상기 기술적 과제를 달성하기 위하여, 본 발명의 일 실시예에 따른 전력용 모듈 패키지는, 전력용 회로 부품; 상기 전력용 회로 부품과 연결되어 상기 전력용 회로 부품 내의 칩들을 제어하기 위한 제어 회로 부품; 가장자리에는 외부 연결 단자들이 형성되고 상기 외부 연결 단자들 사이에는 다운셋이 형성되며, 상기 전력용 회로 부품 및 제어 회로 부품이 부착되는 제1 표면 및 열방출 경로로 이용되는 제2 표면을 갖되, 상기 전력용 회로 부품은 상기 다운셋에 부착된 리드 프레임; 상기 리드 프레임의 제2 표면 중 상기 다운셋에 접착제를 통해 밀착되도록 부착된 히트 싱크; 및 상기 전력용 회로 부품, 제어 회로 부품, 리드 프레임 및 히트 싱크를 감싸되, 상기 리드 프레임의 외부 연결 단자 및 상기 히트 싱크의 일면을 노출시키는 봉합 수지를 포함하는 것을 특징으로 한다.
상기 전력용 회로 부품은 전력용 회로 칩들 및 상기 전력용 회로 칩들과 상기 리드 프레임을 연결하는 알루미늄 와이어를 포함하는 것이 바람직하다.
상기 알루미늄 와이어는 250-500㎛의 직경을 갖는 것이 바람직하다.
상기 제어 회로 부품은 제어 회로 칩들 및 상기 제어 회로 칩들과 상기 리드 프레임을 연결하는 골드 와이어를 포함하는 것이 바람직하다.
상기 리드 프레임 및 상기 히트 싱크를 부착시키는 접착제는 고온 테이프인 것이 바람직하다. 이 경우 상기 고온 테이프는 산화 알루미늄(Al2O3), 질화 알루미늄(AlN), 실리콘 산화물(SiO2) 및 베릴늄 산화물(BeO) 중에서 어느 하나를 포함할 수 있다. 또한 상기 고온 테이프는 10-20㎛의 두께를 갖는 것이 바람직하다.
상기 리드 프레임 및 상기 히트 싱크를 부착시키는 접착제는 고온용 솔더인 것이 바람직하다. 이 경우 상기 고온용 솔더는 Pb/Sn, Sn/Ag, Pb/Sn/Ag의 금속 재질로 이루어질 수 있다.
상기 리드 프레임 및 상기 히트 싱크를 부착시키는 접착제는 고열의 액상 에폭시인 것이 바람직하다. 이 경우 상기 고열의 액상 에폭시의 두께는 3-7㎛인 것이 바람직하다.
상기 히트 싱크는 플라스틱 또는 세라믹을 재질로 만들어진 것이 바람직하다. 이 경우 상기 플라스틱 또는 세라믹 재질의 히트 싱크는, 산화 알루미늄(Al2O3), 질화 알루미늄(AlN), 실리콘 산화물(SiO2) 및 베릴늄 산화물(BeO) 중에서 어느 하나를 포함할 수 있다. 또한 상기 플라스틱 또는 세라믹 재질의 히트 싱크는, 1-3㎜의 두께를 갖는 것이 바람직하다.
상기 기술적 과제를 달성하기 위하여, 본 발명의 다른 실시예에 따른 전력용 모듈 패키지는, DBC 기판; 상기 DBC 기판 위에 부착된 전력 소자; 상기 DBC 기판의 일단에 연결된 리드 프레임; 상기 리드 프레임 위에 부착된 제어 소자; 상기 전력 소자 및 제어 소자와 상기 리드 프레임을 전기적으로 연결시키는 와이어; 및 상기 DBC 기판의 배면 및 리드 프레임의 일부만을 노출시키고 나머지를 완전히 덮은 봉합 수지를 포함하는 것을 특징으로 한다.
상기 다른 기술적 과제를 달성하기 위하여, 본 발명의 일 실시예에 따른 전력용 모듈 패키지의 제조 방법은, 가장자리에는 외부 연결 단자들이 형성되고 상기 외부 연결 단자들 사이에는 다운셋이 형성된 리드 프레임을 준비하는 단계; 상기 리드 프레임의 제1 표면에 전력용 회로 및 제어 회로 기능을 수행하는 복수개의 칩들을 부착하는 단계; 와이어 본딩 공정을 수행하여 상기 칩들을 상기 리드 프레임을 통해 상호 연결시키는 단계; 히트 싱크가 고정된 몰드 장비 내에 상기 와이어 본딩 공정을 끝낸 리드 프레임을 위치시키는 단계; 상기 리드 프레임의 상기 제1 표면과 반대면인 제2 표면 중 상기 다운셋의 제2 표면에 고온 테이프를 통해 상기 히트 싱크를 밀착하여 부착시키는 단계; 및 상기 히트 싱크가 부착된 리드 프레임을 봉합 수지를 사용하여 봉합하는 단계를 포함하는 것을 특징으로 한다.
상기 와이어 본딩 공정은 웨지 본딩 또는 볼 본딩 기법을 사용하여 수행하는 것이 바람직하다.
상기 와이어 본딩 공정에 알루미늄 와이어 또는 골드 와이어를 사용하되, 상기 알루미늄 와이어는 상기 전력용 회로 기능을 수행하기 위한 칩들에 사용하고, 상기 골드 와이어는 상기 제어 회로 기능을 수행하기 위한 칩들에 사용하는 것이 바람직하다.
상기 알루미늄 와이어 본딩 공정을 한 후에 상기 골드 와이어 본딩 공정을 수행하는 것이 바람직하다.
상기 고온 테이프는 산화 알루미늄(Al2O3), 질화 알루미늄(AlN), 실리콘 산화물(SiO2) 및 베릴늄 산화물(BeO) 중에서 어느 하나를 포함하는 것이 바람직하다.
상기 고온 테이프는 10-20㎛의 두께를 갖는 것이 바람직하다.
상기 고온 테이프는 열 및 압력에 의한 융해 작용에 의해 상기 리드 프레임 및 상기 히트 싱크를 부착시키는 것이 바람직하다. 이 경우 상기 고온 테이프를 융해시키는 열 및 압력은 각각 160-220℃ 및 30㎏/㎠인 것이 바람직하다.
상기 다른 기술적 과제를 달성하기 위하여, 본 발명에 따른 전력용 모듈 패키지의 제조 방법은, 가장자리에는 외부 연결 단자들이 형성되고 상기 외부 연결 단자들 사이에는 다운셋이 형성된 리드 프레임을 준비하는 단계; 상기 리드 프레임의 제1 표면에 전력용 회로 및 제어 회로 기능을 수행하는 복수개의 칩들을 부착하는 단계; 와이어 본딩 공정을 수행하여 상기 칩들을 상기 리드 프레임을 통해 상호 연결시키는 단계; 히트 싱크가 고정된 몰드 장비 내에 상기 와이어 본딩 공정을 끝낸 리드 프레임을 위치시키는 단계; 상기 리드 프레임의 상기 제1 표면과 반대면인 제2 표면 중 상기 다운셋의 제2 표면에 고열의 액상 에폭시를 통해 상기 히트 싱크를 밀착하여 부착시키는 단계; 및 상기 히트 싱크가 부착된 리드 프레임을 봉합 수지를 사용하여 봉합하는 단계를 포함하는 것을 특징으로 한다.
상기 고열의 액상 에폭시는 3-7㎛의 두께를 갖는 것이 바람직하다.
상기 다른 기술적 과제를 달성하기 위하여, 본 발명의 또 다른 실시예에 따른 전력용 모듈 패키지의 제조 방법은, DBC 기판을 준비하는 단계; 상기 DBC 기판 위에 전력 소자를 부착시키는 단계; 상기 DBC 기판의 일단에 리드 프레임을 연결시키는 단계; 상기 리드 프레임 위에 제어 소자를 부착시키는 단계; 상기 전력소자 및 제어 소자와 상기 리드 프레임을 전기적으로 연결시키는 와이어를 형성하는 단계; 및 봉합 수지로 상기 DBC 기판의 배면 및 리드 프레임의 일부만을 노출시키고 나머지를 완전히 덮도록 하는 단계를 포함하는 것을 특징으로 한다.
이하 첨부 도면을 참조하면서, 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 본 명세서에서 설명되는 전력용 회로 부품 및 제어 회로 부품의 배열과, 리드 플레임의 구조 및 히트 싱크의 구조는 예시적으로 나타낸 것이며, 도면에 나타낸 바와 같은 특정 형상만을 한정하는 것이 아니라는 것은 이 기술 분야에서 통상의 지식을 갖는 자에게는 당연할 것이다.
도 2는 본 발명에 따른 전력용 모듈 패키지의 일 실시예를 나타내 보인 단면도이다.
도 2를 참조하면, 본 발명의 일 실시예에 따른 전력용 모듈 패키지(200)는, 리드 프레임(210), 전력용 회로 부품(power circuit element)(220), 제어 회로 부품(control circuit element)(230), 히트 싱크(250) 및 봉합 수지(270)를 포함하여 구성된다. 전력용 회로 부품(220)은 전력용 회로 칩(221) 및 알루미늄 와이어(222)를 포함한다. 알루미늄 와이어(222)는 높은 정격 전류에 견딜 수 있도록 대략 250-500㎛의 직경을 갖는다. 제어 회로 부품(230)은 제어 회로 칩(231) 및 골드 와이어(232)를 포함한다. 알루미늄 와이어(222) 및 골드 와이어(232)는 전력용 회로 칩(221)과 제어 회로 칩(231)을 적절히 연결시켜준다.
상기 리드 프레임(210)은 회로 부품들이 부착되는 제1 표면(211) 및 그 반대면인 제2 표면(212)을 가지며, 그 중앙부에는 다운셋(downset)(240)이 형성된다.상기 다운셋(240)은 양쪽에 대칭인 정 중앙에 위치할 수도 있지만, 일측에 치우쳐서 형성될 수도 있다. 리드 프레임(210)의 제1 표면(211)에는 전력용 회로 부품(220) 및 제어 회로 부품(230)이 부착된다. 특히 많은 열을 발생시키는 전력용 회로 부품(220)은 리드 프레임(210)의 다운셋(240) 제1 표면(211)에 부착된다.
리드 프레임(210)의 다운셋(240) 제2 표면(212)에는 고온 테이프(high temperature tape)(260)에 의해 히트 싱크(250)가 부착되는데, 이 히트 싱크(250)의 일 면은 전력용 모듈 패키지(200) 외부로 완전히 노출된다. 경우에 따라서는 고온 테이프(260) 대신에 고온용 솔더(solder)를 사용할 수 있다. 상기 솔더는 Pb/Sn, Sn/Ag, Pb/Sn/Ag의 금속 재질로 이루어진 것을 사용하는 것이 바람직하다.
상기 히트 싱크(250)는 대략 1-3㎜의 두께를 가지며, 산화 알루미늄(Al2O3), 질화 알루미늄(AlN), 실리콘 산화물(SiO2) 및 베릴늄 산화물(BeO) 중에서 어느 하나를 포함하도록 제작할 수 있다. 예를 들면, 세라믹 히트 싱크(150)인 경우에는, 세라믹을 구성하는 재질에 산화 알루미늄(Al2O3), 질화 알루미늄(AlN), 실리콘 산화물(SiO2) 및 베릴늄 산화물(BeO) 중 어느 하나를 포함하여 히트 싱크(160)를 만든다. 플라스틱 히트 싱크(250)인 경우에는, 플라스틱을 구성하는 충진재 중에 산화 알루미늄(Al2O3), 질화 알루미늄(AlN), 실리콘 산화물(SiO2) 및 베릴늄 산화물(BeO) 중 어느 하나를 포함시키면 된다. 한편 상기 고온 테이프 대신에 솔더를 사용할 경우, 상기 히트 싱크(250)는 리드 프레임(210)과 접착될 면에 금속이 형성된 것을사용한다. 마찬가지로, 고온 테이프(260)도 또한 산화 알루미늄(Al2O3), 질화 알루미늄(AlN), 실리콘 산화물(SiO2) 및 베릴늄 산화물(BeO) 중에서 어느 하나를 포함하도록 제작할 수 있으며, 적어도 대략 10-20㎛의 두께를 갖도록 하여 리드 프레임(210)과 히트 싱크(250)가 완전히 부착되도록 한다.
이와 같은 구조의 전력용 모듈 패키지에 의하면, 히트 싱크(250)과 리드 프레임(210)의 다운셋(240) 사이의 공간이 전혀 없기 때문에 열 방출 효과가 증대된다.
도 5 및 도 6은 본 발명의 일 실시예에 따른 전력용 모듈 패키지의 제조 방법을 설명하기 위하여 나타낸 도면들이다. 구체적으로 도 5는 상기 제조 방법에 사용되는 몰딩 장비의 하부 몰드 다이의 구조를 나타내 보인 단면도이고, 도 6은 상기 제조 방법 중의 밀봉 공정을 설명하기 위하여 나타내 보인 단면도이다.
먼저, 중앙에 다운셋(240)이 만들어진 리드 프레임(210)을 준비한다. 그리고 전력용 회로 칩(221) 및 제어 회로 칩(231)을 칩 장착 공정(die attach prodess)을 통하여 리드 프레임(210)의 제1 표면(211)에 부착한다. 이때 전력용 회로 칩(221)은 리드 프레임(210)의 다운셋(240) 부분에 부착되도록 한다. 다음에 와이어 본딩 공정을 진행하여 전력용 회로 칩(221) 및 제어 회로 칩(231)을 적절하게 연결시킨다. 제어 회로 칩(231)을 위한 와이어로는 골드 와이어(232)를 사용하고, 전력용 회로 칩(221)을 위한 와이어로는 알루미늄 와이어(222)를 사용한다. 알루미늄 와이어(222)는 높은 정격 전류에 충분히 견딜 수 있도록 대략 250-500㎛의 직경을 갖는 것을 사용하는 것이 바람직하다. 상기 와이어 본딩 공정을 수행하는데 있어서, 본딩 방식은 ??지 본딩(wedge bonding) 및 볼 본딩(ball bonding) 방식을 모두 사용할 수 있다. 원활한 와이어 본딩 작업을 위해서는 먼저 알루미늄 와이어(232)를 본딩하고, 이어서 골드 와이어(222)를 본딩하는 것이 적절하다.
다음에 하부 몰드 다이(도 5의 520)의 히트 싱크 블록(522) 위에 형성된 홈(524)에 히트 싱크(250)를 고정시킨다. 히트 싱크(250)는 대략 1-3㎜의 두께를 가지며, 산화 알루미늄(Al2O3), 질화 알루미늄(AlN), 실리콘 산화물(SiO2) 및 베릴늄 산화물(BeO) 중에서 어느 하나를 포함하도록 제작할 수 있다. 예를 들면, 세라믹 히트 싱크(250)인 경우에는, 세라믹을 구성하는 재질에 산화 알루미늄(Al2O3), 질화 알루미늄(AlN), 실리콘 산화물(SiO2) 및 베릴늄 산화물(BeO) 중 어느 하나를 포함하여 히트 싱크(260)를 만든다. 플라스틱 히트 싱크(250)인 경우에는, 플라스틱을 구성하는 충진재 중에 산화 알루미늄(Al2O3), 질화 알루미늄(AlN), 실리콘 산화물(SiO2) 및 베릴늄 산화물(BeO) 중 어느 하나를 포함시키면 된다.
다음에 와이어 본딩 공정이 끝난 리드 프레임(210)을 몰드 장비로 위치시킨다. 이때 하부 몰드 다이(520)에는 이미 히트 싱크(250)가 홈(524)에 고정된 상태이다. 계속해서 고온 테이프(260)를 용해시켜서 히트 싱크(250)와 리드 프레임(210)의 다운셋(240) 제2 표면(212)이 완전히 접착되도록 한다. 이때 고온 테이프(260)를 용해시키는 온도는 대략 160-220℃이고, 압력은 대략 30㎏/㎠이다.상기 고온 테이프(260)는, 산화 알루미늄(Al2O3), 질화 알루미늄(AlN), 실리콘 산화물(SiO2) 및 베릴늄 산화물(BeO) 중에서 어느 하나를 포함하도록 제작할 수 있으며, 적어도 대략 10-20㎛의 두께를 갖는다.
다음에 상부 몰드 다이(510)를 내리고, 게이트(530)를 통해 봉합 수지(EMC)(270)를 흘려 보낸다. 이때 상기 봉합 수지(270)는 열과 압력에 의해 액체로 변한 상태이다. 따라서 봉합 수지는 화살표 방향으로 흐르면서 몰드(500) 내부의 공간을 균일하게 채운다. 몰딩 장비는 다수의 게이트 및 러너(gate and runner)가 있는 트랜스퍼(transfer) 몰딩 장비를 이용할 수 있으며, 밀봉(sealing)이 이루어지는 온도는 대략 160-170℃가 적절하다.
다음에 밀봉이 완료된 리드 프레임, 즉 전력용 모듈 패키기(200)를 몰딩 장비에서 언로딩하면, 히트 싱크(250)가 고온 테이프(260)에 의해 리드 프레임(210)의 다운셋(240) 제2 표면(212)에 완전히 부착되게 된다. 이어서 트림(trim) 및 포밍(forming) 공정을 포함하는 통상의 후속 공정은 진행한다.
도 3은 본 발명에 따른 전력용 모듈 패키지의 다른 실시예를 나타내 보인 단면도이다.
도 3을 참조하면, 본 실시예에 따른 전력용 모듈 패키지(300)는, 리드 프레임(310), 전력 소자(power device)(320), 제어 소자(control device)(330), 히트 싱크(350) 및 봉합 수지(370)를 포함하여 구성된다. 전력 소자(320)는 전력용 회로 칩(321) 및 알루미늄 와이어(322)를 포함한다. 제어 소자(330)은 제어 회로 칩및 골드 와이어(미도시)를 포함한다. 상기 리드 프레임(310)은 대략 0.5-1.0㎜의 두께를 가지며, 그 중앙부에 형성된 다운셋(340)을 포함된다. 리드 프레임(310)의 일 표면에는 전력 소자(320) 및 제어 소자(330)가 부착된다. 특히 많은 열을 발생시키는 전력 소자(320)은 리드 프레임(310)의 다운셋(340)에 부착된다.
리드 프레임(310)의 다운셋(340)의 반대 표면에는 고열의 액상 에폭시(high thermal liquid epoxy)(360)에 의해 히트 싱크(350)가 부착되는데, 이 히트 싱크(350)의 일 면은 전력용 모듈 패키지(300) 외부로 완전히 노출된다. 상기 고열의 액상 에폭시(360)는 산화 알루미늄(Al2O3), 질화 알루미늄(AlN), 실리콘 산화물(SiO2) 및 베릴늄 산화물(BeO) 중 어느 하나를 포함하는 충진제를 에폭시 수지에 첨가시킴으로써 만들 수 있다. 상기 고열의 액상 에폭시(360)의 두께는 대략 3-7㎛로서, 대략 1.5℃/W 이하의 열 저항값을 나타내므로, 에폭시 몰딩 화합물이 사용되는 종래의 패키지에 비해 향상된 열 전도성을 나타낸다.
도 7a 내지 도 7d는 본 발명의 다른 실시예에 따른 전력용 모듈 패키지의 제조 방법을 설명하기 위하여 나타내 보인 단면도들이다.
먼저 도 7a를 참조하면, 대략 0.5-1.0㎜ 두께의 리드 프레임(310)을 준비한다. 그리고 전력용 회로 칩(321) 및 제어 회로 칩(330)을 칩 장착 공정(die attach prodess)을 통하여 리드 프레임(310)의 표면에 부착한다. 전력용 회로 칩(321)은 리드 프레임(310)의 다운셋(340) 부분에 부착되도록 한다. 상기 칩 장착 공정은 솔더를 사용하여 수행할 수 있고, 또는 은(Ag) 에폭시를 사용하여 수행할 수 있다. 접착제로서 솔더를 사용할 경우, 대략 350-380℃의 온도 및 대략 3-5kg/㎠의 압력과, 그리고 수소 분위기에서 칩 장착 공정을 수행한다. 접착제로서 은 에폭시를 사용할 경우, 실온에서 대략 1-2kg/㎠의 압력하에서 칩 장착 공정을 수행한다.
다음에 도 7b를 참조하면, 대략 1-3㎜ 두께의 세라믹 히트 싱크(350) 상부 표면에 고열의 액상 에폭시(360)를 부착시킨다. 상기 고열의 액상 에폭시(360)는 산화 알루미늄(Al2O3), 질화 알루미늄(AlN), 실리콘 산화물(SiO2) 및 베릴늄 산화물(BeO) 중 어느 하나를 포함하는 충진제를 에폭시 수지에 첨가시킴으로써 만들 수 있다.
다음에 도 7c를 참조하면, 상기 고열의 액상 에폭시(360)를 접착제로 하여 세라믹 히트 싱크(350)와, 전력용 회로 칩(321)이 부착된 리드 프레임(310)을 부착시킨다. 상기 부착 공정은 대략 150-180℃의 온도 및 대략 0.5-1.0㎏/㎠의 압력 조건에서 대략 3-5분 동안 수행한다.
다음에 도 7d를 참조하면, 알루미늄(Al) 와이어 본딩 공정 및 골드(Au) 와이어 본딩 공정을 수행하여 전력용 회로 칩(321)과 리드 프레임(310) 사이, 전력용 회로 칩(321)들 사이, 그리고 제어 회로 칩(330)과 리드 프레임(310) 사이를 전기적으로 연결시킨다. 통상적으로 제어 회로 칩(330)을 위한 와이어로는 골드 와이어를 사용하고, 전력용 회로 칩(321)을 위한 와이어로는 알루미늄 와이어를 사용한다. 알루미늄 와이어 본딩 공정은, 웨지 본딩(wedge bonding) 방법을 사용하여 수행하고, 골드 와이어 본딩 공정은, 볼 본딩(ball boding) 방법을 사용하여 수행한다.
다음에는, 도 3에 도시된 바와 같이, 봉합 수지(370)로 세라믹 히트 싱크(350)의 하부면과 리드 프레임(310)의 단부만 노출되도록 엔캡슐레이션(encapsulation) 공정을 수행하고, 통상의 트림(trim) 및 포밍(forming) 공정을 수행한다.
도 4는 본 발명에 따른 전력용 모듈 패키지의 또 다른 실시예를 나타내 보인 단면도이다. 본 실시예에 따른 전력용 모듈 패키지는, DBC(Direct Bonding Copper) 기판을 사용하는 점에서, 히트 싱크를 사용한 이전 실시예에 따른 전력용 모듈 패키지들과는 상이하다.
도 4를 참조하면, 본 실시예에 따른 전력용 모듈 패키지(400)는, 리드 프레임(410), 전력 소자(420), 제어 소자(430), DBC 기판(450) 및 봉합 수지(470)를 포함하여 구성된다. 전력 소자(420)는 전력용 회로 칩(421) 및 알루미늄 와이어(422)를 포함한다. 제어 소자(430)은 제어 회로 칩 및 골드 와이어(미도시)를 포함한다. DBC 기판(450)은, 중앙의 세라믹(451)과 이 세라믹(451)의 상부면에 부착된 상부 구리층(452)과 하부면에 부착된 하부 구리층(453)을 포함하여 구성된다. 전력용 회로 칩(421)은 DBC 기판(450)의 상부 구리층(452) 표면 위에 부착된다. DBC 기판(450)의 상부 구리층(452)에는 리드 프레임(410)도 또한 연결된다. 제어 소자(430)는 리드 프레임(410) 위에 부착된다.
이와 같은 전력용 모듈 패키지(400)는, 열 전도성이 상대적으로 높은 DBC 기판을 사용하므로 향상된 열 방출 능력을 갖는다.
상기 전력용 모듈 패키지(400)를 제조하기 위해서는, 먼저 리드 프레임(410)과 DBC 기판(450)을 부착시킨다. 이 부착 공정은, 솔더 또는 열적 테이프(thermal tape)와 같은 부착제를 사용하거나, 레이저 또는 스팟(spot)을 이용한 웰딩(welding)을 사용하거나, 또는 은(Ag) 또는 은/주석(Sn) 플레이팅을 이용한 열적 압착 방법을 사용하여 수행할 수 있다. 다음에 리드 프레임(410) 위에 칩(421, 430)을 부착시킨다. 이 칩 부착 공정은, 솔더 및 은 에폭시를 이용하여 수행할 수 있다. 전력용 회로 소자(421) 부착에는 솔더를 이용하는데 이 경우, 대략 330-360℃의 온도에서 부착 공정을 수행한다. 제어 소자(430) 부착에는 은 에폭시를 이용하는데 이 경우, 실온(room temperature)에서 부착 공정을 수행한다. 다음에 와이어 본딩 공정을 수행하여 칩들(421, 430)과 리드 프레임(410)을 상호 전기적으로 연결시킨다. 전력용 회로 칩(421)에 대해서는 알루미늄 와이어를 사용하고, 제어 소자(430)에 대해서는 골드 와이어를 사용한다. 다음에 봉합 수지(470)를 사용하여 엔캡슐레이션을 수행하고, 이어서 통상의 트림 및 포밍 공정을 수행한다.