KR20090017439A - 클러치 장치 제어방법 - Google Patents

클러치 장치 제어방법 Download PDF

Info

Publication number
KR20090017439A
KR20090017439A KR1020080079359A KR20080079359A KR20090017439A KR 20090017439 A KR20090017439 A KR 20090017439A KR 1020080079359 A KR1020080079359 A KR 1020080079359A KR 20080079359 A KR20080079359 A KR 20080079359A KR 20090017439 A KR20090017439 A KR 20090017439A
Authority
KR
South Korea
Prior art keywords
value
clutch device
torque
speed difference
estimated torque
Prior art date
Application number
KR1020080079359A
Other languages
English (en)
Other versions
KR101361592B1 (ko
Inventor
마틴 파리거
토마스 리노르트너
사이먼 카이머
헤르베르트 디트리히
Original Assignee
마그나 파워트레인 아게 운트 코 카게
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 마그나 파워트레인 아게 운트 코 카게 filed Critical 마그나 파워트레인 아게 운트 코 카게
Publication of KR20090017439A publication Critical patent/KR20090017439A/ko
Application granted granted Critical
Publication of KR101361592B1 publication Critical patent/KR101361592B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/08Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/02Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of clutch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/04Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for differential gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • F16D48/066Control of fluid pressure, e.g. using an accumulator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/104Clutch
    • F16D2500/10443Clutch type
    • F16D2500/1045Friction clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/304Signal inputs from the clutch
    • F16D2500/30401On-off signal indicating the engage or disengaged position of the clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/304Signal inputs from the clutch
    • F16D2500/30406Clutch slip
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/304Signal inputs from the clutch
    • F16D2500/3041Signal inputs from the clutch from the input shaft
    • F16D2500/30415Speed of the input shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/304Signal inputs from the clutch
    • F16D2500/3042Signal inputs from the clutch from the output shaft
    • F16D2500/30426Speed of the output shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/31Signal inputs from the vehicle
    • F16D2500/3114Vehicle wheels
    • F16D2500/3115Vehicle wheel speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/704Output parameters from the control unit; Target parameters to be controlled
    • F16D2500/70402Actuator parameters
    • F16D2500/70406Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/706Strategy of control
    • F16D2500/70605Adaptive correction; Modifying control system parameters, e.g. gains, constants, look-up tables

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Abstract

차량의 동력전달장치에서 입력요소로부터 출력요소로 토크를 전달하기 위한 클러치 장치의 제어 방법은, 클러치 장치의 작동 상태로부터 시작하여 각 추정 토크값을 반복되는 산출주기로 산출하는 과정을 포함한다. 산출 과정은, 입력요소와 출력요소 사이의 속도차에 대응하는 적어도 하나의 속도 차이값에 따라 토크 상승값을 산출하는 과정과; 적어도 마지막에 산출된 추정 토크값에 따라 토크 감소값을 산출하는 과정과; 산출된 토크 상승값의 상향 통합과 산출된 토크 감소값의 하향 통합에 의해 마지막에 산출된 추정 토크값에 기초하여 추정 토크값을 재산출하는 과정과; 재산출된 추정 토크값을 토크 문턱값과 비교하는 과정을 포함한다. 클러치 장치는 재산출된 추정 토크값이 토크 문턱값보다 낮을 때 작동 정지된다.
Figure P1020080079359
클러치 장치, 오리피스, 누설율, 온도 의존성, 동력전달장치

Description

클러치 장치 제어방법{CONTROL METHOD FOR CLUTCH ARRANGEMENT}
본 발명은 차량의 동력전달장치에서 입력요소로부터 출력요소로 토크를 전달하는 역할을 하는 클러치 장치의 제어 방법에 관한 것으로, 특히 속도차에 반응하는 이동가능한 유체역학 클러치 장치의 제어방법에 관한 것이다.
이러한 클러치 장치는 전륜(all-wheel) 구동 차량에서, 예컨대 구동장치의 구동 토크를 제2차축으로 전달하기 위하여 전환될 수 있는 상시 종동 제1차축과 종동 제2차축 사이의 속도차에 따라, 사용될 수 있다. 다른 응용분야로서, 클러치 장치는 차축의 하프 샤프트(half-shaft)로 구동 토크를 전달하기 위한 액슬 차동장치의 대용으로, 전륜(all-wheel) 구동 차량의 세로 차동장치용 블록으로, 또는 액슬 차동장치용 블록으로 사용될 수 있다.
클러치 장치는 서로 상대 회전가능한 입력요소 및 출력요소, 예컨대 입력축 및 출력축을 갖는다. 일반적으로 클러치 장치는 마찰 클러치를 구비하며, 이에 의해 입력요소와 출력요소가 서로 작동가능하게 유효하게 결합될 수 있다. 마찰 클러치는 클러치 장치의 압력 공간에 공급되는 유압에 의하여 작동한다. 압력은 입력요소와 출력요소 사이의 속도차에 반응하는 펌프에 의해 발생할 수 있다. 예컨대, 펌 프는 소위 제로토(gerotor) 펌프 또는 피로토(P-rotor) 펌프일 수 있다.
입력요소와 출력요소 사이에 속도차가 존재할 때, 작동유체가 클러치 장치의 압력 공간 내로 운반되어 마찰 클러치를 작동시키도록, 펌프가 구동된다. 이에 의해 클러치 장치의 입력요소와 출력요소 사이에서 마찰 로킹 연결이 이루어져, 이후 입력요소와 출력요소 사이의 속도차를 감소시키고, 이에 따라 펌프 동력을 감소시킨다.
몇몇 응용기술이 이와 같은 일반적인 자동조절 메커니즘을 제어할 수 있는 것이 바람직하다. 따라서 클러치 장치는 작동 정지될 수 있어야 한다. 즉, 차량의 특정 구동 상태 또는 소정의 구동상태 매개변수의 검출에 따라, 입력요소로부터 출력요소로의 토크 전달이 차단될 수 있어야 한다. 그러나, 입력요소로부터 출력요소로 상당량의 토크가 여전히 전달되는 한, 클러치 장치가 작동 정지되는 상태는 피해야 한다. 다른 측면에서 클러치 장치의 작동 정지는 현저한 부하 압력과 관련이 있으며, 어떤 상황하에서는 심지어 구동 안정성을 손상시킬 수도 있다. 일반적으로, 상당량의 토크가 전달되는 한, 클러치 장치의 작동 정지를 방지하기 위하여 적절한 센서로 순간 전달된 토크를 검출하는 것은 일반적으로 확실히 가능하다. 그러나 실제로 순간 전달된 토크의 검출은 복잡하고 고비용이어서 바람직하지 않다. 바람직하지 않은 부하 반전(load reversal)을 피하면서 토크 전달을 능동적으로 제어할 수 있는 것으로서 비례 밸브 사용이 알려져 있다. 하지만 이와 같은 비례 밸브의 사용은 복잡하여 바람직하지 않다.
본 발명의 목적은 적은 구조적 노력 및/또는 비용으로 안전하고 신뢰할 수 있는 방법으로 상당량의 부하 압력 없이 클러치 장치의 작동 정지를 가능케 하는 상술한 종류의 클러치 장치의 제어방법을 제공하는 것이다.
본 발명의 목적은 청구항 1의 특징을 갖는 방법에 의해 달성된다. 이 방법은 클러치 장치의 작동 상태로부터 시작하여 각 추정 토크값을 반복되는 산출주기로 산출하는 과정을 포함한다. 산출과정은, 입력요소와 출력요소 사이의 속도차에 대응하는 적어도 하나의 속도 차이값에 따라 토크 상승값을 산출하는 과정과; 적어도 마지막에 산출된 추정 토크값에 따라 토크 감소값을 산출하는 과정과; 산출된 토크 상승값의 상향 통합과 산출된 토크 감소값의 하향 통합에 의해 마지막에 산출된 추정 토크값에 기초하여 추정 토크값을 재산출하는 과정과; 재산출된 추정 토크값을 토크 문턱값과 비교하는 과정을 포함한다. 클러치 장치는 재산출된 추정 토크값이 토크 문턱값보다 낮을 때 작동 정지된다.
클러치 장치의 압력 공간에 공급된 유압은 결국 본 발명에 따른 방법에 의해 모델화된다. 유압은 마찰 클러치에 의해 순간 전달된 토크에 대응한다. 일반적으로, 클러치 장치의 작동 정지는 클러치 장치의 입력요소와 출력요소 사이의 속도차에 의해 발생한다. 여기서, 부가적인 펌프 압력이 축적되었는지가 고려된다. 그러나 펌프 압력의 점차적인 감소와 이에 따른 전달된 토크의 점차적인 감소에 대응하는 시간 지연도 고려된다. 이하 이에 대해 더 자세히 설명한다.
한편, 각 산출주기에서 토크 상승값은 클러치 장치의 입력요소와 출력요소 사이의 순간 속도차에 대응하는 속도 차이값의 함수로서 산출된다. 이 속도 차이값 은 입력요소와 출력요소와 연관된 개별 센서에 의해 결정될 수 있다. 그러나, 차량에 일반적으로 사용되는 바퀴 속도 센서의 신호가 속도 차이값 결정을 위해 사용되는 것이 바람직하다. 토크 상승값은 클러치 장치의 압력 공간에서 압력 증가에 상응하고, 이에 따라 전달된 토크의 증가에 상응한다.
한편, 각 산출주기에서 토크 감소값은 마지막으로 산출된 추정 토크값의 함수로서 산출된다. 이로 인해 클러치 장치의 유압 시스템의 누설, 특히 일반적으로 압력 의존적인 내부 펌프 누설이 이루어진다.
토크 추정치 산출 또는 토크 감소값의 산출 시에 부가적인 작동 매개변수가, 예컨대 적당한 모델 형성에 의해 결정되거나 측정된 작동유체의 온도가 고려될 수 있다.
마지막으로, 현재의 추정 토크값이 이전 산출주기로 산출된 추정 토크값에 기해 재산출된다. 이때, 현재 산출된 토크 상승값은 상향 통합, 즉 마지막에 산출된 토크 상승값에 가산되고, 현재 산출된 토크 감소값은 하향 통합, 즉 마지막에 산출된 추정 토크값으로부터 감산된다.
이와 같이 재산출된 추정 토크값은 토크 문턱값과 비교된다. 만일 재산출된 추정 토크값이 토크 문턱값보다 크면, 클러치 장치는 상당량의 토크가 더 이상 클러치 장치를 통해 전달되지 않는다고 가정되어야 하기 때문에 작동이 정지된다. 이로 인해 클러치 장치의 작동 정지에 부하 반전의 염려가 없어진다.
클러치 장치의 작동 정지에 대한 결정은 클러치 장치에 연결된 제어장치에 의해 작은 산출 파워로 수행될 수 있는 단순한 산출 과정에 의해 실행할 수 있다. 본질적으로, 입력요소와 출력요소 사이의 속도차에 대응하여 측정된 신호만이 요구된다. 이를 위해 차량의 바퀴 속도 센서의 신호가 사용될 수 있다. 이로써 구동 안정성의 훼손 없이 간단하고 비용 절감적인 스위칭 밸브가 사용되기 때문에, 적은 구조적 노력 및/또는 비용으로 상기 제어방법이 구현될 수 있다.
이러한 제어 방법은 단지 기본 모델로서 이해되어야 한다. 다른 변형예나 개선예도 다음에 설명하는 바와 같이 가능하다.
예를 들면, 결정된 속도차와 무관하게 토크 상승값을 산출할 때 토크 상승값이 최대 가능 값으로 제한되게 할 수 있다. 이것은 산출주기에서 최대 가능 압력 상승의 제한에 상응한다. 선택적으로 또는 부가적으로, 재산출된 추정 토크값을 최대값으로 제한하는 것은 동일한 방식으로 이루어질 수 있다. 따라서 입력요소와 출력요소 사이의 속도차의 오랜 지속에 대해서도 클러치 장치의 압력 공간 내의 특정 최대 압력만이 이루어진다는 점이 고려된다.
