KR20050076816A - 연료 전지 - Google Patents

연료 전지 Download PDF

Info

Publication number
KR20050076816A
KR20050076816A KR1020050005185A KR20050005185A KR20050076816A KR 20050076816 A KR20050076816 A KR 20050076816A KR 1020050005185 A KR1020050005185 A KR 1020050005185A KR 20050005185 A KR20050005185 A KR 20050005185A KR 20050076816 A KR20050076816 A KR 20050076816A
Authority
KR
South Korea
Prior art keywords
mesh
fuel cell
air
water
separator
Prior art date
Application number
KR1020050005185A
Other languages
English (en)
Other versions
KR100799050B1 (ko
Inventor
호리구찌무네히사
Original Assignee
가부시키가이샤 에쿼스.리서치
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 에쿼스.리서치 filed Critical 가부시키가이샤 에쿼스.리서치
Publication of KR20050076816A publication Critical patent/KR20050076816A/ko
Application granted granted Critical
Publication of KR100799050B1 publication Critical patent/KR100799050B1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0254Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04059Evaporative processes for the cooling of a fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04291Arrangements for managing water in solid electrolyte fuel cell systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/72Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps in street lighting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Abstract

본 발명의 과제는 공기극측에 공기와 냉각수가 직접 공급되는 방식의 연료 전지에 있어서, 냉각과 막습윤의 유지의 양립을 단순한 구성으로 실현하는 것이다.
연료 전지는 서로 인접하는 단위 셀 사이에 세퍼레이터(10B)가 배치되고, 상기 세퍼레이터를 통해 단위 셀의 공기극측에 공기와 물의 혼합류가 공급된다. 세퍼레이터는 단위 셀 중 적어도 공기극측의 표면 부분에 혼합류를 투과하는 그물코형의 도전체(14)를 구비한다. 도전체는 그물코 부분에 물을 보유 지지하여 막힘에 의해 전극과 공기의 접촉을 방해하는 일 없이 단위 셀의 열에 의해 증발하는 물의 잠열에 의해 단위 셀을 냉각한다.

