KR102594784B1 - 비수 전해액 이차 전지 및 전지 모듈 - Google Patents

비수 전해액 이차 전지 및 전지 모듈 Download PDF

Info

Publication number
KR102594784B1
KR102594784B1 KR1020210072932A KR20210072932A KR102594784B1 KR 102594784 B1 KR102594784 B1 KR 102594784B1 KR 1020210072932 A KR1020210072932 A KR 1020210072932A KR 20210072932 A KR20210072932 A KR 20210072932A KR 102594784 B1 KR102594784 B1 KR 102594784B1
Authority
KR
South Korea
Prior art keywords
active material
soc
negative electrode
aqueous electrolyte
secondary battery
Prior art date
Application number
KR1020210072932A
Other languages
English (en)
Other versions
KR20220003448A (ko
Inventor
마사히로 요시오카
요시토모 다케바야시
Original Assignee
도요타 지도샤(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도요타 지도샤(주) filed Critical 도요타 지도샤(주)
Publication of KR20220003448A publication Critical patent/KR20220003448A/ko
Application granted granted Critical
Publication of KR102594784B1 publication Critical patent/KR102594784B1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3828Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/08Measuring resistance by measuring both voltage and current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 개시에 의하면, 전극체 내부에서의 비수 전해액의 부족을 적절히 방지하여, 비수 전해액 이차 전지의 전지 성능을 바람직한 상태로 유지하는 기술이 제공된다. 여기에 개시되는 비수 전해액 이차 전지는, 전극체 (20) 와 비수 전해액 (30) 을 구비하고 있다. 이러한 전극체 (20) 는, 당해 전극체 (20) 의 내외를 비수 전해액 (30) 이 유통할 때의 유로인 전해액 유통로 (20d) 를 구비하고 있다. 그리고, 부극 합재층 (54) 중 전해액 유통로 (20d) 와 접하는 영역을 댐부 (54a) 로 하고, 댐부 (54a) 보다 중앙측에 위치하는 영역을 보액부 (54b) 로 했을 때, 댐부 (54a) 는 보액부 (54b) 에 함유되는 부극 활물질과 비교해서 정극 활물질에 대한 전위가 높으며, 또한 SOC 의 증감에 수반되는 팽창 수축률이 큰 부극 활물질을 함유한다. 이로써, 댐부 (54a) 가 팽창되는 충전 상태에 있어서, 댐부 (54a) 에 의해서 전해액 유통로 (20d) 를 폐색시킬 수 있기 때문에, 비수 전해액 (30) 의 유출을 억제할 수 있다.

Description

비수 전해액 이차 전지 및 전지 모듈{NONAQUEOUS ELECTROLYTE SECONDARY BATTERY AND BATTERY MODULE}
본 발명은 비수 전해액 이차 전지와, 당해 비수 전해액 이차 전지를 구비한 전지 모듈에 관한 것이다. 본 출원은 2020년 7월 1일에 출원된 일본국 특허출원 제2020-114022호에 기초하는 우선권을 주장하고, 그 출원의 전체 내용은 본 명세서 중에 참조로서 포함되어 있다.
리튬 이온 이차 전지 등의 비수 전해액 이차 전지는, 경량이며 또한 에너지 밀도가 높기 때문에, 퍼스널 컴퓨터, 휴대 단말기 등에 탑재되는 포터블 전원이나, 전기 자동차 (EV), 하이브리드 자동차 (HV) 등에 탑재되는 차량 구동용 전원 등에 널리 사용되고 있다. 이러한 비수 전해액 이차 전지는, 정극 및 부극을 갖는 전극체와, 당해 전극체의 내부로 침투한 비수 전해액을 구비하고 있다. 또한, 이러한 이차 전지의 전극 (정극 및 부극) 은 각각, 전극 활물질을 함유하는 전극 합재층을 구비하고 있다. 이들 전극 활물질은, 전하 담체 (예를 들어, Li 이온) 를 삽입/탈리할 수 있는 입상 재료이다. 일례로서, 부극측의 전극 활물질 (부극 활물질) 에는, 탄소 (C) 를 함유하는 탄소계 활물질이나, 규소 (Si), 주석 (Sn) 등을 함유하는 금속계 활물질 등이 사용된다. 특허문헌 1 에는, 금속계 활물질인 산화규소 (SiO) 를 부극 활물질로서 함유하는 비수 전해액 이차 전지의 일례가 개시되어 있다.
그런데, 이러한 종류의 비수 전해액 이차 전지에서는, 충방전에 수반되는 전하 담체의 삽입/탈리에 의해서 부극 활물질의 팽창/수축이 일어난다. 이 때문에, 급속한 충방전 (하이레이트 충방전) 을 반복하면, 부극 합재층의 급격한 체적 변화에 의해서 전극체 내부의 비수 전해액이 외부로 압출되는 경우가 있다. 이로써, 전극체 내부에서 비수 전해액이 부족하면, 전지 저항의 상승 등의 성능 열화 (이하,「하이레이트 열화」라고도 한다) 가 발생될 우려가 있다. 이러한 비수 전해액의 누출에 의한 하이레이트 열화를 방지하기 위한 대책이 종래부터 다양하게 제안되어 있다. 예를 들어, 특허문헌 2 에서는, 복수의 이차 전지를 모아서 구속한 조전지를 구축할 때, 발전 요소 (전극체) 의 단부 (端部) 에 구속압이 걸리며, 또한 중앙부에 구속압이 걸리지 않도록 이차 전지 사이에 스페이서를 배치하고 있다.
일본국 공개특허공보 제2019-160435호 일본국 공개특허공보 제2012-230837호
그러나, 최근의 전지 성능에 대한 요구가 고조됨으로 인해서, 전극체 내부에서의 비수 전해액의 부족을 더욱 적절히 방지하여, 전지 성능을 바람직한 상태로 유지할 수 있는 비수 전해액 이차 전지의 개발이 요구되고 있다. 본 발명자는, 이러한 요구에 부응하기 위해서 검토를 거듭한 결과, 특허문헌 2 와 같은 종래 기술은, 비수 전해액의 누출에 의한 하이레이트 열화의 발생을 억제할 수 있지만, 한번 발생된 하이레이트 열화를 해소하여, 전지 성능을 회복시키는 것이 곤란하다고 생각하였다.
구체적으로는, 일반적인 전극체에서는, 비수 전해액이 유통되는 유로 (전해액 유통로) 를 개재하여 전극체의 내외가 연통되어 있다. 특허문헌 2 에 기재된 기술과 같이, 전극체의 특정 영역에 집중하여 압력을 가하면, 전해액 유통로가 폐색되기 때문에, 비수 전해액의 누출에 의한 하이레이트 열화의 발생을 억제할 수 있다. 그러나, 전해액 유통로를 폐색시키면, 전극체의 내부로의 비수 전해액의 침투도 억제되기 때문에, 한번 누출된 비수 전해액을 다시 침투시키는 회복 처리가 매우 곤란해진다. 이러한 점을 고려하여, 본 발명자는, 비수 전해액 이차 전지의 전지 성능을 바람직한 상태로 유지하기 위해서는, 전극체 외부로의 비수 전해액의 누출을 억제할 뿐만 아니라, 전극체 내부로 비수 전해액을 용이하게 침투시킬 수 있는 기술이 필요해진다고 생각하였다.
여기에 개시되는 기술은, 상기 서술한 과제를 해결하기 위해서 이루어진 것으로서, 전극체 내부에서의 비수 전해액의 부족을 적절히 방지하여, 비수 전해액 이차 전지의 전지 성능을 바람직한 상태로 유지하는 것을 목적으로 한다.
상기 서술한 목적을 달성하기 위해서, 아래의 구성의 비수 전해액 이차 전지가 제공된다.
여기에 개시되는 비수 전해액 이차 전지는, 정극, 부극 및 세퍼레이터가 겹쳐진 전극체와, 전극체의 내부로 침투한 비수 전해액을 구비하고 있다. 이러한 비수 전해액 이차 전지의 정극은, 정극 활물질을 함유하는 정극 합재층이 띠상의 정극 집전박의 표면에 도공됨으로써 형성되고, 부극은, 부극 활물질을 함유하는 부극 합재층이 띠상의 부극 집전박의 표면에 도공됨으로써 형성되어 있다. 또한, 전극체는, 당해 전극체의 내외를 비수 전해액이 유통할 때의 유로인 전해액 유통로를 구비하고 있다. 그리고, 부극 합재층 중, 전해액 유통로와 접하는 영역을 댐부로 하고, 댐부보다 중앙측에 위치하는 영역을 보액부로 했을 때, 댐부는, 보액부에 함유되는 부극 활물질과 비교해서, 정극 활물질에 대한 전위가 높으며, 또한 SOC (State Of Charge) 의 증감에 수반되는 팽창 수축률이 큰 부극 활물질을 함유한다.
상기 구성의 비수 전해액 이차 전지의 전극체에서는, 전해액 유통로와 접하는 영역에 댐부가 형성되어 있다. 이 댐부는, 정극 활물질에 대한 전위가 상대적으로 높은 부극 활물질을 함유하고 있기 때문에, 충전 중에 전하 담체가 우선적으로 공급되어 보액부보다 먼저 팽창된다. 그리고, 이 댐부에 함유되는 부극 활물질은, SOC 의 증감에 수반되는 팽창 수축률이, 보액부에 함유되는 부극 활물질보다 크다. 이 때문에, 댐부가 팽창되는 충전 상태에 있어서, 보액부보다 두꺼워진 댐부가 전해액 유통로를 폐색시킨다. 한편으로, 댐부가 수축되는 충전 상태에 있어서는, 댐부가 보액부보다 얇아지기 때문에 전해액 유통로가 개방된다. 이 때문에, 상기 구성의 비수 전해액 이차 전지는, 댐부가 충분히 팽창된 상태에서 거의 체적 변화되지 않으며, 또한, 보액부가 팽창 수축되는 충전 영역 (이하「상용 범위」라고 한다) 을 유지하면서 충방전을 행함으로써, 전극체 내로부터의 비수 전해액의 누출을 억제할 수 있다. 한편으로, 이 비수 전해액 이차 전지는, 보액부가 충분히 수축된 상태에서 거의 체적 변화되지 않으며, 또한, 댐부의 팽창 수축이 일어나는 충전 영역 (이하「회복 범위」라고 한다) 을 유지하면서 충방전을 행함으로써, 전극체 내부로 비수 전해액을 용이하게 침투시켜 전지 성능을 회복할 수 있다. 이상과 같이, 여기에 개시되는 기술에 의하면, 전극체 내부에서의 비수 전해액의 부족을 적절히 방지하여, 비수 전해액 이차 전지의 전지 성능을 바람직한 상태로 유지할 수 있다.
여기에 개시되는 비수 전해액 이차 전지의 일 양태에 있어서, 정극 합재층은, 리튬 (Li) 을 함유하는 정극 활물질을 함유한다.
여기에 개시되는 기술은, 예를 들어 Li 를 함유하는 정극 활물질을 사용한 비수 전해액 이차 전지 (즉, 리튬 이온 이차 전지) 에 적절히 적용할 수 있다.
상기 Li 를 함유하는 정극 활물질을 사용하는 양태에 있어서, 보액부는, 탄소 (C) 를 함유하는 탄소계 활물질을 함유하는 것이 바람직하다.
탄소계 활물질은, 비교적 충방전 반응이 안정되기 쉬운 경향이 있기 때문에, 충방전 반응의 주된 장소가 되는 보액부에 사용하는 부극 활물질로서 바람직하다.
또한, 보액부에 탄소계 활물질을 사용하는 양태에 있어서, 댐부는 리튬에 대한 전위가 0.1 V 이상인 부극 활물질을 함유하는 것이 바람직하다.
탄소계 활물질은 Li 에 대한 전위가 0.05 V 정도이다. 이러한 탄소계 활물질을 함유하는 보액부에 대해서 댐부를 팽창하기 쉽도록 하여, 상용 범위를 넓힌다는 관점에서, 댐부에 함유되는 활물질은, Li 에 대한 전위가 0.1 V 이상인 것이 바람직하다.
또, 상기 보액부에 탄소계 활물질을 사용하는 양태에 있어서, 댐부는, SOC 의 증감에 수반되는 팽창 수축률이 150 % 이상인 부극 활물질을 함유하는 것이 바람직하다.
탄소계 활물질은, SOC 의 증감에 수반되는 팽창 수축률이 12 % 정도이다. 이러한 탄소계 활물질을 함유하는 보액부에 대해서 댐부를 크게 팽창시켜, 전해액 유통로를 적절히 폐색시킨다는 관점에서, 댐부에 함유되는 활물질은, SOC 의 증감에 수반되는 팽창 수축률이 150 % 이상인 것이 바람직하다. 또한, 본 명세서에 있어서「SOC 의 증감에 수반되는 팽창 수축률 (간단히「팽창 수축률」이라고도 한다)」은, SOC 를 0 % 부터 100 % 까지 변동시켰을 때의 부극 활물질의 체적의 증가량을 나타내는 것이다.
또, 상기 보액부에 탄소계 활물질을 사용하는 양태에 있어서, 댐부는, 규소 (Si), 주석 (Sn), 안티몬 (Sb), 비스무트 (Bi) 로 이루어지는 군에서 선택되는 적어도 1 종을 함유하는 금속계 활물질을 함유하는 것이 바람직하다.
이들 금속계 활물질은, Li 에 대한 전위가 탄소계 활물질보다 높으며, 또한 팽창 수축률이 탄소계 활물질보다 크다. 이 때문에, 이들 금속계 활물질을 댐부에 함유시킴으로써, 상기 서술한 SOC 의 조절에 의한 전해액 유통로의 폐색/개방을 적절히 행할 수 있다.
또한, 상기 댐부에 금속계 활물질을 사용하는 양태에 있어서, 댐부는, 탄소 (C) 를 함유하는 탄소계 활물질과, 금속계 활물질을 혼합한 부극 활물질을 함유하는 것이 바람직하다.
이로써, 댐부에 있어서의 충방전 반응을 안정화시킨 후에, 여기에 개시되는 기술의 효과를 적절히 발휘시킬 수 있다.
또한, 탄소계 활물질과 금속계 활물질을 함유하는 혼합 재료를 댐부에 사용하는 양태에 있어서, 댐부에 있어서의 부극 활물질의 총량에 대한 금속계 활물질의 함유량이 0.5 wt% 이상 3.0 wt% 이하인 것이 바람직하다.
SOC 의 조절에 의한 전해액 유통로의 폐색/개방을 적절히 이루어지게 한다는 관점에서, 혼합 재료에 있어서의 금속계 활물질의 함유량은 0.5 wt% 이상이 바람직하다. 한편, 금속계 활물질의 함유량이 지나치게 많아지면, 댐부의 팽창이 과잉이 되어, 도전 패스 끊김 등에 의한 전지 용량의 저하가 발생될 가능성이 있다. 이러한 점을 고려하면, 금속계 활물질의 함유량은 3.0 wt% 이하가 바람직하다.
여기에 개시되는 비수 전해액 이차 전지의 전극체는, 정극, 부극 및 세퍼레이터가 겹쳐 감긴 권회 전극체여도 된다. 이러한 권회 전극체는, 권회축 방향의 양 측면에 전해액 유통로를 구비하고 있다. 이와 같은 경우, 댐부는, 부극 합재층의 권회축 방향의 양 단부에 형성되어 있는 것이 바람직하다.
상기 구성의 권회 전극체를 사용하는 경우, 부극 합재층의 권회축 방향의 양 단부에 댐부를 형성함으로써, 비수 전해액의 누출과 침투를 적절히 제어할 수 있다. 또한, 권회 전극체는, 전해액 유통로가 2 개 지점에 한정되기 때문에, 비수 전해액의 침투가 비교적 곤란하다. 그러나, 여기에 개시되는 비수 전해액 이차 전지에서는, 댐부를 수축시켰을 때에 전해액 유통로가 종래보다 넓게 개방되기 때문에, 권회 전극체의 내부로 용이하게 비수 전해액을 침투시킬 수 있다.
또한, 여기에 개시되는 기술의 다른 측면으로서 전지 모듈이 제공된다. 이러한 전지 모듈은, 외부 기기와 전기적으로 접속된 전원과, 당해 전원의 충방전을 제어하는 제어부를 구비하고 있다. 이러한 전지 모듈의 전원은, 상기 서술한 각 양태에 관한 비수 전해액 이차 전지를 적어도 1 개 구비하고 있다. 또한, 제어부는, 전원의 하이레이트 열화를 검출하는 열화 검출부와, 전원의 SOC 를 측정하는 SOC 측정부와, 전원의 충방전을 제어함으로써 SOC 를 조절하는 SOC 조절부를 구비하고 있다. 그리고, SOC 조절부는, 열화 검출부의 검출 결과에 기초하여 하이레이트 열화가 발생되고 있지 않다고 판단하는 동안, 보액부보다 댐부가 두꺼워지도록 전원의 SOC 를 유지하고, 또한 열화 검출부의 검출 결과에 기초하여 하이레이트 열화가 발생되었다고 판단했을 때, 보액부보다 댐부가 얇아지도록 전원의 SOC 를 저하시킨다.
상기 구성의 전지 모듈은, 전원에 하이레이트 열화가 발생되고 있지 않지 않다고 판단하는 동안, 보액부보다 댐부가 두꺼워지도록 전원의 SOC 를 상용 범위로 유지한다. 이로써, 전해액 유통로를 폐색시켜 전극체의 외부로 비수 전해액이 누출되는 것을 억제한다. 한편, 상기 구성의 전지 모듈은, 전원에 하이레이트 열화가 발생되었다고 판단했을 때, 보액부보다 댐부가 얇아지도록 전원의 SOC 를 회복 범위까지 저하시킨다. 이로써, 전해액 유통로가 개방되기 때문에, 전극체 내부로 비수 전해액이 침투하여 하이레이트 열화가 해소된다. 이상과 같이, 여기에 개시되는 전지 모듈에 의하면, 상기 서술한 비수 전해액 이차 전지의 효과를 적절히 발휘하여, 당해 전지의 전지 성능을 바람직한 상태로 유지할 수 있다.
여기에 개시되는 전지 모듈의 일 양태에 있어서, SOC 측정부는, 전원의 충방전에 있어서의 전류치를 적산함으로써, 당해 전원의 SOC 를 측정한다.
전원의 SOC 는, 예를 들어 전류치의 적산에 의해서 산출할 수 있다.