특히 간단하게 구현될 수 있는 본 실시예에 따라, 현재 재산출된 추정 토크값이 토크 문턱값 미만으로 하락하는 것은 클러치 장치의 작동 정지를 위한 유일한 기준을 형성한다. 따라서 이 경우 클러치 장치는 재산출된 추정 토크값이 토크 문턱값 미만인 때, 오로지 정확히 그때만, 작동이 정지된다.
그러나 선택적으로 클러치 장치의 작동 정지를 위한 부가적인 기준이 고려될 수 있다. 이 경우 클러치 장치는 재산출된 추정 토크값이 토크 문턱치 미만인 때 그리고 동시에 적어도 하나의 부가적 스위치 오프 기준이 충족되는 때만 동작이 정지된다. 여기서, "부가적 스위치 오프 기준"은 자체로는 클러치 장치의 작동 정지 를 위해 충분한 기준이 되지 못하고, 산출된 추정 토크값이 토크 문턱치 미만인 때 필요한 부가적 기준을 형성하는 것으로 이해되어야 한다. 이러한 부가적 스위치 오프 기준은, 예컨대 차량 속도가 특정 속도 문턱값을 초과해야 한다는 사실로 이루어질 수 있다. 그렇지 않으면 클러치 장치는 토크 문턱치 미만으로의 하락에도 불구하고 작동 상태를 유지하게 된다.
또한 소위 우선 스위치 오프 기준이 클러치 장치의 작동 정지를 위해 고려될 수 있다. 우선 스위치 오프 기준은 재산출된 추정 토크값을 토크 문턱값과 비교한 결과와 무관하게 클러치 장치가 완전히 작동 정지한다는 것을 뜻한다. 우선 스위치 오프 기준은 예컨대 차량의 다이나믹 구동조정장치가 구동 안정성의 동작 조정, 예를 들어 안티 블록킹 시스템(ABS) 또는 전자식 안정화 시스템(ESP)의 조정을 수행할 때 존재할 수 있다. 따라서, 클러치 장치는 본 실시예에 따라 우선 스위치 오프 기준이 충족될 때 적어도 작동 정지될 수 있다.
또한, 클러치 장치가 작동 정지된 이후, 클러치 장치가 다시 작동되어야하는지를 결정하기 위한 기준이 점검될 수 있다. 이를 위해, 클러치 장치의 입력요소와 출력요소 사이의 속도차에 대응하여 순간 속도 차이값이 반복적으로 결정되는 것이 바람직하다. 속도 차이값은 슬립 문턱값과 비교된다. 속도 차이값은 차량의 회전 속도 센서의 신호를 참조하여 간단한 방식으로 결정될 수 있다. 선택적으로, 슬립 문턱치는 예컨대 차량 속도, 차량의 조향각 및/또는 운동학상 차이 속도에 따라 (코너 반경, 차축 거리, 바퀴 직경 및 기어비에 따라) 결정될 수 있다. 이런 방식으로 결정된 속도 차이값이 슬립 문턱값 미만이면, 클러치 장치는 일반적으로 작동 하게 된다.
클러치 장치의 반복 작동을 위한 필요 충분 조건을 형성하는 것은 결정된 속도 차이값이 슬립 문턱치를 초과하게 하는 매우 간단한 실시예에 따라 이루어진다. 그러나 선택적으로 클러치 장치의 작동 정지와 관련하여 설명한 바와 같은, 부가적 스위치 온 기준 및/또는 우선 스위치 온 기준이 클러치 장치의 작동을 위해 고려될 수 있다.
다른 개선예에 따르면, 클러치 장치는 클러치 장치의 압력 공간에 공급되는 펌프의 유압에 따라 입력요소와 출력요소를 결합시키는 마찰 클러치를 구비한다. 클러치 장치의 작동 정지는 압력 공간을 저압 공간에 연결시키는 드레인 밸브를 개방함으로써 일어난다. 펌프와 병렬로 연장되고 압력 공간으로부터 저압 공간에 이르는 누설 라인에는, 실질적으로 온도 독립적인 누설 특징을 갖는 오리피스(orifice)가 배치된다.
따라서 누설 라인은 저압 공간으로부터 압력 공간으로의 작동유체를 이송하는 펌프와 병렬로 배치되어 압력 공간으로부터 저압 공간으로의 작동유체의 일정한 누설을 천천히 허용한다. 이 누설은 확실히 일반적으로 압력 의존적이다. 그러나 누설 라인에서의 누설율(시간당 누설체적)이 한정적이고 작동유체의 온도에 실질적으로 독립적이라는 점이 중요하다. 이에 의해 펌프의 누설율의 온도 의존성이 상대화되어 클러치 특성의 온도 의존성이 크게 감소한다.
드레인 밸브의 신속한 개방과 이로 인한 클러치 장치의 신속한 작동 정지는 이로써 가능해진다. 또한, 상술한 압력 추정(각 토크 감소값의 산출 및 고려)은 제 로 속도차와 한정된 누설에 기해, 그리고 감소된 온도 의존성에 기해, 매우 정확하고 신뢰할 수 있는 결과를 제공한다. 이에 의해 차량은 전륜(all-wheel) 구동(높은 인력(traction)이 요구되는 경우의 AWD 동작)으로부터 제1차축만의 구동(2WD 동작, 예컨대 전환(shunting) 동작)으로의 부하 반전 없이 신속하고 신뢰가능하게 전환될 수 있다.
누설율의 온도에 대한 충분한 독립성은 오리피스가 누설 라인에 배치되어 있다는 점에서 달성된다. 드로틀(throttle)과는 달리, 예컨대 오리피스는 작동유체의 난류만이 오리피스를 통과하는 것을 허용하고, 따라서 흐름 저항은 실제로 온도에 거의 의존적이지 않다.
상기 오리피스를 통하는 난류의 유량(Q)(시간당 체적, △V/△t)은 다음과 같이 산출된다.
Figure 112008057900913-PAT00001
여기서, α는 드래그 계수, A는 개구 횡단면의 면적, ρ는 유체의 밀도, Δp는 압력차이다. 드래그 계수(α)는 오리피스의 형태에만 의존하는 무차원 상수로서, 샤프 오리피스에 대해 약 0.6이다. 이것은 약 2.7-2.8의 저항계수 (ζ=1/α2 )에 상응한다.
반대로, 층류 모델에서 Hagen-Poiseuille 법칙에 따른 파이프를 통한 드로틀 의 유량(Q)은 다음과 같다.
Figure 112008057900913-PAT00002
여기서, r은 개구 횡단면의 반경, η는 유체의 동점성계수, l은 파이프 또는 드로틀의 길이, Δp는 압력차이다. 주로 사용되는 작동유체의 동점성계수(η)는 온도 의존적이기 때문에, 드로틀의 유량(Q) 또한 온도 의존적이다.
클러치 장치에 사용되는 펌프는 누설 라인에 의한 작동유체의 누설을 보상하기 위하여 큰 치수로 만들어질 수 있다.
다른 바람직한 개선예에 따르면, 누설 라인에 배치된 오리피스는 약 0.4-0.8mm 범위의 내경과 약 0.2-0.5mm 범위의 길이를 갖는다. 이로써 작동유체의 온도에 실질적으로 독립적인 적당한 누설율은 작동유체의 압력에 의존하는 결과가 된다.
이하 첨부 도면을 참조하여 본 발명을 예시적으로 설명한다.
도 1은 자동차의 동력전달장치를 개략적으로 나타낸다. 엔진(11)은 전동유니트(13)와 앞차축 차동기어(미도시)를 통해 앞차축(17)의 두 바퀴(15)를 구동한다. 여기서 앞차축(17)은 제1차축을 형성한다. 또한, 엔진(11)은 전동유니트(13), 카단 샤프트(Cardan shaft)(19), 클러치 장치(21) 및 뒷차축 차동기어(23)를 통해 뒷차축(27)의 두 바퀴(25)를 구동한다. 여기서 뒷차축(27)은 차량의 제2차축을 형성한 다. 차량의 전자제어장치(29)는 입력측에서 앞바퀴(15) 및 뒷바퀴(25)에 연결된 4륜 속도센서(31)에 연결되어 있다. 선택적으로 제어장치(29)는 다른 센서, 예를 들면 조향각(steering angle) 센서, 편요율(yaw rate) 센서 등(미도시)에 연결될 수 있다. 제어장치(29)는 출력측에서 클러치 장치(21)에 연결된다. 클러치 장치(21)는 엔진(11)의 구동 토크 일부를 제어장치(29)의 제어 신호에 따라 뒷차축(27)으로 전달하는 역할을 한다. 차량은 구동 토크가 클러치 장치(21)를 통해 뒷차축(27)으로 전달될 때 전륜(all-wheel) 구동이 된다. 클러치 장치(21)는 동력전달장치의 다른 위치에, 예를 들면 전동유니트(13) 또는 뒷차축 차동기어(23)에 마련될 수 있다.
도 2는 클러치 장치(21)의 가능한 실시예를 개략적으로 나타낸다. 클러치 장치(21)는 클러치 장치(21)의 회전가능한 내부 하우징(43)에 회전가능하게 고정 결합된 입력축(41)과, 입력축(41)에 대해 상대 회전가능한 출력축(45)을 갖는다. 입력축(41)과 출력축(45)은 클러치 장치(21)의 고정 외부 하우징(미도시)에 회전가능하게 지지되어 있다. 또한 클러치 장치(21)는 복수의 내측 디스크(49)와 복수의 외측 디스크(51)가 교대로 배치된 마찰 클러치(47)를 갖는다. 내측 디스크(49)는 축방향으로 이동 가능하며, 출력축(45)에 회전가능하게 고정 결합되어 있다. 외측 디스크(51)는 축방향으로 이동 가능하며, 내부 하우징(43)에 (그리고 이에 의해 상기 내부 샤프트(41)에) 회전가능하게 고정 결합되어 있다. 마찰 클러치(47)는 토크를 입력축(41)으로부터 출력축(45)으로 전달하도록 그 전방측에서 내측 디스크(49)와 외측 디스크(51)를 서로에 대해 선택적으로 가압하는, 축방향으로 이동 가능한 링 형상의 압력 피스톤(53)을 더 구비한다. 압력 피스톤(53)의 후방측은 유압 공 간(55)에 대향한다.
클러치 장치(21)는 펌프(57)를 더 구비한다. 펌프(57)는 입력축(41)과 출력축(45)의 상대 회전운동에 의해 구동되며, 이에 의해 압력 공간(55)에 유압을 발생시켜 마찰 클러치(47)의 맞물림 위치로 압력 피스톤(53)을 이동시킨다. 펌프(57)는 일반적으로 속도차에 따라 반응하는 어떠한 유압 펌프든지 사용 가능하며, 특히 순환 압축기(circulating compressor) 또는 스트로크 압축기(stroke compressor)가 사용될 수 있다. 펌프(57)는 도 3을 참조하여 후술하는 구조를 갖는 제로토 펌프(geroto pump)인 것이 바람직하다.
도 3은 도 2에 따른 제로토 펌프(57)의 횡단면도이다. 펌프(57)는 도 2에 따른 출력축(45)에 회전가능하게 고정 결합되어 축(A1)을 중심으로 회전하는 내측 러너(59)를 갖는다. 또한, 펌프(57)는 도 2에 따른 클러치 장치(21)의 내부 하우징(43)과 펌프 하우징(미도시)에 고정 결합된, 그리고 이에 따라 입력축(41)에 회전가능하게 고정 결합된 링 단면부(61)를 더 갖는다. 여기서, 링 단면부(61)도 축(A1)을 중심으로 회전한다. 링 단면부(61)는 회전축(A1)에 대해 이격된 중심(A2)을 갖는 원형 개구부(63)를 갖는다. 또한, 펌프(57)는 링 단면부(61)의 개구부(63) 내에서 축(A2)을 중심으로 회전가능하게 지지되고 내측 러너(59)를 감싸면서 내측 러너(59)와 접촉하는 외측 러너(65)를 갖는다. 내측 러너(59)는 외치 구조를 가지며, 외측 러너(65)는 내치 구조를 가진다. 외측 러너(65)의 치의 개수는 내측 러너(59)의 치의 개수보다 하나가 더 많다.
또한, 도 3에는 제1 연결공(67)과 제2 연결공(69)이 도시되어 있다. 이 연결 공들(67,69)은 도 3에 도시된 횡단면에 대해 축방향으로 이격된 펌프 하우징의 단면부에 형성되어 있다. 링 단면부(61)에 대한 내측 러너(59)의 회전 위치에 따라, 제1 연결공(67)이 펌프 입구로, 제2 연결공(69)이 펌프 출구로 기능하거나, 또는 그 반대로 기능한다.
내측 러너(59)가 링 단면부(61) 및 연결공(67,69)에 대해 상대 회전하면, 내측 러너(59)는 연결공(67,69) 중 어느 하나에서 제공되는 작동유체를 다른 하나로 원주방향으로 이송한다. 이것은 작동유체가 내측 러너(59)와 외측 러너(65) 사이에 형성된 갭에 수용된다는 사실로 인한 것이다. 갭의 체적이 내측 러너(59)의 회전시에 변화하기 때문에, 작동유체는 연결공(67,69)의 어느 하나로부터 흡입되어 다른 하나로 토출된다. 내측 러너(59)의 회전시 갭의 체적 변화는, 다른 치의 개수로 인해 다른 회전 속도가 채용된 상태에서 내측 러너(59)가 외측 러너(65)를 구동시켜 회전운동을 일으킨다는 사실, 즉 외측 러너(65)가 내측 러너(59)보다 느리게 축(A2)을 중심으로 회전한다는 사실에 의해 일어난다.
도 2를 다시 참조하면, 도 3을 참조하여 설명된 펌프(57)의 연결공(67,69)이 도시되어 있다. 흡입 라인(71)은 펌프(57)와 연결되어 있다. 즉, 흡입측에 있는 각 체크 밸브(73)를 통해 펌프(57)의 두 연결공(67,69)에 연결되어 있다. 흡입 라인(71)은 회전식 리드스루(leadthrough)(75)와 오일 필터(77)를 통해 작동유체의 유동 방향에 반대로 펌프조(79)에 연결되어 있다. 오일 필터(77)와 펌프조(79)는 클러치 장치(21)의 상기 고정 외부 하우징에 배치되어 있다. 압력측에서, 펌프(57)는 체크 밸브(81)를 거쳐 클러치 장치(21)의 압력 공간(55)으로 이어지는 압력 라 인(83)에 연결되어 있다. 작동유체는 압력 공간(55)으로부터 드레인 라인(85)과 다른 회전식 리드스루(87)를 거쳐 펌프조(79)로 흐를 수 있다. 이하 이에 대해 설명한다.
펌프(57)는, 전술한 바와 같이, 출력축(45)(도 2 참조)에 대한 입력축(41)의 회전에 상응하여, 내측 러너(59)(도 3 참조)의 회전운동에 의해 링 단면부(61)와 함께 펌프 하우징에 대해 상대 구동된다. 도 1을 참조하면, 이것은 속도차가 한편으로는 앞차축(17)의 바퀴들(15) 사이에 존재할 때, 그리고 다른 한편으로는 뒷차축(27)의 바퀴들(25) 사이에 존재할 때, 펌프(57)가 작동유체를 이송한다는 것을 뜻한다. 입력축(41)이 출력축(45) 보다 빠르게 회전하느냐 느리게 회전하느냐에 따라, 작동유체는 체크 밸브들(73) 중 하나를 통해 흡입되어 체크 밸브들(81) 중 하나를 통해 압력 공간(55)으로 이송된다(도 2 참조). 이렇게 압력 공간(55)에 축적되는 유압으로 인해, 압력 피스톤(53)은 디스크(49,51)를 마찰 록킹을 증대시키도록 마찰 클러치(47)의 디스크(49,51) 방향으로 움직인다. 이에 의해 입력축(41)과 출력축(45)은 회전이 유효해지도록 연결이 강화되고, 이에 따라 구동 토크가 입력축(41)으로부터 클러치 장치(21)를 거쳐 출력축(45)으로 전달된다. 출력축(45)의 입력축(41)에 대한 연결이 강할수록 속도차가 감소되므로, 클러치 장치(21)는 자동조절방식으로 작동한다.
그러나 입력축(41)과 출력축(45) 사이의 속도차 존재시 마찰 클러치(47)의 작동이 발생하는 것은, 단지 유압 공간(55)이 충분히 밀폐되어 있을 때뿐이다. 이와 달리, 클러치 장치(21)를 선택적으로 작동 정지시키기 위해 드레인 밸브(89)가 전기 제어 라인(91)을 통해 제어장치(29)에 의해 제어되는 마그네틱 밸브로 마련되는 것이 바람직하다. 드레인 밸브(89)가 폐쇄되면, 클러치 장치(21)는 출력축(45)을 상술한 자동조절방식으로 입력축(41)에 연결시킨다. 압력 감송와 마찰 클러치(47)에 의해 전달된 토크의 상응하는 감소는 드레인 밸브(89) 폐쇄시 누설에 의해서만 발생한다. 반대로, 드레인 밸브(89)가 개방되면, 압력 공간(55)으로 이송된 작동유체는 드레인 라인(85)를 통해 펌프조(79)로 빠져나갈 수 있고, 이에 따라 입력축(41)과 출력축(45) 사이에 속도차가 존재하는 경우에도 결과적으로 적은 구동 토크(드래그 토크)만이 입력축(41)으로부터 출력축(45)으로 전달된다.
드레인 밸브(89)는 클러치 장치(21)의 고정 외부 하우징에 배치되어 있다. 초과 압력 밸브(93)는 초과 압력 라인(95)에 드레인 밸브(89)에 병렬로 선택적으로 배치되어 있다. 이에 따라 압력 공간(55) 내의 최대 가요 유압이 제한되어 예컨대 드레인 밸브(89)의 고장에 대비할 수 있다.
드레인 밸브(89)의 폐쇄시 압력 공간(55)에서 압력 감소를 초래하는 상술한 누설이 단지 펌프(57)의 내부 누설에 의해서만 야기된다면, 클러치 장치(21)의 특성(예를 들면, 전달된 토크의 입력요소와 출력요소 간의 속도차에 대한 의존성)은 바람직하지 않게 높은 온도 의존성을 가질 것이다. 즉 펌프(57)의 내부 누설은 유체의 점도에 의존하게 되고, 이에 따라 높은 온도 의존성을 가질 것이다. 이와 같은 클러치 특성의 높은 온도 의존성은 바람직하지 않은데, 이는 온도 의존성이 후술하는 압력 상승/저하 모델을 더 복잡하게 하거나 잘못되게 할 수 있기 때문이다. 또한, 토크 전달의 매우 다른 특성 그리고 이에 의한 차량의 성능의 매우 다른 특 성을 초래하여 클러치 장치(21)에서 작동유체의 온도에 대한 의존성을 초래할 것이다.
바람직한 실시예에 따라 이와 같은 온도 의존성을 적은 비용과 노력으로 간단한 방식으로 줄이기 위해, 압력 공간(55)으로부터의 작동유체의 부가적인 누설이, 펌프(57)의 내부 누설율의 온도 의존성을 보상하기 위해 실질적으로 온도에 독립적인 누설 특성을 갖는 오리피스에 의해 직접 구현된다. 이를 위하여, 오리피스(99)가 압력 공간(55)에서부터 펌프조(79)까지 펌프(57)에 병렬 연장되는 누설 라인(97)에 배치되어 있다. 오리피스(99)의 누설율의 원하는 온도 독립성은, 특히 드로틀(throttle)과는 달리, 오리피스 구멍이 난류를 발생시켜 그 체적 유동이 오로지 관련된 온도 범위 내에서 작동유체의 압력에 필연적으로 의존한다는 사실에 근거한 것이다. 오리피스(99)는 예를 들면 상기한 클러치 장치(21)의 고정 외부 하우징에 위치한다. 스위치 밸브는 누설 라인(97)을 따라 오리피스(99)와 병렬로 선택적으로 마련된다.
드레인 밸브(89)가 클러치 장치(21)의 작동 상태로부터 시작하여 개방되어야 한다면, 드레인 밸브(89)의 개방시에 토크가 입력축(41)으로부터 출력축(45)으로 여전히 전달되고 있다면, 원치 않는 부하 반전(load reversal)이 일어날 수가 있다. 이와 같은 부하 반전은 압력 상승/감소 모델과 해당 드레인 밸브(89)의 작동에 기해 간단한 방식으로 회피할 수 있다. 이하 이에 대해 설명한다.
도 4는 클러치 장치(21)의 작동 정지 방법을 나타낸 흐름도이다. 클러치 장치(21)가 드레인 밸브(89)의 폐쇄에 의해 작동된 후(S1), 그리고 선매개변수 화(preparameterization)가 일어난 다음(S2), 연산 및 점검이 후술할 S3 단계 내지 S10 단계에 따라 각 산출주기로 실행된다. 결과는 산출 주기가 반복되거나 클러치 장치(21)가 작동 정지는 것이다(S11).
선매개변수화 단계 S2에서, 순간적 산출주기에 대한 현재의 카운터 i는 0으로 설정되고, 초기값 Mo는 예를 들면 실험 측정에 의해 고정되는 후속 산출될 추정 토크 값 M_est로 설정된다.
제1 산출주기는 러닝 카운터 i가 1 유니트 만큼 증가하는 때에 시작된다(S3). S4 단계에서, 순간 속도 차이값 Δn(i)는 클러치 장치(21)의 입력축(41)와 출력축(45) 사이의 속도차에 대응하여 결정된다. 속도 차이값 Δn(i)은, 축(17 또는 27)의 바퀴(15,25)의 센서 신호가 각각 평균화된 상태에서, 바퀴 속도 센서(31)(도 1 참조)의 신호로부터 산출되는 것이 바람직하다. S5 단계에서, 현재의 토크 상승값 ΔM_up(i)는 상기 결정된 속도 차이값 Δn(i)에 비례하여 산출된다. 이를 위해, 속도 차이값 Δn(i)는 상수 c1과 곱해진다(S5). 상수 c1은 특정 클러치 장치(21)에 대한, 특히 특정 펌프(47)에 대한 특성이다. 바람직하게, 상수 c1은 클러치 장치(21)의 측정에 의해 실험적으로 결정된다.
또한, S6 단계에서, 현재의 토크 감소값 ΔM_down(i)는 이전의 산출 주기에서 산출된 추정 토크값 ΔM_est(i-1)에 비례하여 산출된다. 이에 따라, 마지막에 산출된 추정 토크값 ΔM_est(i-1)은 특정 클러치 장치(21), 특히 특정 펌프(57) 및 선택적으로 오리피스(99)의 특성인 상수 c2에 의해 곱해진다. 상수 c2는 또한 바람직하게 클러치 장치(21)의 측정에 의해 실험적으로 결정된다. 마지막에 산출된 추 정 토크값 ΔM_est(i-1)이 제1 산출주기(i=1)에선 아직 존재하지 않기 때문에, S2 단계에서 고정된 초기값 Mo가 이를 위해 사용된다. S5 및 S6 단계의 순서는 서로 바뀔 수 있다.
S7 단계에서, 현재의 추정 토크값 M_est(i)이 다시 산출된다. 이때, 현재의 추정 상승값 ΔM_up(i)는 이전 산출주기에서 산출된 추정 토크값 ΔM_est(i-1)에 가산되며, 현재 산출된 토크 감소값 ΔM_down(i)는 그로부터 감산된다.
다음 S8 단계에서, 이와 같이 재산출된 추정 토크값 M_est(i)는 토크 문턱치 Thresh_M와 비교된다. 이 토크 문턱치 Thresh_M는 바람직하게는 소정의 상수, 예를 들면 50Nm의 토크에 해당한다.
상기 비교 결과, 재산출된 추정 토크값 M_est(i)이 토크 문턱치 Thresh_M보다 작다면, 클러치 장치(21)는 일반적으로 작동 정지되어야 한다(S11). 그러나 선택적 단계 S9에서, 부가적인 스위치 오프 기준이 점검될 수 있다. 예를 들면 차량 속도 v_Veh가 속도 문턱치 Thresh_v보다 빠른지를 점검한다. 만일 그러하다면, 클러치 장치(21)는 바로 작동 정지된다. 즉, 드레인 밸브(89)가 개방되어 입력축(41)에서 출력축(45)으로 토크 전달을 차단한다. 반대로, S9 단계에서 차량 속도 v_Veh가 속도 문턱치 Thresh_v보다 낮다면, S3 단계로 되돌아가 새로운 산출주기가 시작된다. 다른 부가적인 스위치 오프 기준도 S9 단계에서 점검될 수 있음은 당연하다. S8 단계에서 재산출된 추정 토크값 M_est(i)가 여전히 토크 문턱치 Thresh_M보다 크다면, 마찬가지로 S3 단계로 전체적으로 되돌아가 새로운 산출주기를 시작한다. 그러나, 우선 스위치 오프 기준이 만족되는지에 관한 점검이 S10 단계에서 여전히 행해질 수도 있다. 예를 들면, 제어장치(29)보다 높은 차원의 다이나믹 구동조정장치에 의해 차량의 구동 안정성에서의 조정(예를 들면 ESP)이 막 일어났는지에 대한 점검이 이루어진다. 점검 결과 그러하다면, 클러치 장치(21)는 작동 정지된다(S11). 그렇지 않다면, 전술한 바와 같이 새로운 산출과정이 S3 단계에서 시작된다. S10 단계에 따른 우선 스위치 오프 기준 점검은 예를 들면, 매 산출주기마다 우선 스위치 오프 기준을 점검되는지를 확인하도록, S3 단계와 S4 단계 사이에서 행할 수 있다. 다른 우선 스위치 오프 기준도 S10 단계에서 여전히 점검될 수 있음은 당연하다.
이와 같이, 클러치 장치(21)는 상위 차원의 다이나믹 구동조정장치의 조정이 선택적으로 부가적으로 가능한 상태에서, 도 4의 S3 및 S9 단계에 따른 연산 및 점검에 기초하여 실질적인 부하 압력 없이 작동 정지될 수 있다.
특히 최대한으로 온도 독립적인 한정된 압력 감소가, 드레인 밸브(89)의 폐쇄시 펌프(57)(도 2 참조)와 병렬인 누설 라인(97)의 오리피스(99) 배치에 근거하여, 압력 공간(55)에서 구현된다. 이에 따라, 드레인 밸브(89)의 신속한 개방과 이에 따른 클러치 장치(21)의 신속한 작동 정지가 가능해진다. 또한, 상술한 압력 추정(각 토크 감소값 ΔM_down의 산출 및 고려)은 한정된 누설 및 저하된 온도 의존성에 근거하여 특히 정확하고 신뢰할 수 있는 결과를 제공한다. 그러나, 일반적으로 작동유체의 온도를 도량형적 방식으로 검출하여 그 결과를 산출방식으로 압력 상승/감소 모델에 고려할 수 있다.
도 5는 클러치 장치(21)의 작동 정지 상태, 즉 드레인 밸브(89)의 개방시로 부터 시작하여 클러치 장치(21)의 작동시키는 방법을 나타낸 흐름도이다.
먼저, 현재의 산출주기에 대한 카운터 i가 클러치의 작동 정지 후 0으로 설정된다(S102).
각 산출 주기는 카운터 i가 1 유니트 증가할 때 시작된다(S103).
속도 차이값 Δn(i)는 도 4의 S4 단계에서 설명한 바와 같이, 입력축(41)과 출력축(45) 간의 속도차에 대응하여 결정된다(S104).
다음, 속도 차이값 Δn(i)가 슬립 문턱치 Thresh_slip보다 큰지에 대한 점검이 행해진다(S105). 상기 슬립 문턱치는 소정의 상수 또는 속도 의존값이 될 수 있다. 속도 차이값 Δn(i) 또는 슬립 문턱치 Thresh_slip은 코너링 보정값 또는 코너 보정 요소에 의해 단계 S105 이전에 보정되는 것이 바람직하다. 이 보정은, 예를 들면 바퀴 속도 센서(31)의 신호에 대해, 조향각 센서의 신호에 대해, 또는 편요율 센서의 신호에 대해 일어난다(미도시). 타이어 허용오차 보정값 또는 타이어 허용오차 요소를 고려할 수도 있다.
S105 단계에 따른 점검 결과, 속도 차이값 Δn(i)가 슬립 문턱치 Thresh_slip보다 크면, 클러치 장치(21)는 일반적으로 작동되어야 한다(S108). 그러나 선택적으로 추가 스위치 인(switch-in) 기준이 고려될 수도 있다. 예를 들면, 상위 차원의 다이나믹 구동조정장치의 구동 안정성이 현재 일어나고 있지 않는지에 대한 점검이 S106 단계에서 먼저 행해질 수 있다. 이와 같은 조정이 존재하지 않는 경우에만 S108 단계에서 클러치 장치(21)가 작동된다. 그러나, 만일 그와 같은 조정이 존재하면, S103 단계로 되돌아가 새로운 산출주기를 시작한다.
S105 단계에서 점검 결과, 현재 결정된 속도 차이값 Δn(i)가 슬립 문턱치 Thresh_slip보다 작으면, S103 단계로 전체적으로 되돌아가 새로운 산출주기를 시작해야 한다. 그러나 이때 선택적으로 우선 스위치 온 기준 점검이 이루어질 수 있다. S107 단계에서, 예를 들면 차량이 정지되고(차량 속도 v_V=0) 가스 페달이 작동하는지(Ped_act=hi)에 대한 점검이 이루어질 수 있다. 점검 결과 그러하다면, S108 단계로 이동하여 클러치 장치(21)를 작동시킴으로써, 속도 차이값 Δn(i)가 슬립 문턱치 Thresh_slip를 아직 초과하지 않더라도, 뒷차축(27)으로 구동 토크 전달을 허용하거나 준비한다. 선택적으로, S107 단계에 따른 우선 스위치 온 기준은 예를 들면, 우선 스위치 온 기준이 매 산출주기마다 점검되는지 확인하기 위해, S103 단계와 S104 단계 사이에서 점검될 수 있다.
도 4에 따른 방식으로 클러치 장치(21)가 작동 정지된 이후, 클러치 장치(21)를 작동시키기 위해 도 5에 따른 방식으로 간단하고 안정적인 제어가 이루어진다.
도 4 및 도 5에 따른 실시예에 있어서, 설명을 위해 명명된 카운터 i가 반드시 사용될 필요가 없음에 유의해야 한다. 토크 상승값 ΔM_up의 상향 통합(up integration)과 토크 감소값 ΔM_down의 하향 통합(down integration)이 계속적으로(인테그럴 오버 타임으로서), 반(半)계속적으로(카운터 i에 대해 예시된 바와 같이) 또는 시간상 등거리에 있는 다른 단계들에서 수행될 수 있음이 중요하다.
도 4에 도시한 연산은 차량의 전체 동작 중에 행해질 수 있음에 유의해야 한다. 따라서 현재 추정된 토크값 M_est는 특히 연속적으로, 즉 클러치 장치가 작동 정지된 상태에서도, 산출될 수 있다. 이 경우, 초기값 Mo는 차량의 동작 개시시에 단지 한 번만 설정된다. 이후 현재의 추정 토크값 M_est의 산출은, 클러치 장치가 작동 정지되었는지 작동되었는지에 관계없이, 항상 이미 산출된 추정 토크값 M_est에 근거하게 된다.
도 1은 클러치 장치를 갖는 차량의 동력전달장치를 나타낸 도면.
도 2는 클러치 장치를 나타낸 도면.
도 3은 제로토 펌프의 횡단면도.
도 4는 클러치 장치의 작동 정치 방법을 나타낸 흐름도.
도 5는 클러치 장치의 작동 방법을 나타낸 흐름도.
<도면의 주요 부분에 대한 부호의 설명>
11: 엔진 13: 전동유니트
15: 앞바퀴 17: 앞차축
19: 카단 샤프트 21: 클러치 장치
23: 뒷차축 차동기어 25: 뒷바퀴
27: 뒷차축 29: 제어장치
31: 바퀴 속도 센서 41: 입력축
43: 내부 하우징 45: 출력축
47: 마찰 클러치 49: 내측 디스크
51: 외측 디스크 53: 압력 피스톤
55: 압력 공간 57: 펌프
59: 내측 러너 61: 링 단면부
63: 개구부 65: 외측 러너
67: 제1 연결공 69: 제2 연결공
71: 유입 라인 73: 체크 밸브
75: 회전식 리드스루 77: 오일 필터
79: 펌프조 81: 체크 밸브
83: 압력 라인 85: 드레인 라인
87: 회전식 리드스루 89: 드레인 밸브
91: 제어 라인 93: 초과 압력 밸브
95: 초과 압력 라인 97: 누설 라인
99: 오리피스

