja) 放射線撮影システム
JP2009207812A (ja) 放射線画像撮影装置
JP6204992B2 (ja) 放射線画像撮影装置、放射線画像撮影方法、及び放射線画像撮影プログラム
JP2011212434A (ja) 放射線画像撮影方法および装置
JP2012115577A (ja) 放射線撮影システム
JP5587640B2 (ja) 放射線画像撮影システム及び放射線画像の表示方法
JP2005204810A (ja) X線画像撮影装置
JP2011172847A (ja) 放射線画像生成装置及び放射線画像生成方法
JP5743731B2 (ja) 放射線画像撮影装置および方法
JP4393117B2 (ja) 放射線撮像装置及び水補正方法
JP2005296340A (ja) コーンビームx線ct撮影装置とそれを用いた画像取得方法
JP5049836B2 (ja) 放射線撮影方法
JP2010162154A (ja) 放射線断層画像生成装置
JP4504442B2 (ja) X線診断装置
JP2012120650A (ja) 放射線撮影システム及び放射線位相コントラスト画像生成方法
JP5889897B2 (ja) 放射線画像撮影システム及び放射線画像撮影方法
JP2010081996A (ja) サブトラクション画像処理装置及び処理方法
JP2006141905A (ja) X線撮影装置
JP2011177456A (ja) 放射線画像撮影方法及びその装置並びに放射線画像生成方法及びその装置
WO2017169312A1 (ja) 放射線画像撮影システム、画像処理装置、放射線画像撮影装置、画像処理方法、及び画像処理プログラム
JP2013180050A (ja) 放射線画像撮影制御装置、放射線画像撮影システム、放射線画像撮影装置の制御方法、及び放射線画像撮影制御プログラム
JP2000079119A (ja) X線断層撮影装置

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130507