KR20050119154A - 마이크로머신의 제조방법 - Google Patents
마이크로머신의 제조방법 Download PDFInfo
- Publication number
- KR20050119154A KR20050119154A KR1020057018242A KR20057018242A KR20050119154A KR 20050119154 A KR20050119154 A KR 20050119154A KR 1020057018242 A KR1020057018242 A KR 1020057018242A KR 20057018242 A KR20057018242 A KR 20057018242A KR 20050119154 A KR20050119154 A KR 20050119154A
- Authority
- KR
- South Korea
- Prior art keywords
- film
- vibrator
- mems
- sacrificial layer
- micromachine
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 78
- 238000005530 etching Methods 0.000 claims abstract description 22
- 238000007789 sealing Methods 0.000 claims abstract description 15
- 238000004519 manufacturing process Methods 0.000 claims description 32
- 238000004544 sputter deposition Methods 0.000 claims description 7
- 230000008021 deposition Effects 0.000 abstract 1
- 238000012536 packaging technology Methods 0.000 abstract 1
- 239000010408 film Substances 0.000 description 67
- 229910004298 SiO 2 Inorganic materials 0.000 description 22
- 239000004065 semiconductor Substances 0.000 description 17
- 229910052581 Si3N4 Inorganic materials 0.000 description 9
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 9
- 230000010354 integration Effects 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000005229 chemical vapour deposition Methods 0.000 description 6
- 238000001312 dry etching Methods 0.000 description 6
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 6
- 229920005591 polysilicon Polymers 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000001459 lithography Methods 0.000 description 5
- 238000004806 packaging method and process Methods 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- 230000002411 adverse Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910018125 Al-Si Inorganic materials 0.000 description 2
- 229910018182 Al—Cu Inorganic materials 0.000 description 2
- 229910018520 Al—Si Inorganic materials 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 238000005538 encapsulation Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000012858 packaging process Methods 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- WPPDFTBPZNZZRP-UHFFFAOYSA-N aluminum copper Chemical compound [Al].[Cu] WPPDFTBPZNZZRP-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 238000010897 surface acoustic wave method Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81C—PROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
- B81C1/00—Manufacture or treatment of devices or systems in or on a substrate
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H3/00—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
- H03H3/007—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
- H03H3/0072—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks of microelectro-mechanical resonators or networks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B3/00—Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B7/00—Microstructural systems; Auxiliary parts of microstructural devices or systems
- B81B7/0009—Structural features, others than packages, for protecting a device against environmental influences
- B81B7/0012—Protection against reverse engineering, unauthorised use, use in unintended manner, wrong insertion or pin assignment
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H3/00—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
- H03H3/007—Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/24—Constructional features of resonators of material which is not piezoelectric, electrostrictive, or magnetostrictive
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Micromachines (AREA)
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
- Oscillators With Electromechanical Resonators (AREA)
Abstract
특수한 패키징기술을 필요로 하지 않고 희생층의 제거 및 봉지를 행할 수 있는 마이크로머신의 제조방법이다. 진동자(4)를 갖춘 마이크로머신(1)의 제조방법에 있어서, 진동자(4)의 가동부 주위에 희생층을 형성하는 공정과, 희생층상을 오버코트막(8)으로 덮는 동시에 그 오버코트막(8)에 희생층으로 통하는 관통구(10)를 형성하는 공정과, 가동부 주위에 공간을 형성하기 위해 관통구(10)를 이용하여 희생층을 제거하는 희생층 에칭을 행하는 공정과, 희생층 에칭후에 감압하에 있어서의 성막처리를 행하여 관통구(10)를 봉지하는 공정을 포함한다.
Description
본 발명은, 진동자를 갖춘 마이크로머신의 제조방법에 관한 것이다.
근년, 기판상의 미세화 제조기술의 진전에 수반하여, 이른바 마이크로머신(초소형 전기적·기계적 복합체;Micro Electro-Mechanical Systems, 이하 「MEMS」라고 한다)이나 그 MEMS를 짜넣은 소형기기등이 주목받고 있다. MEMS는, 가동 구조체인 진동자와 그 진동자의 구동을 제어하는 반도체 집적회로등을, 전기적·기계적으로 결합시킨 소자이다. 그리고, 진동자가 소자의 일부에 짜넣어지고 있고, 그 진동자의 구동을 전극간의 클롬 인력등을 응용하고 전기적으로 행하도록 되어 있다.
이와 같은 MEMS 가운데, 특히 반도체 프로세스를 이용하여 형성된 것은, 디바이스의 점유면적이 작은 것, 높은 Q치(진동계의 공진의 날카로움을 나타내는 양)를 실현할 수 있는 것, 다른 반도체 디바이스와의 인티그레이션(통합)이 가능한 것등의 특징을 가지기 때문에, 무선통신용의 고주파 필터로서의 이용이 제안되고 있다(예를 들면, C.T.-C.Nguyen, ”Micromechanical components for miniaturized low-power communications(invited plenary), ”proceedings,1999IEEE MTT-S International Microwave Symposium RF MEMS Workshop, June, 18, 1999, pp.48-77.참조).
그런데, MEMS를 다른 반도체 디바이스와 인티그레이션하는 경우에는, 그 MEMS에 있어서의 진동자의 부분을 캡슐봉지하고, 이것에 의해 한층 더 상층에 배선층등의 배치를 가능하게 하는 것이 제안되고 있다(예를 들면, 특개 2002-94328호 공보(제 7페이지, 도 10) 참조). 다만, 진동자의 캡슐봉지에 있어서는, 진동자의 주위를 속이 비워 있는 구조로 하는 것, 즉 그 진동자의 가동부 주위에 공간을 확보하고, 진동자를 가동할 수 있는 상태로 하는 것이 필요하다. 이 가동부 주위의 공간확보는, 통상, 이른바 희생층 에칭에 의해서 행해진다.
희생층 에칭이란, 진동자의 가동부 주위에 미리 박막을 형성해 두고, 그 후, 이 박막을 에칭에 의해 없애고, 상기 가동부 주위에 공간(틈새)을 형성하는 것을 말한다. 또, 희생층 에칭을 행하기 위해서, 가동부 주위에 형성한 박막을 희생층이라고 한다.
그렇지만, MEMS와 다른 반도체 디바이스와의 인티그레이션은, 몇개의 과제를 안고 있다. 일반적으로, 상기 인티그레이션은, 다른 반도체 디바이스에 대하여 제조프로세스(예를 들면, CMOS프로세스)의 최종 공정에, MEMS(특히, 그 진동자)의 제조프로세스를 부가하는 형태로 행해진다. 따라서, MEMS의 제조프로세스에 있어서는, 이미 형성되어 있는 반도체 디바이스로의 악영향을 회피하기 위해서, 고온에서의 가공을 행할 수 없다. 즉, 저온으로 진동자를 형성할 필요가 있고, 그 가공이 용이하지 않는 것으로 되어 버릴 우려가 있다.
이것에 대하여, MEMS에 있어서의 진동자의 부분을 캡슐봉지한 경우에는, 이것에 의해 한층 더 상층에 배선층등의 배치가 가능해지므로, 고온으로 진동자를 형성해도, 그 고온가공의 악영향이 배선층등에 미치는 것을 회피할 수 있다. 그런데, 그 경우에는, 희생층 에칭에 의해 형성한 진동자의 가동부 주위의 공간을 진공 봉지(封止)하기 위해서, 절연 재료등에 의한 특수한 패키징 기술이 필요하게 된다(예를 들면,특개 2002-94328호 공보(제 7페이지, 도 10) 참조). 즉, 진공봉지를 위한 패키징 공정이 필요하기 때문에, 기존의 반도체 프로세스(예를 들면, CMOS 프로세스)의 과정에 있어서 행하는 것이 곤란하며, 결과적으로 MEMS를 포함하는 디바이스의 생산효율저하를 초래하게 되는 것이 고려된다.
그래서, 본 발명은, MEMS의 가공 용이화를 도모할 수 있도록 희생층 에칭을 행하여 진동자의 부분을 봉지하는 동시에, 그 경우이더라도 특수한 패키징 기술을 필요로 하지 않고 희생층의 제거 및 봉지(封止)를 행하는 것이 가능하게 하는, 마이크로머신의 제조방법을 제공하는 것을 목적으로 한다.
도 1a 내지 도 1b는, 본 발명에 의하여 얻어지는 MEMS의 일구성예를 나타내는 설명도이며, 도 1a는 그 평면도, 도 1b는, 그 정면도, 도 1c는, 도 1a의 A-A´단면도이다.
도 2a 내지 도 2d는, 본 발명에 관계되는 MEMS의 제조방법의 일순서를 나타내는 설명도(그 1)이며, 도 2a~ 도 2d는 각각이 각 순서를 나타내는 도면이다.
도 3a 내지 도 3d는, 본 발명과 관계되는 MEMS의 제조방법의 일순서를 나타내는 나타내는 설명도(그 2)이며, 도 3a~ 도 3d는 각각이 각 순서를 나타내는 도면이다.
도 4는, 본 발명에 의하여 얻어지는 MEMS의 다른 구성예를 나타내는 설명도이다.
본 발명은, 상기 목적을 달성하기 위해 고안 된, 진동자를 갖춘 MEMS의 제조방법이며, 상기 진동자의 가동부 주위에 희생층을 형성하는 공정과, 상기 희생층상을 오버코트막으로 덮는 동시에, 상기 오버코트막에 상기 희생층에 통하는 관통구를 형성하는 공정과, 상기 가동부 주위에 공간을 형성하기 위해서 상기 관통구를 이용하여 상기 희생층을 없애는 희생층 에칭을 행하는 공정과, 상기 희생층 에칭 후에 감압하에 있어서의 성막처리를 행하여 상기 관통구를 봉지하는 공정을 포함하는 것을 특징으로 한다.
상기 순서의 MEMS의 제조방법에 의하면, 희생층을 형성하는 공정, 희생층상을 오버코트막으로 덮는 공정 및 희생층 에칭을 행하는 공정을 포함하기 때문에, 그 오버코트막의 한층 더 상층에 배선층등의 배치가 가능하게 된다. 즉, 이들 공정 뒤에, 배선층등의 형성공정을 행할 수 있게 된다. 따라서, 그 전 공정(예를 들면, CMOS 프로세스에 있어서의 알루미늄 공정이전)에서 진동자를 형성하면, 상기 진동자를 고온으로 형성해도, 그 고온 가공의 악영향이 배선층등에 미치지 않는다.
또, 희생층 에칭 후에 감압하에 있어서의 성막처리를 행하여 관통구를 봉지하는 공정을 포함하기 때문에, 그 공정에서, 진동자의 가동부 주위의 공간이 감압 상태로 봉지된다. 게다가, 감압하에 있어서의 성막처리에 의해 관통구를 봉지하기 때문에, 반도체 프로세스(예를 들면, CMOS 프로세스)에 있어서의 성막기술을 그대로 이용하여 실현하는 것이 가능하게 되며, 상기 반도체 프로세스에 있어서의 다른 공정과 연속적으로 행할 수 있는 동시에, 진공 봉지를 위한 특수한 패키징 기술을 필요로 하는 것도 아니다.
본 발명에 관계되는 MEMS의 제조방법에 의하면, 희생층 에칭을 행하여 진동자 부분을 봉지하므로, 진동자를 고온으로 형성해도 그 악영향이 배선층등에 미치는 것을 회피할 수 있고, 결과적으로 MEMS의 가공 용이화를 도모할 수 있다. 또한, 희생층 에칭에 의한 공간의 봉지(封止)를 감압하에 있어서의 성막처리에 의하여 행하기 때문에, 특수한 패키징 기술을 필요로 하지 않고, 희생층의 제거 및 봉지를 행하는 것이 가능하게 된다. 따라서, 본 발명에 의하면, MEMS를 다른 반도체 디바이스와 인티그레이션하는 경우여도, 그 MEMS를 포함하는 디바이스의 생산효율을 향상시킬 수 있게 된다.
이하, 도면에 근거하여 본 발명과 관계되는 MEMS의 제조방법에 대하여 설명한다. 또한, 당연한 일이지만, 이하에 설명하는 실시의 형태는, 본 발명의 매우 적합한 실시 구체적인 예에 지나지 않고, 본 발명이 이것에 한정되지 않는 것은 물론이다.
여기서, 먼저, MEMS의 제조방법의 설명에 앞서, 그 MEMS의 개략 구성에 대하여 설명한다. 여기에서는, 무선통신용의 고주파 필터로서 이용되는 MEMS를 예로 들어 설명한다. 도 1a 내지 도 1c는, 본 발명에 의하여 얻어지는 MEMS의 1구성예를 나타내는 설명도이다.
도 1a에 나타내는 바와 같이, 여기서 설명하는 MEMS(1)는, 입력전극(2) 및 출력전극(3)에 부가하여, 예를 들면 인을 함유한 폴리 실리콘(Poly-Si)이라고 하는 도전성재료로 이루어지는 띠모양의 빔형 진동자(이하, 단지 「진동자」라고 한다)(4)를 갖추고 있다. 그리고, 입력전극(2)에 특정 주파수전압이 인가되었을 경우에, 진동자(4)의 빔 부분(가동부)이 고유진동주파수로 진동하고, 출력전극(3)과 진동자(4)의 가동부와의 사이의 공간으로 구성되는 캐패시터의 용량이 변화하고, 이것이 출력전극(3)으로부터 출력되도록 되어 있다. 이것에 의해, MEMS(1)는, 고주파 필터로서 이용했을 경우에, 표면탄성파(SAW)나 박막탄성파(FBAR)를 이용한 고주파 필터와 비교하여, 높은 Q치를 실현할 수 있는 것이다.
이와 같은 MEMS(1)를 구성하는 입력전극(2), 출력전극(3) 및 진동자(4)는, 도 1c에 나타내는 바와 같이, 어느 것도 예를 들면 Si(단결정 실리콘)으로 이루어지는 반도체기판(이하, 「Si기판」이라고 한다)(5)상에 SiO2막(6) 및 SiN(질화규소) 막(7)이 적층된 층의, 또한 그 위쪽에 형성되어 있다. 따라서, MEMS(1)는, Si기판(5)상에 형성되어 있기 때문에, 다른 반도체 디바이스와의 인티그레이션이 가능하다.
그런데, MEMS(1)에서는, 진동자(4)의 가동부가 고유진동주파수로 진동하기 때문에, 그 진동자(4)의 가동부 주위에 공간이 확보되어 있다. 다만, 그 공간은, 후술하는 바와 같이, 진동자(4)의 가동부가 오버코트막(8)에 의하여 덮여지기 때문에, 그 가동부 단면의 상하좌우, 즉 상기 단면의 전 주위에 걸쳐서 확보되어 있다.
그리고, 진동자(4)의 윗쪽측에는, 그 진동자(4)의 가동부를 덮어 봉지하기 위해, 예를 들면 SiN막으로 이루어지는 오버코트막(8)이 형성되어 있다. 이 오버코트막(8)의 존재에 의해서, MEMS(1)에서는, 진동자(4)를 가동할 수 있는 상태로 하면서, 그 진동자(4)가 봉지되어, 그 오버코트막(8)의 한층 더 상층에도 배선층등의 배치가 가능하게 되는 것이다. 이것에 의해서, MEMS(1)는, 다른 반도체 디바이스와의 인티그레이션에 매우 적합한 것이라고 말할 수 있다.
또한, 오버코트막(8)상의 일부에는, 예를 들면 Al-Cu(알루미늄-동) 막 또는 Al-Si(알루미늄-실리콘)막으로 이루어지는 스패터(spatter)막(9)이 성막되어 있다. 이것은, 진동자(4)의 가동부 주위에 공간을 확보하기 위하여, 오버코트막(8)에 설치된 희생층 에칭을 위한 관통구(10)를 봉지하기 위한 것이다.
다음에, 이상과 같은 MEMS(1)의 제조방법, 즉 본 발명에 관계되는 MEMS의 제조방법에 대하여 설명한다. 도 2a~ 도 3d는, 본 발명에 관계되는 MEMS의 제조방법의 일순서를 나타내는 설명도이다.
상술한 구성의 MEMS(1)의 제조에 있어서는, 먼저, 도 2a에 나타내는 바와 같이, Si기판(5)상에 절연막으로서 기능하는 SiO2막(6) 및 SiN막(7)을, 예를 들면 감압CVD(Chemical Vapor Deposition)법에 의해 형성한다. 그리고, 게다가, 도 2b에 나타내는 바와 같이, 예를 들면 인(P)을 함유한 폴리실리콘(Poly-Si)과 같이 선택적으로 에칭제거 가능한 재료막을 형성하고, 그 후 주지의 리소그래피기술 및 드라이 에칭기술을 이용하여 하부 배선(11)을 패턴 형성한다.
하부 배선(11)을 패턴 형성한 후는, 도 2c에 나타내는 바와 같이, 예를 들면 감압CVD법에 의해 SiO2막을 형성하고, 주지의 리소그래피기술 및 드라이 에칭기술을 이용하여 패턴 가공하고, 이것에 의해 하부 배선(11)을 SiO2막(12)으로 덮는다. 이 SiO2막(12)은, 후술하는 바와 같이, 희생층으로서 기능하는 것이다.
그 후는, 도 2d에 나타내는 바와 같이, SiO2막(12)상에, 예를 들면 감압CVD법에 의해 Poly-Si막을 형성하고, 주지의 리소그래피기술 및 드라이 에칭기술을 이용하여 패턴가공하고, 이것에 의해 Poly-Si로 이루어지는 띠모양의 진동자(4)를 형성한다.
진동자(4)를 형성하면, 그 후는, 도 3a에 나타내는 바와 같이, 예를 들면 감압CVD법에 의해 SiO2막을 형성하고, 주지의 리소그래피기술 및 드라이 에칭기술을 이용하여 패턴가공하여, 진동자(4)를 SiO2막(13)으로 덮는다. 이 SiO2막(13)도, 희생층으로서 기능하는 것이다. 이것에 의해, 진동자(4)는, 그 가동부 주위, 즉 측벽부분을 포함한 단면의 상하좌우면의 모두가, 희생층으로서 기능하는 SiO2막(12) 및 SiO2막(13)에 의하여 덮여지게 된다. 즉, 진동자(4)의 단면 아래방향에는 SiO2막(12)이 존재하고, 단면 좌우 및 상방향에는 SiO2막(13)이 존재한다.
이와 같이 하여, 희생층으로서 기능하는 SiO2막(12) 및 SiO2막(13)을 형성한 후는, 도 3b에 나타내는 바와 같이, 계속하여, 그 위에, SiN막(14)을 예를 들면 감압CVD법에 의해 형성한다. 이 SiN막(14)은, 희생층을 덮는 오버코트막으로서 기능하는 것이다. 그리고, 그 SiN막(14)에 대하여, 주지의 리소그래피기술 드라이 에칭기술을 이용하고, 희생층(SiO2막(12) 또는 SiO2막(13)의 어느쪽이든)으로 통하는 관통구(10)를 형성한다.
관통구(10)의 형성후는, 그 관통구(10)를 이용하여 희생층을 없애는 희생층 에칭을 행하고, 진동자(4)의 가동부 주위에 공간을 형성한다. 즉, 도 3c에 나타내는 바와 같이, 예를 들면 플루오르산수용액(DHF용액)이라는 SiO2를 선택적으로 제거하는 용액에 의해, SiO2막(12) 및 SiO2막(13)을 제거한다. 이것에 의해, 진동자(4)의 가동부 주위, 즉 가동부 단면의 전 주위에 걸쳐서, 희생층의 두께분만큼의 공간(갭)이 형성되며, 진동자(4)의 가동부가 고유진동주파수로 진동할 수 있게 된다.
희생층 에칭을 실시한 후는, 본 실시 형태에 있어서 가장 특징적인 공정인, 감압하에 있어서의 성막처리를 행한다. 구체적으로는, 예를 들면 진공중에서 스퍼터링(sputtering)의한 성막처리를 행하고, 도 3d에 나타내는 바와 같이, 관통구(10)를 봉지하는 스패터막(9)을 형성한다. 이 때에 이용하는 반응가스로서는, 스퍼터링에 의한 성막처리이기 때문에, 불활성 가스인 아르곤(Ar)가스를 들 수 있다. 또, 스패터막(9)으로서는, Al-Cu막, Al-Si막등이라는 금속 또는 금속화합물에 의한 박막을 들 수 있다. 그리고, 스패터막(9)을 형성하면, 그 스패터막(9)에 대하여, 주지의 리소그래피기술 및 드라이 에칭기술을 이용하고, 배선등의 형상에 패턴 가공한다.
이와 같은 순서(각 공정)를 거치는 것으로, 도 1a 내지 도 1c에 나타낸 MEMS(1)가 구성되게 된다. 다만, 상술한 순서에 의한 제조방법은, 도 1a 내지 도 1c와 같이 구성된 MEMS(1)에만 한정되는 것이 아니라, 오버코트막에 설치된 관통구를 이용하여 희생층 에칭을 행하는 것이면, 다른 구성의 MEMS에도 적용 가능하다.
도 4는, 본 발명에 의하여 얻어지는 MEMS의 다른 구성예를 나타내는 설명도이다. 도예의 MEMS(1a)는, 하부 배선(11)이 묻혀 있는 점에서 상술한 도 1a 내지 도 1c의 MEMS(1)와 구성이 다르지만, 이와 같은 MEMS(1a)여도, 상술한 MEMS(1)의 경우와 같은 순서(각 공정)로 제조하는 것이 가능하다. 즉, 희생층 에칭을 위해서 오버코트막(8)에 설치된 관통구(10)를, 스퍼터링에 의한 성막처리를 행하는 것으로 봉지하는 것이 고려된다.
또, 도 1a 내지 도 1c 및 도 4에 나타낸 MEMS(1, 1a)에서는, 어느 것도 진동자(4)가 띠모양의 빔형인 경우를 예로 들었지만, 예를 들면 이른바 링형 진동자나 디스크형 진동자여도, 그 주위에 가동부 공간을 확보한 속이 비어 있는 구조의 것이면, 상술한 순서에 의한 제조방법을 완전히 동일하게 적용하는 것이 가능하다. 게다가 이와 같은 진동자에 진동을 여기하는 수단으로서, 상술의 예에서는 정전을 이용한 것에 대하여 설명했지만, 반드시 정전구동으로 한정되지 않고, 예를 들면 피에조구동인 FBAR에도 완전히 동일하게 적용 가능하다.
이상과 같이, 본 실시 형태에서 설명한 MEMS의 제조방법에 의하면, 진동자(4)의 주위에 희생층으로서 기능하는 SiO2막(12) 및 SiO2막(13)을 형성하는 공정, 그 희생층상을 오버코트막인 SiN막(14)으로 덮는 공정 및 희생층 에칭을 행하는 공정을 포함하기 때문에, 그 SiN막(14)의 한층 더 상층에 배선층등의 배치가 가능하게 된다. 즉, 이와 같은 공정 후에, 배선층등의 형성공정을 행할 수 있게 된다. 따라서, 그 전(前) 공정에서 진동자(4)를 형성하는 것으로, 그 진동자(4)를 메탈 배선등보다도 하층에 형성할 수 있기 때문에, 상기 진동자(4)를 고온으로 형성해도, 그 고온가공의 악영향이 배선층등에 미치지 않고, 결과적으로 진동자(4) 형성의 용이화를 도모할 수 있다.
게다가, 본 실시 형태에서 설명한 MEMS의 제조방법에서는, 희생층 에칭후에 스퍼터링에 의한 성막처리를 행하여 관통구(10)를 봉지하는 공정을 포함하기 때문에, 그 공정에서 진동자(4)의 가동부 주위의 공간이 봉지된다. 따라서, 절연재료등에 의한 특수한 패키징기술을 필요로 하지 않는다. 즉, 진공봉지를 위한 패키징 공정을 필요로 하지 않고, 희생층 에칭에 의해 형성한 진동자(4)의 가동부 주위의 공간을 봉지할 수 있다.
또, 봉지(封止)를 위한 스패터막(9)은, 배선등으로 해도 이용하는 것이 고려된다. 즉, 배선등을 위한 스패터막(9)을 이용하여 관통구(10)를 봉지하는 것도 고려되며, 그 경우에는 봉지와 배선등의 형성이 동일한 공정으로 실현되며, 제조공정의 효율화를 도모하는데에 상당히 유효하다.
또한, 스퍼터링에 의한 성막처리로 관통구(10)를 봉지하므로, 반도체 프로세스(예를 들면, CMOS프로세스)에 있어서의 성막기술을 그대로 이용하여 실현하는 것이 가능하게 되며, 상기 반도체 프로세스에 있어서의 다른 공정과 연속적으로 행할 수 있게 된다. 즉, 이른바 인 라인중에서의 봉지가 가능하게 된다. 따라서, CMOS프로세스등으로의 인티그레이션이 상당히 용이한 동시에, 웨이퍼상태에서의 MEMS평가를 행하는 것도 가능하게 된다.
이것 때문에, 본 실시 형태에서 설명한 제조방법을 이용하여 MEMS를 구성하면, MEMS를 다른 반도체 디바이스와 인티그레이션 하는 경우여도, 그 MEMS의 제조를 기존의 반도체 프로세스(예를 들면, CMOS프로세스)의 과정에 있어서 행할 수 있고, 결과로서 MEMS를 포함하는 디바이스의 생산효율을 향상시킬 수 있게 된다.
특히, 본 실시 형태에서 설명한 바와 같이, 스패터링에 의한 성막처리로 봉지를 행하는 경우에는, 불활성 가스인 Ar가스중에서의 봉지로 되며, 안전성, 신뢰성의 점에서 상당히 적합하다고 말할 수 있다.
Claims (5)
- 진동자를 갖춘 마이크로머신의 제조방법에 있어서,상기 진동자의 가동부 주위에 희생층을 형성하는 공정과,상기 희생층상을 오버코트막으로 덮는 동시에, 상기 오버코트막에 상기 희생층으로 통하는 관통구를 형성하는 공정과,상기 가동부 주위에 공간을 형성하기 위해 상기 관통구를 이용하여 상기 희생층을 없애는 희생층 에칭을 행하는 공정과,상기 희생층 에칭후에 감압하에 있어서의 성막처리를 행하고 상기 관통구를 봉지(封止)하는 공정을 포함하는 것을 특징으로 하는 마이크로머신의 제조방법.
- 제 1항에 있어서,상기 진동자에 진동을 여기(勵起)하는 수단을 가진 마이크로머신에 적용되는 것을 특징으로 하는 마이크로머신의 제조방법.
- 제 2항에 있어서,상기 진동을 여기하는 수단에 정전을 이용하는 것을 특징으로 하는 마이크로머신의 제조방법.
- 제 2항에 있어서,상기 진동을 여기하는 수단에 피에조를 이용하는 것을 특징으로 하는 마이크로머신의 제조방법.
- 제 1항에 있어서,상기 감압하에 있어서의 성막처리는, 스퍼터링에 의한 성막처리인 것을 특징으로 마이크로머신의 제조방법.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003098782 | 2003-04-02 | ||
JPJP-P-2003-00098782 | 2003-04-02 | ||
JPJP-P-2004-00068325 | 2004-03-11 | ||
JP2004068325A JP4333417B2 (ja) | 2003-04-02 | 2004-03-11 | マイクロマシンの製造方法 |
PCT/JP2004/004822 WO2004089812A1 (ja) | 2003-04-02 | 2004-04-02 | マイクロマシンの製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20050119154A true KR20050119154A (ko) | 2005-12-20 |
KR101127167B1 KR101127167B1 (ko) | 2012-03-21 |
Family
ID=33161486
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020057018242A KR101127167B1 (ko) | 2003-04-02 | 2004-04-02 | 마이크로머신의 제조방법 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8268660B2 (ko) |
JP (1) | JP4333417B2 (ko) |
KR (1) | KR101127167B1 (ko) |
TW (1) | TWI245020B (ko) |
WO (1) | WO2004089812A1 (ko) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007222956A (ja) * | 2006-02-21 | 2007-09-06 | Seiko Epson Corp | Memsデバイスおよびmemsデバイスの製造方法 |
JP2008188711A (ja) * | 2007-02-05 | 2008-08-21 | Oki Electric Ind Co Ltd | 半導体装置製造方法 |
TW200938479A (en) * | 2007-10-22 | 2009-09-16 | Toshiba Kk | Micromachine device and method of manufacturing the same |
JP2010280035A (ja) | 2009-06-04 | 2010-12-16 | Toshiba Corp | Memsデバイスとその製造方法 |
US8569091B2 (en) | 2009-08-27 | 2013-10-29 | International Business Machines Corporation | Integrated circuit switches, design structure and methods of fabricating the same |
DE102010000666A1 (de) * | 2010-01-05 | 2011-07-07 | Robert Bosch GmbH, 70469 | Bauelement mit einer mikromechanischen Mikrofonstruktur und Verfahren zu dessen Herstellung |
JP5485714B2 (ja) * | 2010-01-07 | 2014-05-07 | セイコーインスツル株式会社 | パッケージの製造方法 |
US20130106875A1 (en) * | 2011-11-02 | 2013-05-02 | Qualcomm Mems Technologies, Inc. | Method of improving thin-film encapsulation for an electromechanical systems assembly |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4262399A (en) * | 1978-11-08 | 1981-04-21 | General Electric Co. | Ultrasonic transducer fabricated as an integral park of a monolithic integrated circuit |
JPH0750789B2 (ja) * | 1986-07-18 | 1995-05-31 | 日産自動車株式会社 | 半導体圧力変換装置の製造方法 |
US5198716A (en) * | 1991-12-09 | 1993-03-30 | The United States Of America As Represented By The United States Department Of Energy | Micro-machined resonator |
JPH0646207A (ja) | 1992-01-14 | 1994-02-18 | Matsushita Electric Ind Co Ltd | 圧電駆動マイクロスキャナ |
WO1994014240A1 (en) * | 1992-12-11 | 1994-06-23 | The Regents Of The University Of California | Microelectromechanical signal processors |
JPH07131280A (ja) | 1993-10-28 | 1995-05-19 | Toyota Motor Corp | 振動子の支持構造 |
JPH09148467A (ja) | 1995-11-24 | 1997-06-06 | Murata Mfg Co Ltd | 動作素子の真空封止の構造およびその製造方法 |
DE19844686A1 (de) * | 1998-09-29 | 2000-04-06 | Fraunhofer Ges Forschung | Mikromechanischer Drehratensensor und Verfahren zur Herstellung |
US6704185B2 (en) * | 2000-02-23 | 2004-03-09 | National Center For Scientific Research | Capacitive pressure-responsive devices and their fabrication |
US7008812B1 (en) * | 2000-05-30 | 2006-03-07 | Ic Mechanics, Inc. | Manufacture of MEMS structures in sealed cavity using dry-release MEMS device encapsulation |
US6448604B1 (en) * | 2000-09-12 | 2002-09-10 | Robert Bosch Gmbh | Integrated adjustable capacitor |
WO2002073673A1 (en) * | 2001-03-13 | 2002-09-19 | Rochester Institute Of Technology | A micro-electro-mechanical switch and a method of using and making thereof |
US6930364B2 (en) * | 2001-09-13 | 2005-08-16 | Silicon Light Machines Corporation | Microelectronic mechanical system and methods |
US6621134B1 (en) * | 2002-02-07 | 2003-09-16 | Shayne Zurn | Vacuum sealed RF/microwave microresonator |
US6635509B1 (en) * | 2002-04-12 | 2003-10-21 | Dalsa Semiconductor Inc. | Wafer-level MEMS packaging |
JP3731750B2 (ja) | 2002-06-24 | 2006-01-05 | 松下電器産業株式会社 | 赤外線センサの製造方法 |
JP3703480B2 (ja) | 2002-12-27 | 2005-10-05 | 松下電器産業株式会社 | 電子デバイスおよびその製造方法 |
-
2004
- 2004-03-11 JP JP2004068325A patent/JP4333417B2/ja not_active Expired - Fee Related
- 2004-04-02 US US10/551,271 patent/US8268660B2/en not_active Expired - Fee Related
- 2004-04-02 TW TW093109159A patent/TWI245020B/zh not_active IP Right Cessation
- 2004-04-02 WO PCT/JP2004/004822 patent/WO2004089812A1/ja active Application Filing
- 2004-04-02 KR KR1020057018242A patent/KR101127167B1/ko active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
JP2004314289A (ja) | 2004-11-11 |
KR101127167B1 (ko) | 2012-03-21 |
JP4333417B2 (ja) | 2009-09-16 |
TWI245020B (en) | 2005-12-11 |
US8268660B2 (en) | 2012-09-18 |
US20060216847A1 (en) | 2006-09-28 |
WO2004089812A1 (ja) | 2004-10-21 |
TW200510241A (en) | 2005-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102408090B (zh) | 具有增强锚的微结构 | |
JP4327118B2 (ja) | バルク音響波共振器の製造方法 | |
US20070281381A1 (en) | Method for sealing and backside releasing of microelectromechanical systems | |
JP2007184931A (ja) | 真空封入単結晶シリコン・デバイス | |
US20130313947A1 (en) | Integration of piezoelectric materials with substrates | |
JP2005294462A (ja) | 電子部品、電子部品モジュール及び電子部品の製造方法 | |
JP2006519707A (ja) | ガラス−シリコンmemsプロセスで埋め込まれた電気的フィードスルーに関するシステム及び方法 | |
JP5610177B2 (ja) | 機能デバイス及びその製造方法 | |
US6877209B1 (en) | Method for sealing an active area of a surface acoustic wave device on a wafer | |
JP2006289520A (ja) | Mems技術を使用した半導体装置 | |
JP2007276089A (ja) | 電気機械素子とその製造方法、並びに共振器とその製造方法 | |
US20130126989A1 (en) | Microstructure Device with an Improved Anchor | |
JP2009226499A (ja) | マイクロマシン装置及びマイクロマシン装置の製造方法 | |
WO2004088840A1 (ja) | 圧電薄膜デバイス及びその製造方法 | |
KR101127167B1 (ko) | 마이크로머신의 제조방법 | |
WO2005029700A1 (ja) | マイクロ電気機械システムの共振器およびその駆動方法およびその製造方法および周波数フィルタ | |
US7466022B2 (en) | Wafer-level seal for non-silicon-based devices | |
JP4314867B2 (ja) | Mems素子の製造方法 | |
JP4608993B2 (ja) | 微小電気機械素子とその製造方法、及び電子機器 | |
JP2007134453A (ja) | マイクロマシン混載の電子回路装置、およびマイクロマシン混載の電子回路装置の製造方法 | |
WO2004021398A2 (en) | Wafer-level seal for non-silicon-based devices | |
JP2005260398A (ja) | 半導体装置および半導体装置の製造方法 | |
CN1871176A (zh) | 微机械的制造方法 | |
JP2005094568A (ja) | マイクロ電気機械システムの共振器およびその駆動方法および周波数フィルタ | |
JP2009226500A (ja) | マイクロマシン装置の製造装置及びマイクロマシン装置の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20150227 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20160302 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20170224 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20180223 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20190304 Year of fee payment: 8 |