KR19990009569A - 플라즈마 리액터와 이를 이용한 수처리 방법 및 장치 - Google Patents

플라즈마 리액터와 이를 이용한 수처리 방법 및 장치 Download PDF

Info

Publication number
KR19990009569A
KR19990009569A KR1019970032005A KR19970032005A KR19990009569A KR 19990009569 A KR19990009569 A KR 19990009569A KR 1019970032005 A KR1019970032005 A KR 1019970032005A KR 19970032005 A KR19970032005 A KR 19970032005A KR 19990009569 A KR19990009569 A KR 19990009569A
Authority
KR
South Korea
Prior art keywords
wastewater
plasma reactor
plasma
reactor
water treatment
Prior art date
Application number
KR1019970032005A
Other languages
English (en)
Other versions
KR100223884B1 (ko
Inventor
심순용
Original Assignee
이종수
엘지산전 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이종수, 엘지산전 주식회사 filed Critical 이종수
Priority to KR1019970032005A priority Critical patent/KR100223884B1/ko
Priority to GB9814694A priority patent/GB2328133B/en
Priority to US09/112,320 priority patent/US6228266B1/en
Priority to JP19580198A priority patent/JP3236820B2/ja
Priority to DE1998130956 priority patent/DE19830956A1/de
Priority to CN98102848A priority patent/CN1207368A/zh
Publication of KR19990009569A publication Critical patent/KR19990009569A/ko
Application granted granted Critical
Publication of KR100223884B1 publication Critical patent/KR100223884B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/4608Treatment of water, waste water, or sewage by electrochemical methods using electrical discharges
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0894Processes carried out in the presence of a plasma
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Physical Water Treatments (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Plasma Technology (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

본 발명은 플라즈마(Plasma)에 의해 폐수내의 오염물질을 제거하는 플라즈마 리액터와 이를 이용한 수처리 방법 및 장치에 관한 것으로 폐수 처리시 잘 분해되지 않는 난분해성물질을 저전압의 인가로 빠른 시간내에 분해시킬 수 있도록 한 것이다.
이를 위해, 폐수유입구(3) 및 배출구(4)가 형성된 하우징(2)과, 상기 하우징내에 무수히 많이 채워진 비드(5)와, 상기 하우징의 바닥면 및 상부의 비드에 각각 접속되게 설치된 전극(6)과, 상기 전극에 전원선으로 연결되어 펄스를 공급하는 펄스 제너레이터(7)로 구성된 플라즈마 리액터(1)를 설치하여 폐수를 1차 처리 한 다음 미생물 리액터(23)를 이용하여 2차 처리한 후 기준치 이하의 폐수를 방류하도록 된 것이다.

Description

플라즈마 리액터와 이를 이용한 수처리 방법 및 장치
본 발명은 플라즈마(Plasma)에 의해 폐수내의 오염물질을 제거하는 플라즈마 리액터와 이를 이용한 수처리 방법 및 장치에 관한 것으로써, 좀더 구체적으로는 폐수 처리시 잘 분해되지 않는 난분해성물질을 저전압의 인가로 빠른 시간내에 분해시킬 수 있도록 한 것이다.
오늘날 생활환경에 대한 관심은 날로 높아져 맑은 공기와 깨끗한 물을 지키고자 많은 노력을 경주하고 있다.
환경산업분야를 크게 4가지로 구분하면 대기오염 방지분야, 수질오염 방지분야, 폐기물 처리분야, 청정 기술분야로 대별된다.
상기수질오염 방지분야에서 폐수내에 포함된 오염물질의 처리나, 수돗물의 생산에 적용되는 공정은 그동안 많은 연구자들에 의해 연구 개발되어 발전되었다.
그러나 아직도 많은 부분에서 효율적이고 경제적인 공정 및 설비의 개발이 이루어지지 않고 있는 실정이다.
일반적으로 우리는 폐수내에 포함된 유기물질(주로 탄화수소)을 제거하여 BOD를 낮추고는 폐수의 처리가 완료되었다고 판단하여 처리된 폐수를 하천 등으로 방류하였다.
그러나 산업의 발달과 인구의 도시 집중화로 인해 전에는 예측되지 않았던 여러 가지 성상의 오염물질이 배출되고 있지만, 이러한 오염물질의 독성 및 환경에 미치는 영향도 제대로 평가하지 못하고 폐수를 처리하고 있다.
예를 들어, 우리가 흔히 상수원의 소독에 주로 사용하고 있는 염소는 발암물질인 TMS를 형성하는 것으로 최근 알려졌으며, 이는 장기간 염소소독된 수도물을 음용한 주민을 대상으로 실시한 역학조사결과 확실한 사실로 입증되었다.
또, 인구집중으로 인한 생활하수의 증가는 방류되는 하수내에 질소(N)와 인(P)성분이 다량 함유되어 있어 강 호수, 하구 등을 부영양화시키는 직접적인 원인으로 작용되었고, 이에 따라 녹조현상 또는 적조현상이 나타났다.
이와 같이 수질이 부영양화되면 영양분을 먹고 자라는 조류의 번식이 급속히 증가되므로 강과 호수 등은 산소의 고갈로 인해 생태계가 완전히 파괴된다.
문제는 지금까지 개발된 폐수처리방법으로는 폐수내에 포함된 질소와 인을 효과적으로 제거할 수 없다는데 있다.
또한, 공장폐수인 염소성분이 함유된 오염물질, 즉 PCE(perchloroethylene), PCBs(polychlorinated biphenyls), DCP(dichlorophenol)등이 포함된 폐수는 그 자체만으로도 유해하지만, 염소함유 오염물질은 2차 독성이 특히 강하게 나타나므로 폐수가 강이나 호수로 유입되었을 때 주위환경을 파괴시키는 정도가 다른 폐수보다 훨씬 심하다.
또, 이들은 자연상태에서 쉽게 분해되거나, 정화되지 않기 때문에 난분해성 오염물질로 분류되고 있으나, 이를 경제적으로 제거할 수 있는 방법이 아직 개발되지 않고 있다.
예를 들어, 혼탁한 상태로 배출되는 염색폐수인 경우에는 폐수내에 전술한 염소함유 오염물질뿐만 아니라 질산성분도 포함하고 있어 독성이 무척 강하며, 폐수발생량 및 폐수 특성면에서 우리나라의 대표적인 오염원으로 분류되고 있다.
염색공업 관련업체는 총 폐수 배출업체 중 약 6 %를 차지하고 있고, 폐수배출량은 약 4.5 %를 차지하고 있으나, 오염부하량(처리 전 BOD농도)은 전체의 약 24 %를 차지하고 있어 공공수역에 미치는 영향은 매우 크다고 할 수 있다.
이러한 폐수를 처리하는 종래의 방법으로는 물리화학적 처리법, 생물학적 처리법, 응집처리법, Fenton산화법, 오존처리법, 전자빔에 의한 처리법, 활성탄흡착에 의한 처리법, 막분리에 의한 처리법 등이 있다.
상기한 방법 중 물리화학적 처리법은 처리하고자 하는 폐수내의 오염물질을 제거하기 전에 실시하는 기술로 난분해성 오염물질의 제거는 불가능하다.
생물학적 처리법은 활성화된 호기성 미생물에 의해 유기물을 흡착, 분해하는 활성 슬러지공정이 가장 널리 이용되고 있으나, 염색폐수내의 염료는 대부분이 분해되지 않고, 만약 분해가 되더라도 독성물질을 생성할 수 있기 때문에 처리효율이 낮다.
따라서 혐기성 미생물을 이용하여 폐수를 처리하는 방법이 개발되었으나, 난분해성 오염물질을 처리하는데 많은 시간(수 십일)을 필요로 하므로 경제적이지 못하다.
응집처리법은 폐수에 포함된 광범위한 오염물질의 제거는 가능하지만, 수용성 음료와 같은 가용성 물질의 제거는 불가능하다.
Fenton산화법은 H2O2와 철이온의 공존상태에서 반응시키면 강력한 산화가 일어나는 현상을 이용하여 폐수를 처리하는 방법인데, 이때 투입되는 철이온이 고가인 단점이 있다.
오존처리법은 강력한 산화력을 갖는 오존을 이용하여 폐수내에 포함된 난분해성 물질의 분해, 냄새의 제거, 색도의 제거에 탁월한 효과를 갖지만, 오존발생장치가 고가이며 오존발생효율이 5%정도 밖에 않되므로 운전에 따른 전력소비량이 많이 소요되는 단점이 있다.
전자빔에 의한 처리법은 기존의 방법으로 처리하기 곤란한 물질을 처리하는데 적합한 잇점을 갖으나, 전자빔 발생 및 가속에 필요한 설비가 복잡하고 오존처리법과 같이 유지비가 많이 소요된다는 문제점이 있다.
또한, 전자빔이 통과할 수 있는 물의 깊이가 수 mm에 불과하기 때문에 폐수를 넓은 면적에 깊이가 얕도록 흘려주거나, 빠르게 흘려주어야 되었으므로 전자빔 발생설비가 대형화, 고출력화되어야 하며, 운전시 인체에 유해한 X - 레이가 발생된다.
활성탄흡착에 의한 처리법은 세공(細孔)구조를 갖는 활성탄을 이용하여 오염물질을 흡착제거하므로 인해 활성탄을 재생할 수 있는 잇점을 갖으나, 오염물질 및 색도의 처리효율이 떨어져 단독으로는 사용이 곤란하여 다른 방법과 병행하여야 된다.
막분리에 의한 처리법은 막소재의 물리, 화학적기능에 의해 입자 크기별, 화학적 친화성의 분리가 가능하므로 특정물질의 분리가 가능한 잇점이 있으나, 초기 투자비가 많이 소요되고 전처리가 잘못 이루어졌을 경우에는 고가의 설비 전체를 사용하지 못하는 단점이 있다.
본 발명은 종래의 이와 같은 문제점을 해결하기 위해 안출한 것으로써, 저전압으로 플라즈마를 생성하여 폐수내의 오염물질을 처리하는데 그 목적이 있다.
본 발명의 또 다른 목적은 적은 초기 설비비를 투자하여 폐수 처리장치를 구현함과 동시에 설비의 운전에 따른 유지, 보수비를 최소화할 수 있도록 하는데 있다.
상기 목적을 달성하기 위한 본 발명의 형태에 따르면, 폐수유입구 및 배출구가 형성된 하우징과, 상기 하우징내에 무수히 많이 채워진 비드와, 상기 하우징의 바닥면 및 상부의 비드에 각각 접속되게 설치된 전극과, 상기 전극에 전원선으로 연결되어 펄스를 공급하는 펄스 제너레이터로 구성된 플라즈마 리액터가 제공된다.
본 발명의 다른 형태에 따르면, 유입되는 폐수를 수집 보관하는 폐수탱크와, 상기 폐수탱크와 연결된 연결관을 통해 폐수가 유입됨에 따라 플라즈마를 이용하여 폐수내의 오염물질을 처리하는 적어도 1개 이상의 플라즈마 리액터와, 상기 플라즈마 리액터에서 플라즈마가 발생되도록 펄스를 공급하는 펄스 제너레이터와, 상기 플라즈마 리액터에서 처리된 폐수가 연결관을 통해 유입됨에 따라 담겨지는 저장탱크로 구성된 플라즈마 리액터를 이용한 수처리장치가 제공된다.
본 발명의 또 다른 형태에 따르면, 오염물질이 포함된 폐수가 유입됨에 따라 이를 폐수탱크에 담아두는 단계와, 담아둔 폐수를 플라즈마 리액터측으로 흘려 폐수내에 포함된 오염물질을 처리하는 단계와, 1차 처리된 폐수를 저장탱크에 담아두었다가 방류하는 단계로 이루어진 플라즈마 리액터를 이용한 수처리방법이 제공된다.
도 1은 종래의 수처리 방법을 나타낸 블록도
도 2는 본 발명에 적용되는 플라즈마 리액터의 일 실시예를 나타낸 종단면도
도 3은 본 발명의 플라즈마 리액터를 이용하여 수처리하는 과정의 일 예를 나타낸 블록도
도 4는 본 발명의 수처리장치를 나타낸 개략도
도 5는 DCP를 제거하기 위해 플라즈마 리액터만을 사용하여 시험결과를 나타낸 그래프
도 6은 플라즈마 리액터로 DCP를 제거한 다음 P.Putoda F1미생물로 처리한 결과를 나타낸 그래프
도면의 주요부분에 대한 부호의 설명
1 : 플라즈마 리액터 2 : 하우징
5 : 비드 6 : 전극
7 : 펄스 제너레이터 11 : 에어 콤프레셔
13 : 레귤레이터 14 : 폐수탱크
17 : 저장탱크 23 : 미생물처리 리액터
이하, 본 발명을 일 실시예로 도시한 도 2 내지 도 6을 참고로 더욱 상세히 설명하면 다음과 같다.
도 2는 본 발명에 적용되는 플라즈마 리액터의 일 실시예를 나타낸 종단면도로써, 본 발명에 적용되는 플라즈마 리액터(1)는 도 2에 나타낸 바와 같이 하우징(2)의 양단에 폐수유입구(3) 및 배출구(4)를 형성하고 상기 하우징의 내부에는 무수히 많은 비드(5)를 채운다.
상기 하우징(2)내부에 채워지는 비드(5)의 크기 및 양은 처리하고자 하는 오염물질의 농도 및 처리량에 따라 적절히 결정된다.
즉, 폐수내에 포함된 오염물질의 농도가 높거나, 처리량이 많을수록 하우징(2)내에 직경이 작은 비드(5)를 많이 채우고, 이와는 반대로 오염물질의 농도가 낮거나, 처리량이 적을수록 하우징(2)내에 직경이 큰 비드를 적게 채운다.
상기 하우징(2)내에 채워지는 비드(5)의 크기는 용도에 따라 수 mm ∼ 수십 mm정도로 다양하게 선택하여 사용하며, 채워지는 양도 용도에 따라 적절히 선정한다.
상기 하우징(2)에 채워지는 비드(5)의 재질로는 금속, 세라믹계열의 금속, 폴리에틸렌이 도금된 니켈, 유리, 합성수지 등이 적용 가능하다.
상기한 재질로 구성되는 비드(5)의 형상은 속이 비거나 채워진 볼형상, 파쇄된 형상, 원형봉 형상 등으로 적용 가능하다.
그리고 상기 하우징(2)에 채워진 비드(5)의 바닥면 및 상부에 전극(6)을 각각 접속되게 설치하고 상기 하우징(2)의 일측으로는 저전압(150kV이하)으로 펄스를 발생하여 전극(6)측으로 공급하는 펄스 제너레이터(7)를 설치하여 상기 펄스 제너레이터(7)와 전극(6)을 전원선(8)으로 연결한다.
상기 전극(6)은 폐수가 하우징(2)의 내부를 통과할 때 전극(6)에 의해 흐름의 방해를 받지 않도록 판상 또는 와이어를 사용한다.
상기 하우징(2)의 상,하부에 공기유입공(9)과 배출공(10)을 형성하고, 상기 공기유입공에는 에어 콤프레셔(11) 등과 같은 압축공기 발생수단을 연결하여 폐수의 처리시 하우징(2)의 내부로 공기방울이 유입되도록 한다.
이는, 공기방울이 비드(5)사이를 통과하면서 부딪혀 잘게 부서지면서 폐수를 잘게 분해하는 역할을 함과 동시에 플라즈마에 의해 오존이 쉽게 발생하도록 산소를 공급하기 위함이다.
상기 에어 콤프레셔(11)와 하우징(2)를 연결하는 공기 공급관(12)에는 하우징(2)의 내부로 공급되는 압축공기의 양을 제어하는 레귤레이터(13)를 설치한다.
도 4는 본 발명의 플라즈마 리액터가 적용된 수처리장치를 나타낸 개략도로써, 유입되는 폐수를 수집 보관하는 폐수탱크(14)와, 상기 폐수탱크와 연결된 연결관(15)을 통해 폐수가 유입됨에 따라 플라즈마를 이용하여 폐수내의 오염물질을 처리하는 적어도 1개 이상의 플라즈마 리액터(1)와, 상기 플라즈마 리액터에서 플라즈마가 발생되도록 펄스를 공급하는 펄스 제너레이터(7)와, 상기 플라즈마 리액터에서 1차 처리된 폐수가 연결관(16)을 통해 유입됨에 따라 담겨지는 저장탱크(17)로 구성한다.
플라즈마를 이용하여 폐수내의 오염물질을 처리하는 플라즈마 리액터(1)를 복수개 설치할 경우에는 직렬 또는 병렬로 설치하거나, 직,병렬로 연결할 수 있다.
도 4에는 2개의 플라즈마 리액터(1a)(1b)를 직렬로 연결 설치하여 상기 플라즈마 리액터(1a)(1b)를 상호 연결관(18)으로 연결하고, 두번째 위치된 플라즈마 리액터(1b)와 저장탱크(17)를 연결하는 연결관(16)에는 첫번째 위치된 플라즈마 리액터(1a)에 연결된 바이패스관(19)을 연결하는데, 이때 연결관(18)과 바이패스관(19)에는 각각 밸브(20a)(20b)를 설치한다.
이는, 첫번째 플라즈마 리액터(1a)만을 이용하여 오염물질을 처리한 다음 저장탱크(17)측으로 배출할 경우에는 연결관(18)상에 설치된 밸브(20a)를 닫은 다음 바이패스관(19)상에 설치된 밸브(20b)를 열어 가동하고, 2개의 플라즈마 리액터(1a)(1b)를 동시에 이용하여 폐수내의 오염물질을 처리하고자 할 경우에는 전술한 바와는 반대로 연결관(18)상에 설치된 밸브(20a)를 열은 다음 바이패스관(19)상에 설치된 밸브(20b)는 닫아 가동시킬 수 있도록 하기 위함이다.
그리고 폐수탱크(14)와 저장탱크(17)사이에 리턴관(21)을 연결하고, 상기 리턴관상에는 저장탱크(17)내에 담겨진 1차 처리된 폐수를 폐수탱크(14)측으로 재유입되도록 펌핑력을 발생하는 펌프(22)를 설치한다.
이는, 플라즈마 리액터(1)에서 1차 처리된 폐수의 오염정도를 저장탱크(17)에서 오염측정장비(도시는 생략함)에 의해 측정하여 오염정도가 기준치 이상일 경우에는 폐수탱크(14)측으로 리턴시켜 플라즈마 리액터(1)에서 재처리하도록 하기 위함이다.
한편, 폐수내에 포함된 오염물질의 종류 및 설비의 운용에 따른 비용을 절감하기 위해 저장탱크(17)에 미생물처리 리액터(23)를 연결관(24)으로 연결하여 2차 처리하도록 한다.
이때, 오염물질의 처리 효율을 증대시키기 위해 미생물처리 리액터(23)에 폭기수단을 구비한다.
상기 폭기수단은 압축공기를 발생하는 에어 콤프레셔(11) 또는 모터의 구동에 따라 수류를 발생시키는 임펠러를 적용한다.
본 발명에서는 플라즈마 리액터(1)의 내부로 압축공기를 공급하는 에어 콤프레셔(11)를 미생물처리 폭기수단에 공용으로 사용하도록 구성하였다.
상기 미생물처리 리액터(23)는 처리할 폐수의 종류 및 용도에 따라 부유식 또는 내부에 미생물이 달라 붙어 서식하는 구조물을 갖는 고정상식을 적용한다.
도 3은 본 발명의 플라즈마 리액터를 이용하여 수처리하는 과정의 일 예를 나타낸 블록도이다.
본 발명의 폐수처리는 플라즈마 리액터(1)에 의한 1차 처리와, 미생물처리 리액터(23)에 의한 2차 처리로 대별된다.
이들은 필요에 따라 각각 독립적으로 운용되거나, 연계되어 운용되는 것으로 폐수의 처리과정을 보다 상세히 설명하면 다음과 같다.
먼저, 처리하고자 하는 폐수의 종류 및 양에 따라 폐수를 1차 처리하는 플라즈마 리액터(1)를 직렬 또는 병렬로 연결할지를 판단함과 동시에 폐수를 2차 처리하는 미생물처리 리액터(23)를 운용할지를 판단한다.
즉, 처리하려는 폐수가 고농도이면 복수개의 플라즈마 리액터(1)를 직렬로 연결하여 폐수 처리시간을 최대한 늘려주고, 이와는 반대로 처리가 비교적 용이한 저농도의 폐수이면 플라즈마 리액터(1)를 병렬로 연결하여 단위시간당 폐수의 처리량이 증대되도록 한다.
한편, 염소성분이 포함된 난분해성 물질인 PCBs, PCE, DCP 등을 보다 효과적으로 제거하기 위해서는 1차 처리된 폐수, 즉 플라즈마 리액터(1)에서 플라즈마에 의해 어느 한 염소기가 떨어진 난분해성 오염물질을 미생물에 의해 분해하도록 미생물처리 리액터(23)를 연계하여 운용한다.
이와 같이 폐수의 종류 및 양에 따라 설비의 운용시스템을 설정한 상태에서 산업활동을 통해 발생된 폐수가 폐수탱크(14)로 유입되어 모이면 폐수는 연결관(15)을 통해 플라즈마 리액터(1)의 내부로 흘러 들어간다.
이와 같이, 폐수가 플라즈마 리액터(1)의 내부로 흘러 들어오면 유입된 폐수는 도 2에 나타낸 바와 같이 하우징(2)내에 채워진 비드(5)의 외주면에 의해 수막(25)을 형성하게 된다.
상기한 바와 같은 동작시 에어 콤프레셔(11)의 구동에 따라 발생된 압축공기가 레귤레이터(13)에 의해 조정되어 하우징(2)의 내부로 공급되면 공기방울이 비드(5)사이를 통과하면서 점진적으로 쪼개져 폐수를 잘게 부수는 역할을 함과 동시에 플라즈마에 의해 오존이 용이하게 발생하도록 산소를 공급하는 역할도 하므로 폐수의 처리효율을 극대화시키게 된다.
이러한 상태에서 펄스 제너레이터(7)의 구동에 의해 비드(5)의 상,하부에 접속된 전극(6)에 펄스가 가해지면 하우징(2)내에 플라즈마가 발생되어 폐수내에 포함된 오염물질이 제거되는데, 에어 콤프레셔(11)의 구동에 의해 하우징(2)내부로 공급된 공기는 플라즈마에 의해 오존이 용이하게 발생되도록 하는 역할도 겸하게 된다.
상기한 바와 같은 동작시 펄스 제너레이터(7)에서 발생되어 전극(6)에 가해져 플라즈마를 생성하는 펄스의 특성은 플라즈마 리액터(1)의 내부에서 폐수를 처리하는데 지대한 영향을 미치게 된다.
즉, 많은 연구 개발에도 불구하고 현재까지 플라즈마를 이용하여 폐수를 처리하지 못한 가장 큰 이유는 첫째, 물속에서 전기적인 절연파괴를 얻기 위해서는 매우 높은 전기장(2 ∼ 3 × 10-5V/Cm이상)을 필요로 하였고 둘째, 물속에서는 방전에 의한 스트리이머(Streamer)의 전달이 급속히 일어나기 때문에 스트리이머 방전이 지속되지 못하고 아아크나 스파크로 쉽게 진행하는 경우가 빈번히 발생되었으며 셋째, 스트리이머 방전이 지속적으로 일어나더라도 스트리이머에 의해 발생된 활성종(Radical)의 반응영역이 지극히 좁기 때문에 물속에 널리 포함되어 있는 오염물질을 제대로 제거할 수 없었다.
이러한 문제점은 기존의 고압에 의한 방전방식으로 해결할 수 없고, MeV 단위의 전자빔방식에 의해서나 가능한 일이지만, 전자빔방식은 종래의 설명에서와 같이 설비규모가 엄청나게 커지고 인체에 악영향을 미치게 되는 문제점을 갖는다.
본 발명에서는 상기한 문제점들을 다음과 같은 원리에 의해 150kV 이하의 전압으로 해결하였다.
물은 공기의 유전율(ε = 1)에 비해, 훨씬 높은 유전율(ε = 81)을 갖는데, 이 값은 유전율이 비교적 높은 세라믹에 견줄 수 있는 값이다.
따라서 도 2와 같은 플라즈마 리액터(1)를 구성하여 상기 하우징(2)의 폐수유입구(3)를 통해 폐수탱크(14)내의 폐수를 흘려 보내 비드(5)주위에 물에 의한 수막(Water Film)(25)이 형성될 때 펄스 제너레이터(7)로부터 펄스가 발생되어 전극(6)에 공급되면 하우징(2)내에 플라즈마가 형성되므로 하우징(2)을 통과하는 폐수에 포함된 오염물질이 파괴된다.
즉, 비드(5)사이의 간격은 상기 비드의 외주면에 형성된 수막(25)과 동일한데, 이때 수막의 두께는 수백 마이크로미터정도이므로 하우징내에 발생된 플라즈마에 의한 오염물질의 파괴가 가능하다.
이러한 수막 두께에 50 ∼ 150kV의 전압이 걸리면 매우 높은 전기장이 걸리는 효과에 의해 각 비드(5)사이에 거미줄과 같은 플라즈마가 형성되므로 하우징내에 활성종인 O(산소원자), OH(수소원자), O3,(오존), H2O2(과산화수소), UV(자외선), e-aq(수화전자) 등이 발생된다.
이때 발생된 산소원자의 경우는 산소분자에 비해 천만배정도의 강력한 산화력을 갖고 있으므로 어떠한 형태의 오염물질도 산화시킬 수 있게 된다.
이와 같이 오염물질을 제거하는데 필요한 활성종은 폐수를 처리하는 현장에서 직접 생산하여 사용하므로 효율이 높고 매우 경제적이다.
종래의 오존발생기에서도 오존의 발생을 위해 산소원자와 자외선이 생산되었으나, 산소원자의 수명이 수초에 불과하여 폐수처리공정에는 수명이 10 ∼ 15분정도로 비교적 긴 오존만이 공급되고, 산소원자를 포함한 다른 활성종은 소멸되었으므로 폐수처리에 적용하지 못하였다.
상기 하우징(2)내에 형성된 플라즈마에 의해 생성되는 수소원자(H)와 수산기(OH)는 폐수내에 포함된 질소(N) 및 인(P)의 오염물질을 환원시키는 작용을 하게 되므로 폐수내에 포함된 질소(N) 및 인(P)도 용이하게 제거할 수 있다.
상기한 바와 같은 동작으로 폐수내에 포함된 오염물질이 1차적으로 제거된 다음 저장탱크(17)의 내부로 흘러 들어오면 상기 저장탱크에서 오염물질의 처리정도를 측정하여 오염물질이 완전히 처리되었으면 하천이나 강 등으로 방류한다.
그러나, 오염물질의 농도가 기준치이상으로 측정되면 1차 처리된 폐수를 방류하지 않고 리턴관(21)상에 설치된 모터(22)를 가동하여 저장탱크(17)내의 1차 처리된 폐수를 폐수탱크(14)측으로 이송시킨 다음 오염물질이 완전히 제거될 때 까지 전술한 바와 같은 처리과정으로 재처리한다.
지금까지는 플라즈마 리액터(1)의 내부로 분해가 어려운 유기물질이 포함된 폐수를 흘려 보내 처리하는 과정을 설명하였으나, 플라즈마 리액터만을 이용하여 오염물질을 처리할 경우에는 플라즈마 리액터(1)의 운용에 따른 전력소비량이 증대되어 많이 운용비가 소요되므로 시스템(system)의 경제적이 운용에 한계를 갖는다.
즉, 플라즈마 리액터(1)만을 이용하여 폐수내에 포함된 오염물질을 100 % 제거하기 위해서는 복수개의 플라즈마 리액터를 직렬로 연결하여 운용하여야 되므로 전력소비량이 증대된다.
도 5는 플라즈마 리액터만을 사용하여 DCP(Dichlorophenol)를 제거한 시험결과를 나타낸 그래프로써, 폐수내에 오염물질을 60 %이상 제거하기 위해서는 7개의 플라즈마 리액터(1)를 직렬로 연결하여 운용하던지, 1개의 플라즈마 리액터를 이용하여 7회 정도 플라즈마 처리를 하여야 오염물질이 60 %정도 제거됨을 알 수 있다.
물론, 처리가 비교적 용이한 오염물질이 포함된 폐수인 경우에는 플라즈마 리액터(1)를 이용하여 1번의 처리만으로 오염물질의 100 % 제거가 가능하므로 폐수내에 포함된 오염물질의 종류에 따라 플라즈마 리액터의 운용을 결정하여야 된다.
그러나 공장 등에서 흘러 나오는 폐수에는 대개 처리하기 어려운 오염물질들이 다량 포함되어 있어 여러번의 처리가 불가피하여 시스템의 운용에 따른 비용이 많이 소요되므로 도 3 또는 도 4에 나타낸 바와 같이 플라즈마 리액터(1)와 미생물처리 리액터(23)를 직렬로 설치하여 오염물질을 처리하는 것이 유리하다.
이에 따라, 플라즈마 리액터(1)의 운용시간을 줄이는 대신 운용비가 거의 소요되지 않는 미생물처리 리액터(23)에서 2차 처리하므로 시스템의 운용에 따른 소요경비를 줄일 수 있는 잇점을 갖는다.
만약, 처리하고자 하는 폐수내에 염소성분을 포함한 난분해성 물질인 PCBs, PCE, DCP 등이 포함되어 있을 경우에는 상기한 물질들이 안정된 상태로 존재하기 때문에 어떠한 미생물로도 이들 물질이 분해되지 않는다.
그러나 이러한 여러개의 염소기를 포함하고 있는 물질도 플라즈마에 의해 어느 하나의 염소기를 떨어뜨려주면 미생물처리 리액터(23)를 이용하여 용이하게 처리할 수 있다.
도 6은 플라즈마 리액터(1)로 DCP를 1차 처리한 다음 미생물처리 리액터(23)에서 P.Putoda F1미생물로 2차 처리한 결과를 나타낸 그래프로써, 폐수에 포함된 난분해성 오염물질을 플라즈마 리액터(1)에서 어느 하나의 염소기를 떨어뜨린 다음 미생물처리 리액터(23)로 보내면 상기 미생물처리 리액터내의 미생물이 염소기가 떨어진 난분해성물질을 48시간 이내에 100 % 처리함을 알 수 있다.
즉, 플라즈마 리액터(1)와 미생물처리 리액터(23)를 연결하여 사용할 경우에는 플라즈마 리액터의 운용에 따라 전력소비량이 많아지는 문제점과, 미생물처리 리액터(23)에서는 난분해성 오염물질의 처리가 불가능한 문제점을 동시에 해결할 수 있다.
한편, 본 발명의 플라즈마 리액터(1)는 단독으로 사용하여 상수처리도 가능하다.
즉, 전술한 바와 같이 플라즈마 리액터(1)를 구성하는 하우징(2)의 내부에는 전극(6)에 펄스가 공급될 때 약 10eV이상의 에너지를 갖는 거미줄과 같은 플라즈마가 형성되는데, 이때 이론적으로 1eV의 에너지는 약 10,000 ℃의 온도에 해당하므로 하우징(2)내에 발생되는 플라즈마는 약 100,000 ℃이상의 온도를 갖는다.
물론, 전자의 질량자체가 작기 때문에 이러한 온도를 피부로 느낄 수 없지만, 마이크로 시각에서 보면 물은 스트리이머(stream)에 의해 국부적으로 가열되어 순간적으로 미세하게 팽창을 일으키면서 전체에 걸쳐 충격파(Shock Wave)를 발생시키게 되므로 상기 충격파가 물속에 포함된 대장균과 같은 유해 미생물을 사멸시키게 된다.
또한, 플라즈마가 형성될 때 발생되는 오존에 의해서도 대장균을 사멸시키게 된다.
이와 같이 상수원의 처리시에는 단위 시간당 많은 양의 물을 처리하여야 되므로 다수개의 플라즈마 리액터(1)를 직렬로 설치하게 됨은 이해 가능하다.
이상에서와 같이 본 발명은 플라즈마 리액터의 하우징내에 플라즈마를 형성하여 폐수내에 오염물질을 1차 처리한 다음 미생물처리 리액터에서 2차 처리하도록 되어 있으므로 사용이 편리하게 됨은 물론 설비비 및 시스템의 운전에 따른 운용비가 절감된다.
또한, 폐수의 오염정도 및 처리량에 따라 설비의 용량을 손쉽게 설계할 수 있음은 물론 운용에 따른 부작용이 현저히 줄어드는 효과를 얻게 된다.

Claims (34)

  1. 폐수유입구 및 배출구가 형성된 하우징과, 상기 하우징내에 무수히 많이 채워진 비드와, 상기 하우징의 바닥면 및 상부의 비드에 각각 접속되게 설치된 전극과, 상기 전극에 전원선으로 연결되어 펄스를 공급하는 펄스 제너레이터로 구성된 플라즈마 리액터.
  2. 제 1 항에 있어서,
    비드가 금속으로 이루어진 플라즈마 리액터.
  3. 제 2 항에 있어서,
    비드가 세라믹계열의 금속으로 이루어진 플라즈마 리액터.
  4. 제 2 항에 있어서,
    비드가 니켈이고, 니켈의 외주면에는 폴리에틸렌이 도금된 플라즈마 리액터.
  5. 제 2 항에 있어서,
    금속의 내부에 공간부가 형성된 플라즈마 리액터.
  6. 제 1 항에 있어서,
    비드가 유리로 형성된 플라즈마 리액터.
  7. 제 1 항에 있어서,
    비드가 합성수지로 이루어진 플라즈마 리액터.
  8. 제 1 항 내지 제 7 항 중 어느 한 항에 있어서,
    비드가 볼형상인 플라즈마 리액터.
  9. 제 1 항 내지 제 7 항 중 어느 한 항에 있어서,
    비드가 파쇄된 형상인 플라즈마 리액터.
  10. 제 1 항 내지 제 7 항 중 어느 한 항에 있어서,
    비드가 원형봉 형상인 플라즈마 리액터.
  11. 제 1 항에 있어서,
    전극이 평판인 플라즈마 리액터.
  12. 제 1 항에 있어서,
    전극이 와이어인 플라즈마 리액터.
  13. 제 1 항에 있어서,
    하우징의 상,하부에 공기유입공과 배출공이 형성되고, 공기유입공에는 압축공기 발생수단이 연결된 플라즈마 리액터.
  14. 제 13 항에 있어서,
    압축공기 발생수단이 에어 콤프레셔인 플라즈마 리액터.
  15. 유입되는 폐수를 수집 보관하는 폐수탱크와, 상기 폐수탱크와 연결된 연결관을 통해 폐수가 유입됨에 따라 플라즈마를 이용하여 폐수내의 오염물질을 처리하는 적어도 1개 이상의 플라즈마 리액터와, 상기 플라즈마 리액터에서 플라즈마가 발생되도록 펄스를 공급하는 펄스 제너레이터와, 상기 플라즈마 리액터에서 처리된 폐수가 연결관을 통해 유입됨에 따라 담겨지는 저장탱크로 구성된 플라즈마 리액터를 이용한 수처리장치.
  16. 제 15 항에 있어서,
    플라즈마를 이용하여 폐수내의 오염물질을 처리하는 복수개의 플라즈마 리액터가 직렬로 연결된 플라즈마 리액터를 이용한 수처리장치.
  17. 제 15 항에 있어서,
    플라즈마를 이용하여 폐수내의 오염물질을 처리하는 복수개의 플라즈마 리액터가 병렬로 연결된 플라즈마 리액터를 이용한 수처리장치.
  18. 제 15 항에 있어서,
    플라즈마를 이용하여 폐수내의 오염물질을 처리하는 복수개의 플라즈마 리액터가 직,병렬로 연결된 플라즈마 리액터를 이용한 수처리장치.
  19. 제 15 항 내지 제 18 항 중 어느 한 항에 있어서,
    폐수탱크와 저장탱크사이에 리턴관이 연결되고, 상기 리턴관에는 저장탱크내에 담겨진 1차 처리된 폐수를 폐수탱크측으로 재유입되도록 펌핑력을 발생시키는 펌프가 설치된 플라즈마 리액터를 이용한 수처리장치.
  20. 제 15 항 내지 제 18 항 중 어느 한 항에 있어서,
    플라즈마 리액터에 에어 콤프레셔가 연결되어 폐수내에 압축공기를 공급하도록 된 플라즈마 리액터를 이용한 수처리장치.
  21. 제 20 항에 있어서,
    플라즈마 리액터와 에어 콤프레셔를 연결하는 공기 유입관상에 레귤레이터가 설치된 플라즈마 리액터를 이용한 수처리장치.
  22. 제 15 항에 있어서,
    저장탱크에 미생물처리 리액터가 연결관으로 연결된 플라즈마 리액터를 이용한 수처리장치.
  23. 제 22 항에 있어서,
    미생물처리 리액터에 폭기수단이 구비된 플라즈마 리액터를 이용한 수처리장치.
  24. 제 23 항에 있어서,
    폭기수단이 압축공기를 발생하는 에어 콤프레셔인 플라즈마 리액터를 이용한 수처리장치.
  25. 제 23 항에 있어서,
    폭기수단이 모터의 구동에 따라 수류를 발생시키는 임펠러인 플라즈마 리액터를 이용한 수처리장치.
  26. 제 23 항에 있어서,
    미생물처리 리액터가 부유식임을 특징으로 하는 플라즈마 리액터를 이용한 수처리장치.
  27. 제 23 항에 있어서,
    미생물처리 리액터가 고정상식임을 특징으로 하는 플라즈마 리액터를 이용한 수처리장치.
  28. 오염물질이 포함된 폐수가 유입됨에 따라 이를 폐수탱크에 담아두는 단계와, 담아둔 폐수를 플라즈마 리액터측으로 흘려 폐수내에 포함된 오염물질을 처리하는 단계와, 1차 처리된 폐수를 저장탱크에 담아두었다가 방류하는 단계로 이루어진 플라즈마 리액터를 이용한 수처리방법.
  29. 제 28 항에 있어서,
    플라즈마 리액터를 직렬로 설치하여 고농도 폐수의 처리시간을 지연시키도록 된 것을 특징으로 하는 플라즈마 리액터를 이용한 수처리방법.
  30. 제 28 항에 있어서,
    플라즈마 리액터를 병렬로 설치하여 단위 시간당 저농도 폐수의 처리량을 증대시키도록 된 것을 특징으로 하는 플라즈마 리액터를 이용한 수처리방법.
  31. 제 28 항에 있어서,
    플라즈마 리액터에서 폐수를 처리시 압축공기를 불어 넣어줌을 특징으로 하는 플라즈마 리액터를 이용한 수처리방법.
  32. 제 28 항에 있어서,
    플라즈마 리액터에서 1차 처리된 폐수가 저장탱크내에 유입된 상태에서 폐수의 처리농도를 측정하여 기준치 이상이면 폐수탱크측으로 재유입시켜 1차 처리된 폐수를 플라즈마 리액터에서 재처리함을 특징으로 하는 플라즈마 리액터를 이용한 수처리방법.
  33. 제 28 항에 있어서,
    플라즈마 리액터에서 오염물질이 처리되어 저장탱크내에 담겨진 폐수를 미생물처리 리액터에서 2차 처리한 다음 방류하는 단계가 더 포함된 플라즈마 리액터를 이용한 수처리방법.
  34. 제 33 항에 있어서,
    미생물처리 리액터에서 폐수를 2차 처리시 폭기시킴을 특징으로 하는 플라즈마 리액터를 이용한 수처리방법.
KR1019970032005A 1997-07-10 1997-07-10 플라즈마 리액터와 이를 이용한 수처리 방법 및 장치 KR100223884B1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1019970032005A KR100223884B1 (ko) 1997-07-10 1997-07-10 플라즈마 리액터와 이를 이용한 수처리 방법 및 장치
GB9814694A GB2328133B (en) 1997-07-10 1998-07-08 Water treatment apparatus using plasma reactor
US09/112,320 US6228266B1 (en) 1997-07-10 1998-07-09 Water treatment apparatus using plasma reactor and method thereof
JP19580198A JP3236820B2 (ja) 1997-07-10 1998-07-10 プラズマ反応器及びそれを利用した廃水処理装置並びにその方法
DE1998130956 DE19830956A1 (de) 1997-07-10 1998-07-10 Wasseraufbereitungsapparatur, bei der ein Plasma-Reaktor eingesetzt wird, und Verfahren hierzu
CN98102848A CN1207368A (zh) 1997-07-10 1998-07-10 使用等离子体反应器的水处理设备及其方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970032005A KR100223884B1 (ko) 1997-07-10 1997-07-10 플라즈마 리액터와 이를 이용한 수처리 방법 및 장치

Publications (2)

Publication Number Publication Date
KR19990009569A true KR19990009569A (ko) 1999-02-05
KR100223884B1 KR100223884B1 (ko) 1999-10-15

Family

ID=19514027

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970032005A KR100223884B1 (ko) 1997-07-10 1997-07-10 플라즈마 리액터와 이를 이용한 수처리 방법 및 장치

Country Status (6)

Country Link
US (1) US6228266B1 (ko)
JP (1) JP3236820B2 (ko)
KR (1) KR100223884B1 (ko)
CN (1) CN1207368A (ko)
DE (1) DE19830956A1 (ko)
GB (1) GB2328133B (ko)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009128868A1 (en) * 2008-02-13 2009-10-22 Foret Plasma Labs, Llc System, method and apparatus for coupling a solid oxide high temperature electrolysis glow discharge cell to a plasma arc torch
KR101157122B1 (ko) * 2011-03-22 2012-06-22 이재혁 플라즈마 고도수처리 장치
WO2013081300A1 (ko) * 2011-12-01 2013-06-06 미륭이씨오 주식회사 플라즈마 수처리장치
KR20140093842A (ko) * 2013-01-18 2014-07-29 주식회사 프라즈마디티 미세 버블 환경에서의 플라즈마를 이용한 수처리 방법 및 이를 이용한 수처리 장치
US8833054B2 (en) 2008-02-12 2014-09-16 Foret Plasma Labs, Llc System, method and apparatus for lean combustion with plasma from an electrical arc
US8904749B2 (en) 2008-02-12 2014-12-09 Foret Plasma Labs, Llc Inductively coupled plasma arc device
KR20150062407A (ko) * 2013-11-29 2015-06-08 한국기초과학지원연구원 플라즈마 수중 방전 기법을 이용한 난분해성 유기물 처리 장치 및 방법
US9699879B2 (en) 2013-03-12 2017-07-04 Foret Plasma Labs, Llc Apparatus and method for sintering proppants
US9761413B2 (en) 2007-10-16 2017-09-12 Foret Plasma Labs, Llc High temperature electrolysis glow discharge device
US9781817B2 (en) 2007-10-16 2017-10-03 Foret Plasma Labs, Llc High temperature electrolysis glow discharge device
US9951942B2 (en) 2007-10-16 2018-04-24 Foret Plasma Labs, Llc Solid oxide high temperature electrolysis glow discharge cell
US10030195B2 (en) 2012-12-11 2018-07-24 Foret Plasma Labs, Llc Apparatus and method for sintering proppants
US10244614B2 (en) 2008-02-12 2019-03-26 Foret Plasma Labs, Llc System, method and apparatus for plasma arc welding ceramics and sapphire
US10267106B2 (en) 2007-10-16 2019-04-23 Foret Plasma Labs, Llc System, method and apparatus for treating mining byproducts
US10412820B2 (en) 2007-10-16 2019-09-10 Foret Plasma Labs, Llc System, method and apparatus for recovering mining fluids from mining byproducts
US10638592B2 (en) 2007-10-16 2020-04-28 Foret Plasma Labs, Llc System, method and apparatus for an inductively coupled plasma arc whirl filter press
US11485658B2 (en) 2019-04-26 2022-11-01 Doosan Enerbility Co., Ltd. Water treatment apparatus including underwater plasma discharge module
US11806686B2 (en) 2007-10-16 2023-11-07 Foret Plasma Labs, Llc System, method and apparatus for creating an electrical glow discharge

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001009457A (ja) * 1999-07-01 2001-01-16 Mitsubishi Heavy Ind Ltd 有害微生物の活動不活性化乃至殺傷装置
KR20010025927A (ko) * 1999-09-01 2001-04-06 지영호 초음파와 고주파 펄스 결합 고밀도 플라즈마 폐수 처리방법과 그 장치
AU775920B2 (en) * 1999-10-18 2004-08-19 Kerry Scott Lane Method and system for assay and removal of harmful toxins during processing of tobacco products
US6331321B1 (en) 2000-04-25 2001-12-18 John A. Robbins Process and apparatus for reduction of microorganisms in a conductive medium using low voltage pulsed electrical energy
AU2001250568A1 (en) * 2000-04-27 2001-11-07 Denis-Michel Ledoux Treatment of fluids
US7128816B2 (en) 2000-06-14 2006-10-31 Wisconsin Alumni Research Foundation Method and apparatus for producing colloidal nanoparticles in a dense medium plasma
JP3773759B2 (ja) * 2000-06-21 2006-05-10 株式会社神戸製鋼所 液体の高電圧処理装置
JP3773758B2 (ja) * 2000-06-21 2006-05-10 株式会社神戸製鋼所 液体処理方法およびその装置
JP3773764B2 (ja) * 2000-07-07 2006-05-10 株式会社神戸製鋼所 液体処理方法およびその装置
GB0030740D0 (en) * 2000-12-16 2001-01-31 Univ Strathclyde Gas scrubber
US8764978B2 (en) 2001-07-16 2014-07-01 Foret Plasma Labs, Llc System for treating a substance with wave energy from an electrical arc and a second source
US10188119B2 (en) 2001-07-16 2019-01-29 Foret Plasma Labs, Llc Method for treating a substance with wave energy from plasma and an electrical arc
US7857972B2 (en) 2003-09-05 2010-12-28 Foret Plasma Labs, Llc Apparatus for treating liquids with wave energy from an electrical arc
US7622693B2 (en) 2001-07-16 2009-11-24 Foret Plasma Labs, Llc Plasma whirl reactor apparatus and methods of use
US6749759B2 (en) * 2002-07-12 2004-06-15 Wisconsin Alumni Research Foundation Method for disinfecting a dense fluid medium in a dense medium plasma reactor
TWI264313B (en) * 2002-08-07 2006-10-21 Access Business Group Int Llc Nonthermal plasma air treatment system
KR100481952B1 (ko) * 2002-08-09 2005-04-13 동아정밀공업(주) 전기분해 및 프라즈마를 이용한 폐수처리 장치
JP4645936B2 (ja) * 2004-04-05 2011-03-09 独立行政法人科学技術振興機構 水の殺菌方法および装置
KR100649549B1 (ko) * 2005-10-24 2006-11-27 한국과학기술원 마이크로 비드층 반응기를 갖는 초소형 단일추진제 추력기및 그 생산방법
JP4635204B2 (ja) * 2006-01-25 2011-02-23 国立大学法人名古屋大学 水処理方法および水処理装置
CN100349804C (zh) * 2006-01-27 2007-11-21 哈尔滨工业大学 高压脉冲电场中填料床去除水中难降解有机物的方法
CA2683165C (en) 2006-04-05 2013-06-11 Foret Plasma Labs, Llc System, method and apparatus for treating liquids with wave energy from plasma
DE102006027677A1 (de) * 2006-06-14 2008-01-10 Siemens Ag Verfahren zur Reduzierung von Verunreinigungen in einem Wassersystem bei der Herstellung von Flächengebilden
KR100709983B1 (ko) 2006-08-21 2007-04-20 대전광역시(관리부서:대전과학고등학교) 저온 플라즈마를 이용한 선택적 난분해성 염색폐수 정화장치
KR100808935B1 (ko) 2006-11-22 2008-03-03 김영규 플라즈마 및 광촉매를 이용한 폐수 처리장치
US20080131333A1 (en) * 2006-12-04 2008-06-05 High Power-Factor Ac/Dc Converter With Parallel Power Processing Lateral-flow waste gas treatment device using nonthermal plasma
US7862782B2 (en) * 2007-01-12 2011-01-04 Wisconsin Alumni Research Foundation Apparatus and methods for producing nanoparticles in a dense fluid medium
US8388844B2 (en) * 2007-08-10 2013-03-05 Arizona Board Of Regents For And On Behalf Of Arizona State University Intimate coupling of photocatalysis and biodegradation in a photocatalytic circulating-bed biofilm reactor
CZ301074B6 (cs) * 2007-09-12 2009-10-29 Ústav fyziky plazmatu AV CR, v.v.i. Zarízení pro dekontaminaci a dezinfekci vodných roztoku
CA2706598C (en) * 2007-10-16 2014-03-25 Foret Plasma Labs, Llc System, method and apparatus for creating an electric glow discharge
US9445488B2 (en) 2007-10-16 2016-09-13 Foret Plasma Labs, Llc Plasma whirl reactor apparatus and methods of use
US8810122B2 (en) 2007-10-16 2014-08-19 Foret Plasma Labs, Llc Plasma arc torch having multiple operating modes
US9230777B2 (en) 2007-10-16 2016-01-05 Foret Plasma Labs, Llc Water/wastewater recycle and reuse with plasma, activated carbon and energy system
JP4889124B2 (ja) * 2007-11-01 2012-03-07 光弘 渡邉 流体処理装置
CN101469554A (zh) * 2007-12-28 2009-07-01 北京锦奥华荣科技有限公司 居民小区水循环处理系统
DE102009027144A1 (de) * 2009-06-24 2011-06-22 Judo Wasseraufbereitung GmbH, 71364 Vorrichtung zur Behandlung von Zulaufwasser für einen Wasserkreislauf
US8491789B2 (en) * 2009-07-31 2013-07-23 Brian E. Butters Water treatment process for the reduction of THM and HAA formation
KR101126871B1 (ko) * 2010-02-05 2012-03-23 금강엔지니어링 주식회사 플라즈마 방전조를 구비한 하폐수 고도처리 시스템
JP5445966B2 (ja) * 2010-06-30 2014-03-19 国立大学法人名古屋大学 水処理方法および水処理装置
US20130032547A1 (en) * 2011-03-01 2013-02-07 Pillai Suresh D Stabilization and disinfection of wastes using high energy e-beam and chemical oxidants
CN102614860B (zh) * 2012-02-16 2013-10-16 北京工业大学 一种低温等离子体催化剂、制备方法及其应用
CN102744147A (zh) * 2012-07-12 2012-10-24 河南东大矿业股份有限公司 一种单独建设年产20万吨铝土矿选矿成套设备
WO2014153015A1 (en) 2013-03-14 2014-09-25 Florida State University Research Foundation, Inc. Formation of alcohols and carbonyl compounds from hexane and cyclohexane in a liquid film plasma reactor
US10350572B2 (en) 2013-03-14 2019-07-16 Florida State University Research Foundation, Inc. Simultaneous on-site production of hydrogen peroxide and nitrogen oxides from air and water in a low power flowing liquid film plasma discharge for use in agriculture
MX2015012869A (es) * 2013-03-15 2016-05-24 Foret Plasma Labs Llc Sistema, metodo y aparato para el tratamiento de productos secundarios de mineria.
US9932252B2 (en) 2013-05-01 2018-04-03 Nch Corporation System and method for treating water systems with high voltage discharge and ozone
US9868653B2 (en) * 2013-05-01 2018-01-16 Nch Corporation System and method for treating water systems with high voltage discharge and ozone
US9533898B2 (en) * 2013-07-18 2017-01-03 Atlas Agriculture Systems, Inc. Systems and methods for plasma-based fluid treatment
US20150110932A1 (en) * 2013-10-18 2015-04-23 Clarkson University Methods and Systems for Inactivation of Bacteria in Liquid Using Liquid-Phase Electrical Discharge Plasmas
CN104583131B (zh) * 2013-11-18 2020-09-18 松下知识产权经营株式会社 液体处理装置以及液体处理方法
CN104003590B (zh) * 2014-06-19 2015-08-12 上海环境卫生工程设计院 以低温等离子体耦合生物法处理垃圾渗滤液的装置及方法
CN104150711A (zh) * 2014-08-05 2014-11-19 中山大学 低温等离子体结合生化处理难降解有机废水工艺
CN104609649A (zh) * 2015-01-05 2015-05-13 太原理工大学 一种含高浓度苯酚废水的处理方法及装置
US10662086B2 (en) 2015-05-28 2020-05-26 The Regents Of The University Of Michigan Plasma water purifier having packed bed discharges with water dielectric barriers
CN106298421A (zh) * 2015-06-23 2017-01-04 应用材料公司 用以消除来自离子注入工艺的自燃副产物的方法和装置
CN105481047A (zh) * 2015-12-07 2016-04-13 江苏博大环保股份有限公司 一种等离子体废水处理装置
CN106277177A (zh) * 2016-10-25 2017-01-04 浙江富春江环保热电股份有限公司 等离子体协同光催化处理垃圾渗滤液的装置及方法
US10556817B2 (en) 2017-01-30 2020-02-11 Florida State University Research Foundation, Inc. Gas-liquid plasma and bioreactor system and method for remediation of liquids and gases
CN106865686A (zh) * 2017-04-17 2017-06-20 安徽华丰节能环保科技有限公司 一种等离子体医疗机构污水处理成套设备
US10822255B2 (en) * 2017-07-14 2020-11-03 Doosan Heavy Industries & Construction Co., Ld Water treatment apparatus using underwater plasma discharge and water treatment system including same
DE102017118123A1 (de) * 2017-08-09 2019-02-14 Vorwerk & Co. Interholding Gmbh Fluidaufbereitungsanordnung und Verfahren zum Betreiben einer Fluidaufbereitungsanordnung
JP6817594B2 (ja) 2017-12-01 2021-01-20 パナソニックIpマネジメント株式会社 液体処理装置
CN108483557A (zh) * 2018-05-09 2018-09-04 天津大学 高能电离协同光催化处理电镀废水的装置
US10988390B2 (en) 2018-09-28 2021-04-27 Florida State University Research Foundation, Inc. Gas/liquid plasma reactor with pulsed power supply and secondary direct current electrodes
WO2020181141A1 (en) * 2019-03-05 2020-09-10 University Of Rhode Island Board Of Trustees In situ destruction of pfas compounds
CN110451606A (zh) * 2019-08-12 2019-11-15 浙江工业大学 一种废水处理装置
US11492274B2 (en) 2020-05-28 2022-11-08 National Chiao Tung University Liquid treatment apparatus
CN112266124A (zh) * 2020-11-10 2021-01-26 安徽汇泽通环境技术有限公司 一种污水处理装置
US20210221706A1 (en) * 2021-01-14 2021-07-22 Burak Karadag Plasma-Based Water Treatment Apparatus
US11471848B1 (en) * 2021-10-22 2022-10-18 Advanced Fusion Systems Llc Universal chemical processor

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US501732A (en) * 1893-07-18 Method of and apparatus for purifying water
US481979A (en) * 1892-09-06 Apparatus for electrically purifying water
US3798784A (en) * 1970-03-31 1974-03-26 Chinoin Gyogyszer Es Vegyeszet Process and apparatus for the treatment of moist materials
US4351734A (en) * 1977-05-02 1982-09-28 Ametek, Inc. Spark cell ozone generator
US4265747A (en) * 1979-05-22 1981-05-05 Sterling Drug Inc. Disinfection and purification of fluids using focused laser radiation
US4624765A (en) * 1984-04-17 1986-11-25 Exxon Research And Engineering Company Separation of dispersed liquid phase from continuous fluid phase
US5048404A (en) * 1985-05-31 1991-09-17 Foodco Corporation High pulsed voltage systems for extending the shelf life of pumpable food products
US4737885A (en) * 1986-01-21 1988-04-12 Nippon Paint Co., Ltd. Plasma generator
FR2632947B1 (fr) * 1988-06-16 1991-10-18 Omnium Traitement Valorisa Procede et dispositif d'epuration d'eaux residuaires sur filtre biologique a particules moins denses que l'eau
US5348629A (en) * 1989-11-17 1994-09-20 Khudenko Boris M Method and apparatus for electrolytic processing of materials
KR920003216B1 (en) * 1990-03-03 1992-04-24 Samsung Electronic Apparatus for the production of ozone
US5326530A (en) * 1991-01-22 1994-07-05 Iit Research Institute Energy-efficient electromagnetic elimination of noxious biological organisms
US5368724A (en) * 1993-01-29 1994-11-29 Pulsed Power Technologies, Inc. Apparatus for treating a confined liquid by means of a pulse electrical discharge
CA2104355C (en) * 1993-08-18 1997-06-17 Ion I. Inculet Method and apparatus for ozone generation and treatment of water
JPH07148491A (ja) * 1993-11-29 1995-06-13 Yoshiaki Nagaura 電気濾過方法
US5549795A (en) * 1994-08-25 1996-08-27 Hughes Aircraft Company Corona source for producing corona discharge and fluid waste treatment with corona discharge
US5893979A (en) * 1995-11-02 1999-04-13 Held; Jeffery S. Method for dewatering previously-dewatered municipal waste-water sludges using high electrical voltage
AU729396B2 (en) * 1996-04-04 2001-02-01 Mitsubishi Heavy Industries, Ltd. Apparatus and method for treating exhaust gas and pulse generator used therefor
US5746984A (en) * 1996-06-28 1998-05-05 Low Emissions Technologies Research And Development Partnership Exhaust system with emissions storage device and plasma reactor
US5879555A (en) * 1997-02-21 1999-03-09 Mockba Corporation Electrochemical treatment of materials

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10117318B2 (en) 2007-10-16 2018-10-30 Foret Plasma Labs, Llc High temperature electrolysis glow discharge device
US10184322B2 (en) 2007-10-16 2019-01-22 Foret Plasma Labs, Llc System, method and apparatus for creating an electrical glow discharge
US9781817B2 (en) 2007-10-16 2017-10-03 Foret Plasma Labs, Llc High temperature electrolysis glow discharge device
US10638592B2 (en) 2007-10-16 2020-04-28 Foret Plasma Labs, Llc System, method and apparatus for an inductively coupled plasma arc whirl filter press
US10412820B2 (en) 2007-10-16 2019-09-10 Foret Plasma Labs, Llc System, method and apparatus for recovering mining fluids from mining byproducts
US10395892B2 (en) 2007-10-16 2019-08-27 Foret Plasma Labs, Llc High temperature electrolysis glow discharge method
US9951942B2 (en) 2007-10-16 2018-04-24 Foret Plasma Labs, Llc Solid oxide high temperature electrolysis glow discharge cell
US10018351B2 (en) 2007-10-16 2018-07-10 Foret Plasma Labs, Llc Solid oxide high temperature electrolysis glow discharge cell
US10267106B2 (en) 2007-10-16 2019-04-23 Foret Plasma Labs, Llc System, method and apparatus for treating mining byproducts
US9644465B2 (en) 2007-10-16 2017-05-09 Foret Plasma Labs, Llc System, method and apparatus for creating an electrical glow discharge
US11806686B2 (en) 2007-10-16 2023-11-07 Foret Plasma Labs, Llc System, method and apparatus for creating an electrical glow discharge
US9761413B2 (en) 2007-10-16 2017-09-12 Foret Plasma Labs, Llc High temperature electrolysis glow discharge device
US8833054B2 (en) 2008-02-12 2014-09-16 Foret Plasma Labs, Llc System, method and apparatus for lean combustion with plasma from an electrical arc
US9869277B2 (en) 2008-02-12 2018-01-16 Foret Plasma Labs, Llc System, method and apparatus for lean combustion with plasma from an electrical arc
US8904749B2 (en) 2008-02-12 2014-12-09 Foret Plasma Labs, Llc Inductively coupled plasma arc device
US10244614B2 (en) 2008-02-12 2019-03-26 Foret Plasma Labs, Llc System, method and apparatus for plasma arc welding ceramics and sapphire
US10098191B2 (en) 2008-02-12 2018-10-09 Forest Plasma Labs, LLC Inductively coupled plasma arc device
WO2009128868A1 (en) * 2008-02-13 2009-10-22 Foret Plasma Labs, Llc System, method and apparatus for coupling a solid oxide high temperature electrolysis glow discharge cell to a plasma arc torch
KR101157122B1 (ko) * 2011-03-22 2012-06-22 이재혁 플라즈마 고도수처리 장치
WO2012128561A2 (ko) * 2011-03-22 2012-09-27 자원전자 주식회사 플라즈마 고도수처리 장치
WO2012128561A3 (ko) * 2011-03-22 2013-01-03 자원전자 주식회사 플라즈마 고도수처리 장치
WO2013081300A1 (ko) * 2011-12-01 2013-06-06 미륭이씨오 주식회사 플라즈마 수처리장치
US10030195B2 (en) 2012-12-11 2018-07-24 Foret Plasma Labs, Llc Apparatus and method for sintering proppants
KR20140093842A (ko) * 2013-01-18 2014-07-29 주식회사 프라즈마디티 미세 버블 환경에서의 플라즈마를 이용한 수처리 방법 및 이를 이용한 수처리 장치
US9699879B2 (en) 2013-03-12 2017-07-04 Foret Plasma Labs, Llc Apparatus and method for sintering proppants
KR20150062407A (ko) * 2013-11-29 2015-06-08 한국기초과학지원연구원 플라즈마 수중 방전 기법을 이용한 난분해성 유기물 처리 장치 및 방법
US11485658B2 (en) 2019-04-26 2022-11-01 Doosan Enerbility Co., Ltd. Water treatment apparatus including underwater plasma discharge module

Also Published As

Publication number Publication date
JPH1170386A (ja) 1999-03-16
GB2328133A (en) 1999-02-10
GB9814694D0 (en) 1998-09-02
KR100223884B1 (ko) 1999-10-15
JP3236820B2 (ja) 2001-12-10
DE19830956A1 (de) 1999-01-14
GB2328133B (en) 2001-08-15
US6228266B1 (en) 2001-05-08
CN1207368A (zh) 1999-02-10

Similar Documents

Publication Publication Date Title
KR100223884B1 (ko) 플라즈마 리액터와 이를 이용한 수처리 방법 및 장치
EP1702890B1 (en) Treatment of a waste stream through production and utilization of oxyhydrogen gas
US7264732B2 (en) Continuous ammonium removal systems
Gutierrez et al. A review of electrochemical treatments for colour elimination
US7837882B2 (en) Treatment of a waste stream through production and utilization of oxyhydrogen gas
KR100808935B1 (ko) 플라즈마 및 광촉매를 이용한 폐수 처리장치
KR20010037551A (ko) 중공사막 필터를 이용한 초음파 폐수처리방법과 그 장치
Yin et al. Case analysis on textile wastewater subjected to combined physicochemical–biological treatment and ozonation
KR200186341Y1 (ko) 초음파와 고주파 펄스 결합 고밀도 플라즈마 폐수처리장치
CN103466755A (zh) 高压液下气体射流放电等离子体处理污水的装置和方法
KR20010044325A (ko) 자외선과 오존을 이용한 고도산화처리에 의한 수처리장치
KR100709983B1 (ko) 저온 플라즈마를 이용한 선택적 난분해성 염색폐수 정화장치
KR100435002B1 (ko) 전해부상방법을 이용한 수처리 장치 및 그 운전방법
KR101051798B1 (ko) 마이크로 버블을 이용한 난분해성 악성 폐수처리장치
KR100481699B1 (ko) 수처리용 전기장 반응장치
KR200407858Y1 (ko) 폐수 및 악취 다중 플라스마 처리 장치
KR200326013Y1 (ko) 수처리용 전기장 반응장치
KR20010020053A (ko) 초음파 결합 고밀도 플라즈마 폐수처리 방법과 그 장치
KR20030076931A (ko) 고도산화처리시설
KR0151355B1 (ko) 오.폐수의 열산화처리방법 및 그 장치
KR20070051604A (ko) 폐수 및 악취 다중 플라스마 처리방법
CN107285548A (zh) 冷等离子体聚变技术污水处理系统和方法
Latha et al. Treatment Technologies of Textile Dyeing Effluent A Review
Da Silva et al. Advanced technologies based on ozonation for water treatment
Hirotsuji et al. Advanced ozone water-treatment technology

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130515

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20140620

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20150702

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20160701

Year of fee payment: 18

EXPY Expiration of term