KR20090011432A - Multipurpose carrier of vacuum vapor deposition material and method thereof - Google Patents

Multipurpose carrier of vacuum vapor deposition material and method thereof Download PDF

Info

Publication number
KR20090011432A
KR20090011432A KR1020070075000A KR20070075000A KR20090011432A KR 20090011432 A KR20090011432 A KR 20090011432A KR 1020070075000 A KR1020070075000 A KR 1020070075000A KR 20070075000 A KR20070075000 A KR 20070075000A KR 20090011432 A KR20090011432 A KR 20090011432A
Authority
KR
South Korea
Prior art keywords
metal
carrier
organic
deposition
inorganic
Prior art date
Application number
KR1020070075000A
Other languages
Korean (ko)
Other versions
KR101025005B1 (en
Inventor
김현중
김홍철
김정래
Original Assignee
주식회사 쎄코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 쎄코 filed Critical 주식회사 쎄코
Priority to KR1020070075000A priority Critical patent/KR101025005B1/en
Priority to JP2010518125A priority patent/JP5188575B2/en
Priority to PCT/KR2008/004352 priority patent/WO2009014398A2/en
Priority to CN2008801006455A priority patent/CN101765676B/en
Publication of KR20090011432A publication Critical patent/KR20090011432A/en
Priority to HK10111608.9A priority patent/HK1145093A1/en
Application granted granted Critical
Publication of KR101025005B1 publication Critical patent/KR101025005B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

A method for manufacturing a multipurpose carrier of vacuum deposition material is provided to produce an external of a carrier made of a metal material so as to improve intensity of the multipurpose carrier and efficiency of manufacturing the carrier. A method for manufacturing a multipurpose carrier of vacuum deposition material comprises the following steps. A metal washer covers a cylinder-type or square-type metal container(10). A ring-type frame surrounds the metal washer and compresses or welds the metal washer. The metal material is made of a component or a mixture of stainless steel, iron, copper, molybdenum, tungsten, and titanium.

Description

진공증착용 증착물질의 다목적 담체 및 그 제조방법{MULTIPURPOSE CARRIER OF VACUUM VAPOR DEPOSITION MATERIAL AND METHOD THEREOF}Multi-Purpose Carrier for Vapor Deposition for Vapor Deposition and Its Manufacturing Method {MULTIPURPOSE CARRIER OF VACUUM VAPOR DEPOSITION MATERIAL AND METHOD THEREOF}

본 발명의 목적은 본 발명에 의하여 제조된 다목적 담체를 이용하여 분말상, 입상으로 된 고상 및 다양한 점성을 갖는 액상은 물론 반고상의 슬러리 등의 형태를 갖는 유기계 및 무기계는 물론 유무기 복합화합물 등으로 제조된 다양한 형태의 증착물질을 함침 및 충진하여 진공증착기 내에서 전자빔 가열법 또는 저항 가열법에 의하여 균일하게 증착시킬 수 있도록 하는 것을 그 목적으로 한다.The object of the present invention is to prepare an organic and inorganic compound as well as an organic-inorganic composite compound having a form of a solid, powdery, and various viscous liquids, as well as semi-solid slurries, using the multipurpose carrier prepared according to the present invention. It is an object of the present invention to impregnate and fill various types of deposition materials so as to be uniformly deposited in an evaporator by electron beam heating or resistance heating.

본 발명의 진공증착용 증착물질의 다목적 담체는 스테인리스스틸, 철, 구리, 몰리브덴, 텅스텐, 티타늄 등의 금속 재질의 외부 용기와 탄소섬유펠트, 탄소섬유, 금속펠트 등의 내부 충진재 및 상부의 스테인레스스틸, 철, 구리, 몰리브덴, 텅스텐, 티타늄 등 금속재질의 메쉬 및 와셔로 구성되어 있는 일체형의 구조로 조립 또는 용접되어 하나의 매우 안정적인 구조를 형성된다. The multi-purpose carrier of the vapor deposition material of the present invention is a stainless steel, iron, copper, molybdenum, tungsten, titanium, etc., the outer container of the metal material and the inner filler of carbon fiber felt, carbon fiber, metal felt and stainless steel of the upper , Iron, Copper, Molybdenum, Tungsten, Titanium, Titanium, Titanium, etc. It is assembled or welded into an integral structure composed of a metal mesh and washer to form a very stable structure.

본 발명에 의해 제조된 다목적 담체내부에 분말상, 입상으로 된 고상 및 다양한 점성을 갖는 액상은 물론 반고상의 슬러리 등의 형태를 갖는 유기계 및 무기계는 물론 유무기 복합화합물로 구성된 증착물질을 함침 및 충진하여 진공증착기 내에서 전자빔 가열법 또는 저항 가열법에 의하여 본 발명의 다목적 담체(100)를 가열시켜 증착하고자 하는 다양한 기능을 갖는 다양한 형태의 코팅 물질을 진공증착기 내에서 균일하게 초박막으로 증착시킬 수 있도록 하는 것이 본 발명의 기술적 특징이다.Impregnating and filling deposition materials composed of organic and inorganic compounds as well as organic and inorganic compounds in the form of powders, granular solids and liquids having various viscosities, as well as semi-solid slurries in the multipurpose carrier prepared by the present invention In the vacuum evaporator, various types of coating materials having various functions to be deposited by heating the multipurpose carrier 100 of the present invention by an electron beam heating method or a resistive heating method can be uniformly deposited in an ultra thin film in the vacuum evaporator. It is a technical feature of the present invention.

최근 들어 안경렌즈를 포함한 각종 광학용 렌즈 및 필터분야를 비롯하여 휴대폰, MP3 플레이어, PMP, 노트북 등의 휴대용전자제품 및 디스플레이 제품 등에 진공증착공정을 이용하여 반사방지, 광학적 필터링, 반사율 및 흡수율의 조절, 증착컬러링 등을 통하여 다양한 시도가 수행되고 있다. 이에 진공증착이 수행되어지는 모재는 유리, 플라스틱 및 금속재질의 기재(substrate)의 표면에 산화규소, 산화티탄, 산화지르코늄 등의 산화물, 불화마그네슘 등의 불화물, 크롬, 니켈, 알루미늄, SUS 등의 금속 등 무기질 분말 및 입상재료를 이용하여 박막증착층을 형성시켜 다양한 특성을 나타나게 시도하고 있다.In recent years, anti-reflection, optical filtering, control of reflectance and absorptivity, using vacuum deposition processes for various optical lenses and filters including eyeglass lenses, portable electronics and display products such as mobile phones, MP3 players, PMPs, notebooks, Various attempts have been made through deposition coloring. The base material to be vacuum-deposited includes oxides such as silicon oxide, titanium oxide and zirconium oxide, fluorides such as magnesium fluoride, chromium, nickel, aluminum, SUS and the like on the surface of substrates made of glass, plastic and metal materials. Attempts have been made to form a thin film deposition layer using inorganic powders such as metals and granular materials to exhibit various properties.

이러한 증착층은 상기와 같이 금속 및 금속산화물 등으로 구성되어 외부환경에 의하여 쉽게 부식되거나 오염되어 탈막되는 부작용이 생기게 되는데 이를 보호하기 위하여 유기물을 코팅하여 소수성 내지는 발수성 막을 형성시키기 위한 시도를 하기도 한다. 이들 유기물을 증착하기위하여 고안된 방법 중 유기계 증착 물질을 함침시켜 진공 내에서 사용할 수 있도록 할 수 있는 담체를 사용하게 되는데 현재까지 사용되는 담체는 다공성 세라믹을 고온 열처리하여 이용(20-2003-0015078)하거나 혹은 금속분말 및 금속펠트를 고온 열처리한 것이 이용(10-2003-0058223)되어 지고 있다.The deposition layer is composed of metals and metal oxides as described above, which is easily corroded or contaminated by the external environment, resulting in side effects of film deposition. In order to protect this, an organic material is coated to attempt to form a hydrophobic or water repellent film. Among the methods designed for depositing these organic materials, a carrier that can be used in vacuum by impregnating organic deposition materials is used. The carriers used up to now are used by high-temperature heat treatment of a porous ceramic (20-2003-0015078) or Alternatively, high-temperature heat treatment of metal powder and metal felt has been used (10-2003-0058223).

이러한 증착은 진공증착에 의한 방법, 즉 전자빔을 이용한 증착 방법과 열적인 방법인 저항 가열식 방법들이 사용되고 있다. 일반적으로는 공정의 편리성 및 자동화 가능하다는 면에서 전자빔을 이용한 증착 방법이 유리하나, 현재 진공증착에서 사용되는 유기계 증착 물질의 특성과 이를 함침할 수 있는 담체로 인해 저항 가열식 방법이 주로 행해지고 있다.Such deposition is performed by a vacuum deposition method, that is, a deposition method using an electron beam and a resistance heating method that is a thermal method. In general, the deposition method using an electron beam is advantageous in terms of process convenience and automation, but resistance heating method is mainly performed due to the characteristics of the organic deposition material used in vacuum deposition and a carrier that can impregnate it.

그러나 다공성 세라믹 담체는 어느 정도 화학적 안정성을 지니고 있으나, 유기계 증착 물질을 함침하기 위해서는 담체 내부에 기공이 존재해야 하므로 밀도를 조절해야 하고, 액상의 유기계 증착물질의 함침 시 누출되지 않도록 구조적인 면을 고려해야 한다. However, the porous ceramic carrier has some chemical stability, but in order to impregnate the organic deposition material, pores must be present in the carrier, so the density must be controlled and structural aspects should be considered so as not to leak when the liquid organic deposition material is impregnated. do.

다공성 세라믹 담체는 재료가 세라믹이라는 특성상 외부충격에 의해 파손되기 쉬워 이를 방지하기 위해서 고온 열처리를 할 경우 밀도는 향상되지만 함침 할 수 있는 공간, 즉 공극률을 확보하기가 어렵다. Porous ceramic carriers tend to be damaged by external shock due to the characteristics of ceramics, so that the density is improved when high temperature heat treatment is performed to prevent them, but it is difficult to secure a space that can be impregnated, that is, porosity.

또한 공극률을 확보하기 위해 낮은 열처리를 할 경우는 세라믹 담체의 경도가 떨어져 깨지지 쉽고, 공정, 이송, 보관상에서 분진이 발생할 수 있는 단점을 내포하고 있다. In addition, when a low heat treatment is performed to secure the porosity, the hardness of the ceramic carrier is not easily broken, and thus, there is a disadvantage that dust may be generated in the process, transport, and storage.

다공성 세라믹 담체의 이러한 분진은 진공증착 방법 중 하나인 전자총 가열 방법을 이용하게 될 경우 세라믹이 가열될 수 있는 고출력을 사용할 경우 이러한 분진이 기재(substrate)의 박막증착물질에 혼입되어 증착됨으로써 증착된 박막의 특성이 제 기능을 발휘되지 못하는 문제점이 나타날 수 있다.These dusts of porous ceramic carriers are thin films deposited by incorporating and depositing these dusts into the thin film deposition material of the substrate when using a high power to heat the ceramics when the electron gun heating method, which is one of vacuum deposition methods, is used. The problem may be that the characteristics of the product do not function properly.

금속분말 및 금속펠트의 경우도 다공성 세라믹 담체와 같이 다공성을 형성하 기 위해 고온에서 열처리시켜야 하기 때문에 제조 공정상 시간 및 제조비용이 많이 들게 되고, 성형압력과 소성온도에 영향을 받게 되어 함침을 위한 공극률을 담체 전체에 일정하게 부여하기가 어렵고, 이는 유기계 증착물질의 효율을 저하시키는 원인으로 작용하게 된다. In the case of metal powder and metal felt, as in the case of porous ceramic support, heat treatment at high temperature is required to form a porosity, and thus, manufacturing time and manufacturing cost are high, and are affected by molding pressure and firing temperature. It is difficult to uniformly impart porosity to the entire carrier, which acts as a cause of lowering the efficiency of the organic deposition material.

또한 다공성 세라믹과 금속분말 및 금속펠트의 경우 액상의 유기계 증착물질을 과잉으로 함침하게 될 경우 담체의 외부에 노출된 상태로 고화가 이루어져 외부의 공기와 산화반응이 일어날 수 있으며 또한 전자빔 가열시 유기계증착물질의 분해가 이루어질 수 있으며 이러한 문제점은 양질의 박막이 형성을 얻지 못하는 원인이 되기도 한다.In the case of porous ceramics, metal powders and metal felts, if the organic organic deposition material is excessively impregnated, the solidification may be exposed to the outside of the carrier, and oxidation reaction with the outside air may occur. Decomposition of the material may occur and this problem may cause high quality thin film to fail to form.

이와 같은 다공성 세라믹이나 금속분말 및 금속 펠트 소결체를 진공증착 방법인 전자총 가열 방법이 아닌 저항 가열식 방법을 이용할 경우도 열을 전달할 수 있는 텅스텐, 탄탈륨, 몰리브덴으로 제조된 보트를 사용해야 하고, 수회 사용 후 교체해야 하는 불편함과 비용이 추가된다는 단점을 가지고 있다. Such porous ceramics, metal powders and metal felt sintered bodies should be used boats made of tungsten, tantalum and molybdenum that can transfer heat even when using a resistive heating method instead of an electron gun heating method, which is a vacuum deposition method. It has the disadvantage of adding inconvenience and cost.

또한 이러한 저항 가열식 방법은 진공 증착 시 자동화설정이 어려워 수동 작업 공정으로만 이루어져야 한다. 이러한 저항 가열식 방법을 이용한 경우는 전자총 가열 방법에 비해 균질한 박막을 얻기가 어려운 문제점이 발생된다. In addition, these resistive heating methods are difficult to automate in vacuum deposition and must only be performed by manual work processes. When such a resistive heating method is used, it is difficult to obtain a homogeneous thin film as compared with the electron gun heating method.

그리고 위와 같이 소결된 다공성 세라믹 담체나 금속분말 및 금속펠트 담체는 유기계 증착물질이 액상인 경우에만 함침이 가능하며, 공극의 크기를 폭 넓게 조절할 수 없기 때문에 미립의 고상 유기계 증착물질이 존재하더라도 진공증착에서 담체로서의 사용은 불가능하며 더욱이 고상의 유기계 증착물질에는 적용할 수 없는 등 그 활용 폭이 매우 제한적이라고 할 수 있다.The porous ceramic carrier, the metal powder, and the metal felt carrier sintered as described above can be impregnated only when the organic vapor deposition material is in a liquid state, and since the size of the pores cannot be controlled widely, vacuum deposition is carried out even if a particulate solid organic vapor deposition material is present. It is not possible to use it as a carrier in the present invention, and furthermore, it is not applicable to a solid organic deposition material.

본 발명에 의해 제조된 다목적 담체는 종래에 사용되고 있는 다공성 세라믹 담체와 금속분말 및 금속펠트 담체의 문제점을 해결함과 동시에 편리성 및 폭 넓은 적용 분야를 제공할 수 있는 진공증착용 담체를 제공하는 것이다. The multipurpose carrier prepared by the present invention is to provide a vacuum deposition carrier which can provide convenience and a wide range of applications while solving the problems of the porous ceramic carrier, the metal powder, and the metal felt carrier which are conventionally used. .

즉, 상하 마감된 일체형으로 구성되어있기 때문에 분진이 발생하지 않으며, 저항 가열식 방법은 물론 전자빔 가열 방법에 적용할 수 있고, 본 발명에 의해 제조된 다목적 담체내부에 분말상, 입상으로 된 고상 및 다양한 점성을 갖는 액상은 물론 반고상의 슬러리 등의 형태를 갖는 유기계 및 무기계는 물론 유무기 복합화합물로 구성된 증착물질을 함침 및 충진하여 진공증착기 내에서 전자빔 가열법 또는 저항 가열법에 의하여 본 발명의 다목적 담체(100)를 가열시켜 증착하고자 하는 다양한 기능을 갖는 다양한 형태의 코팅 물질을 진공증착기 내에서 균일하게 초박막으로 증착시킬 수 있도록 하는 것이 본 발명의 기술적 특징이다.That is, since it is composed of a single body with a top and bottom finish, no dust is generated, and can be applied to a resistive heating method as well as to an electron beam heating method, and to powders, granular solids, and various viscosities in the multipurpose carrier produced by the present invention. The multi-purpose carrier of the present invention by electron beam heating or resistance heating in a vacuum deposition machine by impregnating and filling a deposition material composed of an organic and inorganic compound as well as an organic-inorganic complex compound having a form of a semi-solid slurry or the like. It is a technical feature of the present invention to make it possible to deposit various types of coating materials having various functions to be deposited by heating 100 in a thin film uniformly in a vacuum evaporator.

상기 목적을 달성하기 위한 본 발명에 따른 진공증착용 담체의 바람직한 일 실시예는, 진공증착용 작업공정, 보관, 이송 중 안정성을 제공할 수 있고, 열전달에 문제점이 없는 스테인리스스틸, 철, 구리, 몰리브덴, 텅스텐, 티타늄의 금속 재질로 이루어진 원통형 혹은 사각형 형태의 외부 금속용기에 윗부분을 스테인리스스틸, 철, 구리, 몰리브덴, 텅스텐, 티타늄의 금속 재질로 이루어진 금속와셔가 덮여 환형의 테두리로 휘감아져 압착하거나 용접된 형태로 이루어진 것을 특징으로 한 다. One preferred embodiment of the carrier for vacuum deposition according to the present invention for achieving the above object is to provide stability during the vacuum deposition work process, storage, transport, stainless steel, iron, copper, without problems in heat transfer, The upper part is covered with a metal washer made of stainless steel, iron, copper, molybdenum, tungsten, or titanium in a cylindrical or square outer metal container made of molybdenum, tungsten, or titanium, and wound by an annular rim. It is characterized in that the welded form.

본 발명의 다목적 진공증착용 담체는 우선적으로 담체내부에 분말상, 입상으로 된 고상 및 다양한 점성을 갖는 액상은 물론 반고상의 슬러리 등의 형태를 갖는 유기계 및 무기계는 물론 유무기 복합화합물로 구성된 증착물질을 함침 및 충진공정 상에서 발생할 수 있는 증착물질의 손실을 없앨 수 있고, 다양한 기능 및 형태를 갖는증착물질의 진공증착 효율을 극대화할 수 있다. The multipurpose vacuum deposition carrier of the present invention preferentially utilizes a deposition material composed of organic and inorganic compounds as well as organic and inorganic compounds having a solid, semi-solid, liquid, as well as semi-solid slurry in the form of powder, granules, and the like. It is possible to eliminate the loss of the deposition material that can occur in the impregnation and filling process, it is possible to maximize the vacuum deposition efficiency of the deposition material having a variety of functions and forms.

또한 진공증착 방법인 전자빔 가열 방법과 저항 가열식 방법에 무관하게 적용할 수 있고, 외부를 금속재질을 사용함으로써 공정, 보관, 이송 시 매우 안정적이고 재사용이 가능하다. In addition, it can be applied irrespective of the electron beam heating method and the resistance heating method, which are vacuum deposition methods, and by using a metal material on the outside, it is very stable and reusable in the process, storage and transport.

더욱이 본 발명의 다목적 진공증착용 담체는 액상의 유기계 및 유무기 복합계 증착물질을 함침할 수 있을 뿐만 아니라 고상 및 반고상의 유기계, 무기계 및 유무기 복합계로 이루어진 증착물질도 충진재와 혼합하여 장입함으로써 사용할 수 있는 장점이 있다.Furthermore, the multi-purpose vacuum deposition carrier of the present invention can be used not only by impregnating liquid organic and organic-inorganic composite deposition materials, but also by mixing and filling solid and semi-solid organic, inorganic and organic-inorganic composite deposition materials with filler. There are advantages to it.

이하 본 발명의 다목적 담체를 설명한다.Hereinafter, the multipurpose carrier of the present invention will be described.

본 발명의 기본적인 구성은 도 1에 나타낸 바와 같이 외부 용기(10)는 스테인레스스틸, 철, 구리, 몰리브덴, 텅스텐, 티타늄 등의 재질로 두께가 0.10mm~0.50mm, 지름 Φ5mm~Φ60mm로 이루어진 원통형태로 되어있다. The basic configuration of the present invention, as shown in Figure 1, the outer container 10 is made of stainless steel, iron, copper, molybdenum, tungsten, titanium and the like, the thickness of 0.10mm ~ 0.50mm, diameter Φ5mm ~ Φ60mm It is.

좀 더 적절하게는 두께 0.15mm~0.35mm, 지름은 Φ10mm~Φ25mm가 적당하다. 두께가 너무 얇으면 소재의 변형이 되기 쉽고, 두께가 너무 두꺼우면 조립 및 용접 등의 후속 가공이 어렵다. More suitably, a thickness of 0.15mm to 0.35mm and a diameter of Φ10mm to Φ25mm are appropriate. If the thickness is too thin, the material is easily deformed, and if the thickness is too thick, subsequent processing such as assembly and welding is difficult.

높이는 4mm~12mm, 좀 더 적절하게는 6mm~8mm면 적당하다. The height is 4mm ~ 12mm, more suitably 6mm ~ 8mm.

이러한 외부용기는 내부의 충진재를 보호하고 분말상, 입상으로 된 고상 및 다양한 점성을 갖는 액상은 물론 반고상의 슬러리 등의 형태를 갖는 유기계 및 무기계는 물론 유무기 복합화합물로 구성된 증착물질을 함침 및 충진시 발생할 수 있는 증착물질의 손실을 완벽하게 막을 수 있고 외부의 스테인리스 재질은 전자빔 가열이나 저항 가열식의 어떠한 증착방법에서도 열전달에 빠르게 전달할 수 있는 역할을 할 수 있다. The outer container protects the fillers inside and impregnates and fills deposition materials composed of organic and inorganic compounds as well as organic and inorganic compounds in the form of powders, granular solids and liquids having various viscosities, as well as semi-solid slurries. It is possible to completely prevent the loss of deposition materials that can occur and the external stainless steel material can play a role in the rapid transfer of heat transfer in any deposition method, such as electron beam heating or resistance heating.

이러한 외부 캔의 재질은 스테인리스에 국한된 것은 아니고 철, 구리, 몰리브늄, 텅스텐, 티타늄 등 코팅코자하는 물질의 특성에 따라 열전달을 원활히 할 수 있는 금속 재질을 이용할 수 있는 것을 포함한다.The material of the outer can is not limited to stainless steel, and includes a metal material capable of smoothly transferring heat according to the characteristics of the material to be coated such as iron, copper, molybdenum, tungsten, and titanium.

본 발명의 중요부분 중의 하나인 내부 충진재(20)는 탄소섬유펠트, 탄소섬유, 탄소분말 또는 철, 구리, 스테인리스 등의 금속펠트 및 금속분말 등을 코팅소재의 특성에 맞도록 적절히 사용한다. The internal filler 20, which is one of important parts of the present invention, uses carbon fiber felt, carbon fiber, carbon powder or metal felt and metal powder such as iron, copper, stainless steel, etc. to suit the characteristics of the coating material.

가장 적절하게는 외부환경에 대하여 안정적이며 열전달 효율도 뛰어나고, 매우 가벼운 탄소섬유 및 탄소섬유펠트를 사용하는 것이 가장 효율적이다. Most suitably, it is most effective to use stable carbon fiber and carbon fiber felt which is stable to the external environment and excellent in heat transfer efficiency.

탄소섬유의 크기는 직경은 공극의 크기 및 공극률을 조절하기 위해 다양한 직경의 탄소섬유를 단독으로 사용할 수 있고, 두 종류의 이상을 사용하여 제어할 수도 있다. The size of the carbon fiber can be used by the carbon fiber of various diameters alone to control the size and the porosity of the diameter, it may be controlled by using two or more kinds.

적절하게는 직경은 20㎛~500㎛를 사용하는 것이 적당하며, 좀 더 구체적으로는 100㎛~300㎛를 사용하는 것이 가장 효과적이다. Suitably, the diameter is preferably 20 µm to 500 µm, and more specifically, 100 µm to 300 µm is most effective.

일반적으로는 이러한 탄소섬유의 직경 및 함량을 이용하여 공극의 크기 및 공극률을 제어할 수 있고, 좀 더 구체적인 공극의 크기 및 공극률은 탄소섬유를 금속용기(10)에 삽입한 후 스테인리스 메쉬와 와셔를 올린 후 금속용기(10)의 윗부분의 테두리를 환형으로 휘감아 내림으로써 캔의 높이를 낮춰 충진재인 탄소섬유의 밀도를 조절함으로써 공극의 크기 및 공극률을 이차적으로 조절함으로써 분말상, 입상으로 된 고상 및 다양한 점성을 갖는 액상은 물론 반고상의 슬러리 등의 형태를 갖는 유기계 및 무기계는 물론 유무기 복합화합물로 구성된 증착물질의 함량 및 밀도에 따라 적절하게 조절할 수 있다. In general, the size and porosity of the pore can be controlled by using the diameter and content of the carbon fiber, and more specific pore size and porosity can be obtained by inserting the carbon fiber into the metal container 10 and then using a stainless steel mesh and a washer. After raising, the upper edge of the metal container 10 is wound in an annular shape to lower the height of the can to adjust the density of the carbon fiber as a filler, thereby controlling the size and porosity of the pore secondarily, thereby making it possible to obtain a solid, granular solid and various viscosities. It can be appropriately adjusted according to the content and density of the deposition material composed of organic and inorganic, as well as organic-inorganic complex compound having the form of a semi-solid slurry or the like liquid phase having.

또한 탄소섬유는 열전달 효율이 뛰어나 유기계 증착물질의 증착 시 저항 가열식이나 전자빔 가열시 전달되는 열을 매우 효율적으로 증착물질에 전달함으로써 증착물질의 빠른 기화현상을 유발하여 박막증착의 효율을 극대화할 수 있는 장점을 지니고 있다. In addition, the carbon fiber has excellent heat transfer efficiency, so it can transfer the heat transferred during resistive heating or electron beam heating to the deposition material very efficiently when the organic deposition material is deposited, thereby inducing rapid vaporization of the deposition material and maximizing the efficiency of thin film deposition. It has advantages.

이러한 탄소섬유는 금속재질과는 달리 외부 환경에 대한 변화가 없어 장기간 보관을 할 수 있어 본 발명의 담체는 고온 열처리 후 재사용이 가능하다는 부가적인 장점을 지니고 있다.The carbon fiber has a further advantage that the carrier of the present invention can be reused after a high temperature heat treatment, unlike the metal material, which can be stored for a long time without changing the external environment.

상부는 스테인리스스틸, 철, 구리, 몰리브덴, 텅스텐, 티타늄 등의 금속메쉬(40)와 금속와셔(50)로 구성되어 있다.The upper portion is composed of a metal mesh 40 and a metal washer 50, such as stainless steel, iron, copper, molybdenum, tungsten and titanium.

금속 메쉬(40)는 충진재로 사용된 미립의 탄소섬유가 캔의 밖으로 빠져나가 는 것을 방지해 주는 역할을 수행한다. The metal mesh 40 serves to prevent the particulate carbon fiber used as the filler from falling out of the can.

좀 더 구체적인 보호를 위해서는 미립의 탄소섬유를 캔에 삽입 후 그 위에 얇은 탄소섬유펠트(30)를 덮음으로서 확실하게 미립의 탄소섬유가 캔의 밖으로 나가거나 진공증착 시 발생할 수 있는 탄소섬유의 분산을 막을 수 있다.For more specific protection, by inserting the fine carbon fiber into the can and covering the thin carbon fiber felt 30 thereon, it is possible to ensure the dispersion of the carbon fiber that can occur when the fine carbon fiber is out of the can or vacuum deposition. You can stop it.

금속와셔(50)는 캔의 윗부분을 휘감아 내릴 때 충진재 전체에 일정한 압력을 가할 수 있도록 하여 탄소섬유를 이용한 공극의 크기 및 공극률을 최종적으로 제어할 수 있는 역할을 수행한다. The metal washer 50 serves to finally control the size and porosity of the pores using carbon fibers by applying a constant pressure to the entire filler when the upper portion of the can is wound.

또한 탄소섬유, 혹은 탄소섬유펠트, 보호 메쉬를 전체적으로 안정적으로 보호하는 역할을 수행함과 동시에 전자빔이나 저항 가열에 의해 전달된 열의 방출을 막아주는 역할을 한다. 뿐만 아니라 가장 중요한 역할은 금속와셔의 중심 부분에 원형의 구멍을 내어 진공증착 시 전달된 열에 의해 기화된 유기계 증착물질이 증착될 기재로 이동할 수 있는 출구의 역할을 하는 핵심요소이다. In addition, it plays a role of stably protecting the carbon fiber, carbon fiber felt and protective mesh as a whole, and at the same time serves to prevent the emission of heat transferred by electron beam or resistance heating. In addition, the most important role is a key element that forms a circular hole in the center of the metal washer and serves as an outlet for the vaporized organic vapor deposition material to move to the substrate to be deposited by the heat transferred during vacuum deposition.

이러한 통로의 크기는 진공증착시 크기 및 높이 그리고 스테인리스 외부 금속용기의 크기에 따라 적절하게 조절되어야 하나 3mm~20mm이면 적당하고, 좀 더 구체적으로는 5mm~8mm이면 적당하다. The size of the passage should be properly adjusted according to the size and height of the vacuum deposition and the size of the stainless steel outer metal container, but 3mm ~ 20mm is appropriate, more specifically 5mm ~ 8mm is appropriate.

이러한 와셔의 통로 크기에 의해 진공증착시 기화된 유기계 물질이 직진 운동을 하면서 분산되는 각도가 결정되고, 유기계 증착 물질의 손실을 최소화할 수 있기 때문에 매우 중요 역할을 한다.The passage size of the washer plays a very important role because the angle at which the vaporized organic material is dispersed while moving in a vacuum is determined, and the loss of the organic deposition material can be minimized.

이하는 본 발명의 다목적 진공증착용 담체의 제조공정을 설명한다.The following describes the manufacturing process of the multipurpose vacuum deposition carrier of the present invention.

<실시 예1>Example 1

상기 설명된 금속용기(10)에 탄소섬유분말(20) 및 탄소섬유 펠트(30)를 장입하고 금속메쉬(40) 및 금속와셔(50)로 덮고 조립하여 라운딩 용접하여 액상의 불소계화합물을 60mg 함침하여 증착물질이 함침된 진공증착용 재료체를 제조하였다. Charge the carbon fiber powder 20 and the carbon fiber felt 30 in the metal container 10 described above, cover with a metal mesh 40 and a metal washer 50, assemble and round weld to impregnate 60 mg of the liquid fluorine compound. The vacuum evaporation material impregnated with the evaporation material was prepared.

<실시 예2>Example 2

실시 예1에서 제조된 진공증착용 재료체를 진공증착기의 전자빔 포트에 장입하여 진공증착기의 진공도 5×10-5torr에서 전자빔의 지름크기를 Φ30으로 설정하여 전자빔 전류 20mA에서 미리 장입한 유리, PMMA, PC, PET 판재에 코팅하였다.The vacuum deposition material prepared in Example 1 was loaded into the electron beam port of the vacuum evaporator, and the glass was pre-loaded at an electron beam current of 20 mA by setting the diameter size of the electron beam to Φ 30 at a vacuum degree of 5 x 10 -5 torr. , PC, PET was coated on the plate.

<실시 예3>Example 3

실시 예1에서 제조된 진공증착용 재료체를 진공증착기의 몰리브데늄 발열체 보트에 장입하여 진공증착기의 진공도 5×10-5torr에서 전류 50mA에서 미리 장입한 유리, PMMA, PC, PET 판재에 코팅하였다.The vacuum vapor deposition material prepared in Example 1 was loaded into the molybdenum heating element boat of the vacuum vapor deposition machine and coated on the glass, PMMA, PC, and PET sheet previously loaded at a current of 50 mA at a vacuum degree of 5 × 10 -5 torr. It was.

도 1은 본 발명 담체의 전체 구조도1 is an overall structural diagram of a carrier of the present invention

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

10 : 금속 외부 금속용기10: metal outer metal container

20 : 탄소섬유(펠트) 충진재20: carbon fiber (felt) filler

30 : 탄소펠트30: carbon felt

40 : 보호 금속 메쉬40: protective metal mesh

50 : 금속 와셔50: metal washer

Claims (7)

작업공정, 보관, 이송 중 안정성을 제공할 수 있고, 열전달에 문제점이 없는 스테인리스스틸, 철, 구리, 몰리브덴, 텅스텐, 티타늄의 금속 재질로 이루어진 원통형 혹은 사각형 형태의 외부 금속용기에 윗부분을 스테인리스스틸, 철, 구리, 몰리브덴, 텅스텐, 티타늄의 금속 재질로 이루어진 금속와셔가 덮여 환형의 테두리로 휘감아져 압착하거나 용접된 형태로 이루어진 진공증착용 담체.It is possible to provide stability during work process, storage, and transfer, and the upper part is made of stainless steel, cylindrical or rectangular outer metal container made of metal material of stainless steel, iron, copper, molybdenum, tungsten, and titanium which have no problem in heat transfer. A vacuum evaporation carrier comprising a metal washer made of a metal material of iron, copper, molybdenum, tungsten, and titanium, which is wound around an annular edge and pressed or welded. 제 1 항에 있어서, The method of claim 1, 외부 캔의 윗부분을 환형 테두리로 휘감을 수 있도록 만들어져 외부 캔의 높이를 조절함으로써 내부 충진재의 밀도를 제어할 수 있는 진공증착용 담체.The vacuum evaporation carrier which can control the density of the inner filling material by adjusting the height of the outer can because the upper part of the outer can is wound around the annular rim. 제 1 항에 있어서, The method of claim 1, 액상의 증착물질을 쉽게 함침할 수 있도록 기공의 크기 및 공극률을 조절할 수 있는 탄소섬유, 탄소섬유펠트, 탄소분말, 금속분말, 금속펠트 등의 충진재로 되어있는 진공증착용 담체.A vacuum evaporation carrier made of fillers such as carbon fiber, carbon fiber felt, carbon powder, metal powder, and metal felt that can control the pore size and porosity so as to easily impregnate the liquid vapor deposition material. 제 3 항에 있어서, The method of claim 3, wherein 충진재로 사용된 재료가 외부로 빠져나올 수 없도록 보호역할을 할 수 있는 스테인리스스틸, 철, 구리, 몰리브데늄, 텅스텐, 티타늄 등의 금속재질의 메쉬를 포함하는 진공증착용 담체.A vacuum deposition carrier comprising a mesh made of metal such as stainless steel, iron, copper, molybdenum, tungsten, and titanium, which can act as a protective material to prevent the material used as a filler from escaping to the outside. 충진재 및 메쉬를 보호함과 동시에 유기증착물질이 나올 수 있도록 원형의 구멍이 있는 스테인리스틸, 철, 구리, 몰리브데늄, 텅스텐, 티타늄 등의 금속재질로 만들어진 와셔를 포함하는 진공증착 담체.A vacuum deposition carrier comprising a washer made of a metal material such as stainless steel, iron, copper, molybdenum, tungsten, and titanium with a circular hole to protect the filler and the mesh and to allow the organic vapor deposition material to come out. 액상의 유기계, 무기계 혹은 유무기복합계 증착물질의 함침뿐만 아니라 분말 및 입상의 형태로 된 고상의 유기계, 무기계 혹은 유무기복합계 증착물질도 탄소섬유, 탄소분말, 금속분말등과 혼합 장입하여 사용할 수 있도록 설계된 진공증착 담체.In addition to impregnating liquid organic, inorganic, or organic-inorganic compound deposition materials, solid organic, inorganic, or organic-inorganic compound deposition materials in the form of powders and granules can be mixed with carbon fibers, carbon powders, and metal powders. Designed vacuum deposition carrier. 제 6 항에 있어서, The method of claim 6, 유기계, 무기계 및 유무기복합계 화합물의 졸상 및 겔상의 고점성의 증착물질을 탄소섬유, 탄소분말, 금속분말 등과 혼합 장입하여 사용할 수 있도록 설계된 진공증착 담체.A vacuum deposition carrier designed to be used in combination with carbon fibers, carbon powders, metal powders, and the like, in which sol and gel highly viscous deposition materials of organic, inorganic and organic-inorganic complex compounds are mixed.
KR1020070075000A 2007-07-26 2007-07-26 Multipurpose carrier of vacuum vapor deposition material and method thereof KR101025005B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020070075000A KR101025005B1 (en) 2007-07-26 2007-07-26 Multipurpose carrier of vacuum vapor deposition material and method thereof
JP2010518125A JP5188575B2 (en) 2007-07-26 2008-07-25 Multipurpose container for vacuum deposition material and method for manufacturing the same
PCT/KR2008/004352 WO2009014398A2 (en) 2007-07-26 2008-07-25 Multipurpose carrier of vacuum vapor deposition material and method thereof
CN2008801006455A CN101765676B (en) 2007-07-26 2008-07-25 Multipurpose carrier of vacuum vapor deposition material and method thereof
HK10111608.9A HK1145093A1 (en) 2007-07-26 2010-12-14 Multipurpose carrier of vacuum vapor deposition material and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070075000A KR101025005B1 (en) 2007-07-26 2007-07-26 Multipurpose carrier of vacuum vapor deposition material and method thereof

Publications (2)

Publication Number Publication Date
KR20090011432A true KR20090011432A (en) 2009-02-02
KR101025005B1 KR101025005B1 (en) 2011-03-24

Family

ID=40281990

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070075000A KR101025005B1 (en) 2007-07-26 2007-07-26 Multipurpose carrier of vacuum vapor deposition material and method thereof

Country Status (5)

Country Link
JP (1) JP5188575B2 (en)
KR (1) KR101025005B1 (en)
CN (1) CN101765676B (en)
HK (1) HK1145093A1 (en)
WO (1) WO2009014398A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014017808A1 (en) 2012-07-24 2014-01-30 주식회사 쎄코 Heating assembly for vacuum deposition, and vacuum deposition apparatus comprising same
WO2017179829A1 (en) * 2016-04-11 2017-10-19 주식회사 쎄코 Carrier for deposition

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9972128B2 (en) 2012-07-20 2018-05-15 The University Of British Columbia Methods and systems for generating polycubes and all-hexahedral meshes of an object
KR101355208B1 (en) * 2012-08-02 2014-01-27 주식회사 유라마 Organic matter carrier housing for vacuum metalizing
KR101480726B1 (en) * 2012-12-21 2015-01-09 주식회사 선익시스템 Vacuum Evaporating Apparatus
EP3066645A4 (en) 2013-11-04 2017-08-30 The University Of British Columbia Methods and systems for generating polycube segmentations from input meshes of objects
KR101404047B1 (en) 2013-11-29 2014-06-10 (주)파인켐텍 Container of vacuum deposition material
JP6694673B2 (en) * 2014-06-02 2020-05-20 キヤノンオプトロン株式会社 Evaporation source and vapor deposition method using the same
KR200480271Y1 (en) 2014-11-26 2016-05-18 (주)파인켐텍 Container For Vacuum Deposition Material
CN107208255B (en) 2014-12-19 2019-09-13 塔塔钢铁荷兰科技有限责任公司 The filter for installation of particle is removed from vapor stream
US10210657B2 (en) 2015-07-24 2019-02-19 The University Of British Columbia Methods and systems for hex-mesh optimization via edge-cone rectification
CN114134464A (en) * 2021-10-26 2022-03-04 惠州市华阳光学技术有限公司 Structural color pigment and preparation method thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02197564A (en) * 1989-01-27 1990-08-06 Nippon Dempa Kogyo Co Ltd Vacuum deposition device
JPH0783913B2 (en) * 1990-04-17 1995-09-13 国産部品工業株式会社 Wire mesh porous body for engine muffler and method of manufacturing the same
JPH04272169A (en) * 1991-02-25 1992-09-28 Shimadzu Corp Impregnating type vacuum deposition device
JPH04285157A (en) * 1991-03-12 1992-10-09 Hitachi Ltd Method for vaporizing metal
JP2892620B2 (en) * 1996-06-17 1999-05-17 株式会社東京製品開発研究所 Vacuum evaporation method for optical parts using porous ceramics sintered compact impregnated with organic film-forming substance for optical parts
JP2001183503A (en) * 1999-12-24 2001-07-06 Toray Ind Inc Method of producing optical article
JP2001323367A (en) * 2000-03-09 2001-11-22 Junji Kido Method for vapor depositing organic compound, and method for purifying organic compound
JP2001335920A (en) * 2000-05-26 2001-12-07 Toray Ind Inc Vapor deposition source, optical article and the producing method
JP2002335920A (en) * 2001-05-17 2002-11-26 House Foods Corp White color-based liquid food
JP2003264079A (en) * 2002-03-11 2003-09-19 Sanyo Electric Co Ltd Evaporation source for evaporator, evaporator using the same, and manufacturing method of organic el element
KR200322862Y1 (en) * 2003-05-16 2003-08-14 김영정 Porous Ceramic Tablet for Vacuum Coating
KR100528892B1 (en) * 2003-08-22 2005-11-15 신도현 Vehicle for carrying repellent agent for coating treatment under vacuum state
JP4001296B2 (en) * 2005-08-25 2007-10-31 トッキ株式会社 Method and apparatus for vacuum deposition of organic materials
JP2008150678A (en) * 2006-12-19 2008-07-03 Sony Corp Evaporation source, vapor deposition apparatus, vapor deposition method, apparatus for manufacturing organic electroluminescence display unit, and method for manufacturing organic electroluminescence display unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014017808A1 (en) 2012-07-24 2014-01-30 주식회사 쎄코 Heating assembly for vacuum deposition, and vacuum deposition apparatus comprising same
US9816174B2 (en) 2012-07-24 2017-11-14 Ceko Co., Ltd. Vacuum evaporation heating assembly and vacuum evaporation apparatus having the same
WO2017179829A1 (en) * 2016-04-11 2017-10-19 주식회사 쎄코 Carrier for deposition

Also Published As

Publication number Publication date
HK1145093A1 (en) 2011-04-01
KR101025005B1 (en) 2011-03-24
JP5188575B2 (en) 2013-04-24
WO2009014398A2 (en) 2009-01-29
CN101765676B (en) 2012-04-11
JP2010534767A (en) 2010-11-11
WO2009014398A3 (en) 2009-04-02
CN101765676A (en) 2010-06-30

Similar Documents

Publication Publication Date Title
KR101025005B1 (en) Multipurpose carrier of vacuum vapor deposition material and method thereof
US10895010B2 (en) Solid precursor-based delivery of fluid utilizing controlled solids morphology
US4885129A (en) Method of manufacturing heat pipe wicks
US20170225276A1 (en) Controllably-Formed Brazing Structures And Related Compositions And Methods
US6902808B2 (en) Diamond coated article bonded to a body
KR20150108832A (en) Method and apparatus for ALD processing particulate material
KR102151714B1 (en) Lithium anode comprising metal alloy foam, thermal battery comprising thereof and method for producing thereof
EP0337391B1 (en) Boron nitride containing vessel having a surface coating of titanium-iron-silicon thereon
CN1830603B (en) Porous liquid absorbing-and-holding member, process for production thereof, and alcohol absorbing-and-holding member
CA1276970C (en) Electronically and ionically conducting electrodes for thermoelectric generators
KR20220090435A (en) Precursor capsule, vessel and method
JP5576184B2 (en) Vapor deposition material for organic film formation
KR100609632B1 (en) Ceramic container of reactive materials and method for manufacturing of it
CA3076512A1 (en) Method for producing an open-pore molded body which is made of a metal, and a molded body produced using said method
CN210657114U (en) Screen cloth device and point source crucible of point source crucible
CN109594056B (en) Substrate, preparation method, hole sealing system and cladding tube
JPH11310869A (en) Thin film forming material and formation of thin film
Bertrand et al. SnO2 coated Ni particles prepared by fluidized bed chemical vapor deposition
US20200276644A1 (en) Method for producing an open-pore molded body which has a modified surface and which is made of a metal, and a molded body produced using said method
KR102050003B1 (en) Lithium anode comprising metal alloy foam, thermal battery comprising thereof and method for producing thereof
AU2001266040B2 (en) Method for applying a solid electrolytic layer to a porous electrode
KR200322862Y1 (en) Porous Ceramic Tablet for Vacuum Coating
EP3510179A1 (en) Metal active component formation in hybrid materials
KR101341592B1 (en) Method for coating on the basic material, basic material coated by the same
JP2006104047A (en) Porous body and manufacturing method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140311

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150309

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170310

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180309

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190306

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20200309

Year of fee payment: 10