Description

연료 전지{FUEL CELL}
본 발명은, 연료 전지에 관한 것으로, 특히 그 단위 셀 사이에 개재 삽입되는 세퍼레이터를 이용한 연료 전지의 냉각 기술에 관한 것이다.
연료 전지의 형식으로서의 PEM형 연료 전지의 단위 셀은 연료극(일반적으로 연료로서 수소 가스가 이용되므로, 수소극이라고도 함)과 산화제극(마찬가지로 산화제로서 산소를 포함하는 가스인 공기가 이용되므로, 이하 이를 공기극이라 함) 사이에 고분자 고체 전해질막이 협지된 구성이 된다. 연료극과 공기극은 모두 촉매 물질을 포함하는 촉매층과, 촉매층을 지지하는 동시에 반응 가스를 투과하는 기능을 발휘하고, 또한 집전체로서도 기능을 갖는 전극 기재로 이루어진다. 연료극과 공기극의 더욱 외측에는 반응 가스로서의 수소와 공기를 셀 외부로부터 전극면에 균일하게 공급하는 동시에, 반응 가스의 잉여분을 셀 외부로 배출하기 위한 가스 유로(일반적으로 전극면측이 개방된 홈으로 구성됨)를 마련한 세퍼레이터(커넥터판)가 적층된다. 이 세퍼레이터는 가스의 투과를 방지하는 동시에 발생한 전류를 외부로 취출하기 위한 집전을 행한다. 상기와 같은 단위 셀과 세퍼레이터로 1유닛의 단일 전지가 구성된다.
실제의 연료 전지에서는 이러한 단일 전지의 다수개가 직렬로 적층되어 셀 모듈이 구성된다. 이와 같은 연료 전지에서는 충분한 발전 효율을 유지하기 위해, 단위 셀 중의 고분자 고체 전해질막을 충분히 습윤 상태로 유지할 필요가 있고, 일반적으로 전해 반응에 의해 생성되는 물만으로는 수분이 부족하므로, 각 단위 셀에 가습수를 공급하는 수단을 필요로 한다. 또한, 전해 반응에 의해 발생 전력에 대략 상당하는 열량의 열이 발생하므로, 연료 전지 본체가 과도하게 히트 업하는 것을 방지하는 냉각 수단이 강구된다.
연료 전지의 냉각 수단으로서는 다양한 것이 제안되어 있고, 냉각과 함께 전해질막의 습윤을 행하도록 한 것이 있다(예를 들어, 특허문헌 1 참조). 이 기술에서는 미리 물을 첨가한 공기를 공급하고 냉각 가스 유로에서 물을 증발시켜 냉각을 행한 후, 그 증발된 수분을 포함한 공기를 공기 유로에 순환시키도록 한 구성이 채용되어 있다.
또한, 세퍼레이터 내에 가스 유로와는 분리한 중공부를 형성하여 중공부에 냉각수를 유통시키는 동시에, 이 냉각수가 다공질의 벽면을 통해 공기 유로에 수증기를 공급시키도록 한 것도 제안되어 있다(예를 들어, 특허문헌 2 참조.).
[특허문헌 1]
일본 특허 공개 평10-247505호 공보
[특허문헌 2]
일본 특허 공개 평6-338338호 공보
그런데, 종래 기술에 따르면, 냉각과 막의 습윤의 유지의 양립은 곤란하고, 예를 들어 특허문헌 1에 기재된 것에 따르면, 일단 냉각 가스 유로에서 액체수를 증발시킨 수증기를 포함하는 공기를 다시 공기 유로에 순환시키기 때문에, 그 순환 경로에 있어서 냉각 가스 유로의 온도를 유지하는 것이 어렵고, 예를 들어 순환 경로에 있어서 온도가 저하된 후, 공기 유로에 있어서 온도가 상승한 경우, 공기 유로에 있어서는 전해질막 중으로부터 수분을 빼앗게 되어 막 습윤의 유지는 곤란하다.
또한, 특허문헌 2에 기재된 것에서는 다공질의 벽면을 통해 수증기를 공급하지만, 다공질로부터 배어 나오는 수분에 의해 충분한 수증기의 공급이 가능하다고 반드시 말하기는 어렵고, 냉각 수로에서는 현열에 의한 냉각이 행해질 뿐이므로, 충분한 냉각을 행하기 위해서는 냉각수의 순환을 위한 기계적 설비나 에너지가 팽대해질 가능성이 있다.
본 발명은 상기한 사정에 비추어 안출된 것으로, 공기극측에 공기와 냉각수가 직접 공급되는 방식의 연료 전지에 있어서, 냉각과 막 습윤 유지의 양립을 단순한 구성으로 실현하는 것을 목적으로 한다. 또한, 본 발명은 효율적인 냉각이 가능한 연료 전지를 제공하는 것이다.
상기한 목적을 달성하기 위해, 본 발명은 전해질막(11)과 상기 전해질막의 양측에 설치된 연료극(13) 및 공기극(12)으로 이루어지는 단위 셀(10A)이 세퍼레이터(10B)를 협지하여 적층되고, 상기 세퍼레이터를 통해 단위 셀의 공기극측에 공기와 물의 혼합류가 공급되는 연료 전지에 있어서, 상기 세퍼레이터는 단위 셀의 양극 중 적어도 공기극측의 표면 부분에 상기 혼합류를 투과하는 그물코형의 도전체(14)를 구비하는 것을 주된 특징으로 한다.
상기한 구성에 있어서, 상기 그물코형의 도전체는 그물코의 개구율이 25 % 이상인 것이 바람직하다. 또한, 상기 그물코형의 도전체는 상기 물을 부착시키기 위해 친수성 처리가 실시되어 있는 것이 바람직하다. 이 경우의 상기 그물코형의 도전체는 단면 형상이 직사각형 파형이 되도록 굴곡되어 있고, 상기 가스 차단용 기판은 얇은 평판형으로 형성되어 있다. 보다 구체적으로는, 상기 세퍼레이터는 상기 그물코형의 도전체와 가스 차단용 기판(16)을 포갠 층구조가 된다. 또한, 상기 그물코형의 도전체는 그물선 사이에 상기 혼합류를 투과하는 철망 또는 금속 박판에 상기 혼합류를 투과하는 펀치 구멍이 형성된 펀칭 메탈 혹은 금속 박판에 상기 혼합류를 투과하는 마름모꼴 슬릿이 형성된 랜스 커트 메탈로 구성된다.
본 발명은 공급 공기 중에 냉각수를 직접 분사에 의해 혼입시켜 공기극측에 공급하는 방식의 연료 전지에 적용하는 데 특히 유효한 것이고, 이에 의해 그물코형의 도전체에 냉각수가 균일하게 부착되고 또한 보유 지지됨으로써 전극 전면에서 반응 생성열을 이용한 균일한 잠열 냉각이 가능해져 냉각 능력이 향상된다.
(제1 실시예)
이하, 도면을 참조하여 본 발명의 실시예를 설명한다. 우선, 도1 내지 도7은 본 발명의 제1 실시예를 나타낸다. 도1은 본 발명의 적용에 관한 연료 전지 스택(1)을 이용한 차량용 연료 전지 시스템의 구성예를 나타낸다. 이 연료 전지 시스템은 연료 전지 스택(1)을 주본체로 하고, 그곳에 공기를 공급하는 공기 공급 수단으로서의 공기 팬(21)을 포함하는 공기 공급 시스템(도면에 실선으로 나타냄)(2) 및 물 응축기(31)를 포함하는 공기 배출 시스템(3)으로 이루어지는 연료 전지 주본체부와, 수소 공급 수단으로서의 수소 탱크(41)를 포함하는 연료 공급 시스템(도면에 2점쇄선으로 나타냄)(4)과, 반응부의 습윤 냉각을 위한 물 공급 시스템(도면에 파선으로 나타냄)(6)으로 구성된다.
연료 전지의 주본체부에 배치된 공기 팬(21)은 공기 공급로(20)를 거쳐서 공기 매니폴드(22)에 접속되고, 공기 매니폴드(22)는 연료 전지 스택을 수용하는 도시하지 않은 하우징에 접속되어 있다. 물 응축기(31)는 하우징의 공기 배출로(30) 중에 개재 삽입되어 연료 전지 스택(1)에 접속되어 있다. 공기 배출로(30)에는 배기 온도 센서(32)가 배치되어 있다.
연료 공급 시스템(4)은 수소 탱크(41)에 저장된 수소를 수소 공급로(40)를 거쳐서 연료 전지 스택(1)의 수소 통로로 이송하기 위해 설치되어 있다. 수소 공급로(40)에는 수소 탱크(41)측으로부터 연료 전지 스택(1)측을 향해 1차압 센서(42), 압력 조절 밸브(43A), 공급 전자 밸브(44A), 압력 조절 밸브(43B), 공급 전자 밸브(44B), 2차압 센서(45)가 설치되어 있다. 또한, 수소 공급로(40)에는 부수적으로 수소 귀환로(40a)와 수소 배출로(50)가 설치되어 있다. 수소 귀환로(40a)에는 연료 전지 스택(1)측으로부터 차례로 수소 농도 센서(46A, 46B), 흡입 펌프(47), 역지 밸브(48)가 배치되고, 역지 밸브(48)의 하류가 수소 공급로(40)에 접속되어 있다. 수소 귀환로(40a)에 있어서의 흡입 펌프(47)와 역지 밸브(48) 사이에는 수소 배출로(50)가 접속되어 있고, 수소 배출로(50)에는 역지 밸브(51)와, 배출 전자 밸브(52)와, 연소기(53)가 배치되어 있다.
물 공급 시스템(6)은 물탱크(61)에 저장된 물을 물 공급로(60)를 거쳐서 연료 전지 스택(1)의 공기 매니폴드(22)에 배치된 다수의 노즐(63)로 이송되도록 설치되어 있다. 물 공급로(60)에는 펌프(62)가 배치되어 있다. 또한, 물탱크(61)에는 레벨 센서(64)가 배치되어 있다. 물 공급 시스템(6)에는 또한 연료 전지 스택(1)과 물탱크(61)를 연결하는 물 귀환로(60a)가 설치되고, 물 귀환로(60a)에는 펌프(65)와 역지 밸브(66)가 배치되어 있다. 물 귀환로(60a)는 펌프(65)의 상류측에서 물 응축기(31)에 접속되어 있다. 또한, 도면에 있어서 부호 71은 연료 전지의 기전압을 모니터하는 전압계를 나타낸다.
상기와 같이 구성된 연료 전지 시스템은, 운전시에는 공기 공급 팬(21)의 가동에 의해 공기 매니폴드(22)에 공기가 공급되는 동시에, 물 공급 시스템으로부터 펌프(62)의 가동에 의해 물이 공급되고, 계속해서 연료 공급 시스템(4)으로부터 공급 전자 밸브(44A, 44B)의 가동에 의해 수소가 공급된다. 이 때, 연료 공급 시스템(4)에서는 수소 1차압 센서(42)에 의해 수소 탱크(41)측의 수소압이 모니터되고, 수소 압력 조절 밸브(43A, 43B)에 의해 연료 전지 스택(1)으로 공급하는 데 적합한 압력으로 조정된다. 그리고, 공급 전자 밸브(44A, 44B)의 개폐에 의해 수소의 연료 전지 스택(1)에의 공급이 전기적으로 제어된다. 수소 가스 공급의 차단은 공급 전자 밸브(44A, 44B)의 폐쇄에 의해 이루어진다. 또한, 수소 2차압 센서(45)에 의해 연료 전지 스택(1)에 공급되기 직전의 수소 가스압이 모니터된다. 또한, 물 공급 시스템(6)에서는, 물탱크(61)의 물은 펌프(62)에 의해 공기 매니폴드(22) 내에 배치된 노즐(63)로 압송되고, 이곳으로부터 공기 매니폴드(22) 내에서 연속적 혹은 간헐적으로 분출되어 공기류에 안개형으로 혼입되어 연료 전지 스택(1)으로 송입된다.
상기한 구성으로 이루어지는 연료 전지 시스템에 있어서 연료 전지 스택(1)을 구성하는 유닛으로서의 셀 모듈(10)의 구성을 도2 내지 도7에 도시한다. 도2에 상면(이하, 셀 모듈의 배치 자세에 의거하여 상하 및 종횡의 관계를 설명함)을 도시한 바와 같이, 셀 모듈(10)은 단위 셀(MEA)(10A)과, 단위 셀끼리 전기적으로 접속하는 동시에 단위 셀로 도입되는 수소 가스의 유로와 공기의 유로를 분리하는 세퍼레이터(10B)와, 단위 셀(10A)과 세퍼레이터(10B)를 지지하는 2종류의 프레임(17, 18)을 1세트로 하고, 판두께 방향에 복수 세트(나타낸 예에서는 10 세트) 포개어 구성되어 있다. 또한, 단위 셀(10A)은 프레임(18)의 내측에 위치하므로, 도2에는 명확하게 표시되어 있지 않다. 셀 모듈(10)은 단위 셀(10A)끼리 소정의 간극을 두고 배치되도록 단위 셀(10A)과 세퍼레이터(10B)가 2종류의 프레임(17, 18)을 번갈아 스페이서로서 다단으로 포개어져 적층되어 있고, 적층 방향의 일단부(도2에 있어서의 상단부면측)는, 도3에 도시한 바와 같이 세퍼레이터(10B)의 종방향 볼록조 형성면과 한 쪽 프레임(17)의 단부면에서 종단되고, 타단부(도2에 있어서의 하단부면측)는, 도4에 도시한 바와 같이 세퍼레이터(10B)의 횡방향 볼록조 형성면과 다른 쪽 프레임(18)의 단부면에서 종단되고 있다.
도5 및 도6에 확대하여 단면 구조를 도시한 바와 같이, 단위 셀(10A)은 고체 고분자 전해질막(11)과, 이 고체 고분자 전해질막(11)의 일측에 설치된 산화제극인 공기극(12) 및 다른 측에 설치된 연료극(13)으로 구성되어 있다. 이들 공기극(12)과 연료극(13)은 상술한 반응 가스를 확산하면서 투과하는 도전성 재료로 이루어지는 확산층과, 이 확산층 상에 형성되어 고체 고분자 전해질막(11)과 접촉시켜 지지되는 촉매 물질을 포함하는 촉매층으로 이루어진다. 이들 부재 중, 공기극(12)과 연료극(13)은 그들 지지 부재로서의 프레임(18)의 개구부의 폭보다 약간 긴 횡방향 치수와, 개구부의 높이보다 약간 짧은 종방향 치수를 갖는 것으로 되어 있다. 또한, 고체 고분자 전해질막(11)은 개구부의 종횡 방향 치수보다 한층 큰 종횡 치수로 되어 있다.
세퍼레이터(10B)는 단위 셀(10A) 사이의 가스 차단 부재로서의 세퍼레이터 기판(16)과, 세퍼레이터 기판(16)의 일측에 설치되어 단위 셀(10A)의 공기극측의 전극 확산층에 접촉하여 집전하는 동시에 공기와 물의 혼합류를 투과하는 다수의 개구가 형성된 그물코형의 집전체(이하「공기극측 콜렉터」라 칭함)(14)와, 세퍼레이터 기판(16)의 다른 측에 설치되어 단위 셀(10A)의 연료극측의 전극 확산층에 접촉하여 동일하게 전류를 외부로 도출하기 위한 그물코형의 도전체(이하「연료극측 콜렉터」라 칭함)(15)로 구성되어 있다. 그리고, 이들을 단위 셀(10A)도 포함시켜 소정의 위치 관계로 보유 지지하기 위해, 공기극측 콜렉터(14)의 좌우 양측에 배치된 프레임(17)[최외측의 것만 상하단부를 서로 백업 플레이트(17a, 17b)로 연결하여 프레임형(도3 참조)을 이룸]과, 연료극측 콜렉터(15) 및 단위 셀(10A)의 주연부에 프레임(18)이 설치되어 있다. 콜렉터(14, 15)는, 본 예에서는 금속 박판, 예를 들어 판두께가 0.2 ㎜ 정도의 것으로 구성되어 있다. 또한, 세퍼레이터 기판(16)은 판두께가 더욱 얇은 급속 박판으로 구성된다. 이 구성 금속으로서는 도전성과 내식성을 구비한 금속, 예를 들어 스테인레스강, 니켈 합금, 티탄 합금 등에 금 도금 등의 내식 도전 처리를 실시한 것을 들 수 있다. 또한, 프레임(17, 18)은 적절한 절연 재료로 구성된다.
공기극측 콜렉터(14)는, 도3에 도시한 바와 같이 전체 형상을 가로로 긴 직사각형(단, 바닥변만이 탈수 효과의 향상을 위해 경사변으로 되어 있음)이 되고, 도7에 일부를 확대하여 상세를 도시한 바와 같이 개구율 59 %의 그물코형의 개구(143)를 갖는(판면 형상의 참조를 쉽게 하기 위해, 일부에만 그물코 형상을 표기) 랜스 커트 메탈 판재로 이루어지고, 프레스 가공에 의해 형성된 잔 볼록조(141)를 갖는 골함석으로 되어 있다. 이들 볼록조(141)는 판재의 종변(나타낸 형태에 있어서의 짧은 변)에 평행하게 등간격이고, 판면을 완전하게 종단하는 배치로 되어 있다. 이들 볼록조(141)의 단면 형상은 대략적으로 직사각형 파형 단면이 되고, 프레스 가공의 탈형의 관계로부터 근원측이 약간 넓은 형상으로 되어 있다. 이들 볼록조(141)의 높이는 프레임(17)의 두께에 실질 동등한 높이가 되고, 그것에 의해 적층 상태에서 양측의 프레임(17) 사이를 종방향으로 관통하는 소정의 개구 면적의 공기 유로를 확보하고 있다. 각 볼록조(141)의 정상부(142)의 평면은 공기극(12)측 확산층이 접촉되는 접촉부로 되어 있고, 볼록조(141) 사이의 골부(144)는 기판(16)과의 접촉부로 되어 있다.
또한, 공기극측 콜렉터(14)에는 친수성 처리가 실시되어 있다. 처리 방법으로서는 친수 처리제를 표면에 도포하는 방법이 채용된다. 도포되는 처리제로서는 폴리아크릴아미드, 폴리우레탄계 수지, 산화티탄(TiO2) 등을 들 수 있다. 그 밖의 친수성 처리로서는 금속 표면의 거칠기를 거칠게 하는 처리를 들 수 있다. 예를 들어, 플라즈마 처리 등이 그 예이다. 친수성 처리는 가장 온도가 높아지는 부위에 실시하는 것이 바람직하고, 예를 들어 단위 셀(10A)에 접촉되어 있는 볼록부(141)의 정상부(142), 특히 공기 유로측에 실시된다. 이와 같이 친수성 처리를 실시함으로써 콜렉터(14)와 공기극측 확산층과의 접촉면의 젖음이 촉진되어 물의 잠열 냉각에 의한 효과가 향상된다. 또한, 이에 의해 그물코의 개구부에 물이 가득차기 어려워지므로, 물이 공기의 공급을 저해할 가능성도 한층 낮아진다.
연료극측 콜렉터(15)는 공기극측 콜렉터(14)와 같은 치수로 그물코형의 개구(153)를 갖는(판면 형상의 참조를 쉽게 하기 위해, 일부에만 그물코 형상을 표기) 랜스 커트 메탈의 직사각형의 판재로 이루어지고, 프레스 가공에 의해 복수의 볼록조(151)가 압출 형성되어 있다. 볼록조(151)는 정상부(152)가 평탄하고, 단면 형상도 앞의 볼록조(141)인 경우와 마찬가지로 실질상 직사각형 파형으로 되어 있지만, 이 콜렉터(15)인 경우의 볼록조(151)는 횡방향에 판면을 완전하게 횡단하여 연장하는 것으로서 종방향에 일정한 피치로 설치되어 있다. 이들 볼록조(151)의 정상부(152)의 평면은 연료극(13)이 접촉하는 접촉부로 되어 있고, 볼록조(151) 사이의 골부(154)가 세퍼레이터 기판(16)과의 접촉부로 되어 있다. 이들 볼록조(151)의 단면 형상도 대략적으로는 직사각형 파형 단면이 되고, 프레스 가공의 탈형의 관계로부터 근원측이 약간 넓은 형상으로 되어 있다. 이들 볼록조(151)의 높이는 단위 셀(10A)의 두께와 합쳐서 프레임(18)의 두께에 실질상 상당하는 높이가 되고, 그것에 의해 적층 상태에서 프레임(18)의 내측을 횡방향으로 관통하는 소정의 개구 면적의 연료 유로를 확보하고 있다.
상기한 구성으로 이루어지는 양 콜렉터(14, 15)는 각 볼록조(141, 151)가 모두 외측이 되도록 세퍼레이터 기판(16)을 사이에 협지하여 배치된다. 이 때, 양 콜렉터(14, 15)의 골부(144, 154)가 세퍼레이터 기판(16)과 접촉한 상태가 되고, 서로 통전 가능한 상태가 된다. 또한, 콜렉터(14, 15)가 세퍼레이터 기판(16)과 포개어짐으로써 세퍼레이터 기판(16)의 일방측에 공기 유로가 구성되고, 타방측에 연료 유로가 구성되게 된다. 그리고 이 종방향의 공기 유로로부터 단위 셀(10A)의 공기극(12)에 공기와 물이 공급되고, 마찬가지로 횡방향의 연료 유로로부터 단위 셀(10A)의 연료극(13)에 수소가 공급된다.
상기한 구성으로 이루어지는 세퍼레이터(10B)의 외측에는 프레임(17, 18)이 각각 배치된다. 도5 및 도6에 도시한 바와 같이, 콜렉터(14)를 둘러싸는 프레임(17)은 외측단부(도5에 있어서 최상부, 도6에 있어서 좌측단부)의 것을 제외하고 콜렉터(14)의 짧은 변에 따르는 양측을 둘러싸는 종프레임부(171)만을 구비하게 되고, 이들 종프레임부(171)를 판두께 방향으로 관통하는 긴 구멍(172)이 연료 유로 형성을 위해 마련되어 있다. 프레임(17)의 판두께는 상기와 같이 골함석형이 된 콜렉터(14)의 두께에 필적하는 두께로 되어 있다. 따라서, 프레임(17)이 콜렉터(14)에 짜 맞추어진 상태에서는, 콜렉터(14)의 볼록조(141)는 단위 셀(10A)의 공기극(12)에 접촉하고, 골부(144)는 세퍼레이터 기판(16)을 거쳐서 콜렉터(15)에 접촉하는 위치 관계가 된다. 또한, 세퍼레이터 기판(16)은 프레임(17)의 높이와 전체 폭에 상당하는 외형 치수가 되고, 프레임(17)의 상기 긴 구멍(172)과 포개어지는 위치에 같은 긴 구멍(162)을 구비하는 구성으로 되어 있다. 이렇게 하여, 프레임(17)의 양 종프레임부(171) 사이에는 단위 셀(10A)의 공기극(12)면과 세퍼레이터 기판(16)으로 둘러싸인 종방향에 모두 통과하는 공기 유로가 확정된다.
콜렉터(15)와 단위 셀(10A)을 둘러싸는 프레임(18)은 프레임(17)과 동일한 크기로 구성되어 있지만, 프레임(17)과는 달리 좌우 종프레임부[도5에서는 기재 범위보다 더욱 우측 외측에 위치하므로 나타나 있지 않지만, 프레임(17)의 양 종프레임부(171)의 좌우 양측단부와 동일한 위치에 양측단부를 갖는 횡방향 폭이 상하 종프레임부의 대략 동일한 프레임부]와 상하 횡프레임부(182)를 구비하는 완전한 프레임형으로 되어 있다. 그리고, 프레임(18)은 외측단부(도2에 있어서 최하부, 도4에 도시하는 면)의 것을 제외하고 좌우 종프레임부와 평행하게 연장되어 콜렉터(15)의 좌우단부에 포개어지는 얇은 판형의 백업 플레이트(18a)와 두꺼운 판형의 백업 플레이트(18b)를 구비하는 것이 되고, 이들 백업 플레이트(18a)와 종프레임부로 둘러싸이는 공간이 상기 프레임(17)을 판두께 방향으로 관통하는 긴 구멍(172)과 정렬하는 연료 유로 형성을 위한 공간을 구성하고 있다. 프레임(18)의 판두께는 상기와 같이 골함석형이 된 콜렉터(15)의 두께와 단위 셀(10A)의 두께에만 대략 필적하는 두께로 되어 있다. 따라서, 프레임(18)이 콜렉터(15)에 짜 맞추어진 상태에서는 콜렉터(15)의 볼록조(151)는 단위 셀(10A)의 연료극(13)에 접촉하고, 골부(154)는 세퍼레이터 기판(16)을 거쳐서 콜렉터(14)에 접촉하는 위치 관계가 된다. 이렇게 하여, 프레임(18)의 양 종프레임부와 백업 플레이트(18a) 사이에는 프레임(17)의 종프레임부(171)의 긴 구멍(172)과 정렬하는 프레임 적층 방향의 연료 유로가 형성되고, 또한 개개의 프레임(18)의 내부에 있어서, 콜렉터(15)의 파형에 의해 세퍼레이터 기판(16)과 백업 플레이트(18a)에 협지되는 횡방향 유로로서의 연료 유로가 확정된다.
이상과 같이 구성된 프레임(17, 18)에 의해 콜렉터(14, 15) 및 세퍼레이터 기판(16)을 보유 지지하여 세퍼레이터(10B)가 구성되고, 세퍼레이터(10B)와 단위 셀(10A)을 교대로 적층하여 셀 모듈이 구성된다. 이렇게 하여 적층된 셀 모듈에는, 도2에 도시한 바와 같이 프레임(18)으로 협지되는 사이의 부분에 셀 모듈의 상면으로부터 종방향으로 셀 모듈의 하면까지 모두 통과하는 슬릿형의 공기 유로가 형성된다.
이러한 구성으로 이루어지는 셀 모듈을 하우징 내에 복수개 늘어서서 배치함으로써 구성되는 연료 전지 스택(도1 참조)(1)은 그 상부로부터 공기 매니폴드(22)로 혼합된 공기와 물을 공급하고, 측방으로부터 수소를 공급함으로써 발전 작동한다. 공기 유로에 공급되는 공기와 물은 공기류 중에 물방울이 안개 형상으로 혼입된 상태(이하 이 상태를 혼합류라 함)에서 공기 유로의 상부로 들어간다. 연료 전지의 정상 운전 상태에서는 단위 셀(10A)이 반응에 의해 발열하고 있으므로, 공기 유로 내의 혼합류가 가열된다. 혼합류 중의 물방울은 친수성 처리에 의해 일부가 세퍼레이터(14)의 그물코 부분과 단위 셀(10A)의 공기극(12)측에 부착되고, 세퍼레이터(14)의 그물코형 부분에 부착되지 않은 물방울은 세퍼레이터(14)와 전극 확산층 사이의 기상 중에서 가열됨으로써, 증발하여 세퍼레이터(14)로부터 열을 빼앗는 잠열 냉각 작용이 생긴다. 이렇게 하여 증기가 된 물은 공기극(12)측으로부터의 고체 고분자 전해질막(11) 중의 수분의 증발을 억제하여 보습시킨다. 그리고, 공기 유로로 들어간 잉여의 공기와 증기는 셀 스택의 하방의 공기 유로 개구로부터 배출된다.
한편, 연료 유로에의 수소의 공급은 도4에 도시하는 최외측의 프레임(18)의 종프레임부의 긴 구멍으로부터 차례로 적층된 세퍼레이터 기판(16)의 긴 구멍(162), 프레임(17)의 종프레임부(171)의 긴 구멍(172)을 경유하여 각 프레임(18)의 종횡 프레임부 및 백업 플레이트(18a)에 의해 둘러싸이는 공간으로 유입하고, 세퍼레이터 기판(16)과 백업 플레이트(18a)에 의해 협지되는 공간을 경유하여 단위 셀(10A)의 연료극(13)측으로 공급된다. 이에 의해 단위 셀(10A)의 연료극(13)에의 수소의 공급이 행해진다. 그리고 연료극(13)에 따라서 횡방향에 흐르는 수소 중 반응에 관여하지 않았던 잉여분이 반대측의 수소 유로로 배출되고, 이 수소 유로에 연결되는 도1에 도시하는 배관에 의해 순환되어 최종적으로 연소기로 배출된다.
이렇게 하여 연료 전지 스택에 공기와 함께 이송된 물은 앞에서 설명한 바와 같이 일부는 세퍼레이터(14)의 그물코에 부착하여 증발하고, 그 이외에는 기상 중에서 그물코에 부착하지 않고 증발하여 잠열을 빼앗기 때문에, 공기극(12)측의 전해질막(11)으로부터의 수분의 증발이 방지된다. 따라서, 전해질막(11)은 그 공기극(12)측에서 건조되는 일 없이, 생성물에 의해 항상 균일한 습윤 상태를 유지한다. 또한, 공기극(12)의 표면에 공급된 물은 공기극(12) 자체로부터도 열을 빼앗아 이를 냉각한다. 이에 의해 연료 전지 스택(1)의 온도를 제어할 수 있다.
연료 전지 스택(1) 내에서의 수소의 흐름은, 앞서 설명한 바와 같이 연료 공급 시스템(4)에 있어서, 연료 전지 스택(1)의 수소 통로로부터 펌프(47)의 흡입에 의해 배출되는 수소 가스는 농도 센서(45A, 45B)에 의해 농도가 계측되어, 소정의 농도 이상일 때에는 전자 밸브(52)의 폐쇄에 의해 환류 역지 밸브(48)를 경유하여 수소 공급로(40)로 환류된다. 또한, 소정의 농도에 만족하지 않을 때에는 배출 전자 밸브(52)의 간헐적 개방에 의해 역지 밸브(51) 및 전자 밸브(52)를 경유하여 연소기(53)로 수소가 배출되고, 연소기(53)에서 완전 연소시킨 배기가 대기로 방출된다.
이렇게 하여 이 시스템에서는 연료 전지 스택(1)으로, 특히 냉각수 시스템을 부설하지 않아도 공기류에 태워 물을 공급함으로써, 연료 전지 스택(1)을 충분히 습윤하고, 또한 냉각할 수 있다. 이 때, 연료 전지 스택(1)의 온도는 배기 온도 센서(32)에서 검출된 배출 공기의 온도에 대응하여 펌프(62)의 출력이나 운전 간격을 적절하게 제어함으로써, 노즐(22)로부터 공기 매니폴드(22) 내로 분출시키는 물의 분사량이 제어되어 원하는 온도로 유지된다. 구체적으로는, 연료 전지 스택(1) 내에 공급하는 수량(水量)을 늘리면 증발량이 증가되고, 수량을 감소시키면 증발량이 감소되는 동시에, 풍량을 증가시키면 온도가 내려가고, 풍량을 감소시키면 온도가 올라가기 때문에, 공급 수량과 풍량을 제어함으로써 운전 온도를 제어할 수 있다. 또한, 연료 전지 스택(1)으로부터 공기와 함께 배출되는 물은 대부분이 액체의 상태를 유지한 상태에서 배출되므로, 물 귀환로(60a)로 흘러 펌프(65)로 흡입되고 역지 밸브(66)를 경유하여 물탱크(61)로 복귀되고, 증발하여 수증기형이 된 것이나 물 귀환로(60a)로 회수되지 않았던 것에 대해서는 물 응축기(31)에서 응축되어 액상이 되고, 혹은 그대로 물 응축기(31)를 통해 마찬가지로 펌프(65)에 의한 흡입으로 물탱크로 복귀된다. 또한, 배기 공기에 포함되는 수증기에는 연료 전지 스택(1)의 발전 반응에 수반하는 반응수에 기인하는 것도 있다고 생각된다. 이 물 탱크(61)의 수위는 수위 센서(64)에서 모니터된다.
이 시스템의 특징은 콜렉터(14, 15)가 잔 그물코형으로 되어 있고, 전극 확산층과의 접촉면에도 개구가 형성되어 있음으로써 공기와 물의 혼합류가 이 개구를 통과할 때에 교반되는 동시에, 전극 확산층의 콜렉터(14, 15)와의 접촉면에도 혼합 가스가 공급되므로, 연료 전지 스택(1)에 있어서의 전극 전면에 균일하게 공기를 공급할 수 있고, 그것에 의해 농도 분극을 적게 할 수 있는 점에 있다. 또한, 전극과 콜렉터와의 그물코형의 접촉에 의해 전극 전체로부터 균일하게 집전할 수 있으므로, 집전 저항이 감소된다. 또한, 전극 전체의 촉매를 유효하게 사용할 수 있으므로, 활성화 분극이 적어지는 점에 있다. 또한, 전극의 유효 면적을 크게 할 수 있는 이점도 얻을 수 있다.
이상 설명한 제1 실시예에서는 세퍼레이터의 전극 확산층과의 접촉측, 즉 콜렉터(14, 15)를 랜스 커트 메탈로 구성한 것을 예시하였지만, 이 콜렉터(14, 15)의 소재로서 금속 섬유나, 금속 다공체, 이차원 금속 직포, 금속 부직포, 파형 금속체, 홈형 금속체, 철망, 펀칭 메탈 등 그 밖의 것을 이용할 수도 있다. 다음에 콜렉터 소재를 변경한 다른 실시예에 대해 설명한다.
(제2 실시예)
다음 도8에 나타내는 제2 실시예는 양 콜렉터(14, 15)를 펀칭 메탈로 구성한 예이다. 또한 본 예에서는 양 콜렉터 소재를 공통화하기 위해 파형 치수, 즉 파형의 높이 및 피치를 제1 실시예에 있어서의 연료극측의 콜렉터와 동일한 것으로 하고 있다. 그리고 이 구성의 채용에 수반하여 파형 높이가 낮아진 공기극측의 유로 단면적을 확보하기 위해, 세퍼레이터 기판(16)에도 콜렉터(14)의 골부(144)의 배치 피치에 맞춘 피치로 콜렉터(14)측으로 돌출되는 볼록조(161)를 형성하고, 세퍼레이터 기판(16)도 골함석형으로 하고 있다. 이하, 본 실시예에 있어서의 제1 실시예와의 공통 부분에 대해서는 같은 참조 부호를 붙여 설명하는 대신에, 이하 상위점만 설명한다.
본 예에서는 제1 실시예의 콜렉터(14, 15)와 같은 판두께의 소재에 펀치에 의한 다수의 구멍을 일면에 형성하고 있다. 게다가 나타낸 예에서는 판두께 0.2 ㎜의 판에 종횡폭 0.1 ㎜의 구멍을 0.1 ㎜의 간격을 두고 형성하고 있다. 또한, 도면에서는 구멍(143, 153)의 개구 형상의 방향을 종횡 평행으로 하고 있지만, 이 방향은 특별히 규제되는 것은 아니고, 제1 실시예와 마찬가지로 경사 방향으로 하는 것도 포함하고 어떠한 방향의 배치도 가능하다. 본 실시예에 있어서의 세퍼레이터 기판(16)의 볼록조(161)의 높이는 이 높이와 콜렉터(14)의 볼록조(141)의 높이와의 합이 제1 실시예에 있어서의 콜렉터(14)의 볼록조의 높이와 동등해지는 설정으로 함으로써 공기극측의 유로 단면적을 제1 실시예와 마찬가지로 할 수 있다.
본 제2 실시예에 의해서도 제1 실시예와 마찬가지로 확산층에 접촉하는 콜렉터(14, 15)가 잔 그물코형으로 되어 있음으로써 연료 전지 스택(1)에 있어서의 전극 전면에 균일하게 공기를 공급할 수 있고, 그것에 의해 농도 분극을 적게 할 수 있다. 또한, 전극과 콜렉터의 그물코형의 접촉에 의해 전극 전체로부터 균일하게 집전할 수 있으므로, 집전 저항이 감소된다. 또한, 전극 전체의 촉매를 유효하게 사용할 수 있으므로, 활성화 분극이 적어진다. 또한, 전극의 유효 면적을 크게 할 수 있는 이점도 얻을 수 있다.
(제3 실시예)
다음 도9에 나타내는 예는 양 콜렉터(14, 15)를 제2 실시예와 같은 펀칭 메탈로 구성하고 있지만, 연료극측의 콜렉터(15)를, 파형을 갖지 않은 평판으로 구성 한 예이다. 본 예의 경우에는 공기극측과 연료극측의 유로 단면적을 모두 확보하기 위해, 세퍼레이터 기판(16)은 상기 기판의 기준면에 대해 공기극측과 연료극측에 함께 돌출되는 볼록조(161, 162)를 형성한 골함석으로 구성되어 있다. 그 밖의 구성에 대해서는 모두 제2 실시예와 마찬가지이므로, 상당하는 부재에 같은 참조 부호를 붙여 설명을 대신한다.
본 발명에 따르면, 그물코형의 도전체에 공기와 함께 공급되는 냉각수가 균일하게 부착, 보유 지지됨으로써 전극 전면에서 균일한 잠열 냉각이 가능해져 냉각 능력이 향상된다. 또한, 종래 기술과 같이 세퍼레이터의 배면을 냉각함으로써 간접적으로 전극을 냉각하는 방식에 대해 전극에 의해 가까운 부분에서 냉각하는 것이 가능해져 냉각 능력이 향상된다. 또한, 그물코형의 도전체가 이송되는 공기에 접촉하는 냉각의 핀의 역할을 발휘하여 냉각 능력이 향상된다.
또한, 그물코형의 도전체의 개구율을 25 % 이상으로 함으로써 산화제 가스로서의 공기와 전극의 접촉 면적을 충분히 확보할 수 있다. 또한, 도전체를 친수성으로 함으로써 물을 그물코에 부착, 체류시킬 수 있고, 그것에 의해 냉각 효율이 향상된다. 또한, 그물코형의 도전체를 철망, 펀칭 메탈 혹은 랜스 커트 메탈로 구성한 경우, 세밀하고 또한 균일한 개구 분포와 충분한 개구율을 얻을 수 있고, 또한 전극 확산층과의 접촉면의 개구에도 혼합류가 통과하고, 교반되므로 상기한 효과를 보다 한층 확실하게 달성할 수 있다. 또한 랜스 커트 메탈에 있어서는 두께에 대한 강성이 다른 재료보다도 높기 때문에, 접촉 저항을 작게 할 수 있다. 또한, 도전체를 골함석형으로 한 경우, 평판형과 비교하여 확산층의 접촉 면적에 대한 표면적의 비율을 크게 할 수 있는 동시에, 물과의 접촉 기회가 대폭으로 증가되므로, 효율적으로 냉각할 수 있다.
도1은 연료 전지 시스템의 구성도.
도2는 본 발명의 제1 실시예에 관한 연료 전지 스택을 구성하는 셀 모듈의 상면도.
도3은 셀 모듈을 공기극측으로부터 본 정면도.
도4는 셀 모듈을 연료극측으로부터 본 정면도.
도5는 도3의 A-A 부분 횡단면.
도6은 도3의 B-B 부분 종단면.
도7은 셀 모듈의 세퍼레이터의 분해 부분 사시도.
도8은 본 발명의 제2 실시예에 관한 세퍼레이터의 분해 부분 사시도.
도9는 본 발명의 제3 실시예에 관한 세퍼레이터의 분해 부분 사시도.
<도면의 주요 부분에 대한 부호의 설명>
10 : 셀 모듈
10A : 단위 셀
10B : 세퍼레이터
11 : 전해질막
12 : 공기극
13 : 연료극
14 : 콜렉터(그물코형의 도전체)
16 : 기판

Claims (8)

  1. 전해질막(11)과 상기 전해질막의 양측에 설치된 연료극(13) 및 공기극(12)으로 이루어지는 단위 셀(10A)이 세퍼레이터(10B)를 협지하여 적층되고, 상기 세퍼레이터를 통해 단위 셀의 공기극측에 공기와 물의 혼합류가 공급되는 연료 전지에 있어서,
    상기 세퍼레이터는 단위 셀의 양극 중 적어도 공기극측의 표면 부분에 상기 혼합류를 투과하는 그물코형의 도전체(14)를 구비하는 것을 특징으로 하는 연료 전지.
  2. 제1항에 있어서, 상기 그물코형의 도전체는 그물코의 개구율이 25 % 이상인 연료 전지.
  3. 제1항 또는 제2항에 있어서, 상기 그물코형의 도전체는 상기 물을 부착시키기 위해 친수성 처리가 실시되어 있는 연료 전지.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 세퍼레이터는 상기 그물코형의 도전체와 가스 차단용 기판(16)을 포갠 층구조가 되는 연료 전지.
  5. 제4항에 있어서, 상기 그물코형의 도전체는 단면 형상이 직사각형 파형이 되도록 굴곡되어 있고, 상기 가스 차단용 기판은 얇은 평판형으로 형성되어 있는 연료 전지.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서, 상기 그물코형의 도전체는 그물선 사이에 상기 혼합류를 투과하는 금망으로 구성되는 연료 전지.
  7. 제1항 내지 제5항 중 어느 한 항에 있어서, 상기 그물코형의 도전체는 금속 박판에 상기 혼합류를 투과하는 펀치 구멍이 형성된 펀칭 메탈로 구성되는 연료 전지.
  8. 제1항 내지 제5항 중 어느 한 항에 있어서, 상기 그물코형의 도전체는 금속박판에 상기 혼합류를 투과하는 마름모꼴 슬릿이 형성된 랜스 커트 메탈로 구성되는 연료 전지.
KR1020050005185A 2004-01-22 2005-01-20 연료 전지 KR100799050B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004014402A JP2005209470A (ja) 2004-01-22 2004-01-22 燃料電池
JPJP-P-2004-00014402 2004-01-22

Publications (2)

Publication Number Publication Date
KR20050076816A true KR20050076816A (ko) 2005-07-28
KR100799050B1 KR100799050B1 (ko) 2008-01-29

Family

ID=34792402

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050005185A KR100799050B1 (ko) 2004-01-22 2005-01-20 연료 전지

Country Status (5)

Country Link
US (1) US7794863B2 (ko)
JP (1) JP2005209470A (ko)
KR (1) KR100799050B1 (ko)
CN (1) CN100477354C (ko)
DE (1) DE102005003007A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100778204B1 (ko) * 2006-10-24 2007-11-29 주식회사 효성 공랭식 연료전지의 스택 냉각장치

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4887639B2 (ja) * 2005-03-11 2012-02-29 株式会社エクォス・リサーチ セパレータユニット及び燃料電池スタック
US8377607B2 (en) 2005-06-30 2013-02-19 GM Global Technology Operations LLC Fuel cell contact element including a TiO2 layer and a conductive layer
JP4949655B2 (ja) * 2005-08-09 2012-06-13 株式会社日立製作所 燃料電池、燃料電池電源システム及びそれを用いた電子機器
US7968244B2 (en) * 2005-08-15 2011-06-28 Parker-Hannifin Corporation Fuel supply manifold assembly
JP4611195B2 (ja) * 2005-12-28 2011-01-12 本田技研工業株式会社 燃料電池
JP4445934B2 (ja) 2006-02-10 2010-04-07 トヨタ車体株式会社 燃料電池用ガス拡散層の成形方法
US20090136793A1 (en) * 2006-02-14 2009-05-28 Yoshihito Kanno Hydrogen supply for a fuel cell system
JP2007234398A (ja) 2006-03-01 2007-09-13 Equos Research Co Ltd 燃料電池装置
WO2007105458A1 (ja) * 2006-03-06 2007-09-20 Nec Corporation 燃料電池システム
JP5162840B2 (ja) * 2006-03-31 2013-03-13 株式会社エクォス・リサーチ 燃料電池スタック
TWI347701B (en) * 2006-10-20 2011-08-21 Ind Tech Res Inst Flat fuel cell assembly
US9048466B2 (en) * 2006-10-20 2015-06-02 Industrial Technology Research Institute Flat fuel cell assembly with air channel defined by case
CN100565998C (zh) * 2006-12-27 2009-12-02 中国科学院大连化学物理研究所 一种高温质子交换膜燃料电池组的冷却方法及其系统
JP5061715B2 (ja) * 2007-05-15 2012-10-31 トヨタ自動車株式会社 燃料電池のガス流路形成部材および燃料電池
JP5157363B2 (ja) * 2007-10-17 2013-03-06 株式会社エクォス・リサーチ 燃料電池用セパレータ
JP4434264B2 (ja) * 2007-11-05 2010-03-17 トヨタ自動車株式会社 燃料電池用セル、燃料電池用セルの製造方法及び燃料電池用ガス流路構造体
WO2009131574A1 (en) * 2008-04-23 2009-10-29 Utc Power Corporation Separator plate configuration for a fuel cell
CA2744993C (en) * 2008-11-28 2013-12-24 Nissan Motor Co., Ltd. Polymer electrolyte fuel cell
JP5589946B2 (ja) * 2011-04-20 2014-09-17 トヨタ自動車株式会社 燃料電池及びその製造方法
KR101361298B1 (ko) * 2011-12-13 2014-02-11 현대자동차주식회사 연료전지용 다공성 분리판
GB201204736D0 (en) 2012-03-19 2012-05-02 Intelligent Energy Ltd Fuel cell fluid distribution
JP6181371B2 (ja) * 2012-03-30 2017-08-16 本田技研工業株式会社 燃料電池用金属セパレータ及びその製造方法
JP6079565B2 (ja) * 2013-10-30 2017-02-15 トヨタ自動車株式会社 ガス流路形成部材、その製造方法及び燃料電池
US9666880B2 (en) * 2013-12-13 2017-05-30 Delphi Technologies, Inc. Interconnect for fuel cell stack
KR20150142797A (ko) * 2014-06-11 2015-12-23 현대자동차주식회사 연료전지용 분리판 및 이를 포함하는 연료전지 셀
KR101664546B1 (ko) * 2014-06-12 2016-10-11 현대자동차주식회사 연료전지 셀
KR101745065B1 (ko) * 2014-12-18 2017-06-08 현대자동차주식회사 연료전지용 다공체 유로 구조
KR101684115B1 (ko) * 2015-05-18 2016-12-08 현대자동차주식회사 연료전지용 다공성 분리판
JP6402740B2 (ja) * 2016-04-28 2018-10-10 トヨタ自動車株式会社 燃料電池
KR101822284B1 (ko) 2016-05-27 2018-01-26 현대자동차주식회사 냉각수 직분사 타입 연료전지
KR101836648B1 (ko) 2016-06-09 2018-03-09 현대자동차주식회사 연료전지 분리판 및 이를 포함하는 연료전지 셀
KR101867696B1 (ko) * 2016-10-24 2018-06-15 현대제철 주식회사 연료전지 장치
DE102018211670A1 (de) * 2018-07-12 2020-01-16 Robert Bosch Gmbh Bipolarplatte für eine Brennstoffzelle und deren Herstellung sowie eine Brennstoffzelle und ein Kraftfahrzeug
DE102021122995B3 (de) 2021-09-06 2022-10-06 Schaeffler Technologies AG & Co. KG Bipolarplatte für eine Redox-Flow-Batterie, Redox-Flow-Batterie und Verfahren zum Betrieb einer Redox-Flow-Batterie
JP7148010B1 (ja) 2022-05-02 2022-10-05 トヨタ自動車株式会社 水電解スタック

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3432357A (en) * 1964-09-28 1969-03-11 Gen Electric Fluent material distribution system and fuel cell therewith
JPS5559665A (en) 1978-10-26 1980-05-06 Seiko Instr & Electronics Ltd Alkali secondary cell
US4548876A (en) * 1984-10-17 1985-10-22 The United States Of America As Represented By The United States Department Of Energy Integrated current collector and catalyst support
GB2240988B (en) * 1986-12-19 1991-12-18 Olin Corp Electrolytic cell
JPH0644981A (ja) 1991-01-31 1994-02-18 Tonen Corp 平板状固体電解質型燃料電池
JPH0529009A (ja) 1991-07-18 1993-02-05 Matsushita Electric Ind Co Ltd 燃料電池用ガス流路板
JPH06338338A (ja) 1993-05-28 1994-12-06 Mitsubishi Heavy Ind Ltd 燃料電池の高分子イオン交換膜の加湿方法
JPH07254424A (ja) 1994-03-16 1995-10-03 Toshiba Corp 溶融炭酸塩型燃料電池の集電板
JP3537911B2 (ja) 1995-05-09 2004-06-14 本田技研工業株式会社 固体高分子電解質膜型燃料電池およびその制御方法
DE19517443C2 (de) 1995-05-12 1997-07-10 Mtu Friedrichshafen Gmbh Korrosionsbeständiger Stromkollektor
EP0814528A3 (en) * 1996-06-20 2004-05-19 Osaka Gas Company Limited Solid electrolyte fuel cell stack
US5776624A (en) * 1996-12-23 1998-07-07 General Motors Corporation Brazed bipolar plates for PEM fuel cells
JP3077618B2 (ja) 1997-03-05 2000-08-14 富士電機株式会社 固体高分子電解質型燃料電池
JP3769882B2 (ja) 1997-06-06 2006-04-26 トヨタ自動車株式会社 燃料電池装置および燃料電池装置の温度調整方法
AUPO897897A0 (en) * 1997-09-05 1997-09-25 Ceramic Fuel Cells Limited An interconnect device for a fuel cell assembly
US5972530A (en) * 1998-01-13 1999-10-26 Electrochem, Inc. Air-cooled, hydrogen-air fuel cell
JP4131038B2 (ja) * 1998-06-26 2008-08-13 株式会社エクォス・リサーチ 燃料電池システム
JP4153608B2 (ja) 1998-11-26 2008-09-24 株式会社東芝 固体高分子型燃料電池システム
IT1312198B1 (it) * 1999-04-21 2002-04-09 De Nora Spa Cella a combustibile raffreddata mediante iniezione diretta di acqualiquida
AUPQ078899A0 (en) * 1999-06-04 1999-06-24 Ceramic Fuel Cells Limited A fuel cell gas separator
US6296964B1 (en) * 1999-12-23 2001-10-02 The Regents Of The University Of California Enhanced methanol utilization in direct methanol fuel cell
AU2052101A (en) 1999-12-23 2001-07-09 Regents Of The University Of California, The Flow channel device for electrochemical cells
JP2002184422A (ja) 2000-12-14 2002-06-28 Honda Motor Co Ltd 燃料電池のセパレータ
JP2003272666A (ja) 2001-08-21 2003-09-26 Equos Research Co Ltd 燃料電池
JP4085652B2 (ja) 2001-08-21 2008-05-14 株式会社エクォス・リサーチ 燃料電池
JP3731650B2 (ja) * 2001-10-30 2006-01-05 日産自動車株式会社 燃料電池
JP3830805B2 (ja) * 2001-11-07 2006-10-11 本田技研工業株式会社 燃料電池
WO2004015805A2 (en) * 2002-08-09 2004-02-19 Proton Energy Systems, Inc. Electrochemical cell support structure
US20040200187A1 (en) * 2002-11-27 2004-10-14 Warrier Sunil G. Compliant, strain tolerant interconnects for solid oxide fuel cell stack
JP3658391B2 (ja) * 2002-12-25 2005-06-08 本田技研工業株式会社 燃料電池
US7056608B2 (en) * 2003-02-14 2006-06-06 Relion, Inc. Current collector for use in a fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100778204B1 (ko) * 2006-10-24 2007-11-29 주식회사 효성 공랭식 연료전지의 스택 냉각장치

Also Published As

Publication number Publication date
US7794863B2 (en) 2010-09-14
CN100477354C (zh) 2009-04-08
KR100799050B1 (ko) 2008-01-29
CN1665058A (zh) 2005-09-07
DE102005003007A1 (de) 2005-09-01
JP2005209470A (ja) 2005-08-04
US20050164071A1 (en) 2005-07-28

Similar Documents

Publication Publication Date Title
KR100799050B1 (ko) 연료 전지
KR100802880B1 (ko) 세퍼레이터 및 그것을 이용한 연료 전지
KR100843873B1 (ko) 세퍼레이터 및 이를 이용한 연료 전지 장치
KR100802881B1 (ko) 세퍼레이터 및 이것을 이용한 연료 전지
JP3382708B2 (ja) 固体高分子電解質燃料電池用ガスセパレータ
CN100463276C (zh) 高分子电解质型燃料电池
JP5076343B2 (ja) 燃料電池用セパレータ及び燃料電池
WO2005109556A1 (en) Fuel cell and separator thereof
JP3459300B2 (ja) 固体高分子型燃料電池
JP2005340179A (ja) セパレータ及びそれを用いた燃料電池装置
JP4815916B2 (ja) 燃料電池及び燃料電池システム
CN1860633A (zh) 用于燃料电池堆的双极隔膜
JP2002334708A (ja) 燃料電池
JP4506552B2 (ja) 燃料電池
KR102554253B1 (ko) 하나 이상의 반응 가스를 공급하기 위한 분배기 구조
US20220399553A1 (en) Four-fluid bipolar plate for fuel cell
JP2004247258A (ja) 燃料電池積層体、それに用いるセパレータおよび燃料電池システム
KR101291568B1 (ko) 연료전지의 분리판
KR20030091485A (ko) 직접액체 연료 전지의 연료공급방법 및 이를 적용한직접액체연료 전지장치
JP2007250480A (ja) セパレータユニット及び燃料電池装置
JP2007273413A (ja) 膜・電極接合体及びその製造方法
JP2007273414A (ja) 燃料電池
JP2004327063A (ja) 燃料電池スタック
JP2007317518A (ja) 燃料電池スタック
JPH1186884A (ja) りん酸型燃料電池

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20101223

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee