JP5188575B2 - Multipurpose container for vacuum deposition material and method for manufacturing the same - Google Patents

Multipurpose container for vacuum deposition material and method for manufacturing the same Download PDF

Info

Publication number
JP5188575B2
JP5188575B2 JP2010518125A JP2010518125A JP5188575B2 JP 5188575 B2 JP5188575 B2 JP 5188575B2 JP 2010518125 A JP2010518125 A JP 2010518125A JP 2010518125 A JP2010518125 A JP 2010518125A JP 5188575 B2 JP5188575 B2 JP 5188575B2
Authority
JP
Japan
Prior art keywords
metal
container
filler
carbon fiber
washer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010518125A
Other languages
Japanese (ja)
Other versions
JP2010534767A (en
Inventor
キム,ヒョンジュン
キム,ホンチョル
キム,ジョンレ
Original Assignee
セコ コーポレイション リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セコ コーポレイション リミテッド filed Critical セコ コーポレイション リミテッド
Publication of JP2010534767A publication Critical patent/JP2010534767A/en
Application granted granted Critical
Publication of JP5188575B2 publication Critical patent/JP5188575B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明の目的は、多目的容器に含浸又は充填される各種の蒸着物質を、真空蒸着装置内で電子ビーム加熱法又は抵抗加熱法によって均一に蒸着することにある。ここで、蒸着物質は、粉末及び粒子のような固体状、様々な粘性を有する液体状、及び、スラリーのような半固体状のうちのいずれかの状態を有する有機系及び/又は無機系化合物からなる。   An object of the present invention is to uniformly deposit various deposition materials impregnated or filled into a multipurpose container by an electron beam heating method or a resistance heating method in a vacuum deposition apparatus. Here, the vapor deposition material is an organic and / or inorganic compound having a solid state such as powder and particles, a liquid state having various viscosities, and a semi-solid state such as slurry. Consists of.

本発明の真空蒸着物質の多目的容器は、外部容器と、内部充填材と、メッシュ及びワッシャーとを備える。外部容器は、ステンレススチール、鉄、銅、モリブデン、タングステン、又はチタンなどの金属材料からなる。内部充填材は、炭素繊維フェルト、炭素繊維又は金属フェルトなどからなる。メッシュ及びワッシャーは、ステンレススチール、鉄、銅、モリブデン、タングステン、又はチタンなどの金属材料からなり、内部充填材上に配置される。これらの構成要素は、安定した一体型の構造物として組み立てられるか又は溶接される。   The multipurpose container of the vacuum deposition material of the present invention includes an outer container, an inner filler, a mesh, and a washer. The outer container is made of a metal material such as stainless steel, iron, copper, molybdenum, tungsten, or titanium. The internal filler is made of carbon fiber felt, carbon fiber, metal felt or the like. The mesh and washer are made of a metal material such as stainless steel, iron, copper, molybdenum, tungsten, or titanium, and are disposed on the internal filler. These components are assembled or welded as a stable monolithic structure.

本発明の技術的特徴は、多目的担容器に含浸又は充填される様々な機能を有する各種の蒸着物質を、真空蒸着装置内で電子ビーム加熱法又は抵抗加熱法によって均一に超薄膜として蒸着することにある。ここで、蒸着物質は、粉末及び粒子のような固体状、様々な粘性を有する液体状、及びスラリーのような半固体状のうちのいずれかの状態を有する有機系及び/又は無機系化合物からなる。   The technical feature of the present invention is that various vapor deposition materials having various functions impregnated or filled in a multipurpose container are uniformly deposited as an ultrathin film by an electron beam heating method or a resistance heating method in a vacuum vapor deposition apparatus. It is in. Here, the deposition material may be an organic and / or inorganic compound having a solid state such as powder and particles, a liquid state having various viscosities, and a semi-solid state such as slurry. Become.

最近、眼鏡レンズのような光学レンズ/フィルタだけでなく、携帯電話、MP3プレイヤー、PMP、ノート型パソコンのような携帯用電子製品及びディスプレイ製品において、反射防止、光学的フィルタリング、吸収率及び反射率の調節、及びカラーリング処理のために、真空蒸着工程を利用した様々な試みがなされている。真空蒸着工程において、薄膜蒸着層は、酸化ケイ素、酸化チタン、酸化ジルコニウムのような酸化物、フッ化マグネシウムのようなフッ化物、若しくは、クロム、ニッケル、アルミニウム、SUSのような金属の無機粉末/粒子材料からなり、ガラス、プラスチック又は金属からなる基板上に形成される。   Recently, not only optical lenses / filters such as eyeglass lenses, but also portable electronic products and display products such as mobile phones, MP3 players, PMPs, notebook computers, antireflection, optical filtering, absorptance and reflectance. Various attempts using a vacuum deposition process have been made for adjusting the color and coloring process. In the vacuum deposition process, the thin film deposition layer is made of an oxide such as silicon oxide, titanium oxide or zirconium oxide, a fluoride such as magnesium fluoride, or a metal inorganic powder such as chromium, nickel, aluminum or SUS / It is made of a particulate material and formed on a substrate made of glass, plastic or metal.

しかし、金属及び金属酸化物からなる真空蒸着層は、外部環境で容易に腐食又は汚染される。その結果、蒸着層の剥離が生じる。蒸着層の剥離を防止するために、蒸着層に有機材料をコーティングして疎水性膜又は撥水性膜を形成するための試みがなされている。   However, vacuum deposited layers made of metals and metal oxides are easily corroded or contaminated in the external environment. As a result, peeling of the deposited layer occurs. In order to prevent the vapor deposition layer from peeling off, attempts have been made to form a hydrophobic film or a water repellent film by coating the vapor deposition layer with an organic material.

有機材料を真空蒸着するために、有機系蒸着物質を含浸する容器が真空装置内で使用される。特許文献1は高温で熱処理された多孔質セラミック材料で製造された容器を開示している。また、特許文献2は高温で熱処理された金属粉末及び金属フェルトを開示している。   In order to vacuum deposit organic materials, a container impregnated with an organic deposition material is used in a vacuum apparatus. Patent Document 1 discloses a container made of a porous ceramic material heat-treated at high temperature. Moreover, patent document 2 is disclosing the metal powder and metal felt which were heat-processed at high temperature.

一般的に、蒸着工程においては、電子ビームを用いた真空蒸着方法、及び抵抗加熱方法のような熱を利用した方法が用いられる。電子ビームを用いた蒸着方法は、蒸着工程の利便性及び自動化の面で有利であるが、現在では、抵抗加熱方法がより広く用いられている。抵抗加熱方法は、真空蒸着工程で使用される有機系蒸着物質の特性を考慮し、有機系蒸着物質を含浸する容器を利用したものである。   In general, in the vapor deposition step, a method using heat such as a vacuum vapor deposition method using an electron beam and a resistance heating method is used. The vapor deposition method using an electron beam is advantageous in terms of convenience and automation of the vapor deposition process, but at present, the resistance heating method is more widely used. The resistance heating method uses a container impregnated with an organic vapor deposition material in consideration of the characteristics of the organic vapor deposition material used in the vacuum vapor deposition process.

多孔質セラミック容器がある程度の化学的安定性を有していても、有機系真空蒸着物質を含浸する容器の内部には微細孔が存在しているので、微細孔の密度を調節する必要がある。そして、液体状の有機系蒸着物質が容器に含浸している間の漏洩を防止するための構造も考慮する必要がある。   Even if the porous ceramic container has a certain degree of chemical stability, it is necessary to adjust the density of the micropores because the micropores exist inside the container impregnated with the organic vacuum deposition material. . It is also necessary to consider a structure for preventing leakage while the container is impregnated with a liquid organic vapor deposition material.

多孔質セラミック容器は、セラミック材料から形成されているため、外部からの衝撃によって破損し易い。従って、このような破損による容器の損傷を防止するため、高温の熱処理が必要となる。しかし、熱処理は密度を向上させることができるが、所望の空隙率(すなわち、蒸着物質の含浸される空隙)を確保することが難しい。   Since the porous ceramic container is formed of a ceramic material, it is easily damaged by an external impact. Therefore, high-temperature heat treatment is necessary to prevent damage to the container due to such breakage. However, the heat treatment can improve the density, but it is difficult to secure a desired porosity (that is, a void impregnated with the vapor deposition material).

さらに、所望の空隙率を確保するための低温の熱処理は、セラミック容器の硬度を下げる。これにより、セラミック容器は、容易に破損して、処理時、移送時及び保管時において粉塵を発生させるという短所を有する。   Furthermore, low temperature heat treatment to ensure the desired porosity reduces the hardness of the ceramic container. As a result, the ceramic container is easily damaged and generates dust during processing, transfer and storage.

真空蒸着方法の一つである電子ビーム加熱方法がセラミックを加熱可能な高出力状態で用いられる場合、多孔質セラミック容器の粉塵は蒸着物質と混ざり合って基板上に蒸着される。これによって、蒸着された薄膜の所望の機能的な特性は完全に発揮されなくなる。   When the electron beam heating method, which is one of the vacuum deposition methods, is used in a high power state capable of heating the ceramic, the dust in the porous ceramic container is mixed with the deposition material and deposited on the substrate. This prevents the desired functional properties of the deposited thin film from being fully exhibited.

多孔質セラミック容器のように、金属粉末及び金属フェルトにおいても、多孔質にするための高温度の熱処理が必要となる。このため、製造工程において、さらに相当な時間及び製造費用が必要となる。そして、容器を成形するための圧力と温度が必要になるため、蒸着物質を容器に含浸させるための空隙率は容器全体で一定にならず、これによって有機系蒸着物質の効力が低下する。   Like porous ceramic containers, metal powder and metal felt also require high-temperature heat treatment to make them porous. For this reason, considerable time and manufacturing cost are required in the manufacturing process. And since the pressure and temperature for shape | molding a container are needed, the porosity for making a container impregnate a vapor deposition substance is not constant in the whole container, and, thereby, the effectiveness of an organic type vapor deposition substance falls.

また、多孔質セラミック物質、金属粉末及び金属フェルトが使用され、液体状の有機系蒸着物質が過剰に容器に含浸していれば、蒸着物質は容器の外部に露出された状態で固化して、容器の外部の空気と酸化反応を起こし、電子ビームによって分解される。従って、このような問題点によって良質な薄膜の形成が妨げられる。   Also, if a porous ceramic material, metal powder and metal felt are used, and the liquid organic vapor deposition material is excessively impregnated in the container, the vapor deposition material solidifies in a state exposed to the outside of the container, It undergoes an oxidation reaction with the air outside the container and is decomposed by the electron beam. Therefore, such problems prevent the formation of a good quality thin film.

多孔質セラミック、金属粉末又は金属フェルトを真空蒸着方法(即ち、電子ビーム加熱方法)に代えて抵抗加熱方法によって加熱する場合、タングステン、タンタル、又はモリブデンで製造されて熱伝導性を有するボートを使うが、これらのボートを数回使用後に交換しなければならないという短所がある。結果として、ボートの交換に起因する余分なコストと不便さが生じる。   When porous ceramic, metal powder or metal felt is heated by resistance heating instead of vacuum deposition (ie, electron beam heating), a boat made of tungsten, tantalum, or molybdenum and having thermal conductivity is used. However, there is a disadvantage that these boats must be changed after several uses. As a result, extra costs and inconveniences resulting from boat replacement occur.

さらに、抵抗加熱方法では、真空蒸着時の自動化は難しいため、蒸着工程は手動での作業となる。電子ビーム加熱方法に比べて、抵抗加熱方法においては、均質な薄膜を得ることは難しい。   Furthermore, since the resistance heating method is difficult to automate at the time of vacuum deposition, the deposition process is a manual operation. Compared to the electron beam heating method, it is difficult to obtain a homogeneous thin film in the resistance heating method.

焼結された多孔質セラミック容器、金属粉末容器及び金属フェルト容器の場合、液体状の有機系蒸着物質のみしか容器内に含浸されない。空隙の大きさを容易に調節することができないので、微細な固体状の有機系蒸着物質を真空蒸着する際に使用することができない。さらに、上記容器は固体状の有機系蒸着物質に対して使用できない。従って、これらの容器の使用範囲は非常に制限される。   In the case of sintered porous ceramic containers, metal powder containers, and metal felt containers, only liquid organic vapor deposition materials are impregnated in the container. Since the size of the void cannot be easily adjusted, it cannot be used when vacuum-depositing a fine solid organic vapor deposition material. Furthermore, the container cannot be used for solid organic vapor deposition materials. Therefore, the range of use of these containers is very limited.

大韓民国実用新案登録出願第20−2003−0015078号Korean Utility Model Registration Application No. 20-2003-0015078 大韓民国特許出願第10−2003−0058223号Korean Patent Application No. 10-2003-0058223

本発明の課題は、多孔質セラミック容器、金属粉末容器及び金属フェルト容器に起因する問題点を解決するための多目的容器であって、大きな利便性及び幅広い適用分野を有する真空蒸着容器を提供することにある。   An object of the present invention is to provide a multi-purpose container for solving problems caused by a porous ceramic container, a metal powder container, and a metal felt container, and providing a vacuum deposition container having great convenience and a wide range of application fields. It is in.

本発明の別の課題は、上部及び下部が閉じた一体型の構造を有し、粉塵が発生せず、電子ビーム加熱方法及び抵抗加熱方法の両方を適用することが可能な多目的容器を提供することにある。   Another object of the present invention is to provide a multipurpose container that has an integrated structure with the upper and lower parts closed, does not generate dust, and can apply both the electron beam heating method and the resistance heating method. There is.

本発明のさらに別の課題は、多目的容器に含浸又は充填される様々な機能を有する各種の蒸着物質を、真空蒸着装置内で電子ビーム加熱方法又は抵抗加熱方法によって超薄膜として均一に蒸着することにある。ここで、蒸着物質は、粉末及び粒子のような固体状、様々な粘性を有する液体状、及びスラリーのような半固体状のうちのいずれかの状態を有する有機系及び/又は無機系化合物からなる。   Still another object of the present invention is to uniformly deposit various deposition materials having various functions impregnated or filled into a multipurpose container as an ultrathin film by an electron beam heating method or a resistance heating method in a vacuum deposition apparatus. It is in. Here, the deposition material may be an organic and / or inorganic compound having a solid state such as powder and particles, a liquid state having various viscosities, and a semi-solid state such as slurry. Become.

本発明に係る真空蒸着容器の好ましい一実施例は、円筒形状又は四角筒形状の外部金属容器と、金属ワッシャーとを備える。外部金属容器は、ステンレススチール、鉄、銅、モリブデン、タングステン、又はチタンからなり、処理時、保管時及び移送時に安定性を有したものであって、熱を伝逹できるようになっている。金属ワッシャーは、ステンレススチール、鉄、銅、モリブデン、タングステン、チタンからなっている。金属容器の上部縁はリング状に形成されている。金属ワッシャーは、金属容器の上部縁から下向きに蒸着物質を押し付けるようになっているか、又は金属容器に溶接される。   A preferred embodiment of the vacuum evaporation container according to the present invention includes a cylindrical or square tube-shaped external metal container and a metal washer. The external metal container is made of stainless steel, iron, copper, molybdenum, tungsten, or titanium, and has stability during processing, storage, and transfer, and can transfer heat. The metal washer is made of stainless steel, iron, copper, molybdenum, tungsten, and titanium. The upper edge of the metal container is formed in a ring shape. The metal washer is adapted to press the deposition material downward from the upper edge of the metal container or is welded to the metal container.

本発明の多目的容器は、以下の効果を有する。
(1)粉末及び粒子のような固体状、様々な粘性を有する液体状、及びスラリーのような半固体状のうちのいずれかの状態を有する有機及び/又は無機化合物から形成される蒸着物質が容器内に含浸又は充填される工程において、蒸着物質の損失を防止でき、様々な機能を有する各種の蒸着物質の真空蒸着効率を最大にすることができる。
(2)電子ビーム加熱方法と抵抗加熱方法の両方を、本発明の容器に対して適用することができる。
(3)本発明の容器は、金属材料で製造されるため、処理時、保管時、移送時に安定的を有し、且つ再使用ができる。
(4)本発明の多目的容器内に、液体状の有機系/無機系蒸着物質を含浸することができる。また、固体状の有機系/無機系蒸着物質及び半固体状の有機系/無機系蒸着物質を充填材と混合し、容器内に充填して使用することもできる。
The multipurpose container of the present invention has the following effects.
(1) A deposition material formed from an organic and / or inorganic compound having a solid state such as powder and particles, a liquid state having various viscosities, and a semi-solid state such as slurry. In the process of impregnating or filling the container, loss of the vapor deposition material can be prevented, and the vacuum vapor deposition efficiency of various vapor deposition materials having various functions can be maximized.
(2) Both the electron beam heating method and the resistance heating method can be applied to the container of the present invention.
(3) Since the container of the present invention is made of a metal material, it is stable during processing, storage, and transfer, and can be reused.
(4) The multipurpose container of the present invention can be impregnated with a liquid organic / inorganic vapor deposition material. Further, a solid organic / inorganic vapor deposition material and a semi-solid organic / inorganic vapor deposition material can be mixed with a filler and filled into a container for use.

本発明の容器の分解斜視図である。It is a disassembled perspective view of the container of this invention.

図1に示されるように、本発明の基本的な構成は、円筒形状の外部容器10からなっている。外部容器10は、ステンレススチール、鉄、銅、モリブデン、タングステン又はチタンからなる。外部容器の厚みは0.10mm〜0.50mmであり、外部容器の直径は5mm〜60mmである。   As shown in FIG. 1, the basic configuration of the present invention includes a cylindrical outer container 10. The outer container 10 is made of stainless steel, iron, copper, molybdenum, tungsten, or titanium. The outer container has a thickness of 0.10 mm to 0.50 mm, and the outer container has a diameter of 5 mm to 60 mm.

好ましくは、外部容器の厚みは0.15mm〜0.35mmであり、外部容器の直径は10mm〜25mmである。外部容器は、薄すぎると変形し易くなり、厚すぎると組立及び溶接のような後工程の処理を施しにくくなる。   Preferably, the outer container has a thickness of 0.15 mm to 0.35 mm, and the outer container has a diameter of 10 mm to 25 mm. If the outer container is too thin, it is likely to be deformed, and if it is too thick, it is difficult to perform post-processing such as assembly and welding.

外部容器の高さは4mm〜12mmであり、好ましくは6mm〜8mmである。   The height of the outer container is 4 mm to 12 mm, preferably 6 mm to 8 mm.

外部容器は内部に収容される充填材を保護する。そして、粉末及び粒子のような固体状、様々な粘性を有する液体状、及びスラリーのような半固体状のうちのいずれかの状態を有する有機系及び/又は無機系化合物からなる蒸着物質の損失が、完全に防止される。外部容器はステンレススチールからなり、電子ビーム加熱方法や抵抗加熱方法に関係なく、效果的に熱を伝達することができる。   The outer container protects the filler contained therein. Loss of vapor deposition materials composed of organic and / or inorganic compounds having a solid state such as powder and particles, a liquid state having various viscosities, and a semi-solid state such as slurry. Is completely prevented. The outer container is made of stainless steel and can effectively transfer heat regardless of the electron beam heating method or the resistance heating method.

外部容器の材料は、ステンレススチールだけに限定されず、鉄、銅、モリブデン、タングステン又はチタンのような效果的に熱を伝達しうる金属材料であってもよい。   The material of the outer container is not limited to stainless steel, and may be a metal material that can effectively transfer heat, such as iron, copper, molybdenum, tungsten, or titanium.

本発明の重要な構成要素の一つである内部充填材20は、コーティング材料の特性に応じて、炭素繊維フェルト、炭素繊維、炭素粉末、及び鉄、銅、ステンレススチールのような金属フェルト/金属粉末のグループの中から適宜に選択される。   Depending on the properties of the coating material, the inner filler 20 which is one of the key components of the present invention is a carbon fiber felt, carbon fiber, carbon powder, and metal felt / metal such as iron, copper, stainless steel. It is appropriately selected from the group of powders.

特に、非常に軽い炭素繊維及び炭素繊維フェルトは、外部環境に対する高い安定性及び高い熱伝逹効率を有し、最も効果的である。   In particular, very light carbon fibers and carbon fiber felts are most effective with high stability to the external environment and high heat transfer efficiency.

空隙の大きさ及び空隙率を調節するため、様々な直径を有する1種類の炭素繊維を使用してもよく、少なくとも2種類の炭素繊維を使用してもよい。   In order to adjust the size and porosity of the void, one type of carbon fiber having various diameters may be used, or at least two types of carbon fibers may be used.

好ましくは、空隙の直径は20μm〜500μmであり、最も好ましくは100μm〜300μmである。   Preferably the diameter of the voids is 20 μm to 500 μm, most preferably 100 μm to 300 μm.

一般的に、空隙の大きさ及び空隙率は、炭素繊維の直径及び炭素繊維含有量によって制御される。空隙の大きさ及び空隙率は、具体的には、炭素繊維を金属容器10に挿入し、ステンレススチールメッシュとワッシャーを、炭素繊維上に配置し、さらに金属容器10のリング状の上部縁から押し下げて、充填材(即ち、炭素繊維)の密度を調節することによって制御される。従って、空隙の大きさ及び空隙率は、粉末及び粒子のような固体状、様々な粘性を有する液体状、及びスラリーのような半固体状のうちのいずれかの状態を有する有機系及び/又は無機系化合物からなる蒸着物質の密度及び含有量によって制御される。   In general, the size and porosity of the void are controlled by the diameter and carbon fiber content of the carbon fiber. Specifically, the size and the porosity of the void are determined by inserting carbon fiber into the metal container 10, placing a stainless steel mesh and a washer on the carbon fiber, and pushing down from the ring-shaped upper edge of the metal container 10. Thus, it is controlled by adjusting the density of the filler (ie, carbon fiber). Thus, the size and porosity of the voids can be organic systems having any one of solid states such as powders and particles, liquid states having various viscosities, and semi-solid states such as slurries and / or It is controlled by the density and content of the vapor deposition material made of an inorganic compound.

また、炭素繊維は優れた熱伝逹効率を有するため、抵抗加熱方法又は電子ビーム加熱方法によって発生された熱が蒸着物質に效果的に伝達し、これにより蒸着物質が急峻に気化し、薄膜の蒸着の効率が最も大きくなるという長所がある。   Also, since carbon fiber has excellent heat transfer efficiency, the heat generated by the resistance heating method or the electron beam heating method is effectively transferred to the vapor deposition material, which causes the vapor deposition material to be vaporized sharply, thereby reducing the thickness of the thin film. There is an advantage that the efficiency of vapor deposition is maximized.

炭素繊維は、金属材質とは異なり、外部環境に対する変化がないため、長時間保管可能になる。これにより、本発明の容器は、高温熱処理後も再使用ができる。   Unlike metal materials, carbon fibers do not change with respect to the external environment and can be stored for a long time. Thereby, the container of this invention can be reused even after high temperature heat processing.

充填材の上部には、金属メッシュ40及び金属ワッシャー50が配置される。金属メッシュ40及び金属ワッシャー50は、ステンレススチール、鉄、銅、モリブデン、タングステン又はチタンからなる。   A metal mesh 40 and a metal washer 50 are disposed on the top of the filler. The metal mesh 40 and the metal washer 50 are made of stainless steel, iron, copper, molybdenum, tungsten, or titanium.

金属メッシュ40は、充填材として使われた微細な炭素繊維が容器外に離脱することを防止する。   The metal mesh 40 prevents the fine carbon fibers used as the filler from detaching from the container.

より效果的に、充填材の離脱を防止、又は真空蒸着工程での充填材の分散を防止するためには、炭素繊維フェルト30を、容器内部に収容された微細な炭素繊維上に薄く配置し、当該炭素繊維を覆い囲むようにする。   More effectively, in order to prevent the detachment of the filler or to prevent the filler from being dispersed in the vacuum deposition process, the carbon fiber felt 30 is thinly disposed on the fine carbon fiber accommodated inside the container. The carbon fiber is covered.

金属ワッシャー50は、容器のリング状の上部縁から下げられ、全体的に充填材を押し付ける。これにより、押し付けられた炭素繊維を通じて、空隙の大きさ及び空隙率が最終的に制御される。   The metal washer 50 is lowered from the ring-shaped upper edge of the container and presses the filler as a whole. Thereby, the size and porosity of the void are finally controlled through the pressed carbon fiber.

金属ワッシャー50は、炭素繊維、炭素繊維フェルト又は保護用のメッシュを安定的に保護し、抵抗加熱方法又は電子ビーム加熱方法によって伝達された熱の放出を防止する。さらに、真空蒸着工程において、熱によって気化された有機系蒸着物質は、金属ワッシャーの中心に形成された円状の孔を通って基板に移動する。   The metal washer 50 stably protects the carbon fiber, the carbon fiber felt, or the protective mesh, and prevents the heat transferred by the resistance heating method or the electron beam heating method. Furthermore, in the vacuum deposition process, the organic vapor deposition material vaporized by heat moves to the substrate through a circular hole formed in the center of the metal washer.

孔の大きさは真空蒸着チャンバーの大きさ及び高さ、並びに外部容器の大きさによって適宜に決定されうる。孔の大きさは3mm〜20mmであり、好ましくは5mm〜8mmである。   The size of the hole can be appropriately determined according to the size and height of the vacuum deposition chamber and the size of the external container. The size of the hole is 3 mm to 20 mm, preferably 5 mm to 8 mm.

ワッシャーの孔の大きさは非常に重要である。ワッシャーの孔の大きさによって、真空蒸着工程の間に、気化された有機系蒸着物質が基板に向かって直進して分散する角度が決定され、有機系真空蒸着物質の損失を最小にすることができる。   The size of the washer hole is very important. The size of the washer hole determines the angle at which the vaporized organic vapor deposition material travels straight toward the substrate during the vacuum vapor deposition process, minimizing the loss of the organic vacuum vapor deposition material. it can.

本発明の多目的真空蒸着容器の製造工程について、以下説明する。   The manufacturing process of the multipurpose vacuum evaporation container of the present invention will be described below.

(実施例1)
炭素繊維粉末20及び炭素繊維フェルト30を容器10に充填し、その後、炭素繊維粉末20及び炭素繊維フェルト30を覆い囲むように、金属メッシュ40及び金属ワッシャー50を炭素繊維フェルト30上に配置して容器に溶接する。こうして、蒸着物質を含浸した真空蒸着用物質は、60mgの液状フッ素系化合物を含浸することによって製造される。
Example 1
The container 10 is filled with the carbon fiber powder 20 and the carbon fiber felt 30, and then the metal mesh 40 and the metal washer 50 are disposed on the carbon fiber felt 30 so as to cover the carbon fiber powder 20 and the carbon fiber felt 30. Weld to the container. Thus, the vacuum vapor deposition material impregnated with the vapor deposition material is produced by impregnating 60 mg of the liquid fluorine-based compound.

(実施例2)
実施例1で製造された真空蒸着用物質を、真空蒸着装置の電子ビームポートに装入する。電子ビームの直径は、真空蒸着装置を使用して、5×10−5torrの真空度及び20mAの電子ビーム電流で、30mmに設定される。そして、真空蒸着物質をガラス、PMMA、PC及びPET基板上にコーティングする。
(Example 2)
The material for vacuum deposition manufactured in Example 1 is charged into the electron beam port of the vacuum deposition apparatus. The diameter of the electron beam is set to 30 mm with a vacuum degree of 5 × 10 −5 torr and an electron beam current of 20 mA using a vacuum deposition apparatus. A vacuum deposition material is then coated on the glass, PMMA, PC and PET substrates.

(実施例3)
実施例1で製造された真空蒸着用物質を、真空蒸着装置のモリブデン発熱体のボートに装入する。5×10−5torrの真空度及び50mAの電流で、ガラス、PMMA、PC及びPET基板上にコーティングする。
(Example 3)
The material for vacuum deposition manufactured in Example 1 is charged into a molybdenum heating element boat of a vacuum deposition apparatus. Coating on glass, PMMA, PC and PET substrates with a vacuum of 5 × 10 −5 torr and a current of 50 mA.

10 外部金属容器
20 炭素繊維(フェルト)充填材
30 炭素フェルト
40 保護用の金属メッシュ
50 金属ワッシャー
DESCRIPTION OF SYMBOLS 10 External metal container 20 Carbon fiber (felt) filler 30 Carbon felt 40 Metal mesh for protection 50 Metal washer

Claims (7)

上部縁がリング状に形成され、内部に、炭素繊維フェルト、炭素繊維、炭素粉末、及び金属フェルト/金属粉末のグループの中から選択された内部充填材と該内部充填材内に含浸又は充填された蒸着物質を収容する金属容器と、
前記金属容器の内部に収容され、前記内部充填材上に配置される金属ワッシャーを備え、
前記金属ワッシャーが、前記金属容器の上部縁から下げられ、前記内部充填材を押し付けた状態で前記金属容器に固定されることを特徴とする真空蒸着用容器。
The upper edge is formed in a ring shape , and the inside is impregnated or filled in an internal filler selected from the group consisting of carbon fiber felt, carbon fiber, carbon powder, and metal felt / metal powder. a metal container housing the deposited substances,
A metal washer housed in the metal container and disposed on the internal filler ;
The vacuum evaporation container, wherein the metal washer is lowered from an upper edge of the metal container and fixed to the metal container in a state of pressing the internal filler .
内部に、炭素繊維フェルト、炭素繊維、炭素粉末、及び金属フェルト/金属粉末のグループの中から選択された内部充填材と該内部充填材内に含浸又は充填された蒸着物質を収容する金属容器と、
前記金属容器の内部に収容され、前記内部充填材上に配置される金属ワッシャーを備え、
前記金属ワッシャーが、前記内部充填材を押し付けた状態で前記金属容器に溶接されることを特徴とする真空蒸着用容器。
Inside, a metal container housing the carbon fiber felt, carbon fibers, carbon powder, and the deposition material which is impregnated or filled in selected interior filler and internal within the filler from the group of metal felt / metal powder When,
A metal washer housed in the metal container and disposed on the internal filler ;
The vacuum evaporation container, wherein the metal washer is welded to the metal container in a state where the inner filler is pressed.
前記内部充填材と前記金属ワッシャーの間に配置され、前記内部充填材の前記金属容器からの離脱を防止する金属メッシュをさらに備えたことを特徴とする請求項1又は2に記載の真空蒸着用容器。The vacuum deposition according to claim 1, further comprising a metal mesh that is disposed between the inner filler and the metal washer and prevents the inner filler from being detached from the metal container. container. 前記金属容器、前記金属ワッシャー及び前記金属メッシュは、ステンレススチール、鉄、銅、モリブデン、タングステン又はチタンからなることを特徴とする請求項に記載の真空蒸着用容器。The said metal container, the said metal washer, and the said metal mesh consist of stainless steel, iron, copper, molybdenum, tungsten, or titanium, The container for vacuum evaporation of Claim 3 characterized by the above-mentioned. 前記内部充填材と前記金属ワッシャーの間に配置され、前記内部充填材の前記金属容器からの離脱を防止する炭素繊維フェルトをさらに備えたことを特徴とする請求項1又は2に記載の真空蒸着用容器。The vacuum deposition according to claim 1, further comprising a carbon fiber felt that is disposed between the inner filler and the metal washer and prevents the inner filler from being detached from the metal container. Container. 前記金属容器は、円筒形状又は四角筒形状であることを特徴とする請求項1又は2に記載の真空蒸着用容器。  The container for vacuum evaporation according to claim 1 or 2, wherein the metal container has a cylindrical shape or a rectangular tube shape. 前記金属ワッシャーは、中央に孔を有していることを特徴とする請求項1又は2に記載の真空蒸着用容器。  The said metal washer has a hole in the center, The container for vacuum evaporation of Claim 1 or 2 characterized by the above-mentioned.
JP2010518125A 2007-07-26 2008-07-25 Multipurpose container for vacuum deposition material and method for manufacturing the same Active JP5188575B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2007-0075000 2007-07-26
KR1020070075000A KR101025005B1 (en) 2007-07-26 2007-07-26 Multipurpose carrier of vacuum vapor deposition material and method thereof
PCT/KR2008/004352 WO2009014398A2 (en) 2007-07-26 2008-07-25 Multipurpose carrier of vacuum vapor deposition material and method thereof

Publications (2)

Publication Number Publication Date
JP2010534767A JP2010534767A (en) 2010-11-11
JP5188575B2 true JP5188575B2 (en) 2013-04-24

Family

ID=40281990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010518125A Active JP5188575B2 (en) 2007-07-26 2008-07-25 Multipurpose container for vacuum deposition material and method for manufacturing the same

Country Status (5)

Country Link
JP (1) JP5188575B2 (en)
KR (1) KR101025005B1 (en)
CN (1) CN101765676B (en)
HK (1) HK1145093A1 (en)
WO (1) WO2009014398A2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9972128B2 (en) 2012-07-20 2018-05-15 The University Of British Columbia Methods and systems for generating polycubes and all-hexahedral meshes of an object
KR20140013471A (en) 2012-07-24 2014-02-05 주식회사 쎄코 Heating assembly for vacuum deposition and vacuum deposition apparatus having the same
KR101355208B1 (en) * 2012-08-02 2014-01-27 주식회사 유라마 Organic matter carrier housing for vacuum metalizing
KR101480726B1 (en) * 2012-12-21 2015-01-09 주식회사 선익시스템 Vacuum Evaporating Apparatus
US9922458B2 (en) 2013-11-04 2018-03-20 The University Of British Columbia Methods and systems for generating polycube segmentations from input meshes of objects
KR101404047B1 (en) 2013-11-29 2014-06-10 (주)파인켐텍 Container of vacuum deposition material
JP6694673B2 (en) * 2014-06-02 2020-05-20 キヤノンオプトロン株式会社 Evaporation source and vapor deposition method using the same
KR200480271Y1 (en) 2014-11-26 2016-05-18 (주)파인켐텍 Container For Vacuum Deposition Material
JP6896629B2 (en) * 2014-12-19 2021-06-30 タタ、スティール、ネダーランド、テクノロジー、ベスローテン、フェンノートシャップTata Steel Nederland Technology Bv Filter device for removing particles from steam stream
US10210657B2 (en) 2015-07-24 2019-02-19 The University Of British Columbia Methods and systems for hex-mesh optimization via edge-cone rectification
KR20170116398A (en) * 2016-04-11 2017-10-19 주식회사 쎄코 Carrier for deposition
CN114134464A (en) * 2021-10-26 2022-03-04 惠州市华阳光学技术有限公司 Structural color pigment and preparation method thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02197564A (en) * 1989-01-27 1990-08-06 Nippon Dempa Kogyo Co Ltd Vacuum deposition device
JPH0783913B2 (en) * 1990-04-17 1995-09-13 国産部品工業株式会社 Wire mesh porous body for engine muffler and method of manufacturing the same
JPH04272169A (en) * 1991-02-25 1992-09-28 Shimadzu Corp Impregnating type vacuum deposition device
JPH04285157A (en) * 1991-03-12 1992-10-09 Hitachi Ltd Method for vaporizing metal
JP2892620B2 (en) * 1996-06-17 1999-05-17 株式会社東京製品開発研究所 Vacuum evaporation method for optical parts using porous ceramics sintered compact impregnated with organic film-forming substance for optical parts
JP2001183503A (en) * 1999-12-24 2001-07-06 Toray Ind Inc Method of producing optical article
JP2001323367A (en) * 2000-03-09 2001-11-22 Junji Kido Method for vapor depositing organic compound, and method for purifying organic compound
JP2001335920A (en) * 2000-05-26 2001-12-07 Toray Ind Inc Vapor deposition source, optical article and the producing method
JP2002335920A (en) * 2001-05-17 2002-11-26 House Foods Corp White color-based liquid food
JP2003264079A (en) * 2002-03-11 2003-09-19 Sanyo Electric Co Ltd Evaporation source for evaporator, evaporator using the same, and manufacturing method of organic el element
KR200322862Y1 (en) * 2003-05-16 2003-08-14 김영정 Porous Ceramic Tablet for Vacuum Coating
KR100528892B1 (en) * 2003-08-22 2005-11-15 신도현 Vehicle for carrying repellent agent for coating treatment under vacuum state
JP4001296B2 (en) * 2005-08-25 2007-10-31 トッキ株式会社 Method and apparatus for vacuum deposition of organic materials
JP2008150678A (en) * 2006-12-19 2008-07-03 Sony Corp Evaporation source, vapor deposition apparatus, vapor deposition method, apparatus for manufacturing organic electroluminescence display unit, and method for manufacturing organic electroluminescence display unit

Also Published As

Publication number Publication date
KR20090011432A (en) 2009-02-02
HK1145093A1 (en) 2011-04-01
JP2010534767A (en) 2010-11-11
KR101025005B1 (en) 2011-03-24
WO2009014398A2 (en) 2009-01-29
CN101765676B (en) 2012-04-11
CN101765676A (en) 2010-06-30
WO2009014398A3 (en) 2009-04-02

Similar Documents

Publication Publication Date Title
JP5188575B2 (en) Multipurpose container for vacuum deposition material and method for manufacturing the same
Lian et al. Elucidation of active sites on S, N codoped carbon cubes embedding Co–Fe carbides toward reversible oxygen conversion in high‐performance zinc–air batteries
EP0264338B1 (en) Porous coatings, products and method of manufacture
Wang et al. Recent Advances in Electrode Fabrication for Flexible Energy‐Storage Devices
Yong et al. Underwater Superaerophobic and Superaerophilic Nanoneedles‐Structured Meshes for Water/Bubbles Separation: Removing or Collecting Gas Bubbles in Water
US9676064B2 (en) Controllably-formed brazing structures and related compositions and methods
Zhang et al. Engineering high‐performance MoO2‐based nanomaterials with supercapacity and superhydrophobicity by tuning the raw materials source
US20110083835A1 (en) Heat-dissipating structure and method for fabricating the same
JP2004532932A (en) Cesium supply device and method of using the same
US20180299207A1 (en) Cooler, cooling apparatus using the same, and method for cooling heat generation element
US5320866A (en) Method of wet coating a ceramic substrate with a liquid suspension of metallic particles and binder applying similar dry metallic particles onto the wet surface, then drying and heat treating the article
CN101218040A (en) Selective area fusing of a slurry coating using a laser
CN1830603B (en) Porous liquid absorbing-and-holding member, process for production thereof, and alcohol absorbing-and-holding member
CN111306971B (en) Ultra-light thin flexible heat pipe based on carbon nano material film and preparation method thereof
CN103205716A (en) Adsorption carrier for evaporation material for evaporation of anti-fouling film
Choi et al. Investigation of physicochemical properties of CuSn‐based PAN nanofibers prepared via electrospinning method
Saraf et al. Enhancing Charge Storage of Mo2Ti2C3 MXene by Partial Oxidation
JP5576184B2 (en) Vapor deposition material for organic film formation
JP2009092344A (en) Vapor chamber with superior heat transport characteristic
JP2006521666A5 (en)
JP2014126501A (en) Adsorbent of radioactive cesium, and method of manufacturing the same
JP4849308B2 (en) Surface treatment method for metal porous body
CN109594056B (en) Substrate, preparation method, hole sealing system and cladding tube
US20080265218A1 (en) Composite layer and method of forming same
JP5329302B2 (en) Heating apparatus and vapor deposition method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5188575

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250