Claims (15)

  1. 차량의 동력전달장치에서 입력요소(41)로부터 출력요소(45)로 토크를 전달하는 역할을 하는 클러치 장치(21)의 제어방법에 있어서,
    상기 클러치 장치의 작동 상태로부터 시작하여 각 추정 토크값(M_est)을 반복되는 산출주기로 산출하는 과정을 포함하고,
    상기 산출 과정은,
    상기 입력요소(41)와 상기 출력요소(45) 간의 속도차에 대응하는 적어도 하나의 속도 차이값(Δn)에 따라 토크 상승값(ΔM_up)을 산출하는 과정과;
    적어도 상기 마지막에 산출된 추정 토크값(M_est)에 따라 토크 감소값(ΔM_up)을 산출하는 과정과;
    상기 산출된 토크 상승값의 상향 통합과 상기 산출된 토크 감소값의 하향 통합에 의해 상기 마지막에 산출된 추정 토크값에 기초하여 상기 추정 토크값(M_est)을 재산출하는 과정과;
    상기 재산출된 추정 토크값(M_est)을 토크 문턱값(Thresh_M)과 비교하는 과정을 포함하고,
    상기 클러치 장치(21)는 상기 재산출된 추정 토크값이 상기 토크 문턱값보다 낮을 때 작동 정지되는 것을 특징으로 하는 클러치 장치의 제어방법.
  2. 제1항에 있어서,
    상기 산출주기는 상기 클러치 장치(21)가 상기 동작 상태가 된 이후에 개시되는 것을 특징으로 하는 클러치 장치의 제어방법.
  3. 제1항 또는 제2항에 있어서,
    소정의 시작값(Mo)이 상기 제1 산출주기에서 상기 마지막에 산출된 추정 토크값(M_est)으로 사용되는 것을 특징으로 하는 클러치 장치의 제어방법.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 산출된 토크 상승값(ΔM_up)은 최대값으로 제한되고; 및/또는
    상기 재산출된 추정 토크값(M_est)은 최대값으로 제한되는 것을 특징으로 하는 클러치 장치의 제어방법.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 클러치 장치(21)는 상기 재산출된 추정 토크값이 상기 토크 문턱값 미만일 때만 작동 정지하는 것을 특징으로 하는 클러치 장치의 제어방법.
  6. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 클러치 장치(21)는 상기 재산출된 추정 토크값이 상기 토크 문턱치 미만일 때 그리고 적어도 하나의 부가적인 스위치 오프 기준(S9)이 충족될 때만 작동 정지되는 것을 특징으로 하는 클러치 장치의 제어방법.
  7. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 클러치 장치(21)는 우선 스위치 오프 기준(S10)이 충족될 때 상기 재산출된 추정 토크값과 상기 토크 문턱값을 비교한 결과와 관계없이 작동 정지되는 것을 특징으로 하는 클러치 장치의 제어방법.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서,
    상기 클러치 장치(21)의 작동 정지상태로부터 시작하여 상기 입력요소(41)와 상기 출력요소(45) 간의 속도차에 해당하는 각각의 속도 차이값(Δn)을 반복되는 산출주기로 슬립 문턱값(Thresh_slip)과 비교하고,
    상기 클러치 장치(21)는 상기 산출된 속도 차이값이 상기 슬립 문턱값을 초과할 때 작동하는 것을 특징으로 하는 클러치 장치의 제어방법.
  9. 제8항에 있어서,
    상기 속도 차이값(Δn) 또는 상기 슬립 문턱값(Thresh_slip)은 코너링 보정값에 의해 보정되는 것을 특징으로 하는 클러치 장치의 제어방법.
  10. 제8항 또는 제9항에 있어서,
    상기 클러치 장치(21)는 상기 결정된 속도 차이값이 상기 슬립 문턱값을 초과할 때만 작동하는 것을 특징으로 하는 클러치 장치의 제어방법.
  11. 제8항 또는 제9항에 있어서,
    상기 클러치 장치(21)는 상기 결정된 속도 차이값이 상기 슬립 문턱값을 초과하고 적어도 하나의 부가적인 스위치 온 기준(S106)이 충족되는 때만 작동하는 것을 특징으로 하는 클러치 장치의 제어방법.
  12. 제8항 또는 제9항에 있어서,
    상기 클러치 장치(21)는 우선 스위치 온 기준(S107)이 충족될 때 상기 속도 차이값과 상기 슬립 문턱값을 비교한 결과와 관계없이 작동하는 것을 특징으로 하는 클러치 장치의 제어방법.
  13. 제1항 내지 제12항 중 어느 한 항에 있어서,
    상기 클러치 장치(21)는 상기 클러치 장치(21)의 압력 공간(55)에 공급된 유압에 따라 상기 입력요소(41)를 상기 출력요소(45)와 연결시키는 마찰 클러치(47)를 갖고,
    상기 클러치 장치(21)의 작동 정지는 상기 압력 공간(55)을 저압 공간(79)에 연결하는 드레인 밸브(89)를 개방함에 의해 발생하는 것을 특징으로 하는 클러치 장치의 제어방법.
  14. 제13항에 있어서,
    상기 클러치 장치(21)는 제1 펌프부(61)와 제2 펌프부(59)를 갖는 펌프(57)를 포함하며,
    상기 제1 펌프부(61)는 상기 입력요소(41)에 회전가능하게 고정 결합되고 상기 제2 펌프부(59)는 상기 출력요소(45)에 회전가능하게 고정 연결되며,
    상기 펌프는 상기 입력요소(41)와 상기 출력요소(45)의 상대 회전운동에 의해 구동되며,
    상기 펌프의 압력측은 상기 압력 공간(55)에 연결되어 있는 것을 특징으로 하는 클러치 장치의 제어방법.
  15. 제14항에 있어서,
    실질적인 온도에 독립적인 누설 특성을 갖는 오리피스(99)가, 상기 압력 공간(55)으로부터 상기 저압 공간(79)으로 이어지고 상기 펌프(57)와 병렬로 연장되는 누설 라인(97)에 배치되어 있는 것을 특징으로 하는 클러치 장치의 제어방법.
KR1020080079359A 2007-08-13 2008-08-13 클러치 장치 제어방법 KR101361592B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007038150A DE102007038150B4 (de) 2007-08-13 2007-08-13 Steuerverfahren für Kupplungsanordnung
DE102007038150.8 2007-08-13

Publications (2)

Publication Number Publication Date
KR20090017439A true KR20090017439A (ko) 2009-02-18
KR101361592B1 KR101361592B1 (ko) 2014-02-11

Family

ID=40279933

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080079359A KR101361592B1 (ko) 2007-08-13 2008-08-13 클러치 장치 제어방법

Country Status (5)

Country Link
US (1) US7949453B2 (ko)
KR (1) KR101361592B1 (ko)
CN (1) CN101387321B (ko)
DE (1) DE102007038150B4 (ko)
RU (1) RU2466311C2 (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008045264A1 (de) * 2008-09-01 2010-03-04 Magna Powertrain Ag & Co Kg Antriebssystem für ein Kraftfahrzeug
US9206898B2 (en) * 2011-05-11 2015-12-08 GM Global Technology Operations LLC Apparatus and method for operating a clutch in a transmission
JP5822615B2 (ja) * 2011-09-20 2015-11-24 アイシン・エーアイ株式会社 自動クラッチ制御装置およびその変速制御方法
JP5738828B2 (ja) * 2012-11-29 2015-06-24 富士重工業株式会社 クラッチ制御装置
DE102012023780B4 (de) * 2012-11-30 2020-07-02 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Verfahren zum Betrieb eines Antriebssystems mit einer Kupplung
DE102016200949A1 (de) * 2015-02-02 2016-08-04 Schaeffler Technologies AG & Co. KG Verfahren zum Schutz eines hydrostatischen Kupplungsaktors, insbesondere für ein Fahrzeug
US9683656B2 (en) 2015-04-27 2017-06-20 Ford Global Technologies, Llc Diagnostics for clutch torque estimation
DE102015208849A1 (de) * 2015-05-13 2016-11-17 Schaeffler Technologies AG & Co. KG Verfahren zum Schutz einer Kupplung eines Kraftfahrzeuges
EP3551902B1 (de) * 2016-12-07 2020-10-14 GKN Automotive Ltd. Verfahren zum ansteuern einer lamellenkupplung

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59103993D1 (de) 1991-10-21 1995-02-02 Steyr Daimler Puch Ag Verfahren zum Steuern der Flüssigkeitsreibungskupplung eines Systems zur Verteilung der Antriebskraft eines Kraftfahrzeuges mit Allradantrieb und steuerbares Flüssigkeitsreibungskupplungssystem.
US5337868A (en) * 1992-01-02 1994-08-16 Eaton Corporation Touch point identification for automatic clutch controller
JP3275563B2 (ja) * 1994-09-21 2002-04-15 日産自動車株式会社 車両の四輪駆動制御装置
KR0134200B1 (ko) * 1994-09-21 1998-04-18 쭈지 요시후미 차량용 사륜 구동 시스템
CA2250782C (en) * 1996-04-02 2004-11-23 New Venture Gear, Inc. Offset transfer case
GB2327248B (en) * 1997-04-09 2001-05-16 Luk Getriebe Systeme Gmbh Motor vehicle with a power train having an automated clutch
DE10045757A1 (de) * 2000-09-15 2002-03-28 Bosch Gmbh Robert Verfahren und Einrichtung zum Betrieb einer Kupplung
DE10306934A1 (de) * 2003-02-19 2004-09-02 Zf Friedrichshafen Ag Verfahren zur Anlegepunktbestimmung der Kupplung eines automatisierten Schaltgetriebes
US6808037B1 (en) * 2003-04-08 2004-10-26 New Venture Gear, Inc. On-demand transfer case
DE10333946B4 (de) * 2003-07-25 2010-01-14 Daimler Ag Lamelle für eine Lamellenkupplung
US7125364B2 (en) * 2003-11-07 2006-10-24 Magna Powertrain Usa, Inc. Control strategy for active torque control
JP4615321B2 (ja) * 2005-01-26 2011-01-19 富士重工業株式会社 4輪駆動車の制御装置
JP4823577B2 (ja) * 2005-06-10 2011-11-24 富士重工業株式会社 車両の前後駆動力配分制御装置

Also Published As

Publication number Publication date
RU2008133232A (ru) 2010-02-20
RU2466311C2 (ru) 2012-11-10
DE102007038150B4 (de) 2010-04-29
KR101361592B1 (ko) 2014-02-11
US7949453B2 (en) 2011-05-24
CN101387321B (zh) 2012-09-05
CN101387321A (zh) 2009-03-18
US20090048749A1 (en) 2009-02-19
DE102007038150A1 (de) 2009-02-26

Similar Documents

Publication Publication Date Title
KR101361592B1 (ko) 클러치 장치 제어방법
KR101441029B1 (ko) 클러치 장치
KR101522065B1 (ko) 전기유압식 토크 전달 장치
CN102105716B (zh) 液压致动器
EP2153081B1 (en) Electrohydraulic torque transfer device and control system
EP1574737A1 (en) Coupling device and improved method of controlling torque transmission
JP2002206637A (ja) 電子式駆動制御装置
JPH07167163A (ja) 伝動装置制御クラッチの較正方法
JP2021502303A (ja) 電気機械式充填レベル監視機構の機能検査方法
ITMI981238A1 (it) Procedimento per il funzionamento di una frizione automatizzata nonche&#39; per il controllo di un sensore di temperatura
JP5968551B2 (ja) 駆動力配分装置の油圧制御装置
US6131686A (en) Electronic four-wheel drive transmission
US20170089456A1 (en) Selectively controllable filtration system of a transmission and method thereof
JP2002181086A (ja) クラッチの作動方法及びスリップ制御されるクラッチ用の制御装置
JP2010156428A (ja) 流量制御弁の制御装置
JP2002114497A (ja) 産業車両における補充異常診断装置、蓄圧異常診断装置、流体式作動制御装置、油圧式作動制御装置及びブレーキ制御装置
US8602151B2 (en) Drive system for a motor vehicle
EP3978773B1 (en) Method for calibrating a coupling system of a mechanical transmission
EP3978775B1 (en) Method for calibrating a coupling system of a mechanical transmission
JP5347116B2 (ja) 液圧式に制御される自動変速機のための液圧供給システム
JP4393532B2 (ja) 車両制御装置
JPH0893794A (ja) 流体圧制御装置
JPH0911882A (ja) アンチスキッド制御装置
CN114754120A (zh) 限滑差速器的控制方法、车辆防滑系统以及车辆
JPH05164152A (ja) 回転差感応継手の伝達トルク制御装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170127

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee