KR20070004429A - 접합체와 그것을 이용한 웨이퍼 지지부재 및 웨이퍼처리방법 - Google Patents

접합체와 그것을 이용한 웨이퍼 지지부재 및 웨이퍼처리방법 Download PDF

Info

Publication number
KR20070004429A
KR20070004429A KR1020060060570A KR20060060570A KR20070004429A KR 20070004429 A KR20070004429 A KR 20070004429A KR 1020060060570 A KR1020060060570 A KR 1020060060570A KR 20060060570 A KR20060060570 A KR 20060060570A KR 20070004429 A KR20070004429 A KR 20070004429A
Authority
KR
South Korea
Prior art keywords
solder material
material layer
wafer
plasma
thickness
Prior art date
Application number
KR1020060060570A
Other languages
English (en)
Other versions
KR100775454B1 (ko
Inventor
키요시 요코야마
Original Assignee
쿄세라 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 쿄세라 코포레이션 filed Critical 쿄세라 코포레이션
Publication of KR20070004429A publication Critical patent/KR20070004429A/ko
Application granted granted Critical
Publication of KR100775454B1 publication Critical patent/KR100775454B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4586Elements in the interior of the support, e.g. electrodes, heating or cooling devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4581Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber characterised by material of construction or surface finish of the means for supporting the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68735Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by edge profile or support profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a coating or a hardness or a material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Drying Of Semiconductors (AREA)
  • Ceramic Products (AREA)

Abstract

접합층이 플라즈마에 의해 침식되기 어려운 세라믹 부재와 금속 복합 부재의 접합체를 제공한다.
그 접합체는, 서로 대향하는 2개의 주면을 가지며 그 한쪽의 주면에 제1금속층을 갖는 세라믹 부재와, 서로 대향하는 2개의 주면을 가지며 그 한쪽의 주면에 제2금속층을 갖는 금속 복합 부재와, 제1금속층과 제2금속층을 접합하는 땜납재층을 갖고, 땜납재층의 외주면은, 그 외주면에 있어서의 두께방향의 중앙부에 오목부를 갖고, 그 오목부의 폭은 땜납재층의 두께의 3분의 1이상이다.