여기에 개시되는 전지 모듈의 일 양태에 있어서, 열화 검출부는, 전원의 하이레이트 열화를 수치화한 평가치 (D) 를 산출하면 된다. 이 경우, SOC 조절부는 평가치 (D) 의 적산치 (ΣD) 가 열화 판정 기준치 (TD1) 를 하회하고 있는 동안, 보액부보다 댐부가 두꺼워지도록 전원의 SOC 를 조절하며, 또한 평가치 (D) 의 적산치 (ΣD) 가 열화 판정 기준치 (TD1) 를 상회했을 때, 보액부보다 댐부가 얇아지도록 전원의 SOC 를 저하시킨다.
이와 같이, 전원의 하이레이트 열화의 상태를 수치화함으로써, SOC 를 상용 범위로 유지하면서 충방전하는 통상 가동과, SOC 를 회복 범위로 유지하면서 충방전하는 회복 처리라는 2 개의 가동 모드를 적절히 전환할 수 있다.
도 1 은, 일 실시형태에 관한 리튬 이온 이차 전지의 내부 구성을 모식적으로 나타내는 단면도이다.
도 2 는, 일 실시형태에 관한 리튬 이온 이차 전지의 전극체를 모식적으로 나타내는 사시도이다.
도 3 은, 일 실시형태에 관한 리튬 이온 이차 전지의 SOC 를 상용 범위로 했을 때의 전극체의 단면을 모식적으로 나타내는 도면이다.
도 4 는, 일 실시형태에 관한 리튬 이온 이차 전지의 SOC 를 회복 범위로 했을 때의 전극체의 단면을 모식적으로 나타내는 도면이다.
도 5 는, 일 실시형태에 관한 전지 모듈을 설명하는 블록도이다.
도 6 은, 일 실시형태에 관한 전지 모듈의 SOC 조절을 설명하는 플로 챠트도이다.
도 7 은, 댐부와 보액부를 구비한 2 차 전지의 충전에 있어서의 부극 전위와 SOC 의 관계를 설명하는 그래프이다.
도 8 은, 다른 실시형태에 관한 리튬 이온 이차 전지의 전극체를 모식적으로 나타내는 사시도이다.
이하, 여기에 개시되는 기술의 일 실시형태에 대해서 도면을 참조하면서 설명한다. 단, 아래의 실시형태는 여기에 개시되는 기술을 한정하는 것을 의도한 것은 아니다. 또한, 본 명세서에 있어서 특별히 언급하는 사항 이외의 사항으로서, 여기에 개시되는 기술의 실시에 필요한 사항 (예를 들어, 비수 전해액 이차 전지의 제조 순서 등) 은, 당해 분야에 있어서의 종래 기술에 기초하여 파악될 수 있다. 즉, 여기에 개시되는 기술은, 본 명세서에 명시되어 있는 내용과 당해 분야에 있어서의 기술 상식에 기초하여 실시할 수 있다.
또, 본 명세서에서 나타내는 도면에서는, 동일한 작용을 얻는 부재ㆍ부위에 동일한 부호를 붙여 설명한다. 또한, 각 도면에 있어서의 치수 관계 (길이, 폭, 두께 등) 는, 실제의 치수 관계를 반영하는 것은 아니다. 그리고, 각 도면에 있어서의 부호 X 는「(전지의) 폭 방향」을 나타내고, 부호 Y 는「(전지의) 깊이 방향」을 나타내며, 부호 Z 는「(전지의) 높이 방향」을 나타낸다. 단, 이방향들은 설명의 편의상 정한 것으로서, 여기에 개시되는 비수 전해액 이차 전지를 사용할 때의 설치 양태를 한정하는 것을 의도한 것은 아니다.
또한, 본 명세서에 있어서의「비수 전해액 이차 전지」란, 전해질로서 비수 전해액을 사용한 이차 전지를 말한다. 또한,「이차 전지」란, 정극과 부극 사이를 전하 담체가 이동함으로써, 충방전을 반복할 수 있는 전지를 말한다. 이러한 이차 전지의 일례로서, 리튬 (Li) 을 함유하는 정극 활물질을 사용하고, 전하 담체가 리튬 이온 (Li+) 인 리튬 이온 이차 전지를 들 수 있다. 아래의 실시형태에서는, 이러한 리튬 이온 이차 전지를 예로 들어 설명한다.
1. 리튬 이온 이차 전지
도 1 은, 본 실시형태에 관한 리튬 이온 이차 전지의 내부 구성을 모식적으로 나타내는 단면도이다. 도 2 는, 본 실시형태에 관한 리튬 이온 이차 전지의 전극체를 모식적으로 나타내는 사시도이다. 그리고, 도 3 은, 본 실시형태에 관한 리튬 이온 이차 전지의 SOC 를 상용 범위로 했을 때의 전극체의 단면을 모식적으로 나타내는 도면이다. 도 4 는, 본 실시형태에 관한 리튬 이온 이차 전지의 SOC 를 회복 범위로 했을 때의 전극체의 단면을 모식적으로 나타내는 도면이다.
(1) 전체 구성
도 1 에 나타내는 바와 같이, 본 실시형태에 관련된 리튬 이온 이차 전지 (100) 는, 전극체 (20) 와 비수 전해액 (30) 을 구비하고 있다. 이러한 전극체 (20) 및 비수 전해액 (30) 은, 전지 케이스 (10) 의 내부에 수용되어 있다. 또한, 여기에 개시되는 기술을 한정하는 것은 아니기 때문에 상세한 설명을 생략하지만, 이 리튬 이온 이차 전지 (100) 는, 정극 단자 (72) 와 부극 단자 (74) 로 이루어지는 1 쌍의 전극 단자 (70) 를 구비하고 있다. 이들 전극 단자 (70) 의 일단은, 전지 케이스 (10) 내의 전극체 (20) 와 전기적으로 접속되어 있다. 한편, 전극 단자 (70) 의 타단은, 전지 케이스 (10) 의 외부로 노출되어 있다. 이로써, 전지 케이스 (10) 내에 수용된 전극체 (20) 를, 차량의 모터 등의 외부 기기와 전기적으로 접속할 수 있다.
(2) 전지 케이스
상기 서술한 바와 같이, 전지 케이스 (10) 는 전극체 (20) 와 비수 전해액 (30) 을 수용하는 용기이다. 전지 케이스 (10) 는 내부 공간을 갖는 각형의 용기로서, 상면이 개구된 박스형의 케이스 본체 (12) 와, 당해 케이스 본체 (12) 의 상면 개구를 덮는 판상의 덮개체 (14) 를 구비하고 있다. 이러한 전지 케이스 (10) 에는, 경량이며 열전도성이 양호한 금속 재료 (예를 들어, 알루미늄이나 알루미늄 합금 등) 가 사용되는 것이 바람직하다. 또한, 전지 케이스 (10) 의 덮개체 (14) 에는, 전지 케이스 (10) 내부로 비수 전해액 (30) 을 주액하기 위한 주액구 (16) 가 형성되어 있다. 이러한 주액구 (16) 는, 비수 전해액 (30) 의 주액 후에 봉지된다. 또한, 덮개체 (14) 에는 안전 밸브 (18) 도 설치되어 있다. 이러한 안전 밸브 (18) 는, 전지 케이스 (10) 의 내압이 급격하게 상승했을 때에 개방되어, 전지 케이스 (10) 의 내압을 저하시킨다는 기능을 갖는다.
(3) 전극체
도 2 에 나타내는 바와 같이, 전극체 (20) 는, 정극 (40), 부극 (50) 및 세퍼레이터 (60) 를 겹침으로써 구성된다. 본 실시형태에서는, 정극 (40), 부극 (50) 및 세퍼레이터 (60) 를 겹쳐 감은 권회 전극체 (20) 가 전극체로서 사용된다. 구체적으로는, 권회 전극체 (20) 는, 2 장의 세퍼레이터 (60) 를 개재하여 정극 (40) 과 부극 (50) 을 적층시킨 띠상의 적층체를 형성하고, 당해 적층체를 권회함으로써 형성된다. 또한, 본 실시형태에서는, 전지의 폭 방향 X 와 권회 전극체 (20) 의 권회축 (WL) 이 일치하도록, 전지 케이스 (10) (도 1 참조) 내에 권회 전극체 (20) 가 수용된다. 바꾸어 말하면, 본 실시형태에 관한 리튬 이온 이차 전지 (100) 는, 권회축 방향 W 와 폭 방향 X 가 동일 방향이 되도록 구축되어 있다.
이 권회 전극체 (20) 의 권회축 방향 W (폭 방향 X) 의 중앙부에는, 후술하는 정극 합재층 (44) 과 부극 합재층 (54) 이 대향한 코어부 (20a) 가 형성되어 있다. 이러한 코어부 (20a) 가 권회 전극체 (20) 에 있어서의 충방전 반응의 장소가 된다. 또한, 권회축 방향 W 에 있어서의 권회 전극체 (20) 의 일방의 단부에는, 정극 단자 (72) 와 접속되는 정극 접속부 (20b) 가 형성되어 있다. 그리고, 권회 전극체 (20) 의 타방의 단부에는, 부극 단자 (74) 와 접속되는 부극 접속부 (20c) 가 형성되어 있다. 또한, 권회 전극체 (20) 는 권회축 방향 W 의 양 단면이 외부로 개방되어 있다. 이 권회축 방향 W 의 양 단면을 개재하여, 권회 전극체 (20) 의 내외를 비수 전해액 (30) 이 유통한다. 즉, 본 실시형태에서는 권회 전극체 (20) 의 양 단면에 전해액 유통로 (20d) 가 형성되어 있다.
(a) 정극
다음으로, 전극체 (20) 를 구성하는 각 부재에 대해서 설명한다. 정극 (40) 은, 띠상의 정극 집전박 (42) 과, 당해 정극 집전박 (42) 의 표면 (예를 들어, 양면) 에 도공된 정극 합재층 (44) 을 구비하고 있다. 또한, 이 정극 (40) 의 폭 방향 X 의 일방의 측 가장자리부 (도 2 중의 좌측의 측 가장자리부) 에는, 정극 합재층 (44) 이 부여되어 있지 않고, 정극 집전박 (42) 이 노출된 정극 노출부 (46) 가 형성되어 있다. 이러한 정극 노출부 (46) 는, 권회 전극체 (20) 를 형성할 때, 부극 (50) 에서 비어져 나온 상태에서 겹쳐 감긴다. 이로써, 권회 전극체 (20) 의 권회축 방향 W 의 일방의 단부에 정극 접속부 (20b) 가 형성된다.
또한, 정극 합재층 (44) 에는, 입상의 정극 활물질이 함유되어 있다. 정극 활물질의 재료는 특별히 한정되지 않고, 종래 공지된 재료를 특별히 제한없이 사용할 수 있다. 또한, 본 실시형태와 같이, 리튬 이온 이차 전지를 구축하는 경우에는, 리튬 (Li) 을 함유하는 정극 활물질이 사용된다. 이러한 Li 를 함유하는 정극 활물질로는, 리튬니켈망간 복합 산화물, 리튬니켈코발트알루미나 복합 산화물, 리튬니켈코발트망간 복합 산화물 등의 리튬 전이 금속 복합 산화물을 들 수 있다. 또한, 정극 합재층 (44) 은, 상이한 종류의 정극 활물질을 2 종 이상 함유하고 있어도 된다. 또한, 정극 합재층 (44) 은, 정극 활물질 이외의 성분으로서, 도전재나 바인더 등을 함유하고 있어도 된다. 도전재로는, 예를 들어, 아세틸렌 블랙 (AB) 이나 케첸 블랙 등의 카본 블랙, 활성탄, 흑연 등의 탄소 재료를 들 수 있다. 바인더로는, 예를 들어 폴리불화비닐리덴 (PVdF) 등의 할로겐화비닐 수지나, 폴리에틸렌옥사이드 (PEO) 등의 폴리알킬렌옥사이드를 들 수 있다. 또한, 정극 활물질 이외의 성분에 대해서도, 종래 공지된 재료를 특별히 제한없이 사용할 수 있어, 여기에 개시되는 기술을 한정하는 것은 아니다.
(b) 부극
부극 (50) 은, 띠상의 부극 집전박 (52) 과, 당해 부극 집전박 (52) 의 표면 (예를 들어, 양면) 에 도공된 부극 합재층 (54) 을 구비하고 있다. 이 부극 (50) 의 폭 방향 X 의 타방의 측 가장자리부 (도 2 중의 우측의 측 가장자리부) 에는, 부극 합재층 (54) 이 부여되어 있지 않고, 부극 집전박 (52) 이 노출된 부극 노출부 (56) 가 형성되어 있다. 이러한 부극 노출부 (56) 는, 권회 전극체 (20) 를 형성할 때, 정극 (40) 에서 비어져 나온 상태에서 겹쳐 감긴다. 이로써, 권회 전극체 (20) 의 권회축 방향 W 의 일방의 단부에 부극 접속부 (20c) 가 형성된다.
또한, 부극 합재층 (54) 에는, 입상의 부극 활물질이 함유되어 있다. 부극 활물질의 재료는, 여기에 개시되는 기술의 효과를 저해하지 않는 한에 있어서 특별히 한정되지 않는다. 일례로서, 리튬 이온 이차 전지를 구축하는 경우에는, 부극 활물질로서, 탄소 (C) 를 함유하는 탄소계 활물질이나, 금속 원소를 함유하는 금속계 활물질 등을 사용할 수 있다. 탄소계 활물질로는, 흑연 (그라파이트), 하드 카본, 소프트 카본, 비정질 코트 흑연 등을 들 수 있다. 또한, 금속계 활물질로는, 규소 (Si), 주석 (Sn), 안티몬 (Sb), 비스무트 (Bi), 티탄 (Ti), 게르마늄 (Ge) 으로 이루어지는 군에서 선택되는 원소를 함유하는 금속 단체 또는 금속 산화물 등을 적절히 사용할 수 있다. 또한, 부극 합재층 (54) 은, 부극 활물질 이외의 첨가물로서, 바인더, 증점제 등을 함유하고 있어도 된다. 바인더로는, 스티렌부타디엔 러버 (SBR) 등을 사용할 수 있다. 증점제로는, 카르복시메틸셀룰로오스 (CMC) 등을 사용할 수 있다. 또한, 부극 활물질 이외의 성분은, 종래 공지된 재료를 특별히 제한없이 사용할 수 있어, 여기에 개시되는 기술을 한정하는 것은 아니다.
또한, 본 실시형태에 관한 리튬 이온 이차 전지 (100) 는, 부극 합재층 (54) 에 댐부 (54a) 와 보액부 (54b) 가 형성되고, 각 영역에 사용되는 부극 활물질이 상이하다는 특징을 갖는다. 이러한 특징에 대해서는 이후에 상세하게 설명한다.
(c) 세퍼레이터
세퍼레이터 (60) 는, 정극 (40) 과 부극 (50) 사이에 개재되는 절연 부재이다. 이러한 세퍼레이터 (60) 에는, 전하 담체 (리튬 이온) 가 투과 가능한 미세공이 형성되어 있다. 비수 전해액 (30) 이 전극체 (20) 내부로 침투하여 세퍼레이터 (60) 의 미세공에 충전됨으로써, 정극 (40) 과 부극 (50) 사이의 전하 담체의 이동이 가능해진다. 또한, 세퍼레이터 (60) 에 대해서도, 종래 공지된 재료를 특별히 제한없이 사용할 수 있어, 여기에 개시되는 기술을 한정하는 것은 아니기 때문에 상세한 설명을 생략한다.
(4) 비수 전해액
비수 전해액 (30) 은, 도 1 에 나타내는 바와 같이, 전극체 (20) 와 함께 전지 케이스 (10) 내에 수용되어, 전극체 (20) 의 내부로 침투한다. 또한, 비수 전해액 (30) 은, 그 모두가 전극체 (20) 의 내부로 침투할 필요는 없다. 예를 들어, 비수 전해액 (30) 의 일부는 잉여 전해액 (32) 으로서 전극체 (20) 의 외부 (전극체 (20) 와 전지 케이스 (10) 사이) 에 존재하고 있어도 된다. 이 잉여 전해액 (32) 이 발생되도록 비수 전해액 (30) 의 주액량을 설정함으로써, 전극체 (20) 내의 비수 전해액 (30) 이 부족할 때, 잉여 전해액 (32) 을 전극체 (20) 내로 침투시킬 수 있다. 특히, 본 실시형태에 관한 리튬 이온 이차 전지 (100) 는, 전극체 (20) 의 내부로 비수 전해액 (30) 을 침투시키는 것이 용이하기 때문에, 잉여 전해액 (32) 을 형성하는 것에 의한 효과를 보다 적절히 발휘할 수 있다.
비수 전해액 (30) 은, 비수 용매에 지지염을 용해시킴으로써 조제된다. 또한, 비수 전해액 (30) 의 성분에 대해서도 특별히 한정되지 않고, 종래 공지된 재료를 특별히 제한없이 사용할 수 있다. 예를 들어, 비수 용매에는, 에틸렌카보네이트 (EC), 디메틸카보네이트 (DMC), 에틸메틸카보네이트 (EMC) 등의 카보네이트계 용매를 사용할 수 있다. 또한, 카보네이트계 용매 이외의 비수 용매의 일례로서, 에테르계 용매, 에스테르계 용매, 니트릴계 용매, 술폰계 용매, 락톤계 용매 등을 들 수 있다. 또한, 비수 전해액 (30) 은, 2 종 이상의 비수 용매를 함유하고 있어도 된다. 예를 들어, EC 와 DMC 와 EMC 를 소정의 비율로 혼합한 혼합 용매를 사용할 수도 있다. 한편, 지지염에는 LiPF6, LiBF4 등이 사용된다. 또한, 지지염의 몰 농도는 0.5 ㏖/ℓ ∼ 5 ㏖/ℓ (예를 들어, 1 ㏖/ℓ) 정도가 적당하다.
(5) 부극 합재층의 각 영역
상기 서술한 바와 같이, 본 실시형태에 있어서의 부극 합재층 (54) 에는 댐부 (54a) 와 보액부 (54b) 가 형성되어 있고, 각 영역에 함유되는 부극 활물질이 상이하다. 구체적으로는, 부극 합재층 (54) 중, 전해액 유통로 (20d) 와 접하는 영역에 댐부 (54a) 가 형성되고, 댐부 (54a) 보다 중앙측에 위치하는 영역에 보액부 (54b) 가 형성된다. 보다 구체적으로는, 댐부 (54a) 는, 부극 합재층 (54) 의 폭 방향 X 의 양 단부에 있어서, 띠상의 부극 (50) 의 길이 방향을 따르도록 연속적으로 형성되어 있다 (도 2 참조). 이 때문에, 권회 후의 전극체 (20) 에 있어서, 댐부 (54a) 는, 전극체 (20) 의 외부와 보액부 (54b) 사이에 개재하여, 전해액 유통로 (20d) 의 폐색 및 개방을 제어하는 영역으로서 기능한다. 한편, 보액부 (54b) 는, 코어부 (20a) 의 중심부에 위치하고, 충방전 반응의 주된 장소가 된다.
또, 폭방향 X 에 있어서의 전극체 (20) 의 전체 길이를 100 % 로 했을 때의 댐부 (54a) 의 길이는 1 % 이상이 바람직하고, 2.5 % 이상이 보다 바람직하며, 5 % 이상이 특히 바람직하다. 이로써, 댐부 (54a) 를 팽창시켰을 때에 비수 전해액 (30) 의 누출을 보다 적절히 방지할 수 있다. 한편, 댐부 (54a) 의 폭을 짧게 하면, 상대적으로 보액부 (54b) 의 폭을 확보할 수 있게 되기 때문에, 전극체 (20) 전체에 있어서의 충방전 반응의 안정성이 향상되는 경향이 있다. 이러한 관점에서, 댐부 (54a) 의 폭방향 X 의 길이는 20 % 이하가 바람직하고, 15 % 이하가 보다 바람직하며, 10 % 이하가 특히 바람직하다.
그리고, 댐부 (54a) 에 사용하는 부극 활물질의 종류는, 전해액 유통로 (20d) 의 폐색/개방을 적절히 전환한다는 관점에서 바람직하게 선택된다. 구체적으로는, 댐부 (54a) 는, 보액부 (54b) 에 함유되는 부극 활물질과 비교해서, 정극 활물질에 대한 전위가 높으며, 또한 SOC 의 증감에 수반되는 팽창 수축률이 큰 부극 활물질을 함유한다. 이러한 구성의 댐부 (54a) 를 형성함으로써, 상용 범위에 있어서 전극체 (20) 외부로의 비수 전해액 (30) 의 누출을 억제할 수 있으며, 또한 회복 범위에 있어서 전극체 (20) 내부로 비수 전해액 (30) 을 용이하게 침투시킬 수 있다. 이하, 이와 같은 효과가 발휘되는 이유에 대해서 설명한다.
먼저, 본 실시형태에서는, 정극 활물질 (리튬) 에 대한 전위가 상대적으로 높은 부극 활물질이 댐부 (54a) 에 함유되고, 정극 활물질에 대한 전위가 상대적으로 낮은 부극 활물질이 보액부 (54b) 에 함유되어 있다. 이러한 구성의 부극 (50) 을 가진 전지를 충전하면, 전하 담체가 댐부 (54a) 에 우선적으로 공급되기 때문에, 보액부 (54b) 보다 먼저 댐부 (54a) 가 팽창된다. 그리고, 이 댐부 (54a) 에 함유되는 부극 활물질은, 보액부 (54b) 에 함유되는 부극 활물질보다 팽창 수축률이 크다. 이 때문에, 댐부 (54a) 가 충분히 팽창되며, 또한, 보액부 (54b) 의 팽창 수축이 일어나는 중 SOC 영역 ∼ 고 SOC 영역 (상용 범위) 에서의 충방전에서는, 보액부 (54b) 보다 댐부 (54a) 가 두꺼워져 전해액 유통로 (20d) 가 폐색된다 (도 3 참조). 이로써, 보액부 (54b) 와 세퍼레이터 (60) 가 대향된 보액 공간 R 이 형성되어, 전극체 (20) 의 외부로 비수 전해액 (30) 이 누출되는 것이 억제된다. 한편으로, 댐부 (54a) 가 팽창 수축되는 저 SOC 영역에서의 충방전에서는, 댐부 (54a) 가 보액부 (54b) 보다 얇아져 전해액 유통로 (20d) 가 개방된다 (도 4 참조). 이로써, 전극체 (20) 의 외부와 보액 공간 (R) 이 연통하고, 전극체 (20) 의 내외로 비수 전해액 (30) 이 유통한다. 이 때문에, 전극체 (20) 내부의 비수 전해액 (30) 이 부족할 경우에는, 비수 전해액 (30) 을 전극체 (20) 내부로 용이하게 침투시켜 하이레이트 열화를 해소할 수 있다.
이상과 같이, 본 실시형태에 관련된 리튬 이온 이차 전지 (100) 는, SOC 의 조절이라는 매우 간단한 수단으로, 전해액 유통로 (20d) 의 폐색과 개방을 전환할 수 있기 때문에, 전극체 (20) 의 내부에서 비수 전해액 (30) 이 부족해지는 것을 적절히 방지할 수 있다. 따라서, 본 실시형태에 관한 리튬 이온 이차 전지 (100) 는, 하이레이트 열화가 해소된 바람직한 전지 성능을 유지할 수 있다.
(6) 각 영역에 사용되는 부극 활물질
또한, 댐부 (54a) 와 보액부 (54b) 의 각 영역에 함유되는 부극 활물질은, 여기에 개시되는 기술의 효과를 저해하지 않는 한에 있어서, 종래 공지된 부극 활물질에서 특별히 제한없이 선택할 수 있다. 구체적으로는,「정극 활물질에 대한 전위」및「SOC 의 증감에 수반되는 팽창 수축률」의 2 가지의 성질에 대해서, 댐부 (54a) 쪽이 보액부 (54b) 보다 커진다는 관계가 성립되면, 각각의 영역에 함유되는 부극 활물질은 특별히 한정되지 않는다. 이하, 각 영역에 함유되는 부극 활물질의 일례에 대해서 설명한다.
(a) 보액부의 부극 활물질
먼저, 여기에 개시되는 기술의 효과를 용이하게 발생시킨다는 관점에서, 보액부 (54b) 에 함유되는 부극 활물질은, 정극 활물질에 대한 전위의 절대치가 낮으며, 또한 SOC 의 증감에 수반되는 팽창 수축률의 절대치가 작은 것인 것이 바람직하다. 예를 들어, 리튬 이온 이차 전지 (100) 의 경우에는, Li 에 대한 전위가 0.01 V ∼ 0.07 V (예를 들어, 0.05 V 정도) 이며, 또한 SOC 의 증감에 수반되는 팽창 수축률이 5 % ∼ 20 % (예를 들어, 12 % 정도) 인 부극 활물질을 보액부 (54b) 에 사용하는 것이 바람직하다. 이와 같이, Li 에 대한 전위 및 팽창 수축률의 각각이 절대치가 작은 부극 활물질을 보액부 (54b) 에 사용함으로써, 댐부 (54a) 에 사용할 수 있는 부극 활물질의 선택의 여지를 넓힐 수 있다. 이와 같은 부극 활물질의 일례로서, 탄소 (C) 를 함유하는 탄소계 활물질 (그라파이트, 하드 카본, 소프트 카본 등) 을 들 수 있다. 또, 상기 서술한 바와 같이, 보액부 (54b) 는, 코어부 (20a) 의 중심부에 위치하여, 충방전 반응의 주된 장소가 되기 때문에, 충방전 반응이 안정되기 쉬운 부극 활물질을 사용하는 것이 바람직하다. 이러한 관점에서도, 보액부 (54b) 에 함유되는 부극 활물질로는, 탄소계 활물질이 바람직하다.
(b) 댐부의 부극 활물질
댐부 (54a) 에는, 정극 활물질에 대한 전위의 절대치가 높으며, 또한 SOC 의 증감에 수반되는 팽창 수축률의 절대치가 큰 부극 활물질을 사용하는 것이 바람직하다. 예를 들어, 보액부 (54b) 가 탄소계 활물질을 함유하는 경우, 댐부 (54a) 는, 정극 활물질 (Li) 에 대한 전위가 0.1 V 이상 (바람직하게는 0.2 V 이상, 보다 바람직하게는 0.3 V 이상, 특히 바람직하게는 0.4 V 이상) 인 부극 활물질을 함유하고 있으면 바람직하다. 이로써, 낮은 SOC 에서 댐부 (54a) 가 충분히 팽창되기 때문에, 비수 전해액 (30) 의 누출을 억제하면서 충방전할 수 있는 상용 범위를 넓힐 수 있다. 또한, 댐부 (54a) 에 함유되는 부극 활물질의 Li 에 대한 전위의 상한은 특별히 한정되지 않고, 2.0 V 이하여도 되고, 1.5 V 이하여도 되며, 1.0 V 이하여도 되고, 0.8 V 이하여도 된다.
또, 보액부 (54b) 가 탄소계 활물질을 함유하는 경우, 댐부 (54a) 는, SOC 의 증감에 수반되는 팽창 수축률이 50 % 이상 (바람직하게는 100 % 이상, 보다 바람직하게는 150 % 이상, 특히 바람직하게는 200 % 이상) 인 부극 활물질을 함유하면 바람직하다. 이로써, 상용 범위에서의 충방전 중에 전해액 유통로 (20d) 를 확실하게 폐색하여, 비수 전해액 (30) 의 누출을 억제할 수 있다. 또, 이와 같은 팽창 수축률이 큰 부극 활물질을 댐부 (54a) 에 함유시킴으로써, 회복 범위에서 충방전을 행했을 때에 전해액 유통로 (20d) 를 넓게 개방할 수 있기 때문에, 전극체 (20) 의 내부로의 비수 전해액 (30) 의 침투성을 향상시킬 수 있다. 또한, 댐부 (54a) 의 부극 활물질의 팽창 수축률의 상한은 특별히 한정되지 않고, 500 % 이하여도 되고, 400 % 이하여도 된다. 단, SOC 의 변동에 수반되는 댐부 (54a) 의 팽창 수축량이 지나치게 커지면, 도전 패스 끊김에 의한 전지 용량의 저하가 발생될 가능성이 있다. 이러한 관점에서, 댐부 (54a) 의 부극 활물질의 팽창 수축률은, 350 % 이하가 바람직하고, 320 % 이하가 보다 바람직하다.
상기 서술한 조건을 만족시키는 댐부 (54a) 용의 부극 활물질로서 바람직한 재료로는, 규소 (Si), 주석 (Sn), 안티몬 (Sb), 비스무트 (Bi) 로 이루어지는 군에서 선택되는 원소를 함유하는 금속계 활물질을 들 수 있다. 또한, 금속계 활물질은, 상기 서술한 원소를 함유하는 금속 단체여도 되고, 산화물 등의 화합물이어도 된다. 아래의 표 1 에 나타내는 바와 같이, 이들 금속계 활물질은 Li 에 대한 전위 및 팽창 수축률이 크기 때문에, 댐부 (54a) 에 첨가함으로써, SOC 의 조절에 의한 전해액 유통로 (20d) 의 폐색/개방을 적절히 행할 수 있다. 또한, 아래의 표 1 에 나타내는 바와 같이, 이들 금속계 활물질 중에서도, Si 를 포함하는 Si 계 활물질은, SOC 의 증감에 수반되는 팽창 수축률이 특별히 크기 때문에, 댐부 (54a) 용의 부극 활물질로서 특히 바람직하다.
Figure 112021065021405-pat00001
또한, 댐부 (54a) 에 함유되는 부극 활물질은, 그 모두가, 보액부 (54b) 에 함유되는 부극 활물질과 비교해서, 정극 활물질에 대한 전위가 높으며, 또한 SOC 의 증감에 수반되는 팽창 수축률이 큰 재료일 필요는 없다. 예를 들어, 보액부 (54b) 에 탄소계 활물질을 사용했을 경우, 댐부 (54a) 에, 탄소계 활물질과 금속계 활물질을 혼합한 혼합 재료를 사용하였다고 해도, 여기에 개시되는 기술의 효과를 발휘할 수 있다. 이와 같이, 탄소계 활물질을 댐부 (54a) 에 함유시킴으로써, 댐부 (54a) 에 있어서의 충방전 반응을 안정화시킨 후에, 여기에 개시되는 기술의 효과를 적절히 발휘시킬 수 있다.
또한, SOC 조절에 의한 전해액 유통로 (20d) 의 폐색/개방을 적절히 이루어지게 하여, 하이레이트 열화를 적절히 방지한다는 관점에서, 댐부 (54a) 의 부극 활물질의 총량에 대한 금속계 활물질의 함유량은 0.5 wt% 이상이 바람직하고, 1 wt% 이상이 보다 바람직하며, 1.5 wt% 이상이 더욱 바람직하고, 2 wt% 이상이 특히 바람직하다. 한편, 여기에 개시되는 기술의 효과를 발휘시킨다는 관점에서는, 상기 금속계 활물질의 함유량의 상한치는 특별히 한정되지 않는다. 즉, 댐부 (54a) 의 부극 활물질의 총량에 대한 금속계 활물질의 함유량은, 100 wt% (전량) 여도 되고, 75 wt% 이하여도 되며, 50 wt% 이하여도 되고, 25 wt% 이하여도 되고, 10 wt% 이하여도 된다. 단, 댐부 (54a) 의 팽창 수축량이 지나치게 커지면, 도전 패스 끊김에 의한 용량 저하가 발생될 가능성이 있다. 이러한 점을 고려하면, 금속계 활물질의 함유량의 상한치는, 7.5 wt% 이하가 바람직하고, 5 wt% 이하가 보다 바람직하며, 4 wt% 이하가 더욱 바람직하고, 3 wt% 이하가 특히 바람직하다.
2. 배터리 모듈
이어서, 상기 서술한 실시형태에 관한 리튬 이온 이차 전지 (100) 를 구비한 전지 모듈의 일례에 대해서 설명한다. 도 5 는, 본 실시형태에 관한 전지 모듈을 설명하는 블록도이다. 또한, 도 6 은 본 실시형태에 관한 전지 모듈의 충방전 제어를 설명하는 플로 차트도이다. 그리고, 도 7 은, 댐부와 보액부를 구비한 2 차 전지의 충전에 있어서의 부극 전위와 SOC 의 관계를 설명하는 그래프이다.
도 5 에 나타내는 바와 같이, 본 실시형태에 관한 전지 모듈 (1) 은, 외부 기기 (4) 와 전기적으로 접속된 전원 (2) 과, 당해 전원 (2) 의 충방전을 제어하는 제어부 (3) 를 구비하고 있다. 이하, 각 구성에 대해서 설명한다.
(1) 전원
전원 (2) 은, 정극 접속 부재 (2a) 와 부극 접속 부재 (2b) 를 개재하여, 외부 기기 (4) 와 전기적으로 접속되어 있다. 외부 기기 (4) 의 종류는 특별히 한정되지 않고, 예를 들어 전기 자동차 (EV), 하이브리드 자동차 (HV) 등의 자동차나, 퍼스널 컴퓨터, 휴대 단말기 등의 전자 기기 등이어도 된다. 그리고, 본 실시형태에 관한 전지 모듈 (1) 의 전원 (2) 은, 상기 서술한 실시형태에 관한 리튬 이온 이차 전지 (100) (도 1 참조) 를 적어도 1 개 포함한다. 또한, 전원 (2) 에 포함되는 리튬 이온 이차 전지 (100) 의 개수는 특별히 한정되지 않고, 외부 기기 (4) 의 가동에 필요한 전력에 따라서 적절히 증감할 수 있다. 또한, 복수 개 (예를 들어, 3 개 이상) 의 리튬 이온 이차 전지 (100) 를 구비한 전원 (2) 을 구축하는 경우에는, 당해 복수 개의 전지가 소정의 방향으로 배열되고, 그 배열 방향을 따라서 구속된 조전지를 형성하면 바람직하다. 이로써, 전원 (2) 의 구조적 안정성을 확보할 수 있을 뿐만 아니라, 각각의 전지의 충방전을 안정화시킬 수도 있다. 또한, 구체적인 도시는 생략하지만, 정극 접속 부재 (2a) 는 리튬 이온 이차 전지 (100) 의 정극 단자 (72) (도 1 참조) 에 접속된다. 또한, 부극 접속 부재 (2b) 는 리튬 이온 이차 전지 (100) 의 부극 단자 (74) 에 접속된다.
(2) 제어부
제어부 (3) 는, 외부 기기 (4) 를 개재하여 전원 (2) 과 접속되어 있고, 외부 기기 (4) 의 가동 상황에 따라서 전원 (2) 의 충방전을 제어한다. 이러한 제어부 (3) 는, 미리 정해진 프로그램을 따라서 구동되는 컴퓨터에 의해서 구현화될 수 있다. 제어부 (3) 의 각 기능은, 당해 제어부 (3) 를 구성하는 각 컴퓨터의 연산 장치 (프로세서, CPU (Central Processing Unit), MPU (Micro-processing Unit) 라고도 칭해진다) 나 기억 장치 (메모리나 하드 디스크 등) 에 의해서 처리된다. 예를 들어, 제어부 (3) 의 각 구성은, 컴퓨터에 의해서 구현화되는 데이터를 미리 정해진 형식으로 기억하는 데이터 베이스, 데이터 구조, 미리 정해진 프로그램에 따라서 소정의 연산 처리를 행하는 처리 모듈 등으로서, 또는, 그것들의 일부로서 구현화될 수 있다.
그리고, 본 실시형태에 있어서의 제어부 (3) 는, 열화 검출부 (3a) 와, SOC 측정부 (3b) 와, SOC 조절부 (3c) 를 구비하고 있다. 이들 열화 검출부 (3a) 와, SOC 측정부 (3b) 와, SOC 조절부 (3c) 는, 제어부 (3) 를 구현화하는 컴퓨터와 각종 센서의 협동에 의해서 구현화될 수 있다. 이하, 제어부 (3) 가 구비한 각 구성에 대해서 설명한다.
(a) 열화 검출부
열화 검출부 (3a) 는, 전원 (2) 의 하이레이트 열화를 검출하도록 구성되어 있다. 일례로서, 열화 검출부 (3a) 는, 하이레이트 충방전에 수반되는 전원 (2) 의 하이레이트 열화의 상태 (전지 저항의 증가 등) 를 수치화한 평가치 (D) 를 산출하도록 구성되어 있으면 바람직하다. 이러한 평가치 (D) 는, 전원 (2) 의 전류치, 전원 (2) 의 SOC, 전원 (2) 의 온도 및 충방전의 사이클 타임에 기초하여 산출할 수 있다. 또한, 평가치 (D) 의 구체적인 산출 순서는, 국제 공개 제12/101678호나 국제 공개 제13/046263호에 개시된 순서를 원용할 수 있다. 그리고, 열화 검출부 (3a) 가 검출한 하이레이트 열화에 관한 정보 (예를 들어, 평가치 (D)) 는, 후술하는 SOC 조절부 (3c) 에 송신된다.
(b) SOC 측정부
SOC 측정부 (3b) 는, 전원 (2) 의 SOC 를 측정하도록 구성되어 있다. 예를 들어, SOC 측정부 (3b) 에는 충방전시의 전류치에 관한 정보가 제공된다. SOC 측정부 (3b) 는, 이 전류치를 적산함으로써 전원 (2) 의 SOC 를 산출할 수 있다. 또한, SOC 측정부 (3b) 에 있어서의 SOC 의 산출 순서는, 상기 서술한 순서에 한정되지 않고, 종래 공지된 순서를 특별히 제한없이 채용할 수 있다. 예를 들어, SOC 측정부 (3b) 는, 부극 전위에 기초하여 SOC 를 추정하도록 구성되어 있어도 된다. 그리고, SOC 측정부 (3b) 에서 산출된 SOC 는, SOC 조절부 (3c) 에 송신된다. 또한, 하이레이트 열화의 검출을 위해서 열화 검출부 (3a) 가 SOC 를 이용할 경우, SOC 측정부 (3b) 에서 산출된 전원 (2) 의 SOC 는, SOC 조절부 (3c) 뿐만 아니라, 열화 검출부 (3a) 에도 송신된다.
(c) SOC 조절부
SOC 조절부 (3c) 는, 전원 (2) 의 충방전을 제어함으로써 SOC 를 조절하도록 구성되어 있다. 여기서, SOC 조절부 (3c) 는, 열화 검출부 (3a) 의 검출 결과에 기초하여, 전원 (2) 에 하이레이트 열화가 발생되고 있지 않다고 판단하는 동안, 보액부 (54b) 보다 댐부 (54a) 가 두꺼워지도록 (도 3 참조), 전원 (2) 의 SOC 를 상용 범위로 유지한다. 이로써, 전해액 유통로 (20d) 를 폐색시켜, 전극체 (20) 외부로의 비수 전해액 (30) 의 누출을 억제하면서 전원 (2) 의 충방전을 행할 수 있다. 한편, SOC 조절부 (3c) 는, 열화 검출부 (3a) 의 검출 결과에 기초하여 전원 (2) 에 하이레이트 열화가 발생되었다고 판단했을 때, 보액부 (54b) 보다 댐부 (54a) 가 얇아지도록 (도 4 참조), 전원 (2) 의 SOC 를 회복 범위까지 저하시킨다. 이로써, 전해액 유통로 (20d) 가 개방되기 때문에, 전극체 (20) 의 내부로 비수 전해액 (30) 이 침투하기 쉬워져, 하이레이트 열화를 용이하게 해소할 수 있다.
(3) SOC 제어의 구체예
이하, 본 실시형태에 관한 전지 모듈 (1) 에 의한 SOC 제어의 구체적인 순서에 대해서 설명한다. 도 6 에 나타내는 바와 같이, 이러한 SOC 제어에 있어서, SOC 조절부 (3c) 는, 스텝 S10 ∼ S60 의 6 개의 스텝을 거쳐, 전원 (2) (리튬 이온 이차 전지 (100)) 의 충방전을 제어한다. 또한, 아래의 설명에서는, 하이레이트 열화를 평가하는 파라미터로서 평가치 (D) 를 채용하고 있지만, 하이레이트 열화를 평가하는 구체적인 파라미터는 평가치 (D) 에 한정되지 않는다.
(a) 스텝 S10
SOC 조절부 (3c) 는, 외부 기기 (4) 가 통상 가동되고 있는 동안, 전원 (2) 의 SOC 를 상용 범위로 유지한다 (스텝 S10). 구체적으로는, 외부 기기 (4) 가 통상 가동되고 있는 동안, SOC 조절부 (3c) 는, SOC 측정부 (3b) 의 측정 결과 (전원 (2) 의 SOC) 와, 미리 설정한 SOC 기준치 (TS) (도 7 참조) 를 계속해서 비교한다. 그리고, 스텝 S10 의 실행 중에 전원 (2) 의 SOC 가 SOC 기준치 (TS) 를 하회하여 회복 범위 A 로 되었을 경우, 전원 (2) 의 충방전을 강제적으로 충전으로 전환하여 SOC 를 상용 범위 B 까지 상승시킨다. 이와 같은 제어를 행함으로써, 전원 (2) 의 SOC 를 상용 범위 B 로 계속 유지할 수 있다. 이와 같이, SOC 를 상용 범위 B 로 유지함으로써, 댐부 (54a) 로 전해액 유통로 (20d) 가 폐색된 상태에서 충방전을 행할 수 있기 때문에, 전극체 (20) 외부로의 비수 전해액 (30) 의 누출을 억제할 수 있다 (도 3 참조).
또한, 본 명세서에 있어서「상용 범위」란, 댐부가 충분히 팽창된 상태에서 거의 체적 변화가 일어나지 않으며, 또한, 보액부의 팽창 수축이 일어나는 중 SOC 영역 ∼ 고 SOC 영역의 충전 상태를 가리킨다. 한편,「회복 범위」란, 보액부가 충분히 수축된 상태에서 거의 체적 변화되지 않으며, 또한, 댐부의 팽창 수축이 일어나는 저 SOC 영역의 충전 상태를 가리킨다. 이들 상용 범위와 회복 범위는, 보액부와 댐부의 각각에 함유되는 부극 활물질의 전위에 따라서 적절히 설정할 수 있다. 구체적으로는, 보액부와 댐부를 갖는 부극을 구비한 이차 전지의 충방전을 행하면, 도 7 에 나타내는 바와 같이, 저 SOC 영역에 있어서 부극 전위의 급격한 변동이 일어나고, 중 SOC 영역 ∼ 고 SOC 영역에 있어서 부극 전위의 변동이 완만해진다. 이것은, 저 SOC 영역에 있어서 댐부에 급속히 전하 담체가 공급된 후에, 중 SOC 영역 ∼ 고 SOC 영역에 있어서 보액부에 서서히 전하 담체가 공급되기 때문이다. 이러한 특징적인 전위 변동에 기초하여, 저 SOC 영역의「회복 범위 A」와, 중 SOC 영역 ∼ 고 SOC 영역의「상용 범위 B」를 설정할 수 있다.
또한, 스텝 S10 의 SOC 제어에 있어서의「SOC 기준치 (TS)」는, 이 회복 범위 A 와 상용 범위 B 의 경계를 정하는 값이다. 예를 들어,「SOC 기준치 (TS)」는, 댐부 (54a) 에 사용한 부극 활물질의 전위와, 보액부 (54b) 에 사용한 부극 활물질의 전위의 중간치에 대응한 SOC 로 설정해도 된다. 또한,「SOC 기준치 (TS)」는, 부극 전위의 급격한 변동이 확인되지 않게 되는 시점의 SOC 보다 고 SOC 측에 설정해도 된다. 이로써, 상용 범위 B 에서의 통상 가동 중에 댐부 (54a) 가 수축되어, 비수 전해액 (30) 이 누출되는 것을 확실하게 방지할 수 있다. 일례로서, 리튬니켈코발트망간 복합 산화물을 정극 합재층 (44) 에 사용하고, 탄소계 활물질을 보액부 (54b) 에 사용하며, 탄소계 활물질과 Si 계 활물질의 혼합 재료를 댐부 (54a) 에 사용했을 경우, SOC 기준치 (TS) 를 SOC : 20 % ∼ 40 % (보다 바람직하게는, SOC : 25 % ∼ 35 %, 예를 들어 SOC : 30 %) 의 범위 내에 설정하는 것이 바람직하다.
(b) 스텝 S20
또한, SOC 조절부 (3c) 는, 외부 기기 (4) 가 통상 가동되고 있는 동안, 평가치 (D) 의 적산치 (ΣD) 를 소정의 단위 시간마다 산출한다 (스텝 S20). 구체적으로는, 상기 서술한 바와 같이, 열화 검출부 (3a) 는, 전원 (2) 의 하이레이트 열화의 상태를 나타내는 평가치 (D) 를 산출하고, 산출 결과를 SOC 조절부 (3c) 에 송신한다. SOC 조절부 (3c) 는, 수신된 평가치 (D) 의 적산치 (ΣD) 를 산출하여, 후술하는 통상 가동과 회복 처리의 전환 판정에 이용한다. 여기서, SOC 조절부 (3c) 는, 평가치 (D) 에 대한 목표치가 설정되어 있고, 당해 목표치를 초과한 평가치 (D) 만을 적산치 (ΣD) 의 계산에 채용하도록 구성되어 있으면 바람직하다. 이로써, 전원 (2) 에 하이레이트 열화가 발생되고 있지 않은 상태에서 얻어진 평가치 (D) 가, 스텝 S30 의 열화 판정에 사용되는 것을 방지할 수 있다.
(c) 스텝 S30
다음으로, SOC 조절부 (3c) 는, 평가치 (D) 의 적산치 (ΣD) 가 열화 판정 기준치 (TD1) 보다 큰지 작은지의 판정을 실시한다 (스텝 S30). 그리고, 적산치 (ΣD) 가 열화 판정 기준치 (TD1) 보다 작을 (ΣD < TD1) 때에는, 처리를 스텝 S10 으로 되돌려, 외부 기기 (4) 의 통상 가동을 계속한다. 한편, 적산치 (ΣD) 가 열화 판정 기준치 (TD1) 이상 (ΣD ≥ TD1) 으로 된 경우, SOC 조절부 (3c) 는 전극체 (20) 내부에서 비수 전해액 (30) 이 부족하여 하이레이트 열화가 진행되고 있다고 판단하여, 외부 기기 (4) 의 통상 가동을 정지시켜 스텝 S40 으로 진행한다. 또한, 열화 판정 기준치 (TD1) 는, 외부 기기 (4) 를 통상 가동시킬 때에 허용 가능한 하이레이트 열화의 정도를 수치화한 것이다. 이 열화 판정 기준치 (TD1) 는, 평가치의 적산치 (ΣD) 와 전원 (2) 의 성능 (예를 들어, 저항치) 의 상관 관계를 조사한 예비 시험의 결과나, 외부 기기 (4) 의 통상 가동에 요구되는 성능 등에 기초하여 임의로 설정할 수 있다.
(d) 스텝 S40
스텝 S40 에 있어서, SOC 조절부 (3c) 는, 전원 (2) 의 SOC 를 SOC 기준치 (TS) (도 7 참조) 보다 낮은 상태까지 저하시킨다. 구체적으로는, SOC 조절부 (3c) 는, SOC 기준치 (TS) 와 전원 (2) 의 SOC 를 비교해서, 전원 (2) 의 SOC 가 SOC 기준치 (TS) 를 하회하여 회복 범위 A 로 될 때까지 전원 (2) 의 방전을 실시한다. 그리고, SOC 조절부 (3c) 는, 전원 (2) 의 SOC 가 회복 범위 A 의 범위 내로 유지되도록 충방전을 제어한다. 바꾸어 말하면, SOC 조절부 (3c) 는, SOC 기준치 (TS) 를 상회하지 않도록 SOC 를 조절하면서 전원 (2) 의 충방전을 제어한다. 이로써, 도 4 에 나타내는 바와 같이, 전해액 유통로 (20d) 가 개방된 상태가 유지되기 때문에, 전극체 (20) 의 내부로 비수 전해액 (30) 을 침투시켜 하이레이트 열화를 회복할 수 있다.
또한, 회복 처리를 실시하고 있는 동안, SOC 조절부 (3c) 는 열화 검출부 (3a) 로부터 송신되는 평가치 (D) 에 기초하여, 평가치의 적산치 (ΣD) 에 대한 완화 보정을 계속 실행한다. 구체적으로는, 회복 처리에 의해서 하이레이트 열화가 해소되면, 열화 검출부 (3a) 에서 취득되는 평가치 (D) 가 저하된다. 회복 처리의 실행 중, SOC 조절부 (3c) 는 열화 검출부 (3a) 로부터 송신된 평가치 (D) 에 기초하여 평가치 (D) 의 저하량을 산출하고, 당해 평가치 (D) 의 저하량에 기초하여 적산치 (ΣD) 를 저하시키는 완화 보정을 계속 실시한다.
(e) 스텝 S50, S60
그리고, SOC 조절부 (3c) 는 상기 서술한 완화 보정에 의해서 저하되는 평가치의 적산치 (ΣD) 가 회복 판정 기준치 (TD2) 보다 작게 되어 있는지의 여부에 대해서 소정의 단위 시간마다 판정한다 (스텝 S50). 그리고, 평가치의 적산치 (ΣD) 가 회복 판정 기준치 (TD2) 를 상회하고 있는 동안 (ΣD ≥ TD2), 전원 (2) 의 회복 (하이레이트 열화의 해소) 이 불충분하다고 판단하여, 스텝 S40 으로 되돌아가 회복 처리와 적산치 (ΣD) 의 완화 보정을 계속한다. 한편, 평가치의 적산치 (ΣD) 가 회복 판정 기준치 (TD2) 를 하회했을 경우 (ΣD < TD2), SOC 조절부 (3c) 는 전원 (2) 의 하이레이트 열화가 충분히 해소되었다고 판단하여 회복 처리를 정지시킨다. 그리고, SOC 조절부 (3c) 는, SOC 기준치 (TS) 와 전원 (2) 의 SOC 를 비교해서, 전원 (2) 의 SOC 가 SOC 기준치 (TS) 를 상회하여 상용 범위 B 로 될 때까지 전원 (2) 의 충전을 실시한다 (스텝 S60). 그리고, SOC 조절부 (3c) 는, 처리를 스텝 S10 으로 되돌려 통상 가동을 재개한다.
또한, 회복 판정 기준치 (TD2) 는, 회복 처리에 의해서 전원 (2) 의 하이레이트 열화가 해소되었는지를 판정하기 위한 기준치이다. 이 회복 판정 기준치 (TD2) 는 스텝 S30 에서 사용되는 열화 판정 기준치 (TD1) 보다 작은 값인 것이 바람직하다. 이로써, 전원 (2) 의 하이레이트 열화가 충분히 해소되고 나서 통상 가동을 재개할 수 있기 때문에, 통상 가동과 회복 처리가 빈번하게 전환되는 것에 의한 가동 효율의 저하를 적절히 방지할 수 있다.
이상과 같이, 본 실시형태에 관한 전지 모듈 (1) 에서는, 전원 (2) 의 하이레이트 열화의 상태에 따라서, 통상 운전과 회복 처리를 적절히 전환하여, 전극체 (20) 의 전해액 유통로 (20d) 를 폐색/개방할 수 있다. 이 때문에, 본 실시형태에 따르면, 전극체 (20) 내부에서의 비수 전해액 (30) 의 부족을 방지하여, 바람직한 전지 성능을 유지한 채 전원 (2) 을 사용할 수 있다. 바꾸어 말하면, 본 실시형태에 관한 전지 모듈 (1) 에 의하면, 비수 전해액 (30) 의 누출을 억제하면서 외부 기기 (4) 를 통상 가동시킬 수 있음과 함께, 전원 (2) 의 하이레이트 열화가 진행되었을 때, 비수 전해액 (30) 을 전극체 (20) 내부로 침투시키는 회복 처리를 용이하게 실시할 수 있다.
또한, 여기에 개시되는 비수 전해액 이차 전지는, 상기 구성의 전지 모듈 (1) 에 사용하는 것을 전제로 한 것은 아니다. 예를 들어, 하이레이트 열화의 정도에 기초하여 통상 가동과 회복 처리를 전환하는 처리를 행하지 않아도, 여기에 개시되는 비수 전해액 이차 전지의 효과를 충분히 발휘할 수 있다. 구체적으로는, 외부 기기의 가동 시간에 따라서 통상 가동과 회복 처리를 전환하는 처리나, 하루의 특정한 시간 (예를 들어, 야간) 에 회복 처리를 실시하는 처리를 행하는 경우에도, 여기에 개시되는 비수 전해액 이차 전지의 효과를 충분히 발휘할 수 있다.
3. 그밖의 실시형태
이상, 여기에 개시되는 기술의 일 실시형태에 대해서 설명하였다. 또한, 상기 서술한 실시형태는, 여기에 개시되는 기술이 적용되는 일례를 나타낸 것으로서, 여기에 개시되는 기술을 한정하는 것을 의도한 것은 아니다.
예를 들어, 상기 서술한 실시형태에서는, 정극 (40) 과 부극 (50) 과 세퍼레이터 (60) 가 겹쳐 감긴 권회 전극체 (20) (도 2 참조) 를 전극체로서 사용하고 있다. 그러나, 전극체는, 정극, 부극 및 세퍼레이터가 겹쳐진 것이면 되고, 도 2 와 같은 권회 전극체 (20) 에 한정되지 않는다. 전극체의 구조의 다른 예로서, 세퍼레이터를 개재시키면서 복수 장의 정극과 부극을 적층한 적층 전극체 (20A) 를 들 수 있다 (도 8 참조). 이러한 적층 전극체 (20A) 에서는, 폭 방향 X 의 양 단부뿐만 아니라, 높이 방향 (Z) 의 상단부와 하단부에도 전해액 유통로 (20d) 가 형성된다. 이 때문에, 적층 전극체 (20A) 를 구비한 비수 전해액 이차 전지에 있어서, 여기에 개시되는 기술을 실시할 경우에는, 적층되는 복수 장의 부극 (50) 의 각각의 부극 합재층 (54) 의 외주 가장자리부에 댐부 (54a) 를 형성하는 것이 바람직하다.
또한, 도 2 에 나타내는 권회 전극체 (20) 와, 도 8 에 나타내는 적층 전극체 (20A) 를 비교하면, 권회 전극체 (20) 쪽이 전해액 유통로 (20d) 의 수가 적다. 또한, 권회 전극체 (20) 는 권회시의 텐션에 의해서 정극 (40) 과 부극 (50) 의 극간 거리가 좁아질 가능성이 있다. 이러한 점들로부터, 권회 전극체 (20) 의 쪽이, 적층 전극체 (20A) 보다 비수 전해액의 침투가 곤란해지는 경향이 있다. 이러한 점을 고려하면, 여기에 개시되는 기술은, 전극체 내부로의 비수 전해액의 침투가 용이해지기 때문에, 권회 전극체 (20) 를 구비한 비수 전해액 이차 전지에의 적용이 바람직하다.
또한, 상기 서술한 바와 같이, 본 명세서에서는, 여기에 개시되는 기술의 일 실시형태로서 리튬 이온 이차 전지 (100) 를 사용하고 있다. 그러나, 여기에 개시되는 기술이 적용될 수 있는 전지는, 리튬 이온 이차 전지에 한정되지 않고, 다른 비수 전해액 이차 전지 (예를 들어, 니켈수소 전지 등) 여도 된다.
[시험예]
이하, 여기에 개시되는 기술에 관계되는 시험예를 설명한다. 또한, 아래에 기재하는 시험예의 내용은, 여기에 개시되는 기술을 한정하는 것을 의도한 것은 아니다.
1. 각 샘플의 제작
본 시험예에서는, 부극 합재층의 조성이 상이한 5 종류의 리튬 이온 이차 전지 (샘플 1 ∼ 5) 를 준비하고, 비수 전해액의 누출을 억제하기 위해서 바람직한 조건을 조사하였다. 이하, 각 샘플에 대해서 설명한다.
(1) 샘플 1
먼저, 본 시험예에서는, 합재층의 도공 폭이 100 ㎜ 이며, 또한 높이 치수가 50 ㎜ 인 권회 전극체를 제작하였다. 구체적으로는, 부극 집전박 (구리박) 의 양면에 부극 합재층을 부여하여, 띠상의 부극을 준비하였다. 또한, 부극 합재층에는, 부극 활물질과, 바인더 (SBR) 와, 증점제 (CMC) 를 첨가하였다. 그리고, 샘플 1 에서는, 부극 합재층의 폭 방향의 양 단부에 폭 10 ㎜ (전극체의 전체 폭의 10 %) 의 댐부를 형성하고, 부극 합재층의 잔부를 보액부로 하였다. 또한, 보액부의 부극 활물질에는 그라파이트를 사용하고, 댐부의 부극 활물질에는 그라파이트와 Si 의 혼합 재료 (Si 첨가량 : 0.5 wt%) 를 사용하였다. 한편, 정극은, 정극 집전박 (알루미늄박) 의 양면에 정극 합재층을 부여함으로써 형성하였다. 또한, 정극 합재층에는, 정극 활물질 (LiNi0.33Co0.33Mn0.33O2 : 리튬니켈코발트망간 복합 산화물) 과, 도전재 (AB) 와, 바인더 (PVdF) 를 첨가하였다. 그리고, 상기 구성의 정극과 부극을, 세퍼레이터 (PP-PE-PP 의 3 층 시트) 를 개재하여 적층시킨 적층체를 형성하고, 당해 적층체를 권회함으로써 권회 전극체를 제작하였다.
상기 구성의 권회 전극체를 알루미늄제의 전지 케이스의 내부에 수용함으로써 전지 조립체를 구축하였다. 이 전지 조립체의 케이스 내에 비수 전해액을 주액한 후에 케이스를 밀폐시킴으로써, 평가 시험용 리튬 이온 이차 전지 (샘플 1) 를 구축하였다. 또한, 비수 전해액에는, EC 와 DMC 와 EMC 를 3 : 4 : 3 의 체적비로 함유하는 혼합 용매에 지지염 (LiPF6) 을 약 1 ㏖/ℓ 의 농도로 함유시킨 것을 사용하였다.
(2) 샘플 2 ∼ 4
샘플 2 ∼ 4 에서는, 샘플 1 과 마찬가지로, 부극 합재층의 폭 방향의 양 단부에 댐부가 형성된 부극을 사용하여, 시험용 리튬 이온 이차 전지를 구축하였다. 그리고, 보액부의 부극 활물질에 그라파이트를 사용하고, 댐부의 부극 활물질에 그라파이트와 Si 의 혼합 재료를 사용하였다. 또한, 샘플 2 ∼ 4 에서는, 댐부에 있어서의 그라파이트와 Si 의 혼합비를 샘플 1 과 상이하게 한 점을 제외하고, 샘플 1 과 동일한 조건에서 시험용 리튬 이온 이차 전지를 구축하였다. 각 샘플에 있어서의 댐부의 Si 첨가량을 표 2 에 나타낸다.
(3) 샘플 5
샘플 5 에서는, 댐부가 형성되어 있지 않은 (부극 합재층의 모든 영역에 있어서, 부극 활물질로서 그라파이트만을 사용한) 부극을 사용한 점을 제외하고, 샘플 1 과 동일한 조건에서 시험용 리튬 이온 이차 전지를 구축하였다.
2. 평가 시험
(1) 사이클 시험
먼저, 각 샘플에 있어서 시험용 전지를 제작한 후에, 당해 시험용 전지를 구속하였다. 그리고, 구속된 전지에 대해서 초기 충전을 행한 후에 사이클 시험을 실시하였다. 구체적으로는, 먼저, 25 ℃ 의 환경 하에서, SOC 80 % 의 충전 상태까지 충전하는 초기 충전을 실시하였다. 그리고, 이 전지에 대해서, 10 C 의 정전류로 SOC 30 % 에 달할 때까지 펄스 방전을 행하고, 5 초간 휴지한 후, 10 C 에서 SOC 80 % 에 달할 때까지 펄스 충전을 행하고, 5 초간 휴지한다는 구형파 사이클을 1 사이클로 하고, 당해 구형파 사이클을 1000 사이클 반복하는 사이클 시험을 행하였다.
(2) 전지 저항 평가
상기 서술한 초기 충전 후의 전지 저항 (사이클 시험 전의 전지 저항) 과, 사이클 시험 후의 전지 저항을 측정하고,「사이클 시험 전후의 저항 증가비」를 산출하였다. 구체적으로는, 시험용 전지의 SOC 를 50 % 로 조절한 후에, 25 ℃ 의 환경 하에서 10 초간 방전하였다. 이때, 방전 전류 레이트를 2 C, 5 C, 10 C, 20 C 로 설정하고, 각각의 전류 레이트로 방전한 후의 전압을 측정하였다. 그리고, 전압의 측정 결과와 전류 레이트에 기초하여 IV 저항을 산출하고, 그 평균치를 전지 저항으로 하였다. 그리고, 사이클 시험 전의 전지 저항과 시험 후의 전지 저항의 비「(시험 후의 전지 저항/시험 전의 전지 저항)」을 산출하고, 이것을「사이클 시험 전후의 저항 증가비」로 하였다. 각 샘플의 저항 증가비를 표 2 의 해당 난에 기재한다.
(2) 전지 용량 평가
상기 서술한 초기 충전 후의 전지 용량 (사이클 시험 전의 전지 용량) 과, 사이클 시험 후의 전지 용량을 측정하고,「사이클 시험 전후의 용량 저하비」를 산출하였다. 구체적으로는, SOC 를 80 % 까지 충전한 전지에 대해서, 1 C 의 정전류로 SOC 를 30 % 가 될 때까지 방전하는 정전류 정전압 (CCCV) 방전을 행하고, 이때의 방전 용량을 전지 용량으로서 측정하였다. 그리고, 사이클 시험 전의 전지 용량과 시험 후의 전지 용량의 비「(시험 후의 전지 용량/시험 전의 전지 용량)」을 산출하고, 이것을「사이클 시험 전후의 용량 저하비」로 하였다. 각 샘플의 용량 저하비를 표 2 의 해당 난에 기재한다.
Figure 112021065021405-pat00002
표 2 에 나타내는 바와 같이, 샘플 1 ∼ 4 는, 사이클 시험 전후의 저항 증가비가 샘플 5 보다 낮아져 있었다. 이 점에서, 보액부의 부극 활물질과 비교해서, 정극 활물질에 대한 전위가 높으며, 또한 팽창 수축률이 큰 부극 활물질 (여기서는 Si) 을 댐부에 함유시킴으로써, 비수 전해액의 누출에 의한 하이레이트 열화를 억제할 수 있는 것을 알 수 있었다. 한편으로, 샘플 4 에서는, 다른 샘플과 비교해서 전지 용량이 저하되기 쉽다는 경향이 확인되었다. 이것은, 댐부의 팽창 수축량이 지나치게 커져, 도전 패스 끊김에 의한 Li 의 고립이 발생되었기 때문으로 추측된다.
이상, 본 발명을 상세하게 설명하였지만, 상기 서술한 설명은 예시에 지나지 않는다. 즉, 여기에서 개시되는 기술에는 상기 서술한 구체예를 다양하게 변형, 변경한 것이 포함된다.

Claims (12)

  1. 정극, 부극 및 세퍼레이터가 겹쳐진 전극체와, 상기 전극체의 내부로 침투한 비수 전해액을 구비하는 비수 전해액 이차 전지로서,
    상기 정극은, 정극 활물질을 함유하는 정극 합재층이 띠상의 정극 집전박의 표면에 도공됨으로써 형성되어 있고,
    상기 부극은, 부극 활물질을 함유하는 부극 합재층이 띠상의 부극 집전박의 표면에 도공됨으로써 형성되어 있고,
    상기 전극체는, 당해 전극체의 내외를 상기 비수 전해액이 유통할 때의 유로인 전해액 유통로를 구비하고 있고,
    상기 부극 합재층 중, 상기 전해액 유통로와 접하는 영역을 댐부로 하고, 상기 댐부보다 중앙측에 위치하는 영역을 보액부로 했을 때,
    상기 댐부는, 상기 보액부에 함유되는 부극 활물질과 비교해서, 상기 정극 활물질에 대한 전위가 높으며, 또한 SOC 의 증감에 수반되는 팽창 수축률이 큰 부극 활물질을 함유하는 것을 특징으로 하는, 비수 전해액 이차 전지.
  2. 제 1 항에 있어서,
    상기 정극 합재층은, 리튬 (Li) 을 함유하는 정극 활물질을 함유하는, 비수 전해액 이차 전지.
  3. 제 2 항에 있어서,
    상기 보액부는, 탄소 (C) 를 함유하는 탄소계 활물질을 함유하는, 비수 전해액 이차 전지.
  4. 제 3 항에 있어서,
    상기 댐부는, 상기 리튬에 대한 전위가 0.1 V 이상인 부극 활물질을 함유하는, 비수 전해액 이차 전지.
  5. 제 3 항 또는 제 4 항에 있어서,
    상기 댐부는, 상기 SOC 의 증감에 수반되는 팽창 수축률이 150 % 이상인 부극 활물질을 함유하는, 비수 전해액 이차 전지.
  6. 제 3 항 또는 제 4 항에 있어서,
    상기 댐부는, 규소 (Si), 주석 (Sn), 안티몬 (Sb), 비스무트 (Bi) 로 이루어지는 군에서 선택되는 적어도 1 종을 함유하는 금속계 활물질을 함유하는, 비수 전해액 이차 전지.
  7. 제 6 항에 있어서,
    상기 댐부는, 탄소 (C) 를 함유하는 탄소계 활물질과, 상기 금속계 활물질을 혼합한 부극 활물질을 함유하는, 비수 전해액 이차 전지.
  8. 제 7 항에 있어서,
    상기 댐부에 있어서의 상기 부극 활물질의 총량에 대한 상기 금속계 활물질의 함유량이 0.5 wt% 이상 3.0 wt% 이하인, 비수 전해액 이차 전지.
  9. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,
    상기 전극체는, 상기 정극, 상기 부극 및 상기 세퍼레이터가 겹쳐 감긴 권회 전극체이고, 권회축 방향의 양 측면에 상기 전해액 유통로를 구비하고,
    상기 댐부는, 상기 부극 합재층의 권회축 방향의 양 단부에 형성되어 있는, 비수 전해액 이차 전지.
  10. 외부 기기와 전기적으로 접속된 전원과, 당해 전원의 충방전을 제어하는 제어부를 구비한 전지 모듈로서,
    상기 전원은, 제 1 항 내지 제 4 항 중 어느 한 항에 기재된 비수 전해액 이차 전지를 적어도 1 개 구비하고,
    상기 제어부는
    상기 전원의 하이레이트 열화를 검출하는 열화 검출부와,
    상기 전원의 SOC 를 측정하는 SOC 측정부와,
    상기 전원의 충방전을 제어함으로써 상기 SOC 를 조절하는 SOC 조절부
    를 구비하고,
    상기 SOC 조절부는,
    상기 열화 검출부의 검출 결과에 기초하여 상기 하이레이트 열화가 발생되고 있지 않다고 판단하는 동안, 상기 보액부보다 상기 댐부가 두꺼워지도록 상기 전원의 SOC 를 유지하며, 또한,
    상기 열화 검출부의 검출 결과에 기초하여 상기 하이레이트 열화가 발생되었다고 판단했을 때, 상기 보액부보다 상기 댐부가 얇아지도록 상기 전원의 SOC 를 저하시키는, 전지 모듈.
  11. 제 10 항에 있어서,
    상기 SOC 측정부는, 상기 전원의 충방전에 있어서의 전류치를 적산함으로써, 당해 전원의 SOC 를 측정하는, 전지 모듈.
  12. 제 10 항에 있어서,
    상기 열화 검출부는, 상기 전원의 하이레이트 열화를 수치화한 평가치 (D) 를 산출하고,
    상기 SOC 조절부는,
    상기 평가치 (D) 의 적산치 (ΣD) 가 열화 판정 기준치 (TD1) 를 하회하고 있는 동안, 상기 보액부보다 상기 댐부가 두꺼워지도록 상기 전원의 SOC 를 조절하고,
    상기 평가치 (D) 의 적산치 (ΣD) 가 상기 열화 판정 기준치 (TD1) 를 상회했을 때, 상기 보액부보다 상기 댐부가 얇아지도록 상기 전원의 SOC 를 저하시키는, 전지 모듈.
KR1020210072932A 2020-07-01 2021-06-04 비수 전해액 이차 전지 및 전지 모듈 KR102594784B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2020-114022 2020-07-01
JP2020114022A JP7360603B2 (ja) 2020-07-01 2020-07-01 非水電解液二次電池および電池モジュール

Publications (2)

Publication Number Publication Date
KR20220003448A KR20220003448A (ko) 2022-01-10
KR102594784B1 true KR102594784B1 (ko) 2023-10-26

Family

ID=79010274

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210072932A KR102594784B1 (ko) 2020-07-01 2021-06-04 비수 전해액 이차 전지 및 전지 모듈

Country Status (4)

Country Link
US (2) US11721840B2 (ko)
JP (1) JP7360603B2 (ko)
KR (1) KR102594784B1 (ko)
CN (1) CN113889678B (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4322244A4 (en) * 2022-06-27 2024-05-08 Contemporary Amperex Technology Co Ltd NEGATIVE ELECTRODE SHEET, SECONDARY BATTERY, BATTERY MODULE, BATTERY PACK AND ELECTRICAL APPLIANCE

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014207201A (ja) 2013-04-16 2014-10-30 トヨタ自動車株式会社 非水電解質二次電池
JP2019117180A (ja) 2017-12-27 2019-07-18 プライムアースEvエナジー株式会社 電池状態推定装置及び電池状態推定方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101214744B1 (ko) 2008-01-24 2012-12-21 도요타지도샤가부시키가이샤 리튬 이온 2차 전지, 조전지, 차량, 전지 탑재 기기, 전지 시스템 및 리튬 이온 2차 전지의 열화 검지 방법
JP2011060520A (ja) * 2009-09-08 2011-03-24 Nissan Motor Co Ltd リチウムイオン二次電池およびその製造方法
JP2012146398A (ja) * 2011-01-07 2012-08-02 Hitachi Ltd リチウム二次電池
JP5585524B2 (ja) 2011-04-27 2014-09-10 トヨタ自動車株式会社 組電池および組電池の製造方法
JP5843222B2 (ja) 2011-11-11 2016-01-13 トヨタ自動車株式会社 電池システム
JP6245480B2 (ja) 2015-06-19 2017-12-13 トヨタ自動車株式会社 リチウムイオン二次電池の制御装置
KR101950859B1 (ko) * 2016-02-15 2019-02-22 주식회사 엘지화학 음극 제조방법 및 음극
JP6308232B2 (ja) 2016-02-26 2018-04-11 トヨタ自動車株式会社 二次電池システム
JP2018106903A (ja) 2016-12-26 2018-07-05 トヨタ自動車株式会社 リチウムイオン二次電池
WO2018163295A1 (ja) * 2017-03-07 2018-09-13 日産自動車株式会社 二次電池および二次電池の製造方法
JP6809399B2 (ja) 2017-07-03 2021-01-06 トヨタ自動車株式会社 二次電池システム
JP2019114411A (ja) * 2017-12-22 2019-07-11 Tdk株式会社 電池パック及び組電池
JP7031382B2 (ja) 2018-03-08 2022-03-08 トヨタ自動車株式会社 リチウムイオン二次電池およびリチウムイオン二次電池の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014207201A (ja) 2013-04-16 2014-10-30 トヨタ自動車株式会社 非水電解質二次電池
JP2019117180A (ja) 2017-12-27 2019-07-18 プライムアースEvエナジー株式会社 電池状態推定装置及び電池状態推定方法

Also Published As

Publication number Publication date
JP2022012289A (ja) 2022-01-17
JP7360603B2 (ja) 2023-10-13
KR20220003448A (ko) 2022-01-10
CN113889678B (zh) 2024-02-20
CN113889678A (zh) 2022-01-04
US20230198026A1 (en) 2023-06-22
US20220006128A1 (en) 2022-01-06
US11721840B2 (en) 2023-08-08

Similar Documents

Publication Publication Date Title
EP3648232B1 (en) Nonaqueous electrolytic solution for lithium secondary battery, and lithium secondary battery comprising same
US10727535B2 (en) Electrolyte system for silicon-containing electrodes
EP2477270B1 (en) Method for charging/discharging positive electrode active material in a lithium secondary battery, charging/discharging system provided with lithium secondary battery and vehicle, electronic device, battery module, battery pack
EP1184918B1 (en) Rechargeable lithium ion battery
JP5243035B2 (ja) リチウム二次電池
EP3648231B1 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
EP1923948B1 (en) Electrolyte for high voltage lithium rechargeable battery and battery employing the same
KR100889453B1 (ko) 전극 첨가제를 포함하는 리튬 이차 전지용 전극 및 상기전극을 포함하는 리튬 이차 전지
US20120091966A1 (en) Charging control method and battery pack for secondary battery
KR101569297B1 (ko) 리튬 이온 이차 전지
EP3474351B1 (en) Anode comprising electrode protective layer and lithium secondary battery employing same
US20170104347A1 (en) Secondary battery apparatus
KR20140085337A (ko) 리튬 이차 전지
CN113614974B (zh) 锂二次电池用非水性电解质溶液和包含其的锂二次电池
US20100239910A1 (en) Non-aqueous electrolyte secondary battery
KR102594784B1 (ko) 비수 전해액 이차 전지 및 전지 모듈
EP4020627A1 (en) Device for pre-lithiation of negative electrode and method for pre-lithiation of negative electrode
EP2879225A1 (en) Electric storage device and electric storage apparatus
EP3605712B1 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same
KR20040018943A (ko) 리튬 이차 전지
CN114792838A (zh) 用于含磷橄榄石正电极的三元盐电解质
EP3826092B1 (en) Nonaqueous electrolyte power storage element, and power storage device
WO2016035309A1 (ja) 蓄電素子
JP7062976B2 (ja) 非水電解質及び非水電解質蓄電素子
KR20070033839A (ko) 구리 집전체의 용출을 막을 수 있는 리튬 이차 전지

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant