JP6694673B2 - Evaporation source and vapor deposition method using the same - Google Patents

Evaporation source and vapor deposition method using the same Download PDF

Info

Publication number
JP6694673B2
JP6694673B2 JP2015110525A JP2015110525A JP6694673B2 JP 6694673 B2 JP6694673 B2 JP 6694673B2 JP 2015110525 A JP2015110525 A JP 2015110525A JP 2015110525 A JP2015110525 A JP 2015110525A JP 6694673 B2 JP6694673 B2 JP 6694673B2
Authority
JP
Japan
Prior art keywords
evaporation source
antifouling film
substance
thin film
antifouling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015110525A
Other languages
Japanese (ja)
Other versions
JP2016011460A (en
Inventor
齋藤 崇
崇 齋藤
典子 坂本
典子 坂本
須藤 健二
健二 須藤
幸弘 堀江
幸弘 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Optron Inc
Original Assignee
Canon Optron Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Optron Inc filed Critical Canon Optron Inc
Priority to JP2015110525A priority Critical patent/JP6694673B2/en
Publication of JP2016011460A publication Critical patent/JP2016011460A/en
Application granted granted Critical
Publication of JP6694673B2 publication Critical patent/JP6694673B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Description

本発明は、蒸発源に関し、特に、容器内に充填した繊維状物質に薄膜形成物質を含浸させて成る蒸発源、及び、それを用いた蒸着方法に関する。   The present invention relates to an evaporation source, and more particularly to an evaporation source formed by impregnating a fibrous substance filled in a container with a thin film forming substance, and a vapor deposition method using the same.

従来、ガラスやプラスティック等の光学基材の表面に防汚材料等の薄膜をコーティングすることが、様々な分野で一般的に行われている。ガラスやレンズへ薄膜をコーティングする用途などで透光性が重視される場合は、防汚膜が厚すぎると曇りなどの原因になるため、厳密な膜厚の制御が必要になる。   Conventionally, coating of a thin film of an antifouling material or the like on the surface of an optical substrate such as glass or plastic has been generally performed in various fields. When translucency is important for applications such as coating a thin film on glass or a lens, if the antifouling film is too thick, it may cause fogging, so strict control of the film thickness is necessary.

金属容器に繊維状物質(例えば、スチールウール)を充填し、これに防汚材料を含浸させたものを蒸発源として用いて、蒸着法により材料を加熱してガラス等の基材に防汚膜を積層させる方法は、防汚材料の加熱が容易でさらに膜成分量の制御が簡便であるため、従来から行われている(特許文献1参照)。特許文献1には、有機系被膜形成物質を繊維状の金属の塊に含浸させ、それを加熱、蒸発させ、無機コート膜上に有機系被膜を形成することが記載されている。また、撥水性、耐摩耗性、密着性に優れた有機系被膜を形成することができることも記載されている。   A metal container filled with a fibrous substance (for example, steel wool) and impregnated with an antifouling material is used as an evaporation source, and the material is heated by a vapor deposition method to form an antifouling film on a substrate such as glass. The method of laminating is conventionally performed because the antifouling material can be easily heated and the amount of the film component can be easily controlled (see Patent Document 1). Patent Document 1 describes that a lump of a fibrous metal is impregnated with an organic film-forming substance, which is heated and evaporated to form an organic film on the inorganic coat film. It is also described that an organic coating film having excellent water repellency, abrasion resistance and adhesiveness can be formed.

特開平6−340966号公報JP-A-6-340966

蒸着法による防汚膜コーティングは、これまでは眼鏡レンズの表面に対して施されることが中心で、汚れやキズの付着防止を目的として用いられることが多かった。これに対し近年は、スマートフォンやタブレット端末の普及に伴い、蒸着法による防汚膜コーティングの用途がタッチパネルにも広がってきている。この結果、使用される防汚膜の特性は、耐摩耗性に関して以前よりも高い性能が要求されるようになった。   Up to now, the antifouling film coating by the vapor deposition method has been mainly applied to the surface of the spectacle lens, and has often been used for the purpose of preventing adhesion of dirt and scratches. On the other hand, in recent years, along with the widespread use of smartphones and tablet terminals, the application of antifouling film coating by the vapor deposition method has spread to touch panels. As a result, the antifouling film used is required to have higher performance than before in terms of abrasion resistance.

そこで、本発明は、耐摩耗性能がより一層向上された防汚膜などの薄膜を基材上に形成し得る蒸発源を提供することを目的とする。   Therefore, it is an object of the present invention to provide an evaporation source capable of forming a thin film such as an antifouling film having further improved wear resistance performance on a substrate.

本発明は、容器と、前記容器内に充填された、薄膜形成物質が含浸された繊維状物質とを有する蒸発源であって、前記繊維状物質の大気圧下での水蒸気透過体積速度が、1800[cm/s]以下であることを特徴とする蒸発源である。
また、本発明は、薄膜形成物質を有する蒸発源を加熱し、前記薄膜形成物質を蒸発させ、基材に薄膜を形成する蒸着方法であって、前記蒸発源が、容器と、前記容器内に充填された、薄膜形成物質が含浸された繊維状物質とを有する蒸発源であって、前記繊維状物質の大気圧下での水蒸気透過体積速度が、1800[cm/s]以下である蒸発源であることを特徴とする蒸着方法である。
The present invention is an evaporation source having a container and a fibrous substance filled in the container and impregnated with a thin film forming substance, wherein the vapor permeation volume velocity of the fibrous substance under atmospheric pressure is: It is an evaporation source characterized by being 1800 [cm 3 / s] or less.
Further, the present invention is a vapor deposition method of heating an evaporation source having a thin film forming substance to evaporate the thin film forming substance to form a thin film on a substrate, wherein the evaporation source is a container and a container. An evaporation source comprising: a fibrous substance impregnated with a thin film forming substance, wherein the vapor permeation volume velocity of the fibrous substance at atmospheric pressure is 1800 [cm 3 / s] or less. It is a vapor deposition method characterized by being a source.

上記のように構成した本発明によれば、基材に形成される薄膜の耐摩耗性能を向上させることができる。
また、本発明によれば、基材上での凝集物の発生を低減することができる。
According to the present invention configured as described above, it is possible to improve the wear resistance performance of the thin film formed on the base material.
Further, according to the present invention, it is possible to reduce the generation of aggregates on the substrate.

本実施形態による蒸発源の構成例を示す図である。It is a figure which shows the structural example of the evaporation source by this embodiment. 40℃の温度環境下で保存した5種類の蒸発源を用いて成膜した防汚膜について耐摩耗性能を比較した結果を示す図である。It is a figure which shows the result of having compared the abrasion resistance performance about the antifouling film formed using 5 types of evaporation sources preserve | saved under the temperature environment of 40 degreeC. −15℃の温度環境下で保存した3種類の蒸発源を用いて成膜した防汚膜について耐摩耗性能を比較した結果を示す図である。It is a figure which shows the result of comparing abrasion resistance performance about the antifouling film formed using three types of evaporation sources preserve | saved under the temperature environment of -15 degreeC. 25℃の温度環境下で保存した3種類の蒸発源を用いて成膜した防汚膜について耐摩耗性能を比較した結果を示す図である。It is a figure which shows the result of having compared the abrasion resistance performance about the antifouling film formed using three types of evaporation sources preserve | saved under the temperature environment of 25 degreeC. 40℃の温度環境下で保存した5種類の蒸発源を用いて成膜した防汚膜の表面の観察結果を示す図である。It is a figure which shows the observation result of the surface of the antifouling film formed using five types of evaporation sources preserve | saved under the temperature environment of 40 degreeC. 防汚膜の膜面に見られる水滴状の凝集物の観察結果を示す図である。It is a figure which shows the observation result of the water-drop-shaped aggregate observed on the film surface of an antifouling film.

以下、本発明の一実施形態を図面に基づいて説明する。図1は、本実施形態による蒸発源の構成例を示す図である。図1に示すように、本実施形態の蒸発源10は、例えば金属製の容器1内に繊維状物質3を充填し、当該繊維状物質3に薄膜形成物質2を含浸させた構成となっている。   An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a configuration example of an evaporation source according to the present embodiment. As shown in FIG. 1, the evaporation source 10 of the present embodiment has a configuration in which, for example, a metal container 1 is filled with a fibrous substance 3 and the fibrous substance 3 is impregnated with a thin film forming substance 2. There is.

薄膜形成物質2は、例えば、蒸着法によって光学基材の表面に防汚膜をコーティングする際に用いる防汚材料である。本実施形態では、薄膜形成物質2の一例として、アルコキシシラン[Si(OC2n+1]基を有するシランカップリング剤を用いる。また、本実施形態では、繊維状物質3の一例として、スチールウールを用いる。 The thin film forming substance 2 is, for example, an antifouling material used when coating the surface of the optical substrate with an antifouling film by a vapor deposition method. In the present embodiment, as an example of a thin-film forming material 2, alkoxysilane [Si (OC n H 2n + 1) m] a silane coupling agent having a group. Further, in this embodiment, steel wool is used as an example of the fibrous substance 3.

以下に、このように構成した本実施形態による蒸発源10に関し、薄膜形成物質2を用いて蒸着法により基材の表面に成膜した防汚膜について行った耐摩耗性能の試験結果を説明する。すなわち、蒸発源10を加熱して内部の薄膜形成物質2を蒸発させ、繊維状物質3を通して出てくる蒸気を基材の表面に薄膜として付着させることによって防汚膜を生成した後、耐摩耗性能の試験を行った。   Hereinafter, with respect to the evaporation source 10 according to the present embodiment configured as described above, the test results of the wear resistance performance of the antifouling film formed on the surface of the substrate by the vapor deposition method using the thin film forming substance 2 will be described. . That is, the evaporation source 10 is heated to evaporate the thin film forming substance 2 inside, and vapor generated through the fibrous substance 3 is adhered to the surface of the substrate as a thin film to form an antifouling film, and then the abrasion resistant film is formed. A performance test was conducted.

図2は、繊維状物質3のコンダクタンスを変えて5種類(サンプル#1〜#5)の蒸発源10を作製し、これを40℃の環境にて1週間保管したのちに、それぞれの薄膜形成物質2を用いて防汚膜を成膜し、膜の耐摩耗性能を比較した結果を示す図である。コンダクタンスの定義は、繊維状物質3中を通過できる水蒸気の量(水蒸気透過体積速度)で表した。   FIG. 2 shows that 5 types (samples # 1 to # 5) of evaporation sources 10 were prepared by changing the conductance of the fibrous substance 3, and the evaporation sources 10 were stored in an environment of 40 ° C. for 1 week, and then each thin film was formed. It is a figure which shows the result of having formed the antifouling film using the substance 2 and comparing the abrasion resistance performance of the film. The conductance is defined by the amount of water vapor that can pass through the fibrous substance 3 (water vapor transmission volume velocity).

本発明における水蒸気透過体積速度は、JIS K3832に準拠したバブルポイント法によって測定した値である。かかるバブルポイント法に基づく測定が可能な装置として、本発明においては貫通細孔評価法に用いるパームポロメーターを用いた。バブルポイント法を応用、拡張することで、空気圧と空気流量との関係を測定することにより、貫通孔の細孔径分布を求めることができる。評価可能な細孔径は0.1μm〜100μm程度であり、水銀圧入法の測定範囲とほぼ重複するが、気体、液体の透過性を支配するネック(最細)部を捉えることができるという特徴を有する。なお、細孔径分布のほか、透水圧(水が貫通孔を透過するのに要する最低圧力であり、撥水性評価の指標になり得る)、空気透過性、水蒸気透過性、水透過性、比表面積の測定も可能である。   The water vapor transmission volume velocity in the present invention is a value measured by the bubble point method based on JIS K3832. In the present invention, a palm porometer used in the through pore evaluation method was used as an apparatus capable of measurement based on the bubble point method. By applying and expanding the bubble point method, the pore size distribution of the through holes can be obtained by measuring the relationship between the air pressure and the air flow rate. The pore size that can be evaluated is about 0.1 μm to 100 μm, which almost overlaps with the measurement range of the mercury porosimetry method, but the neck (thinnest) part that controls the permeability of gas and liquid can be captured. Have. In addition to the pore size distribution, the water permeation pressure (the minimum pressure required for water to permeate through holes, which can be an index for water repellency evaluation), air permeability, water vapor permeability, water permeability, specific surface area Can also be measured.

水蒸気透過体積速度の測定は、具体的には以下のように行なった。
蒸発源10から繊維状物質3のスチールウールを取り出し、Φ13mmの円盤状となるよう切り出したものを試料とした。試料を測定機(PMI製CFP−1200−AEXLSPHBB)にセットし、水蒸気(粘度0.01cP)を試薬として用いて、101[kPa]の大気圧条件における1秒あたりの水蒸気の透過流量[cm3/s]を、10[L/min]と200[L/min]のマスフローメーターにて測定した。
The water vapor permeation volume velocity was specifically measured as follows.
Steel wool of the fibrous substance 3 was taken out from the evaporation source 10 and cut into a disk shape having a diameter of 13 mm, which was used as a sample. The sample was set in a measuring machine (CFP-1200-AEXLSPHBB manufactured by PMI), and water vapor (viscosity 0.01 cP) was used as a reagent, and the permeation flow rate of water vapor per second under an atmospheric pressure condition of 101 [kPa] [cm3 / [s] was measured with a mass flow meter of 10 [L / min] and 200 [L / min].

この図2に示すものは、スチールウール#0000を用いて擦傷試験を行った結果である。具体的には、スチールウールを防汚膜の表面に載せ、1kg/cmの荷重をかけた状態で、60往復/minのスピードで擦傷試験を行った。また、スチールウールによる摩擦後の耐摩耗性能の評価は、対水接触角の測定により行った。具体的には、スチールウールで5000回摩擦を行った後、防汚膜の表面に液滴を作って対水接触角を測定した。 The result shown in FIG. 2 is the result of a scratch test using steel wool # 0000. Specifically, steel wool was placed on the surface of the antifouling film, and a scratch test was performed at a speed of 60 reciprocations / min while a load of 1 kg / cm 2 was applied. Further, the evaluation of the wear resistance performance after rubbing with steel wool was performed by measuring the contact angle with water. Specifically, after rubbing 5000 times with steel wool, droplets were formed on the surface of the antifouling film and the contact angle with water was measured.

対水接触角とは、固体と液体とが接触する点における液体表面に対する接線と固体表面とが成す角度のことであり、数値が大きいほど汚れが付着し難いことを表す。5000回の摩擦によっても対水接触角の値が大きいまま維持できていれば、摩擦による防汚膜の表面の傷が少なく、ひいては汚れが付着し難い状態が維持できており、耐摩耗性能に優れた防汚膜であることを表す。本実施形態では、5000回の摩擦後に防汚膜の表面の9ヵ所において対水接触角を測定し、9点における対水接触角の平均値が100°以上の場合を合格、100°未満となる場合を不合格とした。   The contact angle with water is the angle formed by the tangent to the liquid surface and the solid surface at the point where the solid and liquid come into contact with each other, and the larger the value, the more difficult the stain is to adhere. If the contact angle against water can be maintained at a large value even after 5000 times of friction, the surface of the antifouling film is less scratched by friction, and it is possible to maintain a state in which dirt is unlikely to adhere, which improves wear resistance. Represents an excellent antifouling film. In the present embodiment, the contact angle with water is measured at nine points on the surface of the antifouling film after rubbing 5000 times, and the case where the average value of the contact angles with water at 9 points is 100 ° or more is passed, and is less than 100 °. The case was rejected.

なお、作製した蒸発源10を1週間保管したのちに耐摩耗性能の試験を行ったのは、保管期間中に薄膜形成物質2が大気中の水分とどのくらい反応して性能が劣化するかを確認するためである。また、保管期間中の温度を40℃としたのは、真夏の最も過酷な温度条件を想定したものである。蒸発源10を冷凍保存すれば薄膜形成物質2の劣化を遅らせることは可能であるが、輸送の環境や取り扱いの簡便さを考慮すると、常温環境で保管に耐え得ることが望ましい。また、スチールウールによる摩擦回数を5000回としたのは、これが従来よりも多い回数であり、少なくとも5000回の耐摩耗性能を有していれば、タッチパネルの用途にも十分使えると考えられるからである。   The produced evaporation source 10 was stored for 1 week and then tested for abrasion resistance by confirming how much the thin film forming substance 2 reacts with moisture in the atmosphere during the storage period to deteriorate the performance. This is because Further, the temperature during the storage period was set to 40 ° C. on the assumption of the most severe temperature condition in midsummer. Although it is possible to delay the deterioration of the thin film forming substance 2 by freezing and storing the evaporation source 10, it is desirable to be able to withstand storage at room temperature environment in consideration of the transportation environment and the ease of handling. In addition, the number of times of rubbing with steel wool was set to 5000 times because it is more times than before, and if it has at least 5000 abrasion resistance performance, it is considered that it can be sufficiently used for touch panel applications. is there.

図2に示すように、水蒸気透過体積速度を1999[cm/s]としたサンプル#1の場合、成膜した防汚膜を5000回摩耗した後に測定した対水接触角の平均値は99.1°であり、評価結果は不合格であった。これに対し、1754[cm/s]以下で796[cm/s]以上の範囲で水蒸気透過体積速度を設定したサンプル#2〜#5の場合、成膜した防汚膜を5000回摩耗した後に測定した対水接触角の平均値は何れも100°を超えており、良好な耐摩耗性能が保たれていた。 As shown in FIG. 2, in the case of sample # 1 having a water vapor transmission volume velocity of 1999 [cm 3 / s], the average value of the contact angle against water measured after the deposited antifouling film was worn 5000 times was 99. It was .1 °, and the evaluation result was unacceptable. On the other hand, in the case of Samples # 2 to # 5 in which the water vapor permeation volume velocity was set in the range of 1754 [cm 3 / s] or less and 796 [cm 3 / s] or more, the deposited antifouling film was worn 5000 times. The average value of the contact angle with water measured after the test was over 100 °, and good wear resistance performance was maintained.

図3は、図2に示したサンプル#1〜#3と同じ3種類の蒸発源10について、それぞれを−15℃の環境にて1週間保管したのちに、薄膜形成物質2を用いて防汚膜を成膜し、膜の耐摩耗性能を比較した結果を示す図である。また、図4は、同じ3種類(サンプル#1〜#3)の蒸発源10について、それぞれを25℃の環境にて1週間保管したのちに、薄膜形成物質2を用いて防汚膜を成膜し、膜の耐摩耗性能を比較した結果を示す図である。   FIG. 3 shows the same three kinds of evaporation sources 10 as the samples # 1 to # 3 shown in FIG. It is a figure which shows the result of forming a film and comparing the abrasion resistance performance of the film. Further, FIG. 4 shows that the evaporation sources 10 of the same three types (Samples # 1 to # 3) were each stored for 1 week in an environment of 25 ° C., and then the thin film forming substance 2 was used to form an antifouling film. It is a figure which shows the result which compared the abrasion resistance performance of a film | membrane and a film | membrane.

図3および図4に示すものは、図2に示した試験と同様に、スチールウール#0000を用いて擦傷試験を行った結果である。また、スチールウールによる摩擦後の耐摩耗性の評価も、図2の試験と同様に対水接触角の測定により行った。ただし、図3および図4に示す試験では、スチールウールで1000回摩擦を行う毎に、摩擦後の防汚膜の表面の9ヵ所に液滴を作って対水接触角を測定した。そして、9点全てにおいて対水接触角が100°以上の場合を合格、9点のうち1点でも対水接触角が100°未満となる場合を不合格とした。図3および図4に示す摩耗回数は、摩耗回数を1000回ずつ増やしていって初めて不合格となったときの回数を示している。   The results shown in FIGS. 3 and 4 are the results of a scratch test using Steel Wool # 0000, similarly to the test shown in FIG. Further, the evaluation of the abrasion resistance after rubbing with steel wool was also performed by measuring the contact angle against water as in the test of FIG. However, in the tests shown in FIGS. 3 and 4, every time the steel wool was rubbed 1000 times, droplets were formed at 9 places on the surface of the antifouling film after the rubbing to measure the contact angle with water. The case where the contact angle with water was 100 ° or more at all 9 points was passed, and the case where the contact angle with water was less than 100 ° even at 1 point out of 9 points was rejected. The number of times of wear shown in FIGS. 3 and 4 indicates the number of times when the number of times of wear is increased by 1000 times and the test is rejected.

図3および図4に示すように、蒸発源10の保管温度が25℃以下の場合は、サンプル#1〜#3のいずれも耐摩耗性能に優れていることが分かる。なお、保管温度を−15℃、25℃とした場合についてはサンプル#4〜#5の試験を行っていないが、図2に示した試験結果から、サンプル#4〜#5についても同様に優れた耐摩耗性能を示すことが予想できる。   As shown in FIGS. 3 and 4, when the storage temperature of the evaporation source 10 is 25 ° C. or lower, all of the samples # 1 to # 3 have excellent wear resistance. Note that the samples # 4 to # 5 were not tested when the storage temperatures were -15 ° C and 25 ° C, but from the test results shown in Fig. 2, the samples # 4 to # 5 were similarly excellent. It can be expected to show excellent wear resistance.

以上の試験結果から、本発明の蒸発源は、繊維状物質の大気圧下での水蒸気透過体積速度が1800[cm/s]以下であることが好ましく、更には、1754[cm/s]以下であることが特に好ましい。このように構成すれば蒸発源の保管環境として想定される広い温度域(−15℃〜40℃)で、容器内の薄膜形成物質は、保管されている間も大気と触れにくくなり、大気中の水分との反応が抑制される。結果、薄膜形成物質の縮重合が起こりにくくなり、薄膜形成物質を蒸発させて基材の表面に、例えば防汚膜などの薄膜を形成する際に、当該薄膜の基材に対する反応性と密着性が向上し、耐摩耗性能を向上させることができる。 From the above test results, in the evaporation source of the present invention, it is preferable that the water vapor permeation volume velocity of the fibrous substance under atmospheric pressure is 1800 [cm 3 / s] or less, and further 1754 [cm 3 / s]. ] The following is particularly preferable. With this configuration, the thin film-forming substance in the container is less likely to come into contact with the atmosphere during storage in a wide temperature range (-15 ° C to 40 ° C) assumed as the storage environment of the evaporation source, and thus, in the atmosphere. The reaction with water is suppressed. As a result, polycondensation of the thin film-forming substance is less likely to occur, and when the thin film-forming substance is evaporated to form a thin film such as an antifouling film on the surface of the base material, the reactivity and adhesion of the thin film to the base material And wear resistance performance can be improved.

ところで、前述のように基材上に防汚膜などの薄膜を形成した際に、形成された薄膜の膜面に、図6に示すような水滴状の凝集物が観察され、基材の外観も悪くなってしまうという問題も生じる。したがって、容器1内における繊維状物質3のコンダクタンスは、耐摩耗性能を向上させるだけでなく、水滴状の凝集を抑制できる範囲の水蒸気透過体積速度とするのがより好ましい。   By the way, when a thin film such as an antifouling film is formed on the substrate as described above, water droplet-like aggregates as shown in FIG. 6 are observed on the film surface of the formed thin film, and the appearance of the substrate There is also the problem of getting worse. Therefore, it is more preferable that the conductance of the fibrous substance 3 in the container 1 is set to a water vapor permeation volume velocity in a range that not only improves the wear resistance performance but also suppresses the aggregation of water drops.

図5は、図2に示したのと同じ5種類(サンプル#1〜#5)の蒸発源10を用いて作製した防汚膜の表面の観察結果を示す図である。図5に示す試験結果は、蒸発源10を40℃の環境にて1週間保管したのちに、薄膜形成物質2を用いて防汚膜を成膜し、防汚膜の表面の外観を光学顕微鏡で観察して数えた凝集粒数を示したものである。   FIG. 5 is a diagram showing an observation result of the surface of the antifouling film produced by using the same five kinds of samples (samples # 1 to # 5) as shown in FIG. The test results shown in FIG. 5 indicate that the evaporation source 10 was stored in an environment of 40 ° C. for 1 week, and then an antifouling film was formed using the thin film forming substance 2, and the appearance of the surface of the antifouling film was observed with an optical microscope. It shows the number of agglomerated particles observed and counted.

図5に示すように、サンプル#1の蒸発源10については2万個以上の凝集粒が観察された。サンプル#2の蒸発源10については、サンプル#1よりは少ないものの、1万個以上の凝集粒が観察された。これに対して、サンプル#3〜#5の場合は凝集粒が全く観察されなかった。このように、耐摩耗性能を向上させるだけでなく、水滴状の凝集物をも低減させる必要が有る場合には、蒸発源の繊維状物質の大気圧下での水蒸気透過体積速度が1500[cm/s]以下であることが好ましく、更には、1461[cm/s]以下であることが特に好ましい。
また、蒸発源の繊維状物質の大気圧下での水蒸気透過体積速度は、上述の通り小さければ基板上での耐摩耗性能を向上させ、また、凝集物を低減させるが、余りにも小さすぎると、繊維状物質に薄膜形成物質を含浸させる際に時間を要してしまう。従って、この含浸に要する時間を短縮させる上では、前記大気圧下での水蒸気透過体積速度は、795[cm/s]以上であることが特に好ましい。
As shown in FIG. 5, 20,000 or more aggregated particles were observed in the evaporation source 10 of sample # 1. For the evaporation source 10 of sample # 2, 10,000 or more agglomerates were observed, though the number was smaller than that of sample # 1. In contrast, in Samples # 3 to # 5, no aggregated particles were observed. As described above, when it is necessary to reduce not only the wear resistance performance but also the water droplet-like aggregates, the vapor transmission volume velocity of the fibrous substance as the evaporation source under the atmospheric pressure is 1500 [cm]. 3 / s] or less is preferable, and 1461 [cm 3 / s] or less is particularly preferable.
Further, the water vapor permeation volume velocity of the fibrous substance of the evaporation source under the atmospheric pressure improves wear resistance performance on the substrate if it is small as described above, and also reduces aggregates, but if it is too small. However, it takes time to impregnate the fibrous substance with the thin film forming substance. Therefore, in order to shorten the time required for this impregnation, it is particularly preferable that the water vapor permeation volume velocity under the atmospheric pressure is 795 [cm 3 / s] or more.

なお、上記実施形態では、繊維状物質3の一例としてスチールウールを挙げたが、本発明はこれに限定されない。例えば、ステンレス繊維など他の金属繊維を用いてもよい。また、カーボン繊維やアラミド繊維などの有機繊維物質や、ガラス繊維やセラミック繊維などの無機繊維物質を用いてもよい。   In the above embodiment, steel wool is mentioned as an example of the fibrous substance 3, but the present invention is not limited to this. For example, other metal fibers such as stainless fiber may be used. Also, organic fiber materials such as carbon fibers and aramid fibers, and inorganic fiber materials such as glass fibers and ceramic fibers may be used.

また、上記実施形態では、薄膜形成物質2の一例として防汚材料を挙げたが、本発明はこれに限定されない。例えば、反射防止性、撥水性、撥油性、防塵性、抗菌性、バリア性などの機能を有する薄膜を作製するための材料であってもよい。   Further, in the above-described embodiment, the antifouling material is mentioned as an example of the thin film forming substance 2, but the present invention is not limited to this. For example, it may be a material for forming a thin film having functions such as antireflection property, water repellency, oil repellency, dustproof property, antibacterial property, and barrier property.

また、上記実施形態では、容器1の材質として高い熱伝導性を有する金属を用いる例について説明したが、本発明はこれに限定されない。例えば、容器1内の繊維状物質3をダイレクトに加熱する場合は、容器1は必ずしも高い熱伝導性を有する材質でなくてもよい。   Further, in the above-described embodiment, an example in which a metal having high thermal conductivity is used as the material of the container 1 has been described, but the present invention is not limited to this. For example, when the fibrous substance 3 in the container 1 is directly heated, the container 1 does not necessarily have to be a material having high thermal conductivity.

その他、上記実施形態は、何れも本発明を実施するにあたっての具体化の一例を示したものに過ぎず、これによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその要旨、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。   In addition, each of the above-described embodiments is merely an example of the embodiment in carrying out the present invention, and the technical scope of the present invention should not be limitedly interpreted thereby. That is, the present invention can be implemented in various forms without departing from the gist or the main features thereof.

1 容器
2 薄膜形成物質(防汚材料)
3 繊維状物質(スチールウール)
10 蒸発源
1 Container 2 Thin film forming substance (antifouling material)
3 Fibrous substances (steel wool)
10 evaporation sources

Claims (6)

タッチパネルの表面に防汚膜を形成する蒸着方法に用いるための蒸源であって、容器と、該容器内に充填され防汚膜形成物質が含浸された繊維状物質とを有し、
前記防汚膜形成物質が、アルコキシシラン基を有するシランカップリング剤であり、
前記繊維状物質が、金属ウールであって、その大気圧下での水蒸気透過体積速度が、1800[cm/s]以下であることを特徴とする蒸発源。
A evaporation source for use in the deposition process for forming an antifouling film on the surface of the touch panel, comprising: a container and a fibrous material antifouling film forming material is filled in said container impregnated,
The antifouling film forming substance is a silane coupling agent having an alkoxysilane group,
An evaporation source characterized in that the fibrous substance is metallic wool, and the water vapor permeation volume velocity thereof under atmospheric pressure is 1800 [cm 3 / s] or less.
前記繊維状物質の大気圧下での水蒸気透過体積速度が、1754[cm/s]以下であることを特徴とする請求項1に記載の蒸発源。 The evaporation source according to claim 1, wherein a vapor permeation volume velocity of the fibrous substance under atmospheric pressure is 1754 [cm 3 / s] or less. 前記繊維状物質の大気圧下での水蒸気透過体積速度が、1500[cm/s]以下であることを特徴とする請求項1に記載の蒸発源。 The evaporation source according to claim 1, wherein a vapor permeation volume velocity of the fibrous substance at atmospheric pressure is 1500 [cm 3 / s] or less. 前記繊維状物質の大気圧下での水蒸気透過体積速度が、1461[cm/s]以下であることを特徴とする請求項1に記載の蒸発源。 The evaporation source according to claim 1, wherein a vapor permeation volume velocity of the fibrous substance under atmospheric pressure is 1461 [cm 3 / s] or less. 前記繊維状物質の大気圧下での水蒸気透過体積速度が、795[cm/s]以上であることを特徴とする請求項1〜4のいずれか1項に記載の蒸発源。 The evaporation source according to any one of claims 1 to 4, wherein a vapor permeation volume velocity of the fibrous material under atmospheric pressure is 795 [cm 3 / s] or more. 防汚膜形成物質を有する蒸発源を加熱し、該防汚膜形成物質を蒸発させてタッチパネルの表面に防汚膜を形成する蒸着方法であって、前記蒸発源が、請求項1〜5のいずれか1項に記載の蒸発源であることを特徴とする蒸着方法。 A vapor deposition method of heating an evaporation source having an antifouling film forming substance to evaporate the antifouling film forming substance to form an antifouling film on the surface of a touch panel , wherein the evaporation source is the evaporation source according to claim 1. An evaporation method, which is the evaporation source according to any one of claims 1.
JP2015110525A 2014-06-02 2015-05-29 Evaporation source and vapor deposition method using the same Active JP6694673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015110525A JP6694673B2 (en) 2014-06-02 2015-05-29 Evaporation source and vapor deposition method using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014113998 2014-06-02
JP2014113998 2014-06-02
JP2015110525A JP6694673B2 (en) 2014-06-02 2015-05-29 Evaporation source and vapor deposition method using the same

Publications (2)

Publication Number Publication Date
JP2016011460A JP2016011460A (en) 2016-01-21
JP6694673B2 true JP6694673B2 (en) 2020-05-20

Family

ID=55228363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015110525A Active JP6694673B2 (en) 2014-06-02 2015-05-29 Evaporation source and vapor deposition method using the same

Country Status (1)

Country Link
JP (1) JP6694673B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112358196A (en) * 2020-11-06 2021-02-12 湖南宏泰新材料有限公司 Optical glass surface evaporation process

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000321401A (en) * 1999-05-12 2000-11-24 Toray Ind Inc Manufacture of optical article
KR101025005B1 (en) * 2007-07-26 2011-03-24 주식회사 쎄코 Multipurpose carrier of vacuum vapor deposition material and method thereof
JP5576184B2 (en) * 2010-05-28 2014-08-20 株式会社オプトラン Vapor deposition material for organic film formation

Also Published As

Publication number Publication date
JP2016011460A (en) 2016-01-21

Similar Documents

Publication Publication Date Title
JP6438060B2 (en) Oil repellent coating on sapphire
Zeng et al. Directional water transport fabrics with durable ultra‐high one‐way transport capacity
Wu et al. A versatile and efficient method to fabricate durable superhydrophobic surfaces on wood, lignocellulosic fiber, glass, and metal substrates
Tzianou et al. Tailoring wetting properties at extremes states to obtain antifogging functionality
US10564321B2 (en) Optical member and method for manufacturing optical member
Huang et al. Robust superhydrophobic transparent coatings fabricated by a low-temperature sol–gel process
Chen et al. Large‐scale fabrication of robust superhydrophobic coatings with high rigidity and good flexibility
Han et al. Oil–water separation using superhydrophobic PET membranes fabricated via simple dip‐coating of PDMS–SiO2 nanoparticles
Marchand et al. Atmospheric rf plasma deposition of superhydrophobic coatings using tetramethylsilane precursor
BR112015019528A8 (en) article comprising substrate and grafted polymeric film the same and surface fabrication method for promoting droplet condensation and / or spillage of a liquid
TWI667213B (en) Transparent board, touchpad and touch panel
Pierleoni et al. Selective gas permeation in graphene oxide–polymer self-assembled multilayers
Zhan et al. Evaluation of mechanical properties and hydrophobicity of room‐temperature, moisture‐curable polysilazane coatings
Xiao et al. Multifunctional superwetting composite coatings for long‐term anti‐icing, air purification, and oily water separation
TW201335392A (en) Base body having stain-proof film attached thereto, and method for producing same
Saddiqi et al. Chemically resistant, electric conductive, and superhydrophobic coatings
WO2017013810A1 (en) Antifouling structure and method for producing same
Lionti et al. Hybrid silica coatings on polycarbonate: enhanced properties
JP6694673B2 (en) Evaporation source and vapor deposition method using the same
Liu et al. Robust and chemically stable superhydrophobic composite ceramic coating repellent even to hot water
Esmeryan et al. On the development of ultradurable extremely water-repellent and oleophobic soot-based fabrics with direct relevance to sperm cryopreservation
KR101719733B1 (en) Coating structure and forming method for the same
Bottone et al. Coral-like silicone nanofilament coatings with extremely low ice adhesion
Wu et al. Adhesion enhancement of sol–gel coating on polycarbonate by heated impregnation treatment
Gergs et al. Nanoporous SiOx plasma polymer films as carrier for liquid‐infused surfaces

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20150806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150828

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200420

R150 Certificate of patent or registration of utility model

Ref document number: 6694673

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250