Description

접합체와 그것을 이용한 웨이퍼 지지부재 및 웨이퍼 처리방법{COMPOSITE BODY, WAFER SUPPORTING MEMBER USING THE SAME, AND METHOD FOR PROCESSING WAFER}
도 1은, 본발명에 따른 실시형태의 정전척의 구성을 나타내는 단면도이다.
도 2A~도 2F는, 본 실시형태의 정전척에 사용한 접합체에 있어서의 땜납재층의 외주의 오목부를 나타내는 부분단면도이다.
도 3은, 본 실시형태의 정전척에 이용한 접합체에 있어서의 땜납재층의 외주의 오목부를 확대해서 나타내는 단면도이다.
도 4는, 본 발명의 웨이퍼 지지부재의 He 누설 시험의 측정 방법의 개요를 나타내는 단면도이다.
도 5는, 종래의 세라믹 부재와 금속-세라믹스 복합 부재의 접합체의 단면도이다.
도 6은, 종래의 세라믹 부재와 금속-세라믹스 복합 부재의 접합체에 있어서의 땜납재층의 외주부를 확대해서 나타내는 단면도이다.
본 발명은, 세라믹 부재와 금속 복합 부재의 접합체와 그것을 이용한 웨이퍼 지지부재에 관한 것이다. 또한, 본 발명은, 본 발명에 따른 웨이퍼 지지부재를 이용한 웨이퍼 처리방법에 관한 것이다.
예컨대, 반도체칩의 제조에는 성막 장치나 에칭 장치가 사용된다. 이들 장치에 있어서, 반도체 웨이퍼를 유지하는 웨이퍼 지지부재로서, 예컨대, 정전 흡착을 이용하여 웨이퍼를 유지하는 정전척이나 웨이퍼를 유지하면서 가열하는 히터가 부착된 정전척이 이용된다.
이 정전척은, 처리할 때에 웨이퍼를 강고하게 유지하기 위해서 웨이퍼 지지부재의 내부 또는 웨이퍼 적재면과는 반대측의 면에 정전 흡착용 전극을 배치하여, 이 정전 흡착용 전극에 전압을 인가함으로써 존슨-라벡(Johnson-Rahbeck)력이나 클론(clone)력을 발현시켜서 웨이퍼를 적재면에 흡착하여 유지하는 웨이퍼 지지부재이다.
또한, 히터가 부착된 정전척은, 웨이퍼를 균일한 온도로 가열하기 위해서 웨이퍼 지지부재의 내부 또는 웨이퍼 적재면과는 반대측의 면에 발열용 전극을 배치하여 웨이퍼를 가열하는 기능을 더욱 갖는 웨이퍼 지지부재이다.
특히, 반도체 장치를 제조하는 반도체 웨이퍼(이하, 웨이퍼라고 함)의 처리 공정인 PVD, CVD, 스퍼터링, SOD, SOG 등의 성막 공정이나 에칭 공정에서는, 피처리물인 웨이퍼에 균일한 두께로 균질한 막을 성막하는 것이나, 성막한 막에 균일한 깊이로 에칭을 실시하는 가공 처리가 중요하다.
웨이퍼 지지부재는, 한쪽의 주면을 웨이퍼를 지지하는 흡착면(적재면)으로 하는 판형상 세라믹 부재와, 그 판형상 세라믹 부재의 흡착면과는 반대측의 면에 접합된 금속-세라믹스 복합부재(판형상체)로 이루어지고, 플라즈마하에서 처리될 때에 웨이퍼에 발생하는 열을 신속히 외부로 배출하기 위해서, 금속-세라믹스 복합부재가 냉매 등에 의해 냉각된다.
이러한 구조의 웨이퍼 지지부재(정전척 스테이지)는, 예컨대, 일본 특허공개 평10-32239호 공보에 나타내어져 있다. 특허문헌1의 정전척 스테이지(50)는, 도 5에 단면도에서 나타내는 바와 같이, 정전 흡착용 전극(52)을 매설한 판형상 세라믹스 소결체부재(51)와, 세라믹스와 알루미늄의 복합재 플레이트(55)(금속-세라믹스 복합부재)를 접합층(54)으로 접합함으로써 구성되어 있다. 또한, 특허문헌1에서는, 접합층(54)으로서 땜납 또는 땜납재를 이용하는 것이 개시되어 있다.
[특허문헌1] 일본 특허공개 평10-32239호 공보
그러나, 종래의 웨이퍼 지지부재에 있어서의 세라믹 부재와 금속-세라믹스 복합부재의 접합체에서는, 플라즈마에 의해 웨이퍼에 성막 또는 에칭을 실시할 때에, 접합층(54)의 주위의 노출부가 플라즈마에 바래져서, 세라믹 부재와 금속-세라믹스 복합부재의 접합층(54)이 침식된다는 문제가 있었다.
이 접합층(54)의 침식에 의해, 최악의 경우, 세라믹 부재가 금속-세라믹스 복합부재로부터 벗겨질 우려가 있었다.
즉, 도 6에 단면도에서 나타내는 바와 같이, 세라믹 부재(61)와 금속-세라믹스 복합부재(65)의 접합체(60)에서는, 땜납재층(63)의 중심부에 최대전단응력 발생부위(G)가 있고, 이 최대전단응력 발생부위가 플라즈마에 의해 침식되면 도 6에 나 타내는 바와 같이, G의 부분에서 침식 손상이 발생한다. 그 침식 손상은, 매우 예리한 손상이 되기 때문에 최대전단응력과 더불어 접합층인 땜납재층(63)을 잡아 찢도록 힘이 작용하고, 세라믹 부재(61)가 금속-세라믹스 복합부재(65)로부터 벗겨지게 된다. 이와 같이, 땜납재층(63)의 중심으로 발생하는 최대전단응력 발생부위(G)가 플라즈마에 바래져서 침식됨으로써, 침식 손상과 최대전단응력에 의한 상승효과에 의해 접합층(땜납재층(63))이 현저한 손상을 받으므로, 접합체(60)가 파손된다.
그래서, 본 발명은, 침식성 또는 부식성의 분위기에 대하여 내구성이 우수한 세라믹 부재와 금속 복합 부재의 접합체 및 이것을 이용한 웨이퍼 지지부재를 제공하는 것을 목적으로 한다.
또한, 본 발명은, 침식성 또는 부식성의 분위기에 있어서 장시간 사용가능한 웨이퍼 처리방법을 제공하는 것을 목적으로 한다.
본 발명자는, 이와 같은 과제를 해결하기 위해서, 예의 검토한 결과, 세라믹 부재와 금속 복합 부재의 접합체에 있어서의 접합층이 되는 땜납재층의 끝면에 오목 개소를 형성함으로써, 플라즈마에 대한 내식성을 향상시킬 수 있다는 지견을 얻어 본 발명을 완성하게 되었다.
본 발명은, 접합층이 플라즈마에 의해 침식되기 어려운 세라믹 부재와 금속 복합 부재의 접합체를 제공하는 것이다.
즉, 본 발명에 따른 접합체는, 서로 대향하는 2개의 주면을 가지며 그 한쪽 의 주면에 제1금속층을 갖는 세라믹 부재와, 서로 대향하는 2개의 주면을 가지며 그 한쪽의 주면에 제2금속층을 갖는 금속 복합 부재와, 상기 제1금속층과 상기 제2금속층을 접합하는 땜납재층을 갖고,
상기 땜납재층의 외주면은, 그 외주면에 있어서의 두께방향의 중앙부에 오목부를 갖고, 그 오목부의 폭은 상기 땜납재층의 두께의 3분의 1이상인 것을 특징으로 한다.
또한, 본 발명에 따른 접합체에 있어서, 상기 오목부의 내면은 만곡된 면인 것이 바람직하다.
또한, 본 발명에 따른 접합체에 있어서, 상기 오목부의 깊이가 상기 땜납재층의 두께의 0.1배 이상, 10배 이하인 것이 바람직하다.
또한, 본 발명에 따른 접합체에 있어서, 상기 오목부는, 상기 땜납재층의 상기 외주면 전체가 내측으로 오목하게 들어감으로써 형성되어 있는 것이 바람직하다.
또한, 본 발명에 따른 접합체에 있어서, 상기 외주면은, 상기 제1금속층의 외주 가장자리 및 상기 제2금속층의 외주 가장자리로부터 내측으로 떨어져 위치하고 있는 것이 바람직하고, 그 경우, 상기 외주면이 상기 외주 가장자리로부터 내측으로 떨어진 거리가 상기 땜납재층의 두께의 0.1배 이상, 상기 제1금속층 및 제2금속층의 최대 지름의 0.18배 이하인 것이 더욱 바람직하다.
또한, 본 발명에 따른 접합체에 있어서, 상기 땜납재층은 알루미늄 땜납재 또는 인듐 땜납재로 이루어지는 것이 바람직하다.
또한, 본 발명에 따른 접합체에 있어서, 상기 땜납재층의 두께가 접합면의 최대 지름의 100ppm~3000ppm인 것이 바람직하다.
또한, 본 발명에 따른 접합체에 있어서, 상기 땜납재층의 기공율이 1%~10%인 것이 바람직하다.
또한, 본 발명에 따른 웨이퍼 지지부재는, 본 발명에 따른 접합체를 구비하고, 상기 세라믹 부재의 다른쪽의 주면을 웨이퍼를 적재하는 면으로 한 것을 특징으로 한다.
또한, 본 발명에 따른 웨이퍼 지지부재는, 상기 세라믹 부재에 히터가 내장되어 있어도 된다.
또한, 본 발명에 따른 웨이퍼 지지부재는, 상기 세라믹 부재에 정전 흡착용 전극이 내장되어 있어도 된다.
또한, 본 발명에 따른 웨이퍼의 처리방법은, 본 발명에 따른 웨이퍼 지지부재의 다른쪽의 주면에 웨이퍼를 적재하여, 상기 히터에 의해 상기 웨이퍼를 가열, 및/또는 상기 정전 흡착 전극에 전압을 인가하여 상기 웨이퍼를 흡착하여, 상기 웨이퍼에 대하여 플라즈마를 이용한 성막 처리 또는 플라즈마를 이용한 에칭처리를 행하는 것을 특징으로 한다.
이하, 도면을 참조하면서, 본 발명에 따른 실시형태에 대해서 설명한다.
도 1은, 본 발명에 따른 실시형태의 정전척의 개략적인 구성을 나타내는 단면도이다.
본 실시형태의 정전척은, 본 발명의 접합체(1)를 이용하여 구성한 일례인 웨 이퍼 지지부재(100)이고, 접합체(1)는 세라믹 부재(12)와 금속 복합 부재(16)가 땜납재층에 의해 접합되어 이루어진다.
접합체(1)에 있어서, 정전 흡착용 전극(11)을 내장한 판형상의 세라믹 부재(12)의 한쪽의 주면에 금속층(13)이 형성되고, 또한 금속 복합 부재(16)의 한쪽의 주면에 금속층(15)이 형성되어서, 금속층(13과 15)과 땜납재층(14)으로 접합되어 있다. 그리고, 금속 복합 부재(16)를 관통해서 세라믹 부재(12)에 내장된 정전 흡착용 전극(11)에 통하는 구멍이 형성되고, 이 구멍을 통해서 단자(17)가 정전 흡착용 전극(11)에 접합되어서, 정전 흡착용 전극(11)에 전압이 인가된다. 이상과 같이, 웨이퍼 지지부재(100)가 구성되어 있다.
이와 같이 구성된 웨이퍼 지지부재(100)에 있어서, 정전 흡착용 전극(11)에 직류전압을 인가하면 세라믹 부재(12)의 상면에 적재된 반도체 웨이퍼(도시 생략)가 강고하게 흡착된다.
본 발명의 접합체(1)에 있어서는, 금속층(13)과 금속층(15) 사이를 땜납재층(14)에 의해 접합함으로써, 세라믹 부재(12)와 금속 복합 부재(16)를 접합하고 있지만, 본 발명에서는, 특히, 땜납재층(14)의 끝면(외주면)의 중앙부가 내측으로 오목하게 들어가 있고, 그 오목하게 들어간 영역의 폭이, 땜납재층(14)의 두께(a)의 3분의 1이상인 것을 특징으로 한다.
도 2A~도 2F는, 각각 본 발명의 접합체(1)의 부분단면도이며, 땜납재층(14)의 외주부분에 있는 오목부를 확대해서 나타내고 있다. 본 발명의 접합체(1)에서는, 도 2A, 도 2B 및 도 2C에 나타내는 바와 같이, 땜납재층(14)의 끝면이, 두께방 향의 중앙부에 있어서, 적어도 땜납재층(14)의 두께의 3분의 1의 영역이 내측으로 오목하게 들어가 있으므로, 플라즈마 분위기에서 사용된 경우이여도, 오목부의 내부에는 플라즈마가 충분히 들어가지 않고, 오목부에 있어서의 플라즈마 밀도는 저하된다.
따라서, 접합층인 땜납재층(14)에 플라즈마가 직접 노출되면, 땜납재층(14)이 침식되는 플라즈마 상태하에서 사용한 경우이여도, 오목부 내부의 플라즈마 밀도가 저하되기 때문에 접합층(땜납재층(14))이 침식되기 어려워진다. 이것에 의해, 최대전단응력이 발생하는 땜납재층(14)의 중심부위를 플라즈마로부터 보호할 수 있게 되어 접합체(1)의 내구성을 높이며 신뢰성을 높일 수 있다.
또한, 이 땜납재층(14)에 있어서 오목부의 내면은, 도 2A에 나타내는 바와 같이 만곡된 단면형상을 갖고 있는 것이 바람직하다. 이와 같이 오목부의 내면이 만곡하고 있으면, 예컨대, 플라즈마에 의한 땜납재층(14)의 침식을 더욱 유효하게 방지할 수 있다. 그 이유는, 만곡된 내면에 의해, 오목부의 플라즈마 밀도가 저하할뿐만 아니라, 접합층(땜납재층(14))을 벗기려고 하는 전단응력이 가했졌을 때에, 오목부 내에 각이 없으므로, 오목부 내에, 파괴의 기점으로 되는 곳이 없기 때문이다. 예컨대, 오목부 내에 베인 형상의 부분이 있으면, 전단응력이 작용했을 때에 그 부분에서부터 파괴가 일어날 우려가 있다.
또한, 이 오목부의 깊이(d)는, 땜납재층(14)의 두께(a)의 0.1배~10배인 것이 바람직하다. 오목부의 깊이(d)가, 땜납재층(14)의 두께(a)의 0.1배 이상이면, 오목 개소 내부의 플라즈마 밀도가 작아지고, 플라즈마에 의한 땜납재층(14)의 침식을 보다 저감할 수 있다. 또한, 플라즈마의 밀도가 높으면 침식 속도가 빨라지지만, 접합층(땜납재층(14))이 오목하게 들어가 있음으로써, 그 오목부 내부에 있어서의 플라즈마 밀도가 저하되므로, 침식 속도가 저하된다.
그러나, 오목부의 깊이가 땜납재층(14)의 두께(a)의 0.1배 미만에서는, 오목부의 깊이(d)가 지나치게 얕아서, 플라즈마가 비교적 용이하게 오목부의 내부에 침입할 수 있으므로, 플라즈마 밀도를 효과적으로 저하시킬 수 없고, 침식 속도를 낮추기 어렵기 때문이다. 보다 바람직하게는, 땜납재층(14)의 두께(a)의 1배 이상 오목하게 들어가 있는 것이 바람직하고, 이것에 의해, 오목부 내에서의 플라즈마에 의한 침식을 보다 저감할 수 있다.
또한, 땜납재층의 외주면을 오목하게 들어가게 하여 제작한 오목부에서는, 오목 개소의 깊이(d)가 땜납재층(14)의 두께(a)의 10배를 초과하면, 오목 개소의 형상이 도 2C에 나타내는 형상과 같이 오목부의 선단의 곡률반경이 지나치게 작게 되어, 오목부의 선단이 파괴의 기점으로서 작용할 우려가 있다. 따라서, 땜납재층의 외주면이 오목하게 들어간 오목부의 깊이(d)는, 땜납재층(14)의 두께(a)의 10배 이하인 것이 바람직하다. 이러한, 파괴의 기점이라는 관점에서는, 도 2A에 나타내는 바와 같은 오목부 형상이, 파괴의 기점이 되기 어려우므로 바람직하다. 즉, 땜납재층(14)의 끝면이, 도 2A에 나타내는 바와 같이, 내측으로 만곡하여 오목함으로써 오목부가 형성되어 있는 것이 바람직하다.
또한, 땜납재층(14)의 끝면은, 도 2D, 도 2E, 도 2F에 나타내는 바와 같이, 전체에 걸쳐 내측으로 오목하게 들어가 있는 것이 바람직하다. 도 2D, 도 2E, 도 2F에 나타내는 바와 같이 땜납재층(14) 전체에 걸쳐 오목하게 들어가 있음으로써, 땜납재층(14)의 끝면의 거의 전면에 걸쳐서 높은 밀도의 플라즈마에 바래지는 일이 없게 되어, 땜납재층(14)의 플라즈마 침식을 더욱 억제할 수 있게 된다. 이러한 오목부의 형상으로서는, 여러가지의 형상이 있지만, 예컨대, 도 2D에 나타내는 바와 같은, 단면이 타원형상의 일부로 이루어지는 형상인 오목부는, 오목부 부분의 플라즈마 밀도가 저하할뿐만 아니라, 오목부의 내면에 각이 없어, 응력집중에 의한 파괴의 기점이 되기 어렵다.
또한, 오목부에 있어서의, a(땜납재층(14)의 두께)와 b(오목부의 깊이)의 비도 중요하다. 구체적으로는, 오목부의 ab비(= b/a)는 0.1배 이상인 것이 바람직하다. 오목부의 ab비가 0.1배 이상이면, 땜납재층(14)의 두께의 10분 1이상의 오목부의 깊이(b)로 된다. 플라즈마가 접합층(땜납재층(14))을 침식할 때에는 플라즈마의 밀도가 높으면 침식 속도가 빨라지지만, 접합층(땜납재층(14))이 오목하게 들어가 있음으로써, 그 오목부의 내부에 있어서의 플라즈마 밀도가 저하되어, 침식 속도가 저하된다. 그러나, 오목부의 깊이(b)가 땜납재층(14)의 두께의 0.1배 미만에서는, 오목부가 지나치게 얕아서, 플라즈마가 비교적 용이하게 오목부의 내부에 침입할 수 있으므로, 플라즈마 밀도를 효과적으로 저감할 수 없어, 침식 속도를 효과적으로 저하시킬 수 없다.
또한, 도 2F에 나타내는 오목부를 제외하고, 땜납재층(14)의 끝면의 오목부의 깊이(b)는, 땜납재층(14)의 두께(a)의 10배 이하인 것이 바람직하다. 오목부의 깊이(b)가 땜납재층(14)의 두께의 10배를 초과하면, 선단의 곡률반경이 지나치게 작게 되어(각도가 지나치게 예리하게 되어), 오목부의 선단이 파괴의 기점으로서 기능해버릴 우려가 있기 때문이다.
또한, 땜납재층(14)의 끝면의 오목부는, 도 2F에 나타내는 바와 같이, 땜납재층(14)의 끝면(외주면) 전체가 금속층(13,15)의 외주 가장자리보다 내측에 위치하고 있는 것이 바람직하다. 이와 같이, 땜납재층(14)의 외주면의 상단 및 하단이 금속층(13,15)의 외주 가장자리보다 내측에 위치하고, 땜납재층(14)의 끝면 전체가 금속층(13,15)의 외주 가장자리보다 내측으로 들어가 있으면, 땜납재층(14)의 끝면 전체를 플라즈마 침식으로부터 보호할 수 있다.
이와 같이, 땜납재층(14)의 끝면 전체가, 금속층(13,15)의 외주 가장자리보다 내측에 위치함으로써, 플라즈마에 의한 땜납재층(14)으로의 침식을 매우 작게 할 수 있다. 즉, 땜납재층(14)의 끝면의 중앙부를 오목하게 들어가게 한 오목 개소의 경우는, 최대전단응력이 발생하는 중심부 부근에서는 확실하게 플라즈마에 의한 침식을 방지할 수 있지만, 세라믹 부재(12)나 금속 복합 부재(16)의 접합부 근방에 있는 접합층은, 플라즈마에 의한 침식을 받을 우려가 있다. 이 세라믹 부재(12)나 금속 복합 부재(16) 근방의 접합층에 있어서의 전단응력은 작지만, 플라즈마에 의한 침식이 발생하는 것은 바람직하지 않다. 그러나, 땜납재층(14)의 끝면 전체가 금속층(13 또는 15)의 외주 가장자리보다 내측에 위치하도록 오목하게 들어가 있으면, 땜납재층(14)의 끝면 전체의 플라즈마 침식의 발생을 방지할 수 있다. 이와 같이, 땜납재층(14)의 끝면 전체를, 금속층(13 또는 15)의 외주 가장자리보다 내측에 위치시키기 위해서는, 미리, 납땜 전의 땜납재의 치수와 납땜 후의 땜납재 흐름의 위치의 관계를 파악해 두고, 납땜 후에 땜납재층(14)의 끝면이 원하는 위치로 오도록 땜납재의 크기 및 양을 조절하면 좋다.
또한, 도 2F에 나타내는 바와 같이, 땜납재층(14)의 끝면 전체가, 한결같이 금속층(13,15)의 외주 가장자리보다 내측에 위치함으로써 구성되어 있는 경우, 땜납재층(14)의 끝면과 금속층(13,15)의 외주 가장자리 사이의 거리는, 땜납재층(14)의 두께의 10배 이상이어도 된다.
즉, 땜납재층(14)의 끝면의 오목 개소의 깊이(b)를, 땜납재층(14)의 두께(a)의 10배 이하로 제한한 이유는, 오목 개소의 깊이(b)가 땜납재층(14)의 두께의 10배를 초과하면, 선단의 곡률반경이 지나치게 작게 되어, 오목 개소의 선단이 파괴의 기점으로서 기능해버릴 우려가 있기 때문이다.
그러나, 땜납재층(14)의 끝면 전체가, 한결같이 금속층(13,15)의 외주 가장자리보다 내측에 위치하고 있는 경우에는, 서서히 폭이 좁아지는 오목부가 아니므로, 오목 개소의 선단이 파괴의 기점으로서 기능할 일이 없다.
따라서, 땜납재층(14)의 끝면 전체가, 한결같이 금속층의 외주 가장자리보다 내측에 있는 오목부에서는, 오목부의 깊이가 땜납재층(14)의 두께의 10배 이상이어도 되고, 깊을수록 땜납재층(14)의 플라즈마 침식은 효과적으로 방지할 수 있다.
그러나, 땜납재층(14)의 끝면 전체가, 한결같이 금속층의 외주 가장자리보다 내측에 있는 오목부에 있어서, 오목부의 깊이(땜납재층(14)의 끝면과 금속층(13,15)의 외주 가장자리 사이의 거리)가 지나치게 커지면, 금속층의 지름에 비해서 땜납재층(14)의 지름이 지나치게 작아지므로, 웨이퍼를 적재하는 면의 면내에 있어서의 온도차가 커진다.
따라서, 땜납재층(14)의 끝면이 금속층(13,15)의 외주 가장자리로부터 떨어지는 거리는, 금속층(13,15)의 최대직경의 0.18배 이하인 것이 바람직하다.
즉, 땜납재층(14)의 끝면이 금속층(13,15)의 외주 가장자리로부터 떨어지는 거리가, 금속층(13,15)의 최대직경의 0.18배를 초과하면, 금속층(13,15)으로 세라믹 부재(12)의 다른쪽의 주면 전체를 덮었더라도, 땜납재층(14)과 금속층(13,15)의 접합 면적이 작아진다.
이와 같이, 땜납재층(14)과 금속층(13,15)의 접합 면적이 작아지면, 세라믹 부재(12)와 금속 복합 부재(16) 사이의 열전달이 나빠지고, 웨이퍼 지지부재로서 이용한 경우에 있어서, 웨이퍼에서 발생한 열을 금속 복합 부재(16)에 전달하여 열배출하는 방열 기능이 불충분하게 된다. 이와 같이 열의 배출이 불충분해지면 웨이퍼의 면내에 있어서의 온도차가 커지고, 웨이퍼 상에 균일한 두께로 성막하는 것이 곤란하게 된다. 따라서, 그 웨이퍼 상에 제작되는 예컨대 반도체칩의 수율이 저하되는 등의 문제점이 생긴다.
따라서, 땜납재층(14)의 끝면과 금속층(13,15)의 외주 가장자리의 간격은, 금속층(13,15)의 최대직경의 0.18배 이하, 더욱 바람직하게는 0.12배 이하인 것이 바람직하다.
이상의 것으로부터, 땜납재층(14)의 끝면과 금속층(13,15)의 외주 가장자리의 간격은, 금속층(13,15)의 외주 가장자리보다 땜납재층(14)의 두께의 0.1배 이상, 더욱 바람직하게는, 땜납재층(14)측으로의 플라즈마의 침입 방지 효과를 보다 크게 하기 위해서, 1배 이상으로 한다. 또한, 땜납재층(14)의 끝면과 금속층(13,15)의 외주 가장자리의 간격은, 금속층(13,15)의 최대직경의 0.18배 이하, 더욱 바람직하게는 0.12배 이하로 한다.
또한, 금속층(13,15)의 최대 지름은, 금속층(13,15)이 얇은 원판형상이면, 그 직경으로 나타낼 수 있다. 또한, 금속층(13,15)이 사각형이면 최대 지름은 대각선의 크기로 나타낼 수 있다. 금속층(13,15)이 타원형 등이면, 타원형의 장축이 최대 지름으로 된다. 어떻든간에 판형상의 금속층(13,15) 안에 그릴 수 있는 최대의 직선의 길이가 최대 지름이다.
또한, 땜납재층(14)은, 알루미늄 땜납재 또는 인듐 땜납재로 이루어지는 것이 바람직하다. 그 이유는, 알루미늄 땜납재도 인듐 땜납재도 땜납재 중에서는 연하고, 변형되기 쉬운 땜납재이기 때문이다. 즉, 도 3(본 발명의 세라믹 부재(12)와 금속 복합 부재(16)의 접합체(1)에 있어서의 땜납재층(14)의 외주의 오목 개소를 확대해서 나타내는 단면도)에 나타내는 바와 같이, 땜납재층(14)에 있어서, 최대전단응력이 땜납재층(14)의 중앙부(34)에 발생하여도, 땜납재층(14) 자신이 변형되기 때문에, 세라믹 부재(12)의 붕괴가 발생되기 어려워진다. 특히, 반도체 제조장치에서 웨이퍼를 가공 처리할 경우에는, -10℃~150℃정도의 온도 사이클에서 바래지지만, 이러한 온도 사이클하에서도, 땜납재 자신이 변형되기 위해서, 세라믹 부재(12)에 있어서 크랙이 발생할 일이 없다. 땜납재로서는, Au-Sn땜납재를 사용할 수도 있지만, Au-Sn땜납재는 매우 단단하기 때문에, 땜납재 자신이 응력에 대하여 변형 분할되지 않으므로 -10℃~150℃의 온도 사이클하에서는, 세라믹 부재(12)에 크랙이 발생할 우려가 있다.
또한, 땜납재층(14)의 두께는 접합면(금속층과 땜납재층의 접합면)의 최대 지름의 100ppm~3000ppm인 것이 바람직하다. 반도체 제조장치용 웨이퍼 지지부재(100)로서 사용할 경우에는, -10℃~150℃정도의 온도 사이클에서 바래지기 때문에, 접합면의 최대 지름의 100ppm보다 땜납재층(14)의 두께가 얇으면 땜납재가 온도 사이클에서 발생하는 응력에 호응하여 완전히 변형되지 않기 때문에 세라믹 부재(12)에 크랙이 생겨 버리기 때문이다. 또한 땜납재층(14)이 온도 사이클에서 발생하는 응력에 호응하여 변형가능하도록 하기 위해서는, 500ppm 이상인 것이 바람직하고, 500ppm 이상이면, 세라믹 부재(12)에 있어서의 크랙의 발생을 효과적으로 방지할 수 있다. 또한, 땜납재층(14)의 두께가 접합면의 최대 지름의 3000ppm배보다 두꺼워지면, 땜납재층(14)의 끝면의 두께방향의 중심부를 땜납재층(14)의 두께의 3분의 1이상 오목하게 하여도 플라즈마가 용이하게 땜납재층(14)을 침식할 수 있게 되기 때문에, 땜납재층(14)이 플라즈마에 의해 침식되어, 최악의 경우, 땜납재의 파괴나 세라믹 부재(12)의 땜납재층(14)으로부터의 벗겨짐이 발생하는 일이 있다. 따라서, 땜납재층(14)의 두께는, 접합면의 최대 지름의 3000ppm 이하인 것이 바람직하고, 더욱 바람직하게는, 플라즈마가 땜납재층(14)의 끝면에 보다 도달하기 어렵게 하기 위해서, 2000ppm 이하인 것이 바람직하다.
또한, 땜납재층(14)은 기공을 가지는 것이 바람직하고, 그 기공율은 1%~10%인 것이 바람직하다. 땜납재층(14)의 내부에 기공을 가짐으로써, 땜납재층(14)이 변형되기 쉬워지고, 온도 사이클에 바래져도, 세라믹 부재(12)에 크랙을 발생되기 어려워진다. 땜납재층(14)의 기공은, 직경 10㎛ 이하정도의 가느다란 기공이 땜납재 속에 균일하게 분산되어 존재하지만, 이 기공율은 실제로 땜납재층(14)을 제품으로부터 잘라내서 취출하여, 아르키메데스법으로 기공율을 산출하면 좋다. 땜납재층(14)의 기공율이 1%보다 작으면, 땜납재가 단단해지는 경향이 있기 때문에, 온도 사이클에 바래진 경우에는 땜납재층(14)이 완전히 변형되지 않게 되어, 세라믹 부재(12)에 크랙이 발생할 경우가 있다. 따라서, 땜납재층(14)의 기공율은 1% 이상인 것이 바람직하고, 더욱 응력을 받은 땜납재층(14)을 변형하기 쉽게 하기 위해서는, 땜납재의 기공율은 2% 이상인 것이 보다 바람직하다. 또한, 땜납재층(14)의 기공율이 10%를 초과할 경우에는, 기공을 통해서 땜납재층(14)을 He이 통과해 버리기 때문에, 반도체 제조장치용 웨이퍼 지지부재(100)로서 사용할 수 없게 될 우려가 있다. 또한, 기공의 분포 상태에 다소의 불균형이 있어도, He이 땜납재층(14) 속을 통과하지 않도록, 땜납재층(14)의 기공율은 8% 이하인 것이 보다 바람직하다.
또한, 본 발명의 웨이퍼 지지부재(100)에 있어서, 세라믹 부재(12)는, 금속-세라믹스 복합부재(16)의 접합체(1)를 구비하고, 세라믹 부재(12)는, 판형상이며 금속-세라믹스 복합부재(16)측의 주면에 대향하는 다른쪽(반대측)의 주면이 웨이퍼 적재면(12a)인 것을 특징으로 하는 웨이퍼 지지부재(100)로 한 것은, 본 발명의 접합체(1)를 웨이퍼 지지부재(100)에 이용하여 PVD 프로세스 종료후 등에 웨이퍼를 적재해서 다음 프로세스까지 대기하는 프로세스에 사용하는 것이 바람직하기 때문이다.
또한, 웨이퍼 지지부재(100)에 있어서, 세라믹 부재(12)는, 내부에 히터(도 시 생략)를 내장하고 있는 것이 바람직하다. 본 발명의 웨이퍼 지지부재(100)의 세라믹 부재(12)에 히터를 내장시킴으로써, 웨이퍼를 가열하는 용도에 이용할 수 있다. 이와 같은 웨이퍼 지지부재(100)는, 반도체 제조장치로서, 에칭 공정이나 CVD공정으로 칭해지는 공정에 응용할 수 있다. 이들 공정에서는, 플라즈마에 의해 웨이퍼 상에 성막하거나, 성막한 막을 원하는 형상으로 에칭하거나 한다는 공정인 것때문에, 히터를 내장한 세라믹 부재(12)를 금속 복합 부재(16)에 땜납재층(14)으로 접합한 구조에서는, 땜납재층(14)이 플라즈마에 직접 바래지기 어려워지므로, 본 발명의 효과가 유감없이 발휘된다.
또한, 웨이퍼 지지부재(100)에 있어서, 세라믹 부재(12)는, 내부에 정전 흡착용 전극(11)을 내장하고 있는 것이 바람직하다. 본 발명의 웨이퍼 지지부재(100)를 반도체의 제조에 있어서의 PVD 공정에 사용하는 경우에 바람직한 구성으로서는, 세라믹 부재(12)에 정전 흡착용 전극(11)을 내장한 경우와, 세라믹 부재(12)에 정전 흡착용 전극(11) 및 도면에 나타내지 않은 히터를 내장한 경우가 있다. PVD 공정은, 웨이퍼를 세라믹 부재(12) 상에 흡착하여, 반도체 제조장치 내에 발생시킨 플라즈마를 타깃에 닿게 하여, 타깃으로부터의 성막 재료를 웨이퍼 지지부재(100)에 흡착한 웨이퍼 상에 성막하는 공정이다. 이 공정에서도 플라즈마가 항상 사용되므로, 본 발명의 세라믹 부재(12)와 금속 복합 부재(16)의 접합체(1)의 구성에 의해 내구성의 향상 등의 효과가 매우 크며 바람직하다.
본 발명에 따른 실시형태의 정전척은, 정전 흡착용 전극(11)에 전압을 인가하여 웨이퍼를 적재면(12a) 상에 흡착했을 때, 웨이퍼를 적재면(12a)에 밀착할 수 있으므로 웨이퍼로부터 적재면(12a)에 효율 좋게 열을 전달할 수 있다. 또한, 적재면(12a)의 열을 웨이퍼에 신속히 전달할 수 있으므로 원하는 온도로 웨이퍼를 가열할 수 있다. 또한, 웨이퍼를 정전 흡착용 전극(11)으로 흡착하면 적재면의 열을 용이하게 웨이퍼에 전달할 수 있으므로, 웨이퍼의 면내의 온도차를 작게 할 수 있다. 또한, 반도체 박막의 플라즈마에 의한 성막 처리 또는 플라즈마에 의한 에칭처리를 실시하는 때에는, 웨이퍼 및 웨이퍼 지지부재가 플라즈마하에 바래지고, 접합층이 에칭되어서 웨이퍼 상에 부착되는 일이 있고, 예컨대, 웨이퍼상의 배선을 설계대로 할 수 없거나, 단선되거나 할 우려가 있었다. 그러나, 본 발명의 웨이퍼 지지부재(100)에서는, 접합층의 오목 개소에 의해, 접합층이 에칭되기 어려우므로, 부식된 접합층이 미립자가 되어 웨이퍼에 부착되는 것을 방지할 수 있다. 따라서, 웨이퍼 상의 소자의 배선을 단선이나 단락 없이 형성할 수 있어, 웨이퍼 상에 설계대로의 배선을 형성할 수 있다.
이상과 같이 본 발명의 웨이퍼 지지부재(100)를 이용하여, 플라즈마 분위기중의 성막 또는 에칭처리를 행하면, 접합층의 부식을 효과적으로 방지할 수 있으므로, 미립자의 발생이 매우 적은 우수한 웨이퍼 처리가 실현가능하고, 수율이 높은 웨이퍼 처리방법을 제공할 수 있다.
또한, 정전 흡착용 전극(11)을 구비한 웨이퍼 지지부재(100)에, 웨이퍼를 가열하는 히터 전극을 추가로 구비함으로써, 상기 웨이퍼를 원하는 온도로 가열할 수 있으므로, 웨이퍼에 고온에서 플라즈마 CVD에 의해 성막 처리하거나, 고온에서 효율이 높은 에칭처리를 할 수 있다.
본 발명의 웨이퍼 지지부재(100)를 사용하여 성막 처리나 에칭처리를 행하면, 30㎚ 이상의 미립자의 발생을 효과적으로 방지할 수 있으므로 DRAM이나 MPU, ASIC의 금속배선의 60㎚ 이하의 하프 피치에 대응한 차세대 반도체 소자의 제조공정용 웨이퍼 지지부재를 제공할 수 있다.
다음에, 본 발명의 세라믹 부재(12)와 금속 복합 부재(16)의 접합체(1)의 다른 구성의 예에 대해서 설명한다.
세라믹 부재(12)로서는, 질화알루미늄, 산화알루미늄, 질화 규소라는 세라믹스가 바람직하다. 도 1에 나타내는 바와 같은 정전척을 반도체 제조장치용 웨이퍼 지지부재(100)로서 사용하는 경우에는, 존슨-라벡력이 클론력으로 크게 나뉘어지는 웨이퍼의 흡착 메커니즘에 따라 세라믹스 재료를 선정하지만, 존슨-라벡력을 원하는 경우에는, 세라믹 부재(12)로서는, 질화알루미늄이 그 체적 고유 저항의 관점에서 바람직하다.
금속 복합 부재(16)는, 고열전도율을 갖고 있는 것이 바람직하다. 구체적으로는, 금속 복합 부재(16)의 열전도율은, 100W/(m·K)이상인 것이 바람직하다. 금속 복합 부재(16)가, 높은 열전도율을 갖고 있으면, 본 발명에 따른 접합체를 웨이퍼 지지부재(100)로서 사용할 경우에, 웨이퍼가 플라즈마로 처리될 때에 발생하는 열을 웨이퍼 지지부재(100)를 통해서 플라즈마 처리영역 밖으로 효율 좋게 배출할 수 있다.
또한, 세라믹 부재(12)와 금속 복합 부재(16)를 땜납재층(14)으로 접합할 때에 발생하는 휘어짐을 저감시키기 위해서, 금속 복합 부재(16)의 열팽창계수와 세 라믹 부재(12)의 열팽창계수를 가능한 한 합치시키는 것이 바람직하다. 구체적으로는, 금속 복합 부재(16)의 열팽창계수는, 세라믹 부재(12)의 열팽창계수의 ±20% 이내로, 더욱 바람직하게는 ±10% 이내로 조정한다. 이상과 같은 특성을 갖고 있으면, 어떤 조성의 금속 복합 부재(16)이어도 사용할 수 있지만, 본 발명에 있어서는, 금속 복합 부재(16)의 재료로서, 금속-세라믹스 복합재료 또는 실리콘-알루미늄합금을 이용하는 것이 바람직하다. 여기서, 실리콘-알루미늄합금은, 실리콘에 알루미늄을 첨가한 합금이다.
금속-세라믹스 복합재료로서는, 알루미늄과 탄화규소의 복합재료인 AlSiC나 AlSiC에 Si를 혼합한 복합재료, AlSiC에 Si3N4를 혼합한 복합재료 등이 바람직하다. 이러한 재료로 구성된 금속 복합 부재(16)는, 100W/(m·K) 이상의 고열전도율이 얻어지기 쉽고, 또한 세라믹 부재(12)를 질화알루미늄, 산화알루미늄, 질화 규소로 한 경우, 금속 복합 부재(16)와의 열팽창계수차를 ±20% 이내로 조정하기 쉽기 때문에 바람직하다.
또한, 세라믹 부재(12)로서 질화알루미늄을 사용하는 경우에는, 상기한 바와 같이 AlSiC, AlSiC에 Si를 혼합한 복합재료, AlSiC에 Si3N4를 혼합한 복합재료는 열전도율이 높고, 열팽창계수를 질화알루미늄에 대하여 조정하기 쉬우므로, 금속 복합 부재(16)로서 바람직하다.
금속-세라믹스 복합재료로서, AlSiC, AlSiC에 Si를 혼합한 복합재료, AlSiC에 Si3N4를 혼합한 복합재료 이외의 재료를 이용할 수도 있다.
실리콘-알루미늄합금으로서는, 실리콘이 55~96질량%이고 잔부가 알루미늄으로 이루어지는 합금이 바람직하다. 실리콘-알루미늄합금은, 필요에 따라 마그네슘, 니켈, 등을 미량성분으로 하여 포함할 수도 있다. 이러한 실리콘-알루미늄합금으로 구성된 금속 복합 부재(16)는, 100W/(m·K) 이상의 고열전도율이 얻어지기 쉽고, 또한 세라믹 부재(12)를 질화알루미늄, 산화알루미늄, 질화 규소로 한 경우, 실리콘-알루미늄합금의 열팽창계수를, 세라믹 부재(12)의 열팽창계수의 ±20% 이내로 조정할 수 있다. 특히 세라믹 부재(12)가 질화알루미늄으로 이루어지는 경우에는, 실리콘-알루미늄합금의 실리콘 함유량은 81~91질량%, 더욱 바람직하게는 84~88질량%이다. 또한, 본 발명은, 상기 조성의 실리콘-알루미늄합금에 한정되는 것은 아니다.
또한, 세라믹 부재(12)로서 질화알루미늄을 사용하는 경우에는, 실리콘-알루미늄합금은 열전도율이 높고, 열팽창계수를 질화알루미늄에 대하여 조정하기 쉬우므로, 금속 복합 부재(16)의 재료로서 바람직하다.
상기의 세라믹 부재(12) 및 금속 복합 부재(16)의 각각의 주면에 금속층(13,15)을 형성한다. 금속층(13,15)은, 땜납재층(14)과의 흡습성이 양호한, Ni, Au, Ag, Cu에서 선택되는 1종류 또는 2종류 이상으로 형성하는 것이 바람직하고, 더욱 바람직하게는, Ni, Au에서 선택되는 1종류 또는 2종류로 형성한다. Ni, Au에서 선택되는 1종류 또는 2종류는, 알루미늄 땜납재 또는 인듐 땜납재와의 흡습성이 양호하기 때문이다. 금속층(13,15)의 형성은, 두께의 관리를 용이하게 할 수 있으므로, 도금법, 스패터법 등으로 행하면 좋다.
이와 같이 하여 형성한 금속층(13,15) 사이를 땜납재층(14)을 통해서 접합한다. 땜납재층(14)에는 알루미늄 땜납재나 인듐 땜납재 등을 사용하여 접합한다. 세라믹 부재(12)와 금속 복합 부재(16)를 땜납재층(14)으로 접합하는 경우에는, 세라믹 부재(12) 및 금속 복합 부재(16)의 열팽창계수는 동등하지만, 땜납재층(14) 자체는 금속이며, 세라믹 부재(12) 및 금속 복합 부재(16)보다 큰 열팽창계수를 가진다.
이 구성으로 땜납재층(14)의 용융 온도까지 온도를 올려서 접합한 후에, 실온으로 되돌리면, 땜납재층(14)의 열수축이 세라믹 부재(12) 및 금속 복합 부재(16)의 열수축보다 커지기 때문에, 도 3에 나타내는 바와 같이 땜납재층(14)의 중심부(34)에 최대전단응력이 발생한다. 그러나 도 2A, 도 2B, 도 2C, 도 2D, 도 2E, 도 2F에 나타내는 바와 같이 땜납재층(14)의 끝면의 중앙부(적어도 땜납재층(14)의 두께의 3분의 1의 영역)가 내측에 오목해져 있으면, 오목 개소 부분에서는 플라즈마 밀도를 저하시킬 수 있으므로, 최대전단응력이 발생하는 땜납재층(14)의 중앙부가 플라즈마에 의해 침식되는 것을 방지할 수 있다. 이 최대전단응력은, 땜납재층(14)의 중심부(34)에 발생하는 것이며, 땜납재층(14)의 극히 중심부분만이 오목해져 있는 것으로도 동일한 효과가 얻어지게 생각되지만, 실제로는, 땜납재층(14)의 두께의 3분의 1이상의 영역을 오목하게 하지 않으면 마찬가지의 효과는 얻어지지 않았다. 이것은, 최대전단응력은 확실히 중심부분에 발생하지만, 그 근방도 응력으로서는 매우 크기 때문에, 오목 개소가 땜납재층(14)의 두께의 3분의 1보다 작으면 플라즈마에 의해 최대전단응력에 준하는 응력이 발생하고 있는 부분이 침식되고, 역시, 최악의 경우, 접합층 (땜납재층(14))의 파괴나 거기서부터의 벗겨짐이 발생한다.
다음에, 본 발명의 세라믹 부재(12)와 금속 복합 부재(16)의 접합체(1)의 제조방법을, 웨이퍼 지지부재(100)를 예로 들어 설명한다.
웨이퍼 지지부재(100)를 구성하는 세라믹 부재(12)로서, 질화알루미늄질 소결체를 이용할 수 있다. 이 그 외에도 질화규소질 소결체, 산화알루미늄을 사용해도 좋다. 질화알루미늄질 소결체의 제조는, 이하의 순서로 행한다. 우선, 질화알루미늄 분말에 질량 환산으로 15질량% 이하정도의 산화세륨을 첨가하고, I㎩와 우레탄 볼을 이용하여 볼밀에 의해 24~48시간 혼합한다. 이것에 의해 얻어진 질화알루미늄의 슬러리를 200~500메시에 통과시켜서, 우레탄 볼이나 볼밀 벽의 찌거기를 제거한다. 그 후, 방폭건조기에 의해 120~150℃정도의 온도에서 24~36시간정도 건조하여, I㎩를 제거한다. 이와 같이 하여, 균질한 질화알루미늄 혼합 분말을 얻는다.
다음에, 이 혼합 분말에 아크릴계의 바인더 및 용매를 혼합하여 질화알루미늄질의 슬립을 제작하고, 닥터 블레이드법으로 테이프 성형을 행한다. 얻어진 질화알루미늄의 테이프를 복수장 적층한다. 이렇게 해서 얻어진 성형체에, 정전 흡착용 전극이나 히터가 되는 텅스텐 등의 도전성을 갖는 분말체를 스크린인쇄법으로 형성하고, 무지(無地)의 테이프에 원하는 밀착액을 도포하, 테이프를 복수장 겹쳐서 프레스 성형으로 성형체를 얻는다.
이상이 테이프 성형에 의한 방법이지만, 얻어진 질화알루미늄 혼합 분말에 아크릴계 바인더나 파라핀계 왁스 등을 혼합하고, CIP법이나 금형 프레스법으로 성 형하는 방법도 있다.
이와 같이 하여 얻어진 성형체를 비산화성 가스 기류 중에서 300~700℃에서 2~10시간정도의 탈지를 행하고, 또한 비산화성 분위기에서 0.2㎫ 이상, 200㎫ 이하의 압력하에서 1800℃~2000℃의 온도에서 0.5시간~10시간 유지하여 소결시킨다. 이와 같이 하여 발열체를 매설한 질화알루미늄질 소결체가 얻어진다.
이렇게 해서 얻어진 질화알루미늄질 소결체에 기계가공을 실시하여 원하는 형상의 세라믹 부재(12)로 한다. 또한, 정전 흡착용 전극(11)에 전압을 인가하기 위한 단자(17)를 메탈라이즈법 등의 방법을 이용하여 접합한다. 다음에, 얻어진 세라믹 부재(12)의 접합면 및 미리 준비해 둔 금속 복합 부재(16)의 접합면에 금속층(13,15)을 형성한다. 구체적으로는, 예컨대, 스패터법이나 도금법에 의해 금속층(13,15)으로서 Ni 등을 0.5~6㎛의 두께로 형성한다.
그 후, 금속층(13,15)의 사이에 알루미늄 땜납재를 끼우고, 진공처리를 행하고, 진공도를 1×10-7~1×10-4㎩정도로 유지하고, 550~600℃의 온도에서 5~300분간 납땜을 행한다. 550~600℃에서 접합하는 전에 아르곤이나 질소 등의 비산화성 가스로 치환하거나, 이들 가스를 흘리거나 하면서, 0.1~13㎩정도로 진공도를 유지하여 접합하면 알루미늄 땜납재의 흐름성이 좋아져서 바람직하다. 그 후, 땜납재층(14)의 끝면을 오목하게 한다.
본 실시형태에 있어서, 오목부로서, 도 2A, 도 2B, 도 2C, 도 2D, 도 2E, 도 2F에 나타내는 바와 같은 단면형상을 갖는 오목부를 들 수 있다. 도 2A, 도 2B, 도 2C, 도 2E, 도 2F에 나타내는 단면형상을 갖는 오목 개소는, 각 단면형상에 대응한 형상을 갖는 지그를 사용하여, 예컨대, 수작업으로 땜납재층(14)을 덧씌워 만들 수 있다. 또한, 도 2D와 같은 단면형상의 오목부이면, 땜납재층(14)으로서 금속층(13,15)과의 도포성이 좋은 것을 이용하고, 접합시의 접합 온도를 550~600℃로 하여, 접합시의 분위기 압력을 10-4㎩ 이하로 한 후에 비산화성 분위기로 치환하여 0.1~13㎩로 조절하면 형성할 수 있다. 이와 같이 하여 도 1에 나타내는 본 발명의 접합체(1)로 이루어지는 웨이퍼 지지부재(100)를 얻을 수 있다.
[실시예1]
실시예1에서는, 웨이퍼 지지부재를 구성하는 세라믹 부재로서, 이하와 같이 해서 제작한 질화알루미늄질 소결체를 이용하였다.
우선, 질화알루미늄 분말에 중량 환산으로 15질량% 이하정도의 산화세륨을 첨가하고, I㎩와 우레탄 볼을 이용하여 볼밀에 의해 36시간 혼합하였다. 이 혼합에 의해 얻어진 질화알루미늄의 슬러리를, 200메시에 통과시키고, 우레탄 볼이나 볼밀 벽의 찌꺼기를 제거하였다. 그 후, 방폭건조기에서 120℃의 온도에서 24시간 건조하고, I㎩를 제거하여, 균질의 질화알루미늄 혼합 분말을 얻었다.
그리고, 이 혼합 분말에 아크릴계의 바인더 및 용매를 혼합해서 질화알루미늄질의 슬립을 제작하고, 닥터 블레이드법으로 테이프 성형을 행하였다. 얻어진 질화알루미늄의 테이프를 복수장 적층하였다. 이렇게 해서 얻어진 성형체에 정전 흡착용 전극이나 히터로 이루어지는 텅스텐 등의 도전성을 갖는 분말체를 스크린인쇄 법으로 형성하고, 무지의 테이프에 원하는 밀착액을 도포하고, 테이프를 복수장 겹쳐서 프레스 성형하여 φ450㎜로 두께 20㎜정도의 성형체를 얻었다. 얻어진 성형체를 비산화성 가스 기류 중에서 500℃에서 5시간의 탈지를 행하고, 또한 비산화성 분위기에서 10㎫ 이하의 압력하에서 1900℃정도의 온도에서 5시간 유지하여 소결하였다. 이와 같이 하여 정전 흡착용 전극이나 히터를 매설한 질화알루미늄질 소결체를 얻었다.
이와 같이 하여 얻어진 질화알루미늄질 소결체를, φ320㎜으로 두께 10㎜의 원판형상으로 기계가공을 실시하였다. 또한, 정전 흡착용 전극이나 히터에 전압을 인가하기 위한 단자를 메탈라이즈법으로 접합하였다. 얻어진 세라믹 부재의 접합하는 면과 미리 준비해 둔 금속-세라믹 복합 부재로 이루어지는 금속 복합 부재의 접합면에 도금법으로 Ni를 금속층으로서 형성하였다.
그 후, 금속층의 사이에 JIS 4N04의 알루미늄 땜납재를 끼우고, 진공처리를 행하면서, 아르곤을 흘리고, 진공도를 1.3㎩로 유지하고, 580℃정도의 온도에서 120분간정도 납땜을 행하였다. 그 후, 땜납재층의 끝면을 오목하게 하기 위해서, 미리 준비해 둔 스테인레스 지그로 땜납재층의 끝면을 덧씌우고, 땜납재층의 끝면에 원하는 오목 개소를 형성하였다. 이와 같이 하여 실시예1의 웨이퍼 지지부재를 얻었다.
실시예1에서는, 이상의 방법으로 얻어진 웨이퍼 지지부재의 땜납재층의 끝면을 오목하게 할 수 있는 볼록형상의 지그를 사용하여, 오목 개소의 폭이 다른 웨이퍼 지지부재를 제작하였다. 땜납재층의 두께는, 납땜전의 세라믹 부재 및 금속 복 합 부재의 두께를 중심부근에서 5점, 외주부근에서 5점의 합계 10점씩 측정하고, 납땜 후에 동일한 점의 두께를 측정하고, 납땜 후 두께의 평균에서 납땜전의 세라믹 부재 및 금속 복합 부재의 평균 두께를 빼서, 땜납재층의 두께로 하였다.
그 후, 얻어진 웨이퍼 지지부재를 진공용기 내의 아르곤 플라즈마 중에 100시간 바래게 하고, 아르곤 플라즈마에 바래기 전후에 있어서의 땜납재층의 접합 상태를 관찰하였다. 이 땜납재층의 접합 상태의 평가는 초음파 탐상법을 이용하여 행하였다. 초음파 탐상법으로 땜납재층이 파괴되어 있는, 또는 벗겨지고 있는 것으로 판단되는 부분의 면적을, 접합 면적으로 나눈 값을 아르곤 플라즈마 처리후의 접합 벗겨짐으로서 평가하였다. 또한, 여기서 말하는 접합 면적은, 땜납재층의 오목 개소의 선단부분을 포함하는 횡단면에 있어서의 단면적을 말하며, 금속층과 평행한 땜납재층의 횡단면 중에서 가장 작은 단면적을 말한다. 이 평가에 있어서, 전혀 벗겨짐이 없으면 0%이며, 전면이 벗겨져 있으면 100%로 된다.
표 1에 실시예1의 결과를 나타낸다.
Figure 112006047156317-PAT00001
*표시는, 본 발명의 범위 외인 것을 나타낸다.
시료 No.11~15의 웨이퍼 지지부재는, 땜납재층의 끝면에 있어서, 두께방향의 중앙부가 적어도 상기 땜납재층의 두께의 3분의 1의 영역에 걸쳐서 내측으로 오목한 본 발명에 따른 웨이퍼 지지부재이다. 표 1에 나타내는 바와 같이, 시료 No.11~15의 웨이퍼 지지부재는, 아르곤 플라즈마 처리후의 접합 벗겨짐은 모두 5% 미만으로 매우 적은 벗겨짐밖에 관측되지 않고 있다.
즉, 오목 개소의 폭이 땜납재층의 두께의 3분의 1이상인 본 발명에 따른 웨이퍼 지지부재는, 땜납재층의 끝면의 오목 개소의 효과에 의해, 벗겨짐에 대하여 우수한 것을 알았다.
한편, 본 발명의 범위외의 시료인 No.16~19의 웨이퍼 지지부재에서는, 아르곤 플라즈마 처리후의 접합 벗겨짐이 5% 이상이며, 특히 오목 개소를 (전혀)완전히 만들지 않고 있는 시료 No.19은, 아르곤 플라즈마 처리후의 접합 벗겨짐은 10%이 되고, 괴멸적인 접합층 벗겨짐이 관측되었다.
[실시예2]
실시예2에서는, 내면이 만곡된 오목부를 가진 웨이퍼 지지부재를 제작하여 평가하였다.
실시예2에서는, 실시예1과 마찬가지의 방법으로 웨이퍼 지지부재를 제작하고, 얻어진 웨이퍼 지지부재의 땜납재층을 오목하게 할 수 있는 볼록형상의 지그를 사용하여, 땜납재면을 수작업으로 덧씌워, 웨이퍼 지지부재를 제작하였다. 그리고, 실시예1과 마찬가지로 평가하였다. 표 2에 그 결과를 나타낸다.
Figure 112006047156317-PAT00002
표 2에 나타내는 바와 같이, 도 2C에 나타내는 오목 개소 형상의 시료 No.21, 22 보다, 도 2A에 나타내는 오목 개소 형상의 시료 No.23, 24쪽이, 아르곤 플라즈마 처리후의 접합 벗겨짐의 발생이 감소하는 것을 알았다. 도 2A에 나타내는 오목 개소 형상은, 그 오목부의 내면의 단면형상이 타원형의 일부로 이루어지고, 만곡하고 있는 것이다.
[실시예3]
실시예1과 마찬가지의 방법으로 웨이퍼 지지부재를 작성하고, 얻어진 웨이퍼 지지부재의 땜납재층 두께의 3분의 1을 도 2C와 같이 오목하게 들어가게 하는 지그를 사용하여 땜납재면을 수작업으로 덧씌우고, 오목부의 깊이를 바꾸어 웨이퍼 지지부재를 제작하였다. 그리고, 실시예1과 마찬가지로 평가하였다. 표 3에 그 결과를 나타낸다.
Figure 112006047156317-PAT00003
표 3의 시료 No.31~36은 모두 본 발명의 범위 내의 시료이며, 아르곤 플라즈마 처리후의 접합 벗겨짐은, 모두 5% 미만으로 양호한 수치이었다.
특히, 땜납재층의 끝면에 있어서의 오목부의 깊이가 땜납재층의 두께의 0.1배~10배인 시료 No.32~35는, 아르곤 플라즈마 처리후의 접합 벗겨짐이 2.9% 이하로 보다 우수하였다.
그러나, 오목부의 깊이가 땜납재층의 두께의 0.1배~10배의 범위로부터 벗어난 시료 No31 및 36은, 아르곤 플라즈마 처리후의 접합 벗겨짐이 3.5%, 3.6%로 되고, 아르곤 플라즈마 처리후의 접합 벗겨짐이 시료 No.32~35에 비교해서 약간 뒤떨어지지는 것을 알았다.
[실시예4]
실시예1과 마찬가지의 방법으로 웨이퍼 지지부재를 제작하고, 얻어진 웨이퍼 지지부재의 땜납재층 두께의 3분의 1을 도 2D와 같이 타원형상의 일부로 이루어지는 형상으로 오목하게 하는 지그를 사용하여, 땜납재층의 끝면을 수작업으로 덧씌우고, ab비를 바꾸어 웨이퍼 지지부재를 제작하였다. 그리고, 실시예1과 마찬가지로 평가하였다. 표 4에 그 결과를 나타낸다.
Figure 112006047156317-PAT00004
표 4에 나타내는 No.41~43의 시료는, 모두 본 발명의 바람직한 범위 내의 예이며, 아르곤 플라즈마 처리후의 접합 벗겨짐은 모두 5% 이내로 양호하였다. 또한, 땜납재층의 끝면에 있어서의 오목부의 내면이 타원형상의 일부로 이루어지며 ab비가 0.1로 작은 시료 No.41에서는, 아르곤 플라즈마 처리후의 접합 벗겨짐이 2.5%이었던 것에 대해서, ab비가 0.2% 이상의 시료 No.42,43에서는, 벗겨짐은 1.9% 이하로 대폭적으로 개선되는 것을 알았다.
[실시예5]
실시예1과 마찬가지의 방법으로 얻어진 웨이퍼 지지부재의 땜납재층을 두께의 전체에 걸쳐서 도 2D와 같이 오목하게 하는 지그를 사용하여, 땜납재층의 끝면을 수작업으로 덧씌우고, 오목부의 깊이를 바꾸어 웨이퍼 지지부재를 제작하였다. 그리고, 실시예1과 마찬가지로 평가하였다. 표 5에 그 결과를 나타낸다.
Figure 112006047156317-PAT00005
표 5에 나타내는 시료는 모두 본 발명의 범위 내의 예이며, 아르곤 플라즈마 처리후의 접합 벗겨짐은 모두 5% 이내이었다.
또한, 땜납재층의 끝면이, 만곡하여 오목해져 있는 오목부의 깊이가 땜납재층의 두께의 0.1배~10배인 시료 No.52~54는, 아르곤 플라즈마 처리후의 접합 벗겨짐이 1.9% 이하로 되어 보다 바람직한 것을 알았다.
[실시예6]
실시예6에서는, 각각 실시예1과 마찬가지로 하여 제작한 질화알루미늄질 소결체로 이루어지는 세라믹 부재와 금속 복합 부재를, 땜납재층의 끝면이 금속층의 외주 가장자리보다 내측에 위치하도록 납땜하여, 땜납재층의 끝면의 위치가 다른 웨이퍼 지지부재를 제작하였다. 이 땜납재의 끝면의 위치는, 미리, 땜납재의 납땜 전의 치수와 납땜 후의 땜납재 흐름의 위치(납땜 후의 땜납재 끝면의 위치)의 관계를 파악해 두고, 납땜 후에 땜납재층의 끝면이 금속층의 외주 가장자리보다 내측의 소정의 위치(금속층의 외주 가장자리로부터 땜납재층의 두께의 0.05배~금속층의 외주 가장자리로부터 금속층의 최대직경의 0.25배의 범위)로 되도록, 땜납재의 크기를 조절하여 웨이퍼 지지부재를 제작하였다.
그리고, 실시예1과 마찬가지로 평가하였다.
또한, 웨이퍼 지지부재의 금속 복합 부재측의 내부에 50℃의 온수를 흘려서, 실리콘 웨이퍼를 적재하고, IR 카메라로, 실리콘 웨이퍼의 중심부 5점 및 외주부 5점의 합계 10점의 온도를 측정하고, 그 측정치에 있어서의 최대온도에서 최저온도를 뺀 온도를 균열성(均熱性)의 목표로 하였다. 표 6에 그 결과를 나타낸다.
Figure 112006047156317-PAT00006
표 6에 나타내는 시료는 모두 본 발명의 범위 내의 예이며, 아르곤 플라즈마 처리후의 접합 벗겨짐은 1.5% 이하로 작아 우수한 것을 알았다. 이것은 본 발명의 범위를 규정하는 목표로 한 5% 이하에 비교해서 매우 작은 값이다.
또한, 상기 땜납재층의 끝면은, 상기 금속층의 외주 가장자리보다 상기 땜납재층의 두께의 0.1배~상기 금속층의 최대직경의 0.18배의 범위에서 내측에 위치하고 있는 시료 No.61~65는, 아르곤 플라즈마 처리후의 접합 벗겨짐은 0.5% 이하임과 아울러, 균열성이 1.9℃ 이하로 작아 가장 우수한 것을 알았다.
또한, 상기 금속층의 외주 가장자리보다 내측에 위치하고 있는 금속층간에 있어서의 땜납재층의 끝면의 위치가, 금속층의 외주 가장자리로부터의 거리가 땜납재 두께의 0.1배보다 작은 0.09배나 0.05배인 시료 No.66, No.67은, 아르곤 플라즈마 처리후의 접합 벗겨짐이 0.9%, 1.5%이었던 것에 대해서, 시료 No.61의 접합 벗겨짐은, 0.5%이며, 시료 No.62~65, 68, 69는 접합 벗겨짐이 없었다.
또한, 금속층간에 있어서의 땜납재층의 끝면의 위치가 금속층의 외주 가장자리로부터 금속층의 최대 지름인 직경의 0.2배 및 0.25배인 시료 No.68, 69는, 균열성이 5℃, 5.1℃로 악화되었다.
[실시예7]
실시예7에서는, 각각 실시예1과 마찬가지로 하여 제작한 질화알루미늄질 소결체로 이루어지는 세라믹 부재와 금속 복합 부재를 납땜하여, 땜납재층의 두께가 다른 웨이퍼 지지부재를 제작하였다. 그리고, 실시예7에서는, 땜납재층의 끝면에, 폭이 땜납재층의 두께의 1/3이며 깊이가 땜납재층의 두께의 0.10배인 오목부를 형성하였다.
얻어진 웨이퍼 지지부재를 진공중에서 아르곤 플라즈마 속에 100시간 바래게 하고, 아르곤 플라즈마에 바래기 전후에서의 땜납재층의 접합 상태를 관찰하였다. 땜납재층의 접합 상태의 평가는 초음파 탐상법을 이용하여 행하였다. 초음파 탐상법으로 땜납재층이 벗겨져 있는 것으로 판단되는 부분의 면적을, 땜납재층의 오목 개소의 선단부분을 최외주로 한 접합 면적으로 나눈 값을 이용하여 벗겨짐의 평가를 행하였다. 전혀 벗겨짐이 없으면 0%이며, 전면이 벗겨져 있으면 100%로 된다. 그 후, -10℃~100℃의 온도 사이클을 200사이클 실시하였다. 그 후, 세라믹 부재의 붕괴의 유무를 형광탐상법으로 측정하였다. 표 7에 결과를 나타낸다.
Figure 112006047156317-PAT00007
본 발명의 바람직한 범위 내의 예인 땜납재층의 두께가 접합면의 최대 지름의 100ppm~3000ppm인 시료 No.71~75의 아르곤 플라즈마 처리후의 접합 벗겨짐은 모두 2.9% 이하이며, 또한 온도 사이클에 의한 크랙의 발생은 없었다.
그러나, 알루미늄 땜납재층의 두께가 접합면의 최대 지름의 100ppm 미만인 시료 No.76, 77은, 온도 사이클에 대하여 땜납재층의 변형이 충분하지 않으므로, 세라믹 부재에 크랙이 발생하였다. 또한, 알루미늄 땜납재층의 두께가 접합면의 최대 지름의 3000ppm을 초과하는 시료 No.78, 79에서는, 아르곤 플라즈마에 바랜 후에 땜납재층의 벗겨짐이 4.0%, 4.1%로 악화되었다.
[실시예8]
실시예8에서는, 각각 실시예1과 마찬가지로 하여 제작한 질화알루미늄질 소결체로 이루어지는 세라믹 부재와 금속 복합 부재를 납땜하여, 땜납재층 내의 기공율이 다른 웨이퍼 지지부재를 제작하였다. 땜납재층 내의 기공율은, 그 알루미늄 납땜 시에 걸리는 하중을 변경함으로써 변하였다.
제작한 웨이퍼 지지부재(100)를 도 4에 나타내는 바와 같이 진공용기(41) 중에 O링(48)으로 밀봉하여 볼트(49)로 고정하였다. 그리고, 42로 나타내는 방향으로부터 헬륨 가스를 흘리고, 43으로 나타내는 방향으로부터 진공처리하여 He 누설량의 유무를 평가하였다. He 누설의 유무의 확인은 He 누설 측정기를 이용하여 행하였다.
그 후, -10℃~100℃의 온도 사이클을 200사이클 실시하였다. 그 후, 세라믹 부재(12)의 붕괴의 유무를 형광탐상법으로 측정하였다. 그 후, 알루미늄 땜납재층(14)을 잘라내서, 아르키메데스법으로 기공율을 산출하였다. 표 8에 결과를 나타낸다.
Figure 112006047156317-PAT00008
본 발명의 바람직한 범위 내의 예인 땜납재층의 기공율이 1%~10%인 시료 No.81~85에서는, He 누설이 없고, 또한 온도 사이클 후에 세라믹 부재의 크랙이 없었다.
그러나, 땜납재층의 기공율이 1.0%을 하회하는 0.1%, 0.5%인 시료 No.86, No.87은, 온도 사이클 후의 세라믹 부재에 크랙이 관찰되었다. 또한, 땜납재층의 기공율이 10%을 초과하는 11%, 15%인 시료 No.88, No.89에서는, 도 4에 나타내는 He 누설 시험으로 He 누설이 관찰되었다.
이상과 같이 구성된 본 발명에 따른 접합체는, 상기 땜납재층의 외주면이, 그 외주면에 있어서의 두께방향의 중앙부에, 상기 땜납재층의 두께의 3분의 1이상의 폭의 오목부를 갖고 있으므로, 반도체 제조장치 중의 플라즈마하에서 사용한 경우이여도, 상기 오목부의 내면에 노출된 상기 땜납재층의 표면을 플라즈마에 의한 침식으로부터 보호할 수 있고, 세라믹 부재와 금속 복합 부재의 박리를 방지할 수 있다.
또한, 본 발명에 따른 웨이퍼 지지부재는, 땜납재층이 플라즈마에 의한 침식을 받기 어려운 본 발명에 따른 접합체을 이용하여 구성되어 있으므로, 내구성을 높게 할 수 있다.
또한, 본 발명에 따른 웨이퍼의 처리방법은, 땜납재층이 플라즈마에 바래지기 어렵고, 땜납재층이 침식되기 어려운 본 발명에 따른 웨이퍼 지지부재를 이용하고 있으므로, 웨이퍼에 대하여 플라즈마를 이용한 성막 처리 또는 플라즈마를 이용한 에칭처리를 행하여도, 땜납재층의 비산에 의한 미립자의 발생을 방지할 수 있 어, 미립자의 부착에 의한 수율의 저하를 방지할 수 있다.

Claims (17)

  1. 서로 대향하는 2개의 주면을 가지며 그 한쪽의 주면에 제1금속층을 갖는 세라믹 부재;
    서로 대향하는 2개의 주면을 가지며 그 한쪽의 주면에 제2금속층을 갖는 금속 복합 부재; 및
    상기 제1금속층과 상기 제2금속층을 접합하는 땜납재층을 갖고,
    상기 땜납재층의 외주면은, 그 외주면에 있어서의 두께방향의 중앙부에 오목부를 갖고, 그 오목부의 폭은 상기 땜납재층의 두께의 3분의 1이상인 것을 특징으로 하는 접합체.
  2. 제1항에 있어서, 상기 오목부의 내면은 만곡된 면인 것을 특징으로 하는 접합체.
  3. 제1항에 있어서, 상기 오목부의 깊이는 상기 땜납재층의 두께의 0.1배 이상, 10배 이하인 것을 특징으로 하는 접합체.
  4. 제2항에 있어서, 상기 오목부의 깊이는 상기 땜납재층의 두께의 0.1배 이상, 10배 이하인 것을 특징으로 하는 접합체.
  5. 제1항에 있어서, 상기 오목부는, 상기 땜납재층의 상기 외주면 전체가 내측으로 오목하게 들어감으로써 형성되어 있는 것을 특징으로 하는 접합체.
  6. 제1항에 있어서, 상기 외주면은, 상기 제1금속층의 외주 가장자리 및 상기 제2금속층의 외주 가장자리로부터 내측으로 떨어져 위치하는 것을 특징으로 하는 접합체.
  7. 제6항에 있어서, 상기 외주면이 상기 외주 가장자리로부터 내측으로 떨어진 거리는, 상기 땜납재층의 두께의 0.1배 이상, 상기 제1금속층 및 제2금속층의 최대 지름의 0.18배 이하인 것을 특징으로 하는 접합체.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서, 상기 땜납재층은 알루미늄 땜납재 또는 인듐 땜납재로 이루어지는 것을 특징으로 하는 접합체.
  9. 제1항 내지 제7항 중 어느 한 항에 있어서, 상기 땜납재층의 두께는 접합면의 최대 지름의 100ppm~3000ppm인 것을 특징으로 하는 접합체.
  10. 제1항 내지 제7항 중 어느 한 항에 있어서, 상기 땜납재층의 기공율은 1%~10%인 것을 특징으로 하는 접합체.
  11. 제1항 내지 제7항 중 어느 한 항에 기재된 접합체를 구비한 웨이퍼 지지부재로서, 상기 세라믹 부재는, 상기 2개의 주면 중 다른쪽의 주면이 웨이퍼를 적재하는 면인 것을 특징으로 하는 웨이퍼 지지부재.
  12. 제11항에 있어서, 상기 세라믹 부재는 히터를 내장하고 있는 것을 특징으로 하는 웨이퍼 지지부재.
  13. 제11항에 있어서, 상기 세라믹 부재는 정전 흡착용 전극을 내장하고 있는 것을 특징으로 하는 웨이퍼 지지부재.
  14. 제12항에 있어서, 상기 세라믹 부재는 정전 흡착용 전극을 내장하고 있는 것을 특징으로 하는 웨이퍼 지지부재.
  15. 제12항에 기재된 웨이퍼 지지부재의 다른쪽의 주면에 웨이퍼를 적재하여, 상기 히터 전극에 의해 상기 웨이퍼를 가열한 후, 상기 웨이퍼에 대하여 플라즈마를 이용한 성막 처리 또는 플라즈마를 이용한 에칭처리를 행하는 것을 특징으로 하는 웨이퍼의 처리방법.
  16. 제13항에 기재된 웨이퍼 지지부재의 다른쪽의 주면에 웨이퍼를 적재하고, 상기 정전 흡착 전극에 전압을 인가하여 상기 웨이퍼를 흡착하면서, 상기 웨이퍼에 대하여 플라즈마를 이용한 성막 처리 또는 플라즈마를 이용한 에칭처리를 행하는 것을 특징으로 하는 웨이퍼의 처리방법.
  17. 제14항에 기재된 웨이퍼 지지부재의 다른쪽의 주면에 웨이퍼를 적재하고, 상기 정전 흡착 전극에 전압을 인가하여 상기 웨이퍼를 흡착함과 아울러 상기 히터 전극에 의해 상기 웨이퍼를 가열한 후, 상기 웨이퍼에 대하여 플라즈마를 이용한 성막 처리 또는 플라즈마를 이용한 에칭처리를 행하는 것을 특징으로 하는 웨이퍼의 처리방법.
KR1020060060570A 2005-07-04 2006-06-30 접합체와 그것을 이용한 웨이퍼 지지부재 및 웨이퍼처리방법 KR100775454B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2005-00194837 2005-07-04
JP2005194837 2005-07-04

Publications (2)

Publication Number Publication Date
KR20070004429A true KR20070004429A (ko) 2007-01-09
KR100775454B1 KR100775454B1 (ko) 2007-11-12

Family

ID=37596905

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060060570A KR100775454B1 (ko) 2005-07-04 2006-06-30 접합체와 그것을 이용한 웨이퍼 지지부재 및 웨이퍼처리방법

Country Status (4)

Country Link
US (1) US7709099B2 (ko)
KR (1) KR100775454B1 (ko)
CN (1) CN100540509C (ko)
TW (1) TWI329625B (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100865799B1 (ko) * 2007-08-09 2008-10-28 박윤 지그

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10531594B2 (en) 2010-07-28 2020-01-07 Wieland Microcool, Llc Method of producing a liquid cooled coldplate
US9795057B2 (en) 2010-07-28 2017-10-17 Wolverine Tube, Inc. Method of producing a liquid cooled coldplate
US20120026692A1 (en) 2010-07-28 2012-02-02 Wolverine Tube, Inc. Electronics substrate with enhanced direct bonded metal
US9681580B2 (en) 2010-07-28 2017-06-13 Wolverine Tube, Inc. Method of producing an enhanced base plate
US9281226B2 (en) 2012-04-26 2016-03-08 Applied Materials, Inc. Electrostatic chuck having reduced power loss
US9673077B2 (en) 2012-07-03 2017-06-06 Watlow Electric Manufacturing Company Pedestal construction with low coefficient of thermal expansion top
US9224626B2 (en) 2012-07-03 2015-12-29 Watlow Electric Manufacturing Company Composite substrate for layered heaters
US9623503B2 (en) * 2013-10-31 2017-04-18 Semes Co., Ltd. Support unit and substrate treating device including the same
US20160225652A1 (en) * 2015-02-03 2016-08-04 Applied Materials, Inc. Low temperature chuck for plasma processing systems
KR20170128585A (ko) * 2015-03-20 2017-11-22 어플라이드 머티어리얼스, 인코포레이티드 고온 폴리머 본드를 이용하여 금속 베이스에 본딩 결합된 세라믹 정전 척
CN106328475A (zh) * 2016-10-24 2017-01-11 上海华力微电子有限公司 一种等离子刻蚀设备
JP7145212B2 (ja) * 2017-11-10 2022-09-30 アプライド マテリアルズ インコーポレイテッド 両面処理のためのパターニングされたチャック
WO2021242714A1 (en) * 2020-05-26 2021-12-02 Heraeus Conamic North America Llc Plasma resistant ceramic body formed from multiple pieces
TWI798730B (zh) * 2020-08-21 2023-04-11 日商日本特殊陶業股份有限公司 接合體、保持裝置及靜電夾頭
JP2022175500A (ja) * 2021-05-13 2022-11-25 新光電気工業株式会社 静電チャック及び静電チャックの製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3031737A (en) * 1958-05-23 1962-05-01 Edgerton Germeshausen And Grie Metal-to-non-metal bond and method
JP3622353B2 (ja) 1996-07-12 2005-02-23 東陶機器株式会社 静電チャックステージ及びその製造方法
JP3790000B2 (ja) * 1997-01-27 2006-06-28 日本碍子株式会社 セラミックス部材と電力供給用コネクターとの接合構造
JPH11343571A (ja) * 1998-05-29 1999-12-14 Ngk Insulators Ltd サセプター
JP4436560B2 (ja) 2000-11-27 2010-03-24 京セラ株式会社 ウエハ支持部材
JP4245924B2 (ja) * 2001-03-27 2009-04-02 株式会社Neomaxマテリアル 電子部品用パッケージおよびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100865799B1 (ko) * 2007-08-09 2008-10-28 박윤 지그

Also Published As

Publication number Publication date
TW200704622A (en) 2007-02-01
CN1891671A (zh) 2007-01-10
CN100540509C (zh) 2009-09-16
TWI329625B (en) 2010-09-01
KR100775454B1 (ko) 2007-11-12
US20070199660A1 (en) 2007-08-30
US7709099B2 (en) 2010-05-04

Similar Documents

Publication Publication Date Title
KR100775454B1 (ko) 접합체와 그것을 이용한 웨이퍼 지지부재 및 웨이퍼처리방법
TWI322139B (en) Yttria sintered body, electrostatic chuck, and manufacturing method of yttria sintered body
JP4648030B2 (ja) イットリア焼結体、セラミックス部材、及び、イットリア焼結体の製造方法
Lu et al. A lead-free, low-temperature sintering die-attach technique for high-performance and high-temperature packaging
JP3967278B2 (ja) 接合部材及び静電チャック
KR100756776B1 (ko) 질화 알루미늄 접합체 및 그의 제조 방법
KR20060044706A (ko) 웨이퍼 등 지지부재
US20060063024A1 (en) Metallized substrate
EP3093882A1 (en) Electronic circuit device
US7381673B2 (en) Composite material, wafer holding member and method for manufacturing the same
JP2003212670A (ja) 異種材料の接合体及びその製造方法
JP2005112677A (ja) セラミックス基板用ろう材及びこれを用いたセラミックス回路基板
JP3890539B2 (ja) セラミックス−金属複合回路基板
JP4936877B2 (ja) 接合体とこれを用いたウェハ支持部材及びウェハの処理方法
JP4307218B2 (ja) ウェハ保持部材及びその製造方法
JP3906087B2 (ja) ウエハ支持部材
JP4762064B2 (ja) 接合体とこれを用いたウェハ支持部材及びウェハ処理方法
KR100717109B1 (ko) 산화이트륨 소결체, 정전척 및 산화이트륨 소결체의 제조방법
JP4583053B2 (ja) 接合体とこれを用いたウェハ保持部材及びその製造方法
JP2004296579A (ja) 静電チャック及びその製造方法
JP2002164425A (ja) ウエハ支持部材
JP7400854B2 (ja) 静電チャック部材、静電チャック装置、および静電チャック部材の製造方法
WO2023176936A1 (ja) 静電チャック部材、および静電チャック装置
WO2022176777A1 (ja) セラミックス回路基板およびそれを用いた半導体装置
TW200415693A (en) Wafer holder for semiconductor manufacturing device and semiconductor manufacturing device in which it is installed

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120928

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20131022

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20141021

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20151016

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20161020

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20171018

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20181023

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20191017

Year of fee payment: 13