KR102513960B1 - 양방향 열 전기 냉각기를 포함하는 pop(package-on-package) 디바이스 - Google Patents

양방향 열 전기 냉각기를 포함하는 pop(package-on-package) 디바이스 Download PDF

Info

Publication number
KR102513960B1
KR102513960B1 KR1020177032567A KR20177032567A KR102513960B1 KR 102513960 B1 KR102513960 B1 KR 102513960B1 KR 1020177032567 A KR1020177032567 A KR 1020177032567A KR 20177032567 A KR20177032567 A KR 20177032567A KR 102513960 B1 KR102513960 B1 KR 102513960B1
Authority
KR
South Korea
Prior art keywords
die
tec
package
temperature
pop
Prior art date
Application number
KR1020177032567A
Other languages
English (en)
Other versions
KR20180005179A (ko
Inventor
라자트 미탈
희준 박
펭 왕
메디 샤이디
아르피트 미탈
Original Assignee
퀄컴 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 퀄컴 인코포레이티드 filed Critical 퀄컴 인코포레이티드
Publication of KR20180005179A publication Critical patent/KR20180005179A/ko
Application granted granted Critical
Publication of KR102513960B1 publication Critical patent/KR102513960B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • G06F1/206Cooling means comprising thermal management
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
    • G01K7/04Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples the object to be measured not forming one of the thermoelectric materials
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1906Control of temperature characterised by the use of electric means using an analogue comparing device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/38Cooling arrangements using the Peltier effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • H01L25/105Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L27/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N19/00Integrated devices, or assemblies of multiple devices, comprising at least one thermoelectric or thermomagnetic element covered by groups H10N10/00 - H10N15/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/10All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/1011All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
    • H01L2225/1094Thermal management, e.g. cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3677Wire-like or pin-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15172Fan-out arrangement of the internal vias
    • H01L2924/15174Fan-out arrangement of the internal vias in different layers of the multilayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PoP(package-on-package) 디바이스는 제1 패키지, 제2 패키지, 및 양방향 TEC(thermal electric cooler)를 포함한다. 제1 패키지는 제1 기판, 및 제1 기판에 커플링된 제1 다이를 포함한다. 제2 패키지는 제1 패키지에 커플링된다. 제2 패키지는 제2 기판, 및 제2 기판에 커플링된 제2 다이를 포함한다. TEC는 제1 다이와 제2 기판 사이에 위치된다. TEC는 제1 패키지와 제2 패키지 사이에서 앞뒤로 동적으로 열을 발산하도록 조정된다. TEC는 제1 시간 기간에 제1 다이로부터 제2 다이로 열을 발산하도록 조정된다. TEC는 제2 시간 기간에 제2 다이로부터 제1 다이로 열을 발산하도록 추가로 조정된다. TEC는 제2 기판을 통해 제1 다이로부터 제2 다이로 열을 발산하도록 조정된다.

Description

양방향 열 전기 냉각기를 포함하는 POP(PACKAGE-ON-PACKAGE) 디바이스
[0001] 본 출원은, 2015년 5월 11일자로 미국 특허 및 상표청에 출원된 미국 정규 특허 출원 제14/709,276호를 우선권으로 그리고 그의 이점을 주장하며, 그 정규 특허 출원의 전체 내용은 인용에 의해 본원에 포함된다.
[0002] 다양한 특징들은 양방향 TEC(thermal electric cooler)를 포함하는 PoP(package-on-package) 디바이스에 관한 것이다.
[0003] 도 1은 제1 다이(102) 및 패키지 기판(106)을 포함하는 집적 디바이스 패키지(100)를 도시한다. 패키지 기판(106)은 유전체 층 및 복수의 인터커넥트들(110)을 포함한다. 패키지 기판(106)은 적층형(laminated) 기판이다. 복수의 인터커넥트들(110)은 트레이스들, 패드들, 및/또는 비아들을 포함한다. 제1 다이(102)는 제1 세트의 솔더 볼들(112)을 통해 패키지 기판(106)에 커플링된다. 패키지 기판(106)은 제2 세트의 솔더 볼들(116)을 통해 PCB(108)에 커플링된다. 도 1은 또한 다이(102)에 커플링된 열 확산기(120)를 도시한다. 접착제 또는 열 인터페이스 재료는 열 확산기(120)를 다이(102)에 커플링하는데 사용될 수 있다. 도 1에 도시된 바와 같이, 열 확산기(120)는 다이(102)로부터 외부 환경으로 열을 발산시키도록 조정(adapt)된다. 열이 다이로부터 다양한 방향들로 멀리 발산시킬 수 있음에 유의한다.
[0004] 위의 구성의 한가지 결점은, 열 확산기(120)가 패시브 열 발산 디바이스라는 점이다. 따라서, 열이 발산되는 방법의 어떠한 액티브 제어도 존재하지 않는다. 즉, 열 확산기(120)의 사용은 동적 열 유동 제어를 허용하지 않는다. 둘째로, 열 확산기(120)의 사용은, 오직 단일 다이가 집적 디바이스 패키지에 사용될 때에만 적용가능하다. 오늘날의 모바일 디바이스들 및/또는 웨어러블 디바이스들은 많은 다이들을 포함하고, 이에 따라 더욱 지능적인 열적 및/또는 열 발산 관리를 요구하는 더욱 복잡한 구성들이다. 여러 개의 다이들을 포함하는 디바이스에 열 확산기를 넣는 것은, 디바이스의 효과적인 열적 및/또는 열 발산 관리를 제공하지 않을 것이다.
[0005] 따라서, 모바일 컴퓨팅 디바이스들 및/또는 웨어러블 컴퓨팅 디바이스들의 필요성들 및/또는 요구사항들을 충족시키는 것과 동시에, 수개의 다이들을 포함하는 디바이스 및 그 디바이스의 효율적인 열 관리에 대한 필요성이 존재한다.
[0006] 다양한 특징들은 양방향 TEC(thermal electric cooler)를 포함하는 PoP(package-on-package) 디바이스에 관한 것이다.
[0007] 제1 예는, 제1 패키지 및 제1 패키지에 커플링된 제2 패키지를 포함하는 PoP(package on package) 디바이스를 제공한다. 제1 패키지는 제1 기판, 및 제1 기판에 커플링된 제1 다이를 포함한다. 제2 패키지는 제2 기판, 및 제2 기판에 커플링된 제2 다이를 포함한다. PoP(package on package) 디바이스는 또한 제1 다이와 제2 기판 사이에 위치된 양방향 TEC(thermal electric cooler)를 포함하고, 여기서 양방향 TEC는 제1 패키지와 제2 패키지 사이에서 열을 앞뒤로 동적으로 발산하도록 조정된다.
[0008] 제2 예는, 제1 패키지 및 제1 패키지에 커플링된 제2 패키지를 포함하는 PoP(package on package) 디바이스를 제공한다. 제1 패키지는 제1 기판, 및 제1 기판에 커플링된 제1 다이를 포함한다. 제2 패키지는 제2 기판, 및 제2 기판에 커플링된 제2 다이를 포함한다. PoP(package on package) 디바이스는 또한 제1 다이와 제2 기판 사이에 위치된 양방향 열 전달 수단을 포함하고, 여기서 양방향 열 전달 수단은 제1 패키지와 제2 패키지 사이에서 열을 앞뒤로 동적으로 발산하도록 구성된다.
[0009] 제3 예는 POP(package on package) 디바이스의 열 관리를 위한 방법을 제공한다. 방법은 제1 다이의 제1 온도 판독치를 수신한다. 방법은 제2 다이의 제2 온도 판독치를 수신한다. 방법은, 제1 다이의 제1 온도 판독치가 제1 다이의 제1 최대 온도와 동일하거나 또는 그보다 큰지 여부를 결정한다. 방법은, 제2 다이의 제2 온도 판독치가 제2 다이의 제2 최대 온도와 동일하거나 또는 그보다 큰지 여부를 결정한다. 방법은, (i) 제1 온도 판독치가 제1 최대 온도와 동일하거나 또는 그보다 크고, 그리고 (ii) 제2 온도 판독치가 제2 최대 온도 미만일 때, 제1 다이로부터 제2 다이로 열을 발산하도록 양방향 TEC(thermal electric cooler)를 구성한다. 방법은, (i) 제2 온도 판독치가 제2 최대 온도와 동일하거나 또는 그보다 크고, 그리고 (ii) 제1 온도 판독치가 제1 최대 온도 미만일 때, 제2 다이로부터 제1 다이로 열을 발산하도록 양방향 TEC(thermal electric cooler)를 구성한다.
[0010] 제4 예는, POP(package on package) 디바이스의 열 관리를 수행하기 위한 하나 또는 그 초과의 명령들을 포함하는 프로세서 판독가능 저장 매체를 제공하고, 상기 명령들은, 적어도 하나의 프로세싱 회로에 의해 실행될 때, 적어도 하나의 프로세싱 회로로 하여금, 제1 다이의 제1 온도 판독치가 제1 다이의 제1 최대 온도와 동일하거나 또는 그보다 큰지 여부를 결정하고; 제2 다이의 제2 온도 판독치가 제2 다이의 제2 최대 온도와 동일하거나 또는 그보다 큰지 여부를 결정하고; (i) 제1 온도 판독치가 제1 최대 온도와 동일하거나 또는 그보다 크고, 그리고 (ii) 제2 온도 판독치가 제2 최대 온도 미만일 때, 제1 다이로부터 제2 다이로 열을 발산시키도록 양방향 TEC(thermal electric cooler)를 구성하고; 그리고 (i) 제2 온도 판독치가 제2 최대 온도와 동일하거나 또는 그보다 크고, 그리고 (ii) 제1 온도 판독치가 제1 최대 온도 미만일 때, 제2 다이로부터 제1 다이로 열을 발산하도록 양방향 TEC(thermal electric cooler)를 구성하게 한다.
[0011] 다양한 특성들, 속성, 및 이점들은, 도면들과 함께 취해진 경우, 아래에 기재된 상세한 설명으로부터 명백해질 수도 있으며, 도면에서, 동일한 참조 부호들은 전반에 걸쳐 대응적으로 식별된다.
[0012] 도 1은 집적 디바이스 패키지를 예시한다.
[0013] 도 2는 양방향 TEC(thermal electric cooler)를 포함하는 PoP(package-on-package) 디바이스의 일 예의 프로파일 뷰를 예시한다.
[0014] 도 3은 양방향 TEC(thermal electric cooler)를 포함하는 PoP(package-on-package) 디바이스 내의 열 전달 유동(heat transfer flow)의 일 예를 예시한다.
[0015] 도 4은 양방향 TEC(thermal electric cooler)를 포함하는 PoP(package-on-package) 디바이스 내의 열 전달 유동(heat transfer flow)의 일 예를 예시한다.
[0016] 도 5는 양방향 TEC(thermal electric cooler)를 포함하는 PoP(package-on-package) 디바이스의 다른 예의 프로파일 뷰를 예시한다.
[0017] 도 6은 양방향 열 전기 냉각기의 프로파일 뷰를 예시한다.
[0018] 도 7은 양방향 열 전기 냉각기의 각을 이룬(angled) 뷰를 예시한다.
[0019] 도 8은 어셈블리 양방향 TEC(thermal electric cooler)의 각을 이룬 뷰를 예시한다.
[0020] 도 9는, 몇몇 양방향 TEC(thermal electric cooler)들을 포함하는 열 전기 냉각기가 어떻게 구성될 수 있는지의 일례를 예시한다.
[0021] 도 10은, 양방향 TEC(thermal electric cooler)가 열 제어기에 의해 제어될 수 있는 방법의 구성을 예시한다.
[0022] 도 11은, 양방향 TEC(thermal electric cooler)가 열 제어기에 의해 제어될 수 있는 방법의 다른 구성을 예시한다.
[0023] 도 12는, 양방향 TEC(thermal electric cooler)가 열 제어기에 의해 제어될 수 있는 방법의 다른 구성을 예시한다.
[0024] 도 13은, 양방향 TEC(thermal electric cooler)를 포함하는 PoP(package-on-package) 디바이스의 일 예의 프로파일 뷰를 예시하며, 여기서 몇몇 예시적인 전기 경로들이 강조된다(highlited).
[0025] 도 14는, 양방향 TEC(thermal electric cooler)를 포함하는 PoP(package-on-package) 디바이스의 일 예의 프로파일 뷰를 예시하며, 여기서 몇몇 예시적인 전기 경로들이 강조된다.
[0026] 도 15는, 양방향 TEC(thermal electric cooler)를 포함하는 PoP(package-on-package) 디바이스의 일 예의 프로파일 뷰를 예시하며, 여기서 몇몇 예시적인 전기 경로들이 강조된다.
[0027] 도 16은, TEC의 동작이 PoP(package-on-package) 디바이스에서 몇몇 다이들의 온도에 영향을 줄 수 있는 방법을 설명하기 위해 몇몇 온도 그래프들 및 TEC 전류 그래프를 예시한다.
[0028] 도 17은, PoP(package-on-package) 디바이스에서 양방향 TEC(thermal electric cooler)를 구성하고 그리고 다이들의 온도들을 제어하는 방법의 예시적인 흐름도를 예시한다.
[0029] 도 18은, PoP(package-on-package) 디바이스에서 양방향 TEC(thermal electric cooler)를 구성하고 그리고 다이들의 온도들을 제어하는 방법의 다른 예시적인 흐름도를 예시한다.
[0030] 도 19(도 19a-도 19b를 포함함)는, 양방향 TEC(thermal electric cooler)를 포함하는 PoP(package-on-package) 디바이스를 제조하기 위한 예시적인 시퀀스를 예시한다.
[0031] 도 20은 양방향 열 전기 냉각기를 포함하는 PoP(package-on-package) 디바이스를 제조하기 위한 방법의 예시적인 흐름도를 예시한다.
[0032] 도 21는 양방향 TEC(thermal electric cooler)를 포함하는 PoP(package-on-package) 디바이스의 다른 예의 프로파일 뷰를 예시한다.
[0033] 도 22는, 본원에 설명된 PoP(package-on-package) 디바이스, 집적 디바이스 패키지, 반도체 디바이스, 다이, 집적 회로 및/또는 PCB를 집적할 수 있는 다양한 전자 디바이스들을 예시한다.
[0034] 다음의 설명에서, 본 개시내용의 다양한 양상들의 완전한 이해를 제공하기 위해 특정한 세부사항들이 제공된다. 그러나, 양상들이 이들 특정한 세부사항들 없이도 실시될 수도 있다는 것은 당업자들에 의해 이해될 것이다. 예를 들어, 회로들은, 불필요한 상세사항으로 양상들이 불명료해지는 것을 회피하기 위해 블록도들로 도시될 수 있다. 다른 예시들에서, 잘-알려진 회로들, 구조들 및 기법들은 본 개시내용의 양상들을 불명료하게 하지 않기 위해 상세히 도시되지 않을 수 있다.
[0035] 본 개시내용은, 제1 패키지, 제2 패키지, 및 양방향 TEC(thermal electric cooler)를 포함하는 PoP(package on package) 디바이스를 설명한다. 제1 패키지는 제1 기판, 및 제1 기판에 커플링된 제1 다이를 포함한다. 제2 패키지는 제1 패키지에 커플링된다. 제2 패키지는 제2 기판, 및 제2 기판에 커플링된 제2 다이를 포함한다. 양방향 TEC는 제1 다이 및 제2 기판 사이에 위치된다. 양방향 TEC는 제1 패키지와 제2 패키지 사이에서 열을 앞뒤로 동적으로 발산하도록 조정된다. 양방향 TEC는 제1 시간 기간에 제1 다이에서 제2 다이로 열을 발산하도록 조정된다. 양방향 TEC는 제2 시간 기간에 제2 다이에서 제1 다이로 열을 발산하도록 추가로 조정된다. 양방향 TEC는 제2 기판을 통해 제1 다이에서 제2 다이로 열을 발산하도록 조정된다.
양방향 열 전기 냉각기를 포함하는 예시적인 PoP (Package on Package) 디바이스
[0036] 도2는 제1 패키지(202)(예컨대, 제1 집적 디바이스 패키지), 제2 패키지(204)(예컨대, 제2 집적 디바이스 패키지), 및 열 전기 냉각기(TEC)(210)를 포함하는 PoP(package on package) 디바이스(200)의 일 예를 예시한다.
[0037] 제1 패키지(202)는 제1 기판(220), 제1 다이(222), 및 제1 캡슐화 층(224)을 포함한다. 제1 패키지(202)는 또한 TEC(210)를 포함할 수 있다. TEC(210)는 제1 다이(222)에 커플링된다. 접착제(270)(예컨대, 열적으로 도전성인 접착제)가 TEC(210)를 제1 다이(222)에 커플링하는데 사용될 수 있다. 접착제(270)는 TEC(210)의 제1 표면(예컨대, 최저부 표면)을 제1 다이(222)의 후방측(back side)에 커플링할 수 있다. TEC(210)는 제1 방향으로(예컨대, 제1 시간 기간/프레임에서) 및 제2 방향으로(예컨대, 제2 시간 기간/프레임에서) 열을 발산할 수 있는 양방향 TEC일 수 있으며, 여기서 제2 방향은 제1 방향과는 반대이다. 더욱 구체적으로, TEC(210)는 제1 패키지(202)와 제2 패키지(204) 사이에서 열을 앞뒤로 동적으로(예컨대, PoP 디바이스(200)의 동작 동안 실시간으로) 발산하도록 구성 및/또는 조정될 수 있는 양방향 TEC일 수 있다. TEC(210)는 양방향 열 전달 수단일 수 있다. TEC(210)는 액티브 열 발산(예컨대, 액티브 열 전달 수단)을 제공할 수 있다. TEC들의 다양한 예들은 적어도 도 6-도 9에서 이하에 상세하게 추가로 예시되고 설명된다.
[0038] 제1 기판(220)은 패키지 기판일 수 있다. 제2 기판(220)은, 적어도 하나의 유전체 층(226), 몇몇 인터커넥트들(227), 제1 솔더 레지스트 층(228), 및 제2 솔더 레지스트 층(229)을 포함한다. 제1 솔더 레지스트 층(228)은 제1 기판(220)의 제1 표면(예컨대, 최저부 표면)상에 있다. 제2 솔더 레지스트 층(229)은 제1 기판(220)의 제2 표면(예컨대, 최상부 표면)상에 있다. 유전체 층(226)은 코어 층 및/또는 프리페그(prepeg) 층을 포함할 수 있다. 인터커넥트들(227)은 몇몇 트레이스들, 비아들, 및/또는 패드들을 포함할 수 있다. 인터커넥트들(227)은 유전체 층(226)에 그리고/또는 유전체 층(226)의 표면 상에 위치될 수 있다.
[0039] 인터커넥트는, 2개의 포인트들, 엘리먼트들 및/또는 컴포넌트들 간의 전기적 연결을 허용하거나 또는 용이하게 하는 베이스(예컨대, 패키지 기판, 인쇄 회로 보드, 인터포저) 및/또는 디바이스(예컨대, 집적 디바이스, 집적 디바이스 패키지, 다이)의 엘리먼트 또는 컴포넌트이다. 일부 구현들에서, 인터커넥트는 트레이스, 비아, 패드, 기둥(pillar), 재분포 금속 층, 및/또는 UBM(under bump metallization) 층을 포함할 수 있다. 일부 구현들에서, 인터커넥트는 신호(예컨대, 데이터 신호, 접지 신호, 전력 신호)에 대한 전기 경로를 제공할 수 있는 전기적으로 도전성인 재료이다. 인터커넥트는 1개 초과의 엘리먼트/컴포넌트를 포함할 수 있다. 일 세트의 인터커넥트들은 하나 또는 그 초과의 인터커넥트들을 포함할 수 있다.
[0040] 제1 다이(222)는 일 세트의 솔더(225)(예컨대, 솔더 볼들)를 통해 제1 기판(220)에 커플링된다(예컨대, 장착된다). 제1 다이(222)는 로직 다이(예컨대, CPU(central processing unit), GPU(graphical processing unit))일 수 있다. 제1 다이(222)는 플립 칩일 수 있다. 제1 다이(222)는 상이한 구현들에서 상이하게 제1 기판(220)에 커플링될 수 있다. 예컨대, 제1 다이(222)는 기둥 및/또는 솔더를 통해 제1 기판(220)에 커플링될 수 있다. 다른 형태들의 인터커넥트들이 제1 다이(222)를 제1 기판(220)에 커플링하는데 사용될 수 있다.
[0041] 제1 캡슐화 층(224)은 제1 다이(222)의 적어도 일부를 캡슐화한다. 제1 캡슐화 층(224)은 몰드 및/또는 에폭시 충전물(epoxy fill)을 포함할 수 있다. 제1 캡슐화 층(224)은 몇몇 솔더(230, 232, 234, 및 236)(예컨대, 솔더 볼들)를 포함할 수 있다. 솔더(230, 232, 234, 및 236)는 인터커넥트들(227)에 커플링될 수 있다.
[0042] 제1 패키지(202)는 일 세트의 솔더 볼들(252)을 통해 PCB(printed circuit board)(250)에 커플링된다(예컨대, 그 상부에 장착된다). 일 세트의 솔더 볼들(252)은 인터커넥트들(227)에 커플링된다. 그러나, 제1 패키지(202)는 다른 수단들, 이를테면, LGA(land grid array) 및/또는 PGA(pin grid array)를 사용함으로써 PCB(250)에 커플링될 수 있음에 유의한다.
[0043] 제2 패키지(204)는 제2 기판(240), 제2 다이(242), 및 제2 캡슐화 층(244)을 포함한다. 제2 기판(240)은 패키지 기판일 수 있다. 제2 기판(240)은, 적어도 하나의 유전체 층(246), 몇몇 인터커넥트들(247), 제1 솔더 레지스트 층(248), 및 제2 솔더 레지스트 층(249)을 포함한다. 제1 솔더 레지스트 층(248)은 제2 기판(240)의 제1 표면(예컨대, 최저부 표면)상에 있다. 제2 솔더 레지스트 층(249)은 제2 기판(240)의 제2 표면(예컨대, 최상부 표면)상에 있다. 유전체 층(246)은 코어 층 및/또는 프리페그(prepeg) 층을 포함할 수 있다. 인터커넥트들(247)은 몇몇 트레이스들, 비아들, 및/또는 패드들을 포함할 수 있다. 인터커넥트들(247)은 유전체 층(246)에 그리고/또는 유전체 층(246)의 표면 상에 위치될 수 있다.
[0044] 제2 다이(242)는 일 세트의 솔더들(245)을 통해 제2 기판(240)에 커플링된다(예컨대, 장착된다). 제2 다이(242)는 로직 다이 또는 메모리 다이일 수 있다. 제2 다이(242)는 플립 칩일 수 있다. 제2 다이(242)는 상이한 구현들에서 상이하게 제2 기판(240)에 커플링될 수 있다. 예컨대, 제2 다이(242)는 기둥들 및/또는 솔더를 통해 제2 기판(240)에 커플링될 수 있다. 다른 형태들의 인터커넥트들이 제2 다이(242)를 제2 기판(240)에 커플링하는데 사용될 수 있다. 제2 캡슐화 층(244)은 제2 다이(242)의 적어도 일부를 캡슐화한다. 제2 캡슐화 층(244)은 몰드 및/또는 에폭시 충전물을 포함할 수 있다.
[0045] 제2 패키지(204)는, TEC(210)가 제1 패키지(202)와 제2 패키지(204) 사이에 있도록, 제1 패키지(202)에 커플링된다(예컨대, 장착된다). 도 2에 도시된 바와 같이, TEC(210)는 제1 다이(222) 및 제2 기판(240) 사이에 위치된다. 접착제(272)(예컨대, 열적으로 도전성인 접착제)가 TEC(210)를 제2 기판(240)에 커플링하는데 사용될 수 있다. 접착제(272)는 TEC(210)의 제2 표면(예컨대, 최상부 표면)을 제1 솔더 레지스트 층(248)에 커플링할 수 있다. 일부 구현들에서, 접착제(272)는 TEC(210)의 제2 표면을 유전체 층(246)에 커플링할 수 있다. 제2 패키지(204)는, 제2 다이(242)의 적어도 일부가 TEC(210) 및/또는 제1 다이(222)와 수직으로 정렬되도록, 제1 패키지(202)에 커플링될 수 있다. 제2 패키지(204)는 솔더(230, 232, 234, 및 236)를 통해 제1 패키지(202)에 전기적으로 커플링될 수 있다. 솔더(230, 232, 234, 및 236)는 인터커넥트들(247)에 커플링될 수 있다.
[0046] 앞서 언급된 바와 같이, TEC(210)는 제1 방향으로(예컨대, 제1 시간 기간/프레임에서) 및 제2 방향으로(예컨대, 제2 시간 기간/프레임에서) 열을 발산할 수 있는 양방향 TEC일 수 있으며, 여기서 제2 방향은 제1 방향과는 반대이다.
[0047] 도 3-도 4는, TEC(210)가 열을 발산시키도록 조정 및/또는 구성될 수 있는 방법의 예들을 예시한다. 도 3은, 제1 시간 기간 동안 제1 패키지(202)로부터 제2 패키지(204)로 열을 발산하도록 조정된 TEC(210)를 예시한다. 제1 시간 기간에 또는 그 동안, TEC(210)는 제1 다이(222)로부터 제2 패키지(204)로 열을 발산하도록 조정된다. 제1 다이(222)로부터 발산된 열은, TEC(210), (유전체 층(246), 인터커넥트들(247)을 포함하는) 제2 기판(240), 솔더 볼들(245), 제2 다이(242), 및/또는 제2 캡슐화 층(244)을 통과할 수 있다. 따라서, 제1 다이(222)로부터의 열 중 일부는 제2 다이(242)를 가열할 수 있다.
[0048] 도 4는, 제2 시간 기간 동안 제2 패키지(204)로부터 제1 패키지(202)로 열을 발산하도록 조정된 TEC(210)를 예시한다. 제2 시간 기간에 또는 그 동안, TEC(210)는 제2 다이(242)로부터 제1 패키지(202)로 열을 발산하도록 조정된다. 제2 다이(242)로부터 발산된 열은, 솔더 볼들(245), (유전체 층(246), 인터커넥트들(247)을 포함하는) 제2 기판(240), TEC(210) 및/또는 제1 다이(222)를 통과할 수 있다. 따라서, 제2 다이(242)로부터의 열 중 일부는 제1 다이(222)를 가열할 수 있다.
[0049] 일부 구현들에서, TEC(210)는 다이들의 열적 한계들 내에서 계속 동작하면서 최적의 다이 성능을 제공하기 위해 제1 패키지(202)와 제2 패키지(204)사이에서 앞뒤로(예컨대, 제1 다이(222)와 제2 다이(242) 사이에서 앞뒤로) 열을 발산시키도록 조정될 수 있다. 예컨대, 제1 다이(222)가 자신의 열적 동작 한계(예컨대, 온도 동작 한계)에 도달하면, (제2 다이가 자신의 열적 동작 한계에 도달하지 않는 한) TEC(210)는 제1 다이(222)로부터 멀리 그리고 제2 다이(242)를 향해 열을 발산하도록 조정 및/또는 구성될 수 있다. 유사하게, 제1 다이(222)가 여전히 자신의 열적 동작 한계에 있지만 제2 다이(242)가 자신의 열적 동작 한계에 도달한 경우, TEC(210)는 제2 다이(242)로부터 멀리 그리고 제1 다이(222)를 향해 열을 발산하도록 조정 및/또는 구성될 수 있다. 따라서, TEC(210)는 제1 패키지(202)와 제2 패키지(204) 사이에서 열을 앞뒤로 동적으로(예컨대, PoP 디바이스(200)의 동작 동안 실시간으로) 발산하도록 구성 및/또는 조정될 수 있는 양방향 TEC일 수 있다. 디바이스(예컨대, PoP 디바이스)에서의 TEC들 그리고 그 TEC들이 열 관리를 위해 어떻게 구성되고, 조정되고, 그리고/또는 제어되는지에 대한 방법의 다양한 예들이 적어도 도 6-12 및 도 16-18에서 아래에 상세하게 추가로 예시 및 설명된다.
[0050] 일부 구현들에서, TEC(예컨대, 양방향 TEC)는 2개의 다이들 사이에 위치될 수 있다. 이러한 구성의 예가 이하에서 도 21에 예시 및 설명된다.
양방향 열 전기 냉각기를 포함하는 예시적인 PoP (Package on Package) 디바이스
[0051] 도5는 제1 패키지(502)(예컨대, 제1 집적 디바이스 패키지), 제2 패키지(204)(예컨대, 제2 집적 디바이스 패키지), 및 열 전기 냉각기(TEC)(210)를 포함하는 다른 PoP(package on package) 디바이스(500)의 일 예를 예시한다. 일부 구현들에서, 도 5의 PoP 디바이스(500)는, 상이한 타입들의 인터커넥트들이 제2 패키지(204)를 제1 패키지(502)에 전기적으로 커플링하는데 사용된다는 점을 제외하고는 PoP 디바이스(200)와 유사하다.
[0052] 제1 패키지(502)는 제1 기판(220), 제1 다이(222), 및 제1 캡슐화 층(224)을 포함한다. 제1 패키지(502)는 또한 TEC(210)를 포함할 수 있다. TEC(210)는 제1 다이(222)에 커플링된다. 접착제(270)(예컨대, 열적으로 도전성인 접착제)가 TEC(210)를 제1 다이(222)에 커플링하는데 사용될 수 있다. 접착제(270)는 TEC(210)의 제1 표면(예컨대, 최저부 표면)을 제1 다이(222)의 후방측에 커플링할 수 있다. TEC(210)는 제1 방향에서(예컨대, 제1 시간 기간/프레임에서) 및 제2 방향에서(예컨대, 제2 시간 기간/프레임에서) 열을 발산할 수 있는 양방향 TEC일 수 있으며, 여기서 제2 방향은 제1 방향과는 반대이다. 일부 구현들에서, 도3-도4에 대해 위에서 설명된 바와 같이, TEC(210)는 제1 패키지(502)와 제2 패키지(204) 사이에서 열을 앞뒤로 동적으로(예컨대, PoP 디바이스(200)의 동작 동안 실시간으로) 발산하도록 구성 및/또는 조정될 수 있는 양방향 TEC일 수 있다.
[0053] 제1 캡슐화 층(224)은 제1 다이(222)의 적어도 일부를 캡슐화한다. 제1 캡슐화 층(224)은 몰드 및/또는 에폭시 충전물(epoxy fill)을 포함할 수 있다. 제1 캡슐화 층(224)은 몇몇 비아들(510)을 포함할 수 있다. 비아들(510)은 TEV(through encapsulation via)들 또는 TMV(through mold via)들일 수 있다. 비아들(510)은 인터커넥트들(227)에 커플링된다. 몇몇 인터커넥트들(512)이 제1 캡슐화 층(224)에 형성된다. 인터커넥트들(512)은 재분포 인터커넥트들일 수 있다. 인터커넥트들(512)은 비아들(510)에 커플링된다. 솔더(520)(예컨대, 솔더 볼)는 인터커넥트들(512) 및 제2 기판(240)에 커플링된다. 솔더(520)는 제2 기판(240)의 인터커넥트들(247)에 커플링된다.
예시적인 TEC (Thermal Electric Cooler)
[0054] 도 6은 TEC(thermal electric cooler)(600)의 일 예의 프로파일 뷰를 예시한다. TEC(600)는 본 개시내용에 설명된 임의의 패키지들 및/또는 PoP(package on package) 디바이스들에서 구현될 수 있다. 예컨대, TEC(600)는 앞서 설명된 TEC(210)일 수 있다.
[0055] TEC(600)는 양방향 TEC일 수 있다. TEC(600)는 양방향 열 전달 수단일 수 있다. TEC(600)는 N-도핑된 컴포넌트(602)(예컨대, N-도핑된 반도체) 및 P-도핑된 컴포넌트(604)(예컨대, P-도핑된 반도체), 캐리어(606), 인터커넥트(612), 및 인터커넥트(614)를 포함한다. 캐리어(606)는 선택적일 수 있다. TEC(600)는 몇몇 N-도핑된 컴포넌트들(602) 및 몇몇 P-도핑된 컴포넌트들(604)을 포함할 수 있다. TEC(600)는 몇몇 인터커넥트들(612) 및 몇몇 인터커넥트들(614)을 포함할 수 있다. 인터커넥트들(612)은 TEC(600)의 제1 측(예컨대, 최저부 측)에 위치된다. 인터커넥트들(614)은 TEC(600)의 제2 측(예컨대, 최상부 측)에 위치된다.
[0056] N-도핑된 컴포넌트(602)는 인터커넥트를 통해 P-도핑된 컴포넌트(604)에 커플링된다. 예컨대, 인터커넥트(614)는 N-도핑된 컴포넌트(602)에 커플링된다. N-도핑된 컴포넌트(602)는 인터커넥트(612)에 커플링된다. 인터커넥트(612)는 P-도핑된 컴포넌트(604)에 커플링된다. P-도핑된 컴포넌트(604)는 다른 인터커넥트(614)에 커플링된다. 위의 패턴은 TEC(600)를 형성하기 위해 수회 반복될 수 있다.
[0057] 일부 구현들에서, TEC(600)는 TEC(600)를 통해 전류를 제공함으로써 제1 방향 및 제2 방향에서 열을 발산하도록 구성 및/또는 조정될 수 있다. TEC(600)를 통해 흐르는(run through) 전류의 상이한 극성들은 TEC(600)를 상이하게 구성 및/또는 조정시킬 수 있다. 예컨대, 인터커넥트(614), N-도핑된 컴포넌트(602), 인터커넥트(612) 및 P-도핑된 컴포넌트(604)로부터 흐르는 제1 전류(예컨대, 제1 극성을 갖는 제1 전류)는, 열이 TEC(600)의 최저부 측으로부터 TEC(600)의 최상부 측으로 발산하도록 TEC(600)를 구성할 수 있다. 이러한 경우에서, TEC(600)의 최저부 측은 냉각 측(cool side)이고, TEC(600)의 최상부 측은 뜨거운 측(hot side)이다.
[0058] 제2 전류(예컨대, 제2 극성을 갖는 제1 전류)가 P-도핑된 컴포넌트(604), 인터커넥트(612), N-도핑된 컴포넌트(602) 및 인터커넥트(614)로부터 유동할 때, TEC(600)는, 열이 TEC(600)의 최상부 측으로부터 TEC(600)의 최저부 측으로 발산하도록 구성될 수 있다. 이러한 경우에서, TEC(600)의 최상부 측은 냉각 측이고, TEC(600)의 최저부 측은 뜨거운 측이다.
[0059] 따라서, TEC(600)를 통해 전류(예컨대, 포지티브 전류, 네거티브 전류)의 유동 또는 극성을 변경시킴으로써, TEC(600)가 TEC(600)의 최상부 측과 최저부 측 사이에서 열을 앞뒤로 발산시키도록 조정될 수 있는 양방향 TEC로서 구성될 수 있다.
[0060] 도 7은 개념적 TEC(600)의 각을 이룬 뷰를 예시한다. TEC(600)는 제1 패드(702)(예컨대, 제1 단자), 제2 패드(704)(예컨대, 제2 단자), 유전체 층(712), 및 유전체 층(714)을 포함한다. 제1 패드(702)는 인터커넥트(예컨대, 인터커넥트(614)) 또는 N-도핑된 컴포넌트(예컨대, N-도핑된 컴포넌트(602))에 커플링될 수 있다. 제2 패드(704)는 인터커넥트 또는 P-도핑된 컴포넌트(예컨대, P-도핑된 컴포넌트(604))에 커플링될 수 있다. 유전체 층(712 및 714)은, 패드들(702 및 704)이 패키지의 인터커넥트들(예컨대, 솔더)에 커플링될 때, 어떠한 단락도 존재하지 않도록 보장하기 위해 개개의 패드들(702 및 704)을 둘러싼다.
[0061] 제1 패드(702) 및 제2 패드(704)는 TEC(600)의 상이한 부분들 상에 위치될 수 있다. 도7은, 제1 패드(702) 및 제2 패드(704)가 TEC(600)의 제1 측(예컨대, 최상부 측)임을 예시한다. 그러나, 일부 구현들에서, 제1 패드(702) 및/또는 제2 패드(704)가 TEC(600)의 제2 측(예컨대, 최저부 측)에 위치될 수 있다. TEC(600)는 하나 또는 그 초과의 접착제들(예컨대, 열적으로 도전성인 접착제들)을 사용함으로써 패키지들(예컨대, 패키지의 다이, 패키지의 기판)에 커플링될 수 있다. 예컨대, 제1 접착제는 TEC(600)의 제1 측 또는 제1 표면 상에 커플링될 수 있고, 제2 접착제는 TEC(600)의 제2 측 또는 제2 표면 상에 커플링될 수 있다.
[0062] 일부 구현들에서, TEC는 몇몇 TEC들을 포함할 수 있다. 즉, TEC는 특정 방향에서 열을 발산하도록 개별적으로 조정 및/또는 구성될 수 있는 TEC들의 어레이일 수 있다.
[0063] 도8은 몇몇 TEC들을 포함하는 개념적인 TEC(800)의 각을 이룬 뷰를 예시한다. TEC(800)는 TEC들의 어레이이다. 도8에 도시된 바와 같이, TEC(800)는 캐리어(801), 제1 TEC(802), 제2 TEC(804), 제3 TEC(806), 제4 TEC(808), 제5 TEC(810), 및 제6 TEC(812)를 포함한다. 캐리어(801)는 개별적인 TEC들에 대한 구조적 지지체를 제공하도록 사용될 수 있다. 개별적인 TEC들(예컨대, TEC(802))은 TEC(600)와 유사할 수 있다. TEC(800)는 본 개시내용에 설명된 패키지들 및/또는 PoP(package on package) 디바이스들 중 임의의 것에서 구현될 수 있다.
[0064] TEC(800)는 하나 또는 그 초과의 다이들에 대한 열 발산을 제공하고 그리고/또는 다이에 대한 국부화된 열 발산을 제공하는데 사용될 수 있다. 예컨대, 다이는 뜨거운 스폿들 및/또는 냉각 스폿들을 포함할 수 있고, TEC(800)는 오직 다이 상의 특정 뜨거운 스폿 영역들로부터 멀리 열을 발산시키는데만 사용될 수 있다.
[0065] 도 9는, TEC들의 어레이가 어떻게 열을 발산시키도록 구성 및/또는 조정될 수 있는지의 일 예를 예시한다. 도 9에 도시된 바와 같이, TEC(800)는, 일부 TEC들이 하나의 방향에서 열을 발산하면서 다른 TEC들이 다른 방향에서 열을 발산하도록, 구성된다. 이에 더해, 일부 TEC들은 인액티브(inactive)일 수 있다. TEC가 인액티브일 때, TEC는 더 뜨거운 측에서 더 차가운 측으로 열을 여전히 수동으로 전도시킬 수 있다(예컨대, 수동 열 전도). 도 9의 예에서, TEC(802) 및 TEC(812)는 TEC(800)의 최상부 측으로부터 최저부 측으로 열을 발산하도록 구성 및/또는 조정된다. TEC(806) 및 TEC(808)는 TEC(800)의 최저부 측으로부터 최상부 측으로 열을 발산하도록 구성 및/또는 조정된다. TEC(804) 및 TEC(810)는 인액티브(오프)이다. TEC(800)는, 다이(들)가 동작 상태에 있기 때문에, 다이(들)의 온도들(예컨대, 국부화된 온도들)에 상이하게 기반하여 동적으로 구성 및/또는 조정될 수 있다. TEC(800)는 하나의 다이 또는 몇몇 다이들에 커플링될 수 있다.
열 전기 냉각기(들)를 포함하는 디바이스의 예시적인 구성들
[0066] TEC(thermal electric cooler)는 디바이스에서 하나 또는 그 초과의 제어기들에 의해 조정 및/또는 구성될 수 있다. 도 10은, 하나 또는 그 초과의 TEC(thermal electric cooler)들(1000)이 열을 발산시키기 위해 어떻게 제어되고, 구성되고, 그리고/또는 조정되는지의 방법에 대한 구성의 일 예를 예시한다. 구성은, TEC들(1000), TEC 제어기(1002), 열 제어기(1004), 및 몇몇 온도 센서들(1006)을 포함한다. TEC들(1000)은 양방향 열 전달 수단일 수 있다.
[0067] 온도 센서들(1006)은 제1 다이(예컨대, 로직 다이)에 대한 적어도 하나의 온도 센서, 및 제2 다이(예컨대, 메모리 다이)에 대한 적어도 하나의 온도 센서를 포함할 수 있다. 온도 센서들(1006)은 다른 다이들에 대한 다른 센서들을 포함할 수 있다. 온도 센서들(1006)은 그들 개개의 다이들로부터 분리될 수 있거나, 또는 그들 개개의 다이들 내부로 통합될 수 있다. 온도 센서들(1006)은 열 제어기(1004)와 통신한다. 온도 센서들(1006)은 열 제어기(1004)에 온도 판독치들을 송신할 수 있다. 따라서, 열 제어기(1004)는 온도 센서들(1006)로부터 온도 판독치들을 수신할 수 있다.
[0068] 열 제어기(1004)는 별도의 디바이스, 유닛, 및/또는 다이일 수 있다. 열 제어기(1004)는, 다이들이 그들의 동작 온도 한계들 내에서 동작하도록, TEC 및/또는 다이들의 동작들을 제어 및 조절(regulate)하도록 구성될 수 있다. 예컨대, 열 제어기(1004)는, TEC가 언제 그리고 어떻게 액티브(on)되는지 또는 인액티브(off)되는지를 동작시킬 수 있다. 열 제어기(1004)는 또한 다이에 성능 제한들을 가함으로써 다이의 성능을 제어할 수 있다. 예컨대, 열 제어기(1004)는, 다이가 자신의 최대 동작 온도에 도달하지 않거나 또는 초과하지 않도록 보장하기 위해 다이의 클록 속도를 제한할 수 있다. 열 제어기(1004)는 TEC 제어기(1002)를 통해 TEC들(1000)을 제어, 구성, 및/또는 조정할 수 있다. 그러나, 열 제어기(1004)는 일부 구현들에서 TEC들(1000)을 직접 제어, 구성 및/또는 조정할 수 있다. 일부 구현들에서, TEC 제어기(1002)는 열 제어기(1004)의 일부이다. 열 제어기(1004)는, TEC 제어기(1002)가 TEC들(1000)을 제어, 조정, 및/또는 구성할 수 있도록, TEC 제어기(1002)에 신호들 및/또는 명령을 송신할 수 있다.
[0069] TEC 제어기(1002)는, 하나 또는 그 초과의 전류들(예컨대, 제1 전류, 제2 전류)을 하나 또는 그 초과의 TEC들(1000)에 송신함으로써 하나 또는 그 초과의 TEC들(1000)을 제어, 조정, 및/또는 구성할 수 있다. TEC에 송신되는 전류(예컨대, 전류의 극성)의 특성은, TEC가 열을 발산하는 방법을 구성할 수 있다. 예컨대, TEC에 송신되는 제1 극성(예컨대, 포지티브 전류)를 갖는 제1 전류는 제1 방향에서(예컨대, 최저부로부터 최상부로) 열을 발산시키도록 TEC를 구성할 수 있다. TEC에 송신되는 제2 극성(예컨대, 네거티브 전류)를 갖는 제2 전류는, 제1 방향과는 반대인 제2 방향에서(예컨대, 최상부로부터 최저부로) 열을 발산시키도록 TEC를 구성할 수 있다. 더욱이, 상이한 암페어들의 전류가 상이한 TEC들(1000)에 송신될 수 있다. 예컨대, 제1 TEC는 제1 암페어를 포함하는 제1 전류로 송신될 수 있는 한편, 제2 TEC는 제2 암페어를 포함하는 제2 전류로 송신될 수 있다.
[0070] 도 10은, 열 제어기(1004)가 하나 또는 그 초과의 TEC들(1000)을 제어, 조정 및/또는 구성하는데 고려할 수 있는 변수들 중 일부를 추가로 예시한다. 도 10에 도시된 바와 같이, 열 제어기(1004)는, 제1 다이(예컨대, 로직 다이)의 온도의 입력을 수신할 수 있고, 이를 제1 다이의 한계 온도(예컨대, 상한 온도)와 비교할 수 있다. 열 제어기(1004)는 제1 다이와 연관된(예컨대, 이에 커플링된) 하나 또는 그 초과의 TEC들(1000)을 제어, 조정 및/또는 구성하기 위해 제1 다이의 한계 온도와 제1 다이의 온도 사이의 차이(만약 있다면)를 더 가중할 수 있다.
[0071] 도 10은 또한, 열 제어기(1004)가, 제2 다이(예컨대, 메모리 다이)의 온도의 입력을 수신할 수 있고, 이를 제2 다이의 한계 온도(예컨대, 상한 온도)와 비교할 수 있음을 예시한다. 열 제어기(1004)는 제1 다이와 연관된(예컨대, 이에 커플링된) 하나 또는 그 초과의 TEC들(1000)을 제어, 조정 및/또는 구성하기 위해 제2 다이의 한계 온도와 제2 다이의 온도 사이의 차이(만약 있다면)를 더 가중할 수 있다.
[0072] 온도 및/또는 온도 한계들뿐만 아니라, 다른 변수들은, 열이 다이들에 의해 생성되는 레이트, 온도가 다이들에서 증가/감소하는 레이트, 패키지들로의 전력의 소스(예컨대, 배터리, 플러그-인 소스) 및/또는 얼마나 많은 다이들이 활용되고 있는지(예컨대, 다이들의 활용률, 클록 속도)를 포함한다. 이러한 변수들은 상이하게 가중될 수 있다.
[0073] 열 제어기(1004)는 개별적으로, 독립적으로, 동시에, 및/또는 공동으로 전술한 다양한 변수들을 고려할 수 있다. 열 제어기(1004)가 다이들의 다양한 온도들을 고려할 수 있는 방법의 일 예가 도 16 - 도 18에 예시 및 설명된다.
[0074] 상이한 구현들은, 적어도 하나의 TEC를 포함하는 디바이스의 상이한 구성들을 제공할 수 있다. 도 11은, 하나 또는 그 초과의 TEC(thermal electric cooler)들(1000)이 열을 발산시키기 위해 어떻게 제어되고, 구성되고, 그리고/또는 조정되는지의 방법에 대한 다른 구성의 일 예를 예시한다. 도 11의 구성은, TEC(1000), 제1 다이(1101), TEC 제어기(1102), 열 제어기(1104), 적어도 하나의 제1 온도 센서(1106), 및 적어도 하나의 제2 온도 센서(1108)를 포함한다.
[0075] 제1 다이(1101)는 열 제어기(1104) 및 제1 온도 센서(1106)를 포함한다. 제2 온도 센서(1108)는 온도 판독치들(예컨대, 제2 다이의 온도 판독치들)을 제1 다이(1101)에 송신할 수 있다. 더욱 구체적으로, 제2 온도 센서(1108)는 온도 판독치들을 열 제어기(1104)에 송신할 수 있다. 유사하게, 제1 온도 센서(1106)는 온도 판독치들(예컨대, 제1 다이(1101)의 온도 판독치들)을 열 제어기(1104)에 송신할 수 있다. 따라서, 열 제어기(1104)는 제1 온도 센서(1106) 및 제2 온도 센서(1108)로부터 온도 판독치들을 수신할 수 있다. 열 제어기(1104)는, 열 제어기(1004)에 대해 설명된 것과 유사한 방식으로, 다이들이 그들의 동작 온도 한계들 내에서 동작하도록, TEC 및/또는 다이들의 동작들을 제어 및 조절하도록 구성될 수 있다.
[0076] 제1 다이(1101) 및 열 제어기(1104)는, TEC 제어기(1102)가 TEC들(1000)을 제어, 조정, 및/또는 구성할 수 있도록, TEC 제어기(1102)에 신호들 및/또는 명령들을 송신할 수 있다. TEC 제어기(1102)는, TEC 제어기(1002)에 대해 설명된 것과 유사한 방식으로 전류들을 송신함으로써 TEC들(1000)을 제어, 조정 및/또는 구성할 수 있다.
[0077] 도 11은 또한, 제1 다이(1201) 및/또는 열 제어기(1104)가 하나 또는 그 초과의 TEC들(1000)을 제어, 조정 및/또는 구성하도록 고려할 수 있는 변수들 중 일부를 예시한다. 도 11에서의 변수들은, 이 변수들이 제1 다이(1201) 및/또는 열 제어기(1104)에 의해 고려될 수 있다는 것을 제외하면, 도 10에 설명된 변수들과 유사하다.
[0078] 도 12는, 하나 또는 그 초과의 TEC(thermal electric cooler)들(1000)이 열을 발산시키기 위해 제어, 구성 및/또는 조정될 수 있는 방법의 다른 구성의 일 예를 예시한다. 도 12의 구성은, TEC들(1000), 제1 다이(1201), TEC 제어기(1202), 열 제어기(1104), 적어도 하나의 제1 온도 센서(1106), 및 적어도 하나의 제2 온도 센서(1108)를 포함한다. 도 12는, TEC 제어기(1202)가 제1 다이(1201)에서 구현된다는 점을 제외하면 도 11과 유사하다. 따라서, 도 12의 구성은, TEC 제어기(1202)가 제1 다이(1201) 내에서 동작한다는 점을 제외하면, 도 11의 구성과 유사한 방식으로 동작한다.
[0079] 도 12는 또한, 제1 다이(1201) 및/또는 열 제어기(1104)가 하나 또는 그 초과의 TEC들(1000)을 제어, 조정 및/또는 구성하기 위해 고려할 수 있는 변수들 중 일부를 예시한다. 도 12에서의 변수들은, 변수들이 제1 다이(1201) 및/또는 열 제어기(1104)에 의해 고려될 수 있다는 점을 제외하면, 도 10에 설명된 변수들과 유사하다.
[0080] 상이한 구현들은 위의 TEC들, TEC 제어기, 열 제어기, 및 온도 센서들의 상이한 구성들 및/또는 설계들을 제공할 수 있음에 유의한다.
PoP (Package on Package) 디바이스에서 TEC (Thermal Electric Cooler)의 예시적인 연결들
[0081] 도 13-도 15는, PoP(package on package) 디바이스에서의 TEC(thermal electric cooler)가 다양한 컴포넌트들 또는 디바이스들에 어떻게 전기적으로 커플링될 수 있는지에 대한 방법의 다양한 예들을 예시한다.
[0082] 도 13은 도2의 PoP 디바이스(200)를 예시한다. 도 13에 도시된 바와 같이, 제1 다이(222)는 제1 세트의 인터커넥트들(1302)을 통해 PCB(printed circuit board)(250)에 전기적으로 커플링된다. 제1 세트의 인터커넥트들(1302)은, (솔더(225)로부터의) 솔더, 인터커넥트들(227)로부터의 인터커넥트들(예컨대, 트레이스들, 비아들, 패드들), 및 (솔더 볼들(252)로부터의) 솔더 볼을 포함할 수 있다. 제1 세트의 인터커넥트들(1302)은, 제1 다이(222), 전원(미도시), 열 제어기(미도시), 또는 TEC(thermal electric cooler) 제어기(미도시) 사이에 전기 경로를 제공할 수 있다. 일부 구현들에서, 열 제어기 및/또는 TEC 제어기는 제1 다이(222)에 구현될 수 있다.
[0083] 도 13은 또한 제2 세트의 인터커넥트들(1304)을 통해 PCB(250)에 전기적으로 커플링된 TEC(thermal electric cooler)(210)를 예시한다. 도7에 설명된 바와 같이, 제2 세트의 인터커넥트(1304)는 TEC(210) 상의 패드들(예컨대, 패드들(702, 704) 및/또는 단자들에 커플링될 수 있다. 제2 세트의 인터커넥트들(1304)은, 제1 다이(222), 재분포 층들, (솔더(225)로부터의) 솔더, 인터커넥트들(227)로부터의 인터커넥트들(예컨대, 트레이스들, 비아들, 패드들), 및 (솔더 볼들(252)로부터의) 솔더 볼을 횡단하는 TSV(through substrate via)를 포함할 수 있다. 제2 세트의 인터커넥트들(1304)은 TEC(210)와 TEC 제어기(미도시) 사이에 전기 경로를 제공할 수 있다.
[0084] 도 14는, TEC(210)가 PoP 디바이스(200)에서의 상이한 컴포넌트들 및/또는 디바이스에 어떻게 전기적으로 커플링될 수 있는지에 대한 방법을 예시한다. 도 14에 도시된 바와 같이, 제1 다이(222)는 제1 세트의 인터커넥트들(1402)을 통해 PCB(printed circuit board)(250)에 전기적으로 커플링된다. 제1 세트의 인터커넥트들(1402)은, (솔더(225)로부터의) 솔더, 인터커넥트들(227)로부터의 인터커넥트들(예컨대, 트레이스들, 비아들, 패드들), 및 (솔더 볼들(252)로부터의) 솔더 볼을 포함할 수 있다. 제1 세트의 인터커넥트들(1402)은, 제1 다이(222), 전원(미도시), 열 제어기(미도시), 또는 TEC(thermal electric cooler) 제어기(미도시) 사이에 전기 경로를 제공할 수 있다. 일부 구현들에서, 열 제어기 및/또는 TEC 제어기는 제1 다이(222)에 구현될 수 있다.
[0085] 도 14은 또한 제2 세트의 인터커넥트들(1404)을 통해 PCB(250)에 전기적으로 커플링된 TEC(thermal electric cooler)(210)를 예시한다. 도7에 설명된 바와 같이, 제2 세트의 인터커넥트(1404)는 TEC(210) 상의 패드들(예컨대, 패드들(702, 704) 및/또는 단자들에 커플링될 수 있다. 제2 세트의 인터커넥트들(1404)은, 인터커넥트(247), 솔더(234), 인터커넥트들(227)로부터의 인터커넥트들(예컨대, 트레이스들, 비아들, 패드들), 및 (솔더 볼들(252)로부터의) 솔더 볼을 포함할 수 있다. 제2 세트의 인터커넥트들(1404)은 TEC(210)와 TEC 제어기(미도시) 사이에 전기 경로를 제공할 수 있다. 이 예에서, 제2 세트의 인터커넥트들(1404)은 제2 패키지(204) 및 제1 패키지(202) 둘 다를 횡단한다.
[0086] 도 15는 도5의 PoP 디바이스(200)를 예시한다. 도 15에 도시된 바와 같이, 제1 다이(222)는 제1 세트의 인터커넥트들(1502)을 통해 PCB(printed circuit board)(250)에 전기적으로 커플링된다. 제1 세트의 인터커넥트들(1502)은, (솔더(225)로부터의) 솔더, 인터커넥트들(227)로부터의 인터커넥트들(예컨대, 트레이스들, 비아들, 패드들), 및 (솔더 볼들(252)로부터의) 솔더 볼을 포함할 수 있다. 제1 세트의 인터커넥트들(1502)은, 제1 다이(222), 전원(미도시), 열 제어기(미도시), 또는 TEC(thermal electric cooler) 제어기(미도시) 사이에 전기 경로를 제공할 수 있다. 일부 구현들에서, 열 제어기 및/또는 TEC 제어기는 제1 다이(222)에 구현될 수 있다.
[0087] 도 15은 또한 제2 세트의 인터커넥트들(1504)을 통해 PCB(250)에 전기적으로 커플링된 TEC(thermal electric cooler)(210)를 예시한다. 도7에 설명된 바와 같이, 제2 세트의 인터커넥트(1504)는 TEC(210) 상의 패드들(예컨대, 패드들(702, 704) 및/또는 단자들에 커플링될 수 있다. 제2 세트의 인터커넥트들(1504)은, 인터커넥트(512)(예컨대, 재분포 인터커넥트들)로부터의 인터커넥트들, 비아들(510)로부터의 비아(예컨대, TMV(through mold via), TEV(through encapsulation via)), 인터커넥트들(227)로부터의 인터커넥트들(예컨대, 트레이스들, 비아들, 패드들), 및 (솔더 볼들(252)로부터의) 솔더 볼을 포함할 수 있다. 제2 세트의 인터커넥트들(1504)은 TEC(210)와 TEC 제어기(미도시) 사이에 전기 경로를 제공할 수 있다.
TEC (Thermal Electric Cooler)의 동작이 다이들의 온도들에 어떻게 영향을 줄 수 있는지에 대한 방법에 대한 예시적인 예
[0088] 도 16은, TEC(thermal electric cooler)의 동작이 다양한 다이들의 온도들에 어떻게 영향을 줄 수 있는지에 대한 3개의 그래프들을 예시한다. 도 16은, 제1 그래프(1602), 제2 그래프(1604), 및 제3 그래프(1606)를 예시한다. 제1 그래프(1602)는 일정 시간 기간에 걸친 (예컨대, 제1 다이(222)의 동작 동안의) 제1 다이의 온도 판독치이다. 제2 그래프(1604)는 일정 시간 기간에 걸친 (예컨대, 제2 다이(242)의 동작 동안의) 제2 다이의 온도 판독치이다. 제3 그래프(1606)는 일정 시간 기간에 걸친 TEC(thermal electric cooler)(예컨대, TEC(210))에 송신된/TEC에 의해 수신된 전류 판독치이다.
[0089] 시간 기간 A 동안, 제1 다이 및 제2 다이 둘 다는 동작가능하다. 시간이 경과함에 따라, 제1 다이 및 제2 다이의 온도들은 증가한다. 제1 다이 및 제2 다이 둘 모두가 각각 그들의 최대 온도들(예컨대, 최대 동작 온도들, 제1 최대 온도, 제2 최대 온도) 미만인 동작 온도들을 갖기 때문에, TEC는 동작가능/액티브할 필요가 없다. 따라서, 어떠한 전류도 TEC에 송신되지 않거나 또는 TEC에 의해 수신되지 않는다.
[0090] 시간 기간 A의 종료시에, 제2 다이는 자신의 최대 동작 온도(예컨대, TDIE2)에 도달했다. 그러나, 제1 다이는 시간 기간 A의 종료시에 자신의 최대 동작 온도(예컨대, TDIE1)에 도달하지 않았다. 따라서, 열은 제2 다이로부터 제1 다이로 발산될 수 있다. 전류(예컨대, 제1 극성을 갖는 제1 전류)는 TEC에 송신되고 그리고 TEC에 의해 수신되며, 이는 제2 다이로부터 TEC가 열을 발산하게 한다. 제1 극성은 포지티브 극성일 수 있다.
[0091] 시간 기간 B 동안, TEC가 활성화된(activated) 후 그리고 TEC가 액티브인 동안, 제2 다이의 온도는 감소하기 시작하는 한편, 제1 다이의 온도는 (제1 다이에 전달되는 제2 다이로부터의 열로 인해) 더 빠른 레이트로 증가한다. 제1 다이가 동작가능하기 때문에, 제1 다이는 그 자체의 열을 생성하고 있는 동안 동시에 제1 다이는 제2 다이로부터 열을 수신하고 있다.
[0092] 시간 기간 B의 종료시에, 제1 다이는 자신의 최대 동작 온도에 도달한 반면, 제2 다이는 지금 자신의 최대 동작 온도 미만이다. 이 경우에서, 열은 제1 다이로부터 그리고 제2 다이를 향하여 발산될 수 있다. 상이한 극성(예컨대, 반대 극성, 제2 극성)을 갖는 전류는 TEC에 송신되고 TEC에 의해 수신된다. 제2 극성은 네거티브 극성일 수 있다. 전류의 새로운 극성은 TEC로 하여금 제1 다이로부터 그리고 제2 다이를 향하여 열을 발산하도록 야기한다.
[0093] 시간 기간 C 동안, TEC가 새로운 극성을 갖는 전류를 통해 액티브인 동안, 제1 다이의 온도는 감소하기 시작하는 한편, 제2 다이의 온도는 (제2 다이로부터 생성된 열 및 제1 다이로부터 전달된 열로 인해) 증가하기 시작한다.
[0094] 시간 기간 C의 종료시에, 제2 다이는 자신의 최대 동작 온도에 도달한 반면, 제1 다이는 지금 자신의 최대 동작 온도 미만이다. TEC에 송신되고 그리고 TEC에 의해 수신된 전류는 이제 다른 극성(예컨대, 제1 극성, 포지티브 극성)으로 다시 변했으며, 이는 TEC로 하여금 제2 다이로부터 열을 다시 발산하도록 야기한다.
[0095] 시간 기간 D 동안, 제2 다이의 온도는 감소하기 시작하는 한편, 제1 다이의 온도는 증가한다.
[0096] 따라서, TEC에 송신되고 TEC에 의해 수신된 전류를 변경시킴으로써, 다이들의 온도들은 다이들의 성능을 스로틀(throttle)하지 않고 동적으로 제어될 수 있다. 그러나, 일부 구현들에서, 다이들의 열 관리 및/또는 제어는 (예컨대, 하나 또는 그 초과의 다이들을 스로틀하는) 다이들의 성능의 제한과 적어도 하나의 TEC의 사용을 조합을 통해 달성될 수 있다. 상이한 구현들은 열을 발산시키기 위해 TEC를 활성화하고, 구성하고, 그리고 조정시키기 위해 상이한 값들 및 극성을 갖는 상이한 전류들을 사용할 수 있음에 유의한다.
[0097] 다이들의 열 관리가 적어도 하나의 TEC를 사용함으로써 어떻게 달성될 수 있는지에 대한 방법의 일 예를 설명했지만, 적어도 하나의 TEC를 포함하는 다이들의 열 관리를 위한 몇몇 방법들이 이제 다음 섹션들에 설명될 것이다. 일부 구현들에서, 다이들의 열 관리는 하나 또는 그 초과의 다이들의 성능을 제한하는 것을 포함할 수 있다.
열 전기 냉각기를 사용함으로써 다이들의 열 관리를 위한 방법의 예시적인 흐름도
[0098] 도 17은 적어도 하나의 TEC(thermal electric cooler)를 사용함으로써 2개 또는 그 초과의 다이들의 열 관리를 위한 방법(1700)의 예시적인 흐름도를 예시한다. 방법(1700)은 TEC 제어기 및/또는 열 제어기에 의해 수행될 수 있다.
[0099] TEC는 방법(1700) 이전에 액티브(예컨대, on) 또는 인액티브(off)일 수 있다. 이 방법은, (1705에서) 제1 다이의 온도(들)(예컨대, 제1 온도 판독치, 제2 온도 판독치) 및 제2 다이의 온도(들)을 수신한다. 제1 다이는 제1 다이(222)일 수 있다. 제2 다이는 제2 다이(242)일 수 있다. 온도들은, 제1 다이에 대한 적어도 하나의 제1 온도 센서로부터의 온도 판독치들, 및 제2 다이에 대한 적어도 하나의 제2 온도 센서로부터의 온도 판독치들일 수 있다.
[00100] 방법은, (1710에서) 제1 다이의 온도가 제1 다이의 제1 최대 임계 동작 온도와 동일하거나 또는 그보다 큰지 여부를 결정한다. 예컨대, 제1 다이의 최대 임계 동작 온도가 100℉이면, 방법은 제1 다이의 온도가 100℉와 동일하거나 또는 그보다 큰지 여부를 결정한다. 제1 다이에 대한 다수의 온도들(예컨대, 국부화된 온도들)이 존재하는 경우들에서, 방법은 몇몇 결정들을 이행할 수 있다.
[00101] 방법이 (1710에서), 제1 다이의 온도가 제1 다이의 최대 임계 동작 온도와 동일하지 않거나 또는 그보다 크지 않다고 결정하는 경우, 이 방법은 (1715에서) 제2 다이의 온도가 제2 다이의 최대 임계 동작 온도와 동일하거나 또는 그보다 큰지 여부를 결정하도록 진행한다. 예컨대, 제2 다이의 최대 임계 동작 온도가 85℉이면, 방법은 제2 다이의 온도가 85℉와 동일하거나 또는 그보다 큰지 여부를 결정한다. 제2 다이에 대한 다수의 온도들(예컨대, 국부화된 온도들)이 존재하는 경우들에서, 방법은 몇몇 결정들을 이행할 수 있다.
[00102] 방법이 (1715에서), 제2 다이의 온도가 제2 다이의 최대 임계 동작 온도와 동일하지 않거나 또는 그보다 크지 않다고 결정하는 경우, 이 방법은 (1720에서) 인액티브(예컨대, off)되도록 TEC에 명령하도록 진행한다. 일부 구현들에서, 인액티브하도록 TEC에 명령하는 것은 전류를 TEC로 송신하지 않는 것을 포함한다. TEC가 이미 인액티브이면, TEC에 송신되는 어떠한 전류도 존재하지 않는다. 그 다음에, 이 방법은 (1725에서) 다이들의 열 관리를 계속할지 여부를 결정하도록 진행한다.
[00103] 그러나, 1715를 다시 참조하면, 방법이 (1715에서) 제2 다이의 온도가 제2 다이의 최대 임계 동작 온도와 동일하거나 또는 그보다 크다고 결정하는 경우, 이 방법은 제2 다이로부터 열을 발산시키도록 TEC를 (1730에서) 구성하고 그리고/또는 조정시키도록 진행한다. 이러한 경우들에서, 방법은 제1 다이를 향하여 제1 방향(예컨대, 제2 다이로부터 멀어지는 방향)으로 열을 발산시키도록 TEC를 구성 및/또는 조정시킬 수 있다. 이는, 제1 극성(예컨대, 포지티브 극성)을 갖는 제1 전류를 TEC에 전송하는 것을 포함할 수 있다. 그 다음에, 이 방법은 (1725에서) 다이들의 열 관리를 계속할지 여부를 결정하도록 진행한다.
[00104] 1710를 다시 참조하면, 방법이 (1710에서), 제1 다이의 온도가 제1 다이의 최대 임계 동작 온도와 동일하거나 또는 그보다 크다고 결정하는 경우, 이 방법은 (1735에서) 제2 다이의 온도가 제2 다이의 최대 임계 동작 온도와 동일하거나 또는 그보다 큰지 여부를 결정하도록 진행한다. 제2 다이에 대한 다수의 온도들(예컨대, 국부화된 온도들)이 존재하는 경우들에서, 방법은 몇몇 결정들을 이행할 수 있다.
[00105] 방법이 (1735에서), 제2 다이의 온도가 제2 다이의 최대 임계 동작 온도와 동일하거나 또는 그보다 크다고 결정하는 경우, 이 방법은 (1740에서) 인액티브(예컨대, off)되도록 TEC를 구성하도록 진행한다. 이 경우에서, 제1 다이들 및 제2 다이 둘 다는 그들 개개의 최대 임계 온도들보다 큰 온도들을 가지며, TEC를 사용하는 것은 생산적이지 않을 수 있다. 이러한 경우들에서, 다이들 중 하나 또는 그 초과의 성능을 스로틀하는 것(예컨대, 다이들의 클록 속도를 제한하는 것)은 다이들의 온도를 감소시키기 위해 사용될 수 있다. 일부 구현들에서, 인액티브하도록 TEC에 명령하는 것은 전류를 TEC로 송신하지 않는 것을 포함한다. TEC가 이미 인액티브이면, TEC에 송신되는 어떠한 전류도 존재하지 않는다. 그 다음에, 이 방법은 (1725에서) 다이들의 열 관리를 계속할지 여부를 결정하도록 진행한다.
[00106] 그러나, 1735를 다시 참조하면, 방법이 (1735에서) 제2 다이의 온도가 제2 다이의 최대 임계 동작 온도와 동일하지 않거나 또는 그보다 크지 않다고 결정하는 경우, 이 방법은 제1 다이로부터 열을 발산시키도록 TEC를 (1745에서) 구성하고 그리고/또는 조정시키도록 진행한다. 이러한 경우들에서, 방법은 제2 다이를 향하여 제2 방향(예컨대, 제1 다이로부터 멀어지는 방향)으로 열을 발산시키도록 TEC를 구성 및/또는 조정시킬 수 있다. 이는, 제2 극성(예컨대, 네거티브 극성)을 갖는 제2 전류를 TEC에 전송하는 것을 포함할 수 있다. 그 다음에, 이 방법은 (1725에서) 다이들의 열 관리를 계속할지 여부를 결정하도록 진행한다.
[00107] 이 방법은 (1725에서) 다이들의 열 관리를 계속할지 여부를 결정한다. 만약 계속하기로 결정한다면, 방법은 제1 다이의 온도(들) 및 제2 다이의 온도(들)을 (1705에서) 수신하도록 다시 진행한다.
[00108] 그러나, 방법이 (1725에서) 다이들의 열 관리를 계속하지 않기로 결정하는 경우, 방법은 (1745에서) 인액티브(예컨대, off)하도록 TEC를 구성하도록 진행한다. 이는, 임의의 전류를 TEC로 송신하는 것을 중단함으로써(discontinuing) 달성될 수 있다.
다이들 상에서 열 전기 냉각기 및/또는 성능 제한들을 사용함으로써 다이들의 열 관리를 위한 방법의 예시적인 흐름도
[00109] 도 18은 다이들 상에서 적어도 하나의 TEC(thermal electric cooler) 및/또는 성능 제한들을 사용함으로써 2개 또는 그 초과의 다이들의 열 관리를 위한 다른 방법(1800)의 예시적인 흐름도를 예시한다. 방법(1800)은 TEC 제어기 및/또는 열 제어기에 의해 수행될 수 있다.
[00110] TEC는 방법(1800) 이전에 액티브(예컨대, on) 또는 인액티브(off)일 수 있다. 이 방법은, (1805에서) 제1 다이의 온도(들)(예컨대, 제1 온도 판독치, 제2 온도 판독치) 및 제2 다이의 온도(들)을 수신한다. 제1 다이는 제1 다이(222)일 수 있다. 제2 다이는 제2 다이(242)일 수 있다. 온도들은, 제1 다이에 대한 적어도 하나의 제1 온도 센서로부터의 온도 판독치들, 및 제2 다이에 대한 적어도 하나의 제2 온도 센서로부터의 온도 판독치들일 수 있다.
[00111] 방법은 (1810에서), 제1 다이의 온도가 제1 다이의 최대 임계 동작 온도와 동일하거나 또는 그보다 큰지 여부 및 제2 다이의 온도가 제2 다이의 최대 임계 동작 온도와 동일하거나 또는 그보다 큰지 여부를 결정한다. 제1 다이 및/또는 제2 다이에 대한 다수의 온도들(예컨대, 국부화된 온도들)이 존재하는 경우들에서, 방법은 몇몇 결정들을 이행할 수 있다.
[00112] 방법이 (1810에서), 제1 다이의 온도가 제1 다이의 최대 임계 동작 온도와 동일하거나 또는 그보다 크고 그리고 제2 다이의 온도가 제2 다이의 최대 임계 동작 온도와 동일하거나 또는 그보다 크다고 결정하는 경우, 방법은 (1815에서) 제1 다이 및/또는 제2 다이의 성능을 제한한다. 일부 구현들에서, 다이들의 성능을 제한하는 것은 다이를 스로틀링하는 것, 이를테면, 하나 또는 그 초과의 다이들의 최대 클록 속도들을 제한하는 것을 포함할 수 있다. 상이한 구현들은 다이들의 성능을 상이하게 제한할 수 있다. 예컨대, 제1 다이의 성능은 제2 다이의 성능보다 더 제한될 수 있다.
[00113] 그후, 방법은 제1 다이의 온도(들) 및 제2 다이의 온도(들)을 (1805에서) 수신하도록 진행한다.
[00114] 그러나, 방법은 (1810에서), 제1 다이의 온도가 제1 다이의 최대 임계 동작 온도와 보다 작고 그리고 제2 다이의 온도가 제2 다이의 최대 임계 동작 온도와 동일하지 않거나 또는 그보다 크지 않다고 결정하는 경우, 방법은 (1820에서) 제1 다이 및/또는 제2 다이의 성능들에 대한 임의의 제한들을 선택적으로 제거하거나 또는 감소시킬 수 있다.
[00115] 방법은 (1825에서), 제1 다이의 온도가 제1 다이의 최대 임계 동작 온도와 동일하거나 또는 그보다 큰지 여부, 또는 제2 다이의 온도가 제2 다이의 최대 임계 동작 온도와 동일하거나 또는 그보다 큰지 여부를 결정한다. 제1 다이 및/또는 제2 다이에 대한 다수의 온도들(예컨대, 국부화된 온도들)이 존재하는 경우들에서, 방법은 몇몇 결정들을 이행할 수 있다.
[00116] 방법이 (1825에서), 제1 다이의 온도가 제1 다이의 최대 임계 동작 온도와 동일하거나 또는 그보다 크거나, 또는 제2 다이의 온도가 제2 다이의 최대 임계 동작 온도와 동일하거나 또는 그보다 크다고 결정하는 경우, 방법은 (1830에서) TEC(thermal electric cooler)를 활성화한다. 이는 전류를 TEC에 전송하는 것을 포함할 수 있다. TEC는 제1 다이로부터 또는 제2 다이로부터 열을 발산하도록 활성화될 수 있다. 예컨대, 제1 다이의 온도가 제1 다이의 최대 임계 동작 온도와 동일하거나 또는 그보다 크지만, 제2 다이의 온도가 제2 다이의 최대 임계 동작 온도와 동일하지 않거나 또는 그보다 크지 않은 경우, TEC는 제1 다이로부터 열을 발산하도록 활성화될 수 있다. 제1 다이의 온도가 제1 다이의 최대 임계 동작 온도와 동일하지 않거나 또는 그보다 크지 않지만, 제2 다이의 온도가 제2 다이의 최대 임계 동작 온도와 동일하거나 또는 그보다 큰 경우, TEC는 제2 다이로부터 열을 발산하도록 활성화될 수 있다. TEC가 어떻게 활성화될 수 있는지 방법에 대한 일 예는 도 17에 예시 및 설명된다. 그후, 방법은 제1 다이의 온도(들) 및 제2 다이의 온도(들)을 (1805에서) 수신하도록 진행한다.
[00117] 방법이 (1825에서), 제1 다이의 온도가 제1 다이의 최대 임계 동작 온도 보다 작고, 그리고 제2 다이의 온도가 제2 다이의 최대 임계 동작 온도보다 작다고 결정하는 경우, 방법은 (1835에서) TEC(thermal electric cooler)를 비활성화한다. TEC를 비활성화하는 것은 전류를 TEC로 송신하지 않는 것을 포함한다. TEC가 이미 인액티브일 때, 어떠한 전류도 송신되지 않는다. 일부 구현들에서, 동일한 전류 또는 상이한 전류들(예컨대, 상이한 암페어들을 갖는 전류)이 송신될 수 있음에 유의한다. 일부 구현들에서, 더 강한 전류(예컨대, 더 큰 암페어를 갖는 전류)는 더 약한 전류(예컨대, 더 낮은 암페어를 갖는 전류)보다 더 큰 액티브 열 발산을 제공할 것이다. 상이한 구현들은 전류의 강도를 고려하기 위해 상이한 팩터들 및/또는 변수들을 사용할 수 있다. 이러한 팩터들 및/또는 변수들은 패키지의 전력의 소스(예컨대, 배터리 전력, 플러그-인 전력) 및/또는 다이들의 온도 변화의 레이트를 포함할 수 있다.
[00118] 1800의 방법은, 다이들의 열 관리가 종료할 때까지 수회 반복될 수 있다.
양방향 TEC (Thermal Electric Cooler)를 포함하는 PoP (Package on Package) 디바이스를 제공/제조하기 위한 예시적인 시퀀스
[00119] 일부 구현들에서, 적어도 하나의 양방향 TEC(thermal electric cooler)를 포함하는 PoP(package on package) 디바이스를 제공/제조하는 것은, 몇몇 프로세스들을 포함한다. 도 19(도 19a-도 19b를 포함함)는, 적어도 하나의 양방향 TEC(thermal electric cooler)를 포함하는 PoP(package-on-package) 디바이스를 제공/제조하기 위한 예시적인 시퀀스를 예시한다. 일부 구현들에서, 도 19a-도 19c의 시퀀스는 도 2-도5의 PoP 디바이스 및/또는 본 개시내용에서 설명된 다른 PoP 디바이스들을 제공/제조하는데 사용될 수 있다.
[00120] 도 19a-도 19c의 시퀀스는 양방향 TEC(thermal electric cooler)를 포함하는 PoP 디바이스를 제공/제조하기 위한 시퀀스를 간략화하고 그리고/또는 명확화하기 위해 하나 또는 그 초과의 스테이지들을 결합할 수 있음에 유의해야 한다. 일부 구현들에서, 프로세스들의 순서는 변경되거나 또는 수정될 수 있다.
[00121] 도 19a에 도시된 바와 같은 스테이지 1은, 기판(1900)이 제공된 후의 상태를 예시한다. 기판(1900)은 패키지 기판일 수 있다. 기판(1900)은 공급업자 또는 제조업자에 의해 제조 또는 공급될 수 있다. 기판(1900)은, 적어도 하나의 유전체 층(1902), 일 세트의 인터커넥트들(1904)(예컨대, 트레이스들, 비아들, 패드들), 제1 솔더 레지스트 층(1906), 및 제2 솔더 레지스트 층(1908)을 포함한다. 유전체 층(1902)은 코어 층 및/또는 프리페그(prepeg) 층을 포함할 수 있다.
[00122] 스테이지 2는, 제1 다이(1910)가 기판(1900)에 커플링된(예컨대, 장착된) 후의 상태를 예시한다. 제1 다이(1910)는 일 세트의 솔더(1912)(예컨대, 솔더 볼들)를 통해 기판(1900)에 커플링된다. 상이한 구현들은 제1 다이(1910)를 기판(1900)에 상이하게 커플링할 수 있다. 일부 구현들에서, 제1 다이(1910)는 일 세트의 기둥들 및 솔더를 통해 기판(1900)에 커플링된다.
[00123] 스테이지 3은, 캡슐화 층(1920)이 기판(1900) 및 제1 다이(1910) 상에 제공된(예컨대, 형성된) 후의 상태를 예시한다. 캡슐화 층(1920)은 전체 제1 다이(1910) 또는 단지 제1 다이(1910)의 일부를 캡슐화할 수 있다. 캡슐화 층(1920)은 몰드 및/또는 에폭시 충전물일 수 있다.
[00124] 스테이지 4는, 적어도 하나의 캐비티(1921)가 캡슐화 층(1920) 내에 형성된 이후의 상태를 예시한다. 상이한 구현들은 캐비티(1921)를 형성할 수 있다. 일부 구현들에서, 캐비티(1921)를 형성하기 위해 레이저가 사용된다. 일부 구현들에서, 캡슐화 층(1920)은 포토-패턴가능한 층이고, 캐비티(1921)는 캡슐화 층(1920)을 패터닝하기 위해 포토-리소그래피 프로세스(예컨대, 포토-에칭 프로세스)를 사용함으로써 형성될 수 있다.
[00125] 스테이지 5는, 적어도 하나의 비아(1922) 및 적어도 하나의 인터커넥트(1924)가 캡슐화 층(1920) 내에 그리고 상에 형성된 이후의 상태를 예시한다. 비아(1922) 및 인터커넥트(1924)를 형성하기 위해 도금 프로세스가 사용될 수 있다. 인터커넥트(1924)는 트레이스 및/또는 패드를 포함할 수 있다. 인터커넥트(1924)는 재분포 인터커넥트들일 수 있다. 비아(1922) 및 인터커넥트(1924) 각각은 시드 금속 층 및 금속 층을 포함할 수 있다.
[00126] 도 19b에 도시된 바와 같이, 스테이지 6은 TEC(thermal electric cooler)(1940)가 제1 다이(1910)에 커플링(예컨대, 장착)된 이후의 상태를 예시한다. 일부 구현들에서, 접착제(예컨대, 열적으로 도전성인 접착제)가 TEC(1940)를 제1 다이(1910)에 커플링하는데 사용된다. TEC(1940)는 양방향 TEC일 수 있다. TEC(1940)는 (예컨대, 도 7에 설명된 바와 같이) 패드들 및/또는 단자들을 포함한다. TEC(1940)는, TEC(1940)의 패드들 및/또는 단자들이 캡슐화 층(1920) 상의 인터커넥트들(예컨대, 재분포 인터커넥트들, 인터커넥트들(1924)로부터의 인터커넥트)에 커플링(예컨대, 전기적으로 커플링)되도록, 제1 다이(1910)에 커플링될 수 있다. 스테이지 6은, 제1 기판(1900), 제1 다이(1910), 및 캡슐화 층(1920)을 포함하는 제1 패키지(1950)를 예시할 수 있다. 제1 패키지(1950)는 또한 TEC(1940)를 포함할 수 있다.
[00127] 스테이지 7은, TEC(1940)가 제1 패키지(1950)와 제2 패키지(1960) 사이에 있도록, 제2 패키지(1960)가 제1 패키지(1950)에 커플링된(예컨대, 장착된) 이후의 상태를 예시한다. 제2 패키지(1960)는, 제2 기판(1970)(예컨대, 패키지 기판), 제2 다이(1980), 및 제2 캡슐화 층(1982)을 포함한다. 제2 기판(1970)은 적어도 하나의 유전체 층(1972) 및 일 세트의 인터커넥트들(1974)(예컨대, 트레이스들, 패드들, 비아들)을 포함한다. 일 세트의 솔더 볼들(1976)은 제1 패키지(1950)로부터의 인터커넥트들(예컨대, 인터커넥트(1924)) 및 제2 기판(1970)에 커플링될 수 있다. 제2 다이(1980)는 일 세트의 솔더(1984)(예컨대, 솔더 볼들)를 통해 제2 기판(1970)에 커플링된다(예컨대, 장착된다). 스테이지 7에 도시된 바와 같이, TEC(1940)는 제1 다이(1910) 및 제2 기판(1970) 사이에 위치된다. 일부 구현들에서, 접착제(예컨대, 열적으로 도전성인 접착제)가 제2 기판(1970)을 TEC(1940)에 커플링하는데 사용된다.
[00128] 스테이지 8은, 일 세트의 솔더 볼들(1990)이 제1 패키지(1950)에 커플링된 이후의 상태를 예시한다. 스테이지 8은, 제1 패키지(1950), 제2 패키지(1960) 및 TEC(1940)를 포함하는 PoP(package on package) 디바이스(1994)를 포함할 수 있다.
양방향 TEC (Thermal Electric Cooler)를 포함하는 PoP (Package on Package) 디바이스를 제공/제조하기 위한 예시적인 방법
[00129] 도 20은 적어도 하나의 양방향 TEC(thermal electric cooler)를 포함하는 PoP(package-on-package) 디바이스를 제공/제조하기 위한 방법(2000)의 예시적인 흐름도를 예시한다. 일부 구현들에서, 도 20의 방법(2000)은 도 2-도5의 PoP 디바이스 및/또는 본 개시내용에서의 다른 PoP 디바이스들을 제공/제조하는데 사용될 수 있다.
[00130] 도 20의 흐름도는 양방향 TEC를 포함하는 PoP 디바이스를 제공하기 위한 방법을 간략화하고 그리고/또는 명확화하기 위해 하나 또는 그 초과의 단계 및/또는 프로세스들을 결합할 수 있음에 유의해야 한다. 일부 구현들에서, 프로세스들의 순서는 변경되거나 또는 수정될 수 있다.
[00131] 이 방법은 (2005에서) 기판을 제공한다. 기판은 패키지 기판일 수 있다. 기판은 공급업자 또는 제조업자에 의해 제조 또는 공급될 수 있다. 기판은, 적어도 하나의 유전체 층, 일 세트의 인터커넥트들(예컨대, 트레이스들, 비아들, 패드들), 제1 솔더 레지스트 층, 및 제2 솔더 레지스트 층을 포함한다. 유전체 층은 코어 층 및/또는 프리페그 층을 포함할 수 있다.
[00132] 방법은 (2010에서) 제1 다이를 기판에 커플링한다. 제1 다이는 일 세트의 솔더(예컨대, 솔더 볼들)를 통해 기판에 커플링(예컨대, 장착)될 수 있다. 상이한 구현들은 제1 다이를 기판에 상이하게 커플링할 수 있다. 일부 구현들에서, 제1 다이는 일 세트의 기둥들 및 솔더를 통해 기판에 커플링된다.
[00133] 이 방법은 (2015에서) 기판 및 제1 다이 상에 캡슐화 층을 선택적으로 제공한다. 일부 구현들에서, 캡슐화 층을 제공하는 단계는, 캡슐화 층이 전체 제1 다이 또는 단지 제1 다이의 일부만을 캡슐화하도록, 제1 다이 및 기판 상에 캡슐화 층을 형성하는 단계를 포함한다. 캡슐화 층은 몰드 및/또는 에폭시 충전물일 수 있다.
[00134] 방법은 (2020에서) 캡슐화 층 내에 그리고 상에 인터커넥트들을 형성한다. 일부 구현들에서, 인터커넥트들을 형성하는 단계는 캡슐화 층 내에 캐비티들을 형성하는 단계 및 캐비티 및/또는 캡슐화 층 내에 인터커넥트들을 형성하는 단계를 포함한다. 상이한 구현들은 캐비티들을 형성할 수 있다. 일부 구현들에서, 캐비티들을 형성하기 위해 레이저가 사용된다. 일부 구현들에서, 캡슐화 층은 포토-패턴가능한 층이고, 캐비티는 캡슐화 층을 패터닝하기 위해 포토-리소그래피 프로세스(예컨대, 포토-에칭 프로세스)를 사용함으로써 형성될 수 있다.
[00135] 인터커넥트들을 형성하는 단계는, 캡슐화 층(1920) 내에 그리고 상에 적어도 하나의 비아 및 적어도 하나의 인터커넥트를 형성하는 단계를 포함할 수 있다. 비아들 및 인터커넥트들을 형성하기 위해 도금 프로세스가 사용될 수 있다. 인터커넥트들은 트레이스 및/또는 패드를 포함할 수 있다. 인터커넥트들은 재분포 인터커넥트들일 수 있다. 비아들 및 인터커넥트들 각각은 시드 금속 층 및 금속 층을 포함할 수 있다.
[00136] 방법은 (2025에서) TEC(thermal electric cooler)를 제1 다이에 커플링한다. 일부 구현들에서, 접착제(예컨대, 열적으로 도전성인 접착제)가 TEC를 제1 다이에 커플링(예컨대, 장착)하기 위해 사용된다. TEC는 양방향 TEC일 수 있다. 제1 패키지는 제1 기판, 제1 다이, 캡슐화 층에 의해 정의될 수 있다. 제1 패키지는 또한 제1 다이에 커플링된 TEC를 포함할 수 있다.
[00137] 방법은 (2030에서), TEC가 제1 패키지와 제2 패키지 사이에 있도록, 제2 패키지를 제1 패키지에 커플링한다. 제2 패키지는, 제2 기판(예컨대, 패키지 기판), 제2 다이, 및 제2 캡슐화 층을 포함한다. 제2 기판은 적어도 하나의 유전체 층 및 일 세트의 인터커넥트들(예컨대, 트레이스들, 패드들, 비아들)을 포함한다. 일 세트의 솔더 볼들은 제1 패키지로부터의 인터커넥트들 및 제2 기판에 커플링될 수 있다. TEC는 (제1 패키지의) 제1 다이와 (제2 패키지의) 제2 기판 사이에 위치된다. 일부 구현들에서, 접착제(예컨대, 열적으로 도전성인 접착제)가 제2 기판을 TEC에 커플링하는데 사용된다.
[00138] 방법은 (2035에서) 일 세트의 솔더 볼들을 제1 패키지에 제공한다. 더욱 구체적으로, 일 세트의 솔더 볼들은 제1 패키지의 제1 기판에 커플링될 수 있다.
양방향 열 전기 냉각기를 포함하는 예시적인 PoP (Package on Package) 디바이스
[00139] 도21은 제1 패키지(2102)(예컨대, 제1 집적 디바이스 패키지), 제2 패키지(2104)(예컨대, 제2 집적 디바이스 디바이스 패키지), 제1 TEC(first thermal electric cooler)(2110), 및 제2 TEC(2112)를 포함하는 다른 PoP(package on package) 디바이스(2100)의 일 예를 예시한다. 일부 구현들에서, 도 8-도 9에 설명된 바와 같이, 제1 TEC(thermal electric cooler)(2110) 및 제2 TEC(2112)는 어셈블리 또는 TEC들의 어레이로서 구성될 수 있다.
[00140] 제1 패키지(2102)는, 제1 기판(2120), 제1 다이(2122)(예컨대, 제1 로직 다이), 제2 다이(2123)(예컨대, 제2 로직 다이), 및 제1 캡슐화 층(2124)을 포함한다. 제1 기판(2120)은 적어도 하나의 유전체 층(2126) 및 일 세트의 인터커넥트들(2127)을 포함한다. 제1 패키지(2102)는 또한 제1 TEC(2110) 및 제2 TEC(2112)를 포함할 수 있다. 제1 TEC(2110)는 제1 다이(2122)에 커플링된다. 제2 TEC(2112)는 제2 다이(2123)에 커플링된다. 접착제(예컨대, 열적으로 도전성인 접착제)가 TEC들(예컨대, 제1 TEC(2110))을 제1 다이들(예컨대, 다이(2122))에 커플링하는데 사용될 수 있다.
[00141] 제2 패키지(2104)는, 제1 TEC(2110) 및 제2 TEC(2112)가 제1 패키지(2102)와 제2 패키지(2104) 사이에 있도록, 제1 패키지(2102)에 커플링된다(예컨대, 장착된다). 제2 패키지(2104)는, 제2 기판(2140), 제1 다이(2142), 제2 다이(2143), 제1 캡슐화 층(2144), 및 제3 TEC(2150)를 포함한다. 제2 기판(2140)은 적어도 하나의 유전체 층(2146) 및 일 세트의 인터커넥트들(2147)을 포함한다. 제1 TEC(2110)는 제1 다이(2122)와 제2 기판(2140) 사이에 있다. 제2 TEC(2112)는 제2 다이(2123)와 제2 기판(2140) 사이에 있다. 제3 TEC(2150)는 제1 다이(2142)와 제2 다이(2143) 사이에 있다.
[00142] 제1 TEC(2110)는 제1 방향으로(예컨대, 제1 시간 기간/프레임에서) 및 제2 방향으로(예컨대, 제2 시간 기간/프레임에서) 열을 발산할 수 있는 양방향 TEC일 수 있으며, 여기서 제2 방향은 제1 방향과는 반대이다. 유사하게, 제2 TEC(2112)는 제1 방향으로(예컨대, 제1 시간 기간/프레임에서) 및 제2 방향으로(예컨대, 제2 시간 기간/프레임에서) 열을 발산할 수 있는 양방향 TEC일 수 있으며, 여기서 제2 방향은 제1 방향과는 반대이다. 제3 TEC(2150)는 제1 방향으로(예컨대, 제1 시간 기간/프레임에서) 및 제2 방향으로(예컨대, 제2 시간 기간/프레임에서) 열을 발산할 수 있는 양방향 TEC일 수 있으며, 여기서 제2 방향은 제1 방향과는 반대이다.
[00143] 일부 구현들에서, 도3-도4에서 설명된 바와 같이, TEC들(2110 및 2112)은 제1 패키지(2102)와 제2 패키지(2104) 사이에서 열을 앞뒤로 동적으로(예컨대, PoP 디바이스(2100)의 동작 동안 실시간으로) 발산하도록 구성 및/또는 조정될 수 있는 양방향 TEC들일 수 있다.
[00144] 일부 구현들에서, TEC들(2110 및 2112)은 제1 다이(2122)와 제2 다이(2123) 사이에서 열을 앞뒤로 동적으로(예컨대, PoP 디바이스(2100)의 동작 동안 실시간으로) 발산하도록 구성 및/또는 조정될 수 있는 양방향 TEC들일 수 있다. 즉, TEC들(2110 및 2112)은, 제1 다이(2122)로부터 발산되는 열이 제2 다이(2123)를 향하여 발산될 수 있도록, 구성될 수 있다. 따라서, 일부 구현들에서, TEC들(2110 및 2112)은, 열이 제1 다이(2122)로부터, 제1 TEC(2110), 제2 기판(2140), 제2 TEC(2112)를 통해, 제2 다이(2123)로 발산하도록 구성될 수 있다.
[00145] 일부 구현들에서, TEC들(2110 및 2112)은, 제2 다이(2123)로부터 발산되는 열이 제1 다이(2122)를 향하여 발산될 수 있도록, 구성될 수 있다. 따라서, 일부 구현들에서, TEC들(2110 및 2112)은, 열이 제2 다이(2123)로부터, 제2 TEC(2112), 제2 기판(2140), 제1 TEC(2110)를 통해, 제1 다이(2122)로 발산하도록 구성될 수 있다.
[00146] 일부 구현들에서, TEC(2150)는 제1 다이(2142)와 제2 다이(2143) 사이에서 열을 앞뒤로 동적으로(예컨대, PoP 디바이스(2100)의 동작 동안 실시간으로) 발산하도록 구성 및/또는 조정될 수 있는 양방향 TEC일 수 있다. 즉, 예컨대, TEC(2150)는, 제1 다이(2142)로부터 발산되는 열이 제2 다이(2143)를 향하여 발산될 수 있도록, 구성될 수 있다. 상이한 구현들은, PoP 디바이스(2100)에서 다이들의 원하는 열 관리를 달성하기 위해 TEC들을 상이하게 구성할 수 있다.
예시적인 전자 디바이스들
[00147] 도 22는, 전술한 집적 디바이스, 반도체 디바이스, 집적 회로, 다이, 인터포저, 패키지 또는 PoP(package-on-package) 중 임의의 것과 통합될 수 있는 다양한 전자 디바이스들을 예시한다. 예컨대, 모바일 폰 디바이스(2202), 랩탑 컴퓨터 디바이스(2204), 및 고정 위치 단자 디바이스(2206)는 본원에 설명된 바와 같은 집적 디바이스(2200)를 포함할 수 있다. 집적 디바이스(2200)는, 예컨대, 본원에 설명된 집적 회로들, 다이들, 집적 디바이스들, 집적 디바이스 패키지들, 집적 회로 디바이스들, 패키지-온-패키지 디바이스들 중 임의의 것일 수 있다. 도 22에 예시된 디바이스들(2202, 2204, 2206)은 단지 예시적이다. 다른 전자 디바이스들은 또한, 모바일 디바이스들, 핸드-헬드 PCS(personal communication systems) 유닛들, 휴대용 데이터 유닛들, 이를테면, 개인용 디지털 보조기구들, GPS(global positioning system) 인에이블된 디바이스들, 내비게이션 디바이스들, 셋톱 박스들, 뮤직 플레이어들, 비디오 플레이어들, 엔터테인먼트 유닛들, 고정 위치 데이터 유닛들, 이를테면, 미터 판독 장비, 통신 디바이스들, 스마트폰들, 태블릿 컴퓨터들, 컴퓨터들, 웨어러블 디바이스들, 서버들, 라우터들, 자동차들(예컨대, 자율주행 차량들)에서 구현되는 전자 디바이스들, 또는 데이터 또는 컴퓨터 명령들, 또는 이들의 임의의 조합을 저장하거나 또는 리트리브하는 임의의 다른 디바이스를 포함하는 디바이스들(예컨대, 전자 디바이스들)의 그룹을 포함하는(그러나, 이에 제한되지 않는) 집적 디바이스(2200)를 특징으로 할 수 있다.
[00148] 도 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19a-19b, 20, 21 및/또는 22에 예시된 컴포넌트들, 단계들, 특징들, 및/또는 기능들 중 하나 또는 그 초과는, 단일 컴포넌트, 단계, 특징 또는 기능으로 재배열 및/또는 결합되거나, 수 개의 컴포넌트들, 단계들, 또는 기능들로 구현될 수 있다. 부가적인 엘리먼트들, 컴포넌트들, 단계들, 및/또는 기능들은 또한, 개시내용을 벗어나지 않으면서 부가될 수도 있다. 또한, 본 개시내용에서 도 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19a-19b, 20, 21 및/또는 22 및 이들에 대응하는 설명은 다이들 및/또는 IC들에 제한되지 않음에 유의해야 한다. 일부 구현들에서, 도 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19a-19b, 20, 21 및/또는 22 및 이들에 대응하는 설명은 집적 디바이스들을 제조, 생성, 제공, 및/또는 생산하는데 사용될 수 있다. 일부 구현들에서, 디바이스는 다이, 다이 패키지, IC(integrated circuit), 집적 디바이스, 집적 디바이스 패키지, 웨이퍼, 반도체 디바이스, PoP(package on package) 디바이스, 및/또는 인터포저를 포함할 수 있다.
[00149] 단어 “예시적인”은 예, 예시, 또는 예증으로서 기능하는 것을 의미하도록 본 명세서에서 사용된다. “예시적인” 것으로서 본 명세서에 설명된 임의의 구현 또는 양상이 본 개시내용의 다른 양상들에 비해 반드시 바람직하거나 유리한 것으로서 해석되는 것은 아니다. 유사하게, 용어 “양상들”은, 본 개시내용의 모든 양상들이 설명된 특성, 이점 또는 동작 모드를 포함하는 것을 요구하지는 않는다. 용어 “커플링된”은, 2개의 오브젝트들 간의 직접적인 또는 간접적인 커플링을 지칭하기 위해 본 명세서에서 사용된다. 예를 들어, 오브젝트 A가 오브젝트 B를 물리적으로 터치하고 오브젝트 B가 오브젝트 C를 터치하면, 오브젝트들 A 및 C는, 그들이 서로를 물리적으로 직접 터치하지 않더라도, 서로 커플링된 것으로 여전히 고려될 수 있다.
[00150] 또한, 실시예들이 플로우차트, 흐름도, 구조도, 또는 블록도로서 도시된 프로세스로서 설명될 수 있음에 유의한다. 흐름도가 순차적인 프로세스로서 동작들을 설명할 수도 있지만, 동작들의 대부분은 병렬로 또는 동시에 수행될 수 있다. 부가적으로, 동작들의 순서는 재배열될 수 있다. 프로세스는, 프로세스의 동작들이 완료되는 경우 종결된다. 프로세스는, 방법, 함수, 절차, 서브루틴, 서브프로그램 등에 대응할 수 있다. 프로세스가 함수에 대응하는 경우, 프로세스의 종결은 그 함수의 호출(calling) 함수 또는 메인 함수로의 리턴에 대응한다. 상기 방법들 및/또는 프로세스들 중 임의의 것들은 또한, 적어도 하나의 프로세싱 회로, 프로세서, 다이 및/또는 제어기(예컨대, TEC 제어기, 열 제어기)에 의해 실행될 수 있는 컴퓨터/프로세서 판독가능 저장 매체에 저장되는 코드일 수 있다. 예컨대, 다이, TEC 제어기, 및/또는 열 제어기는, 컴퓨터/프로세서 판독가능 저장 매체에 저장된 코드를 실행할 수 있는 하나 또는 그 초과의 프로세싱 회로들을 포함할 수 있다. 컴퓨터/프로세서 판독가능 저장 매체는 메모리(예컨대, 메모리 다이, 로직 다이 내의 메모리, TEC 제어기 내의 메모리, 열 제어기 내의 메모리)를 포함할 수 있다. 다이는 플립 칩, WLP(wafer level package), 및/또는 CSP(chip scale package)로서 구현될 수 있다.
[00151] 당업자들은, 본원에 개시된 실시예들과 관련하여 설명된 다양한 예시적인 로직 블록들, 모듈들, 회로들, 및 알고리즘 단계들이 전자 하드웨어, 컴퓨터 소프트웨어, 또는 이 둘의 결합들로서 구현될 수도 있음을 추가적으로 인식할 것이다. 하드웨어와 소프트웨어의 이러한 상호교환가능성을 명확히 예시하기 위해, 다양한 예시적인 컴포넌트들, 블록들, 모듈들, 회로들, 및 단계들은 그들의 기능 관점들에서 일반적으로 위에서 설명되었다. 그러한 기능이 하드웨어로 구현되는지 또는 소프트웨어로 구현되는지 여부는 특정 애플리케이션, 및 전체 시스템에 부과된 설계 제약들에 의존한다.
[00152] 본원에 설명된 본 개시내용의 다양한 특징들은 본 개시내용을 벗어나지 않으면서 상이한 디바이스들 및/또는 시스템들에서 구현될 수 있다. 본 개시내용의 전술한 양상들은 단지 예들일 뿐이며, 본 개시내용을 제한하는 것으로서 해석되지 않음에 유의해야 한다. 본 개시내용의 양상들의 설명은, 청구항들의 범위를 제한하는 것이 아니라 예시적인 것으로 의도된다. 그러므로, 본 발명의 교시들은, 다른 타입들의 장치들에 용이하게 적용될 수 있으며, 많은 대안들, 변형들, 및 변경들은 당업자들에게 명백할 것이다.

Claims (30)

  1. PoP(package on package) 디바이스로서,
    제1 패키지;
    상기 제1 패키지에 커플링된 제2 패키지; 및
    양방향 TEC(thermal electric cooler)를 포함하고,
    상기 제1 패키지는:
    제1 기판; 및
    상기 제1 기판에 커플링된 제1 다이를 포함하고,
    상기 제2 패키지는:
    제2 기판; 및
    상기 제2 기판에 커플링된 제2 다이를 포함하고,
    상기 양방향 TEC(thermal electric cooler)는, 상기 제1 다이와 상기 제2 기판 사이에 위치되고, 그리고 상기 제1 패키지와 상기 제2 패키지 사이에서 앞뒤로 동적으로 열을 발산하도록 조정(adapt)되고,
    상기 양방향 TEC(thermal electric cooler)는:
    (i) 상기 제1 다이의 제1 온도 판독치가 상기 제1 다이의 제1 최대 온도와 동일하거나 또는 그보다 크고, 그리고 (ii) 상기 제2 다이의 제2 온도 판독치가 상기 제2 다이의 제2 최대 온도 미만일 때, 상기 제1 다이로부터 상기 제2 다이로 열을 발산시키고; 그리고
    (i) 상기 제2 온도 판독치가 상기 제2 최대 온도와 동일하거나 또는 그보다 크고, 그리고 (ii) 상기 제1 온도 판독치가 상기 제1 최대 온도 미만일 때, 상기 제2 다이로부터 상기 제1 다이로 열을 발산시키도록
    구성되는,
    PoP 디바이스.
  2. 제1 항에 있어서,
    상기 양방향 TEC는 제1 시간 기간에 상기 제1 다이로부터 상기 제2 다이로 열을 발산하도록 조정되는,
    PoP 디바이스.
  3. 제2 항에 있어서,
    상기 양방향 TEC는 제2 시간 기간에 상기 제2 다이로부터 상기 제1 다이로 열을 발산하도록 추가로 조정되는,
    PoP 디바이스.
  4. 제2 항에 있어서,
    상기 양방향 TEC는 상기 제2 기판을 통해 상기 제1 다이로부터 상기 제2 다이로 열을 발산하도록 조정되는,
    PoP 디바이스.
  5. 제1 항에 있어서,
    상기 양방향 TEC는 제1 열적으로 도전성인 접착제를 통해 상기 제1 다이에 커플링되는,
    PoP 디바이스.
  6. 제1 항에 있어서,
    상기 양방향 TEC는 복수의 TEC(thermal electric cooler)들의 어레이인,
    PoP 디바이스.
  7. 제1 항에 있어서,
    상기 양방향 TEC는 상기 제1 다이 내에 인터커넥트들을 포함하는 복수의 인터커넥트들을 통해 TEC 제어기에 전기적으로 커플링되는,
    PoP 디바이스.
  8. 제1 항에 있어서,
    상기 양방향 TEC는 제1 캡슐화 층 내에 인터커넥트들을 포함하는 복수의 인터커넥트들을 통해 TEC 제어기에 전기적으로 커플링되는,
    PoP 디바이스.
  9. 제1 항에 있어서,
    상기 양방향 TEC는 상기 제2 기판 내에 인터커넥트들을 포함하는 복수의 인터커넥트들을 통해 TEC 제어기에 전기적으로 커플링되는,
    PoP 디바이스.
  10. 제1 항에 있어서,
    상기 제1 다이는 제1 로직 다이이고, 그리고
    상기 제2 다이는 적어도 제2 로직 다이 또는 메모리 다이 중 하나인,
    PoP 디바이스.
  11. 제1 항에 있어서,
    상기 제1 패키지는 상기 제1 기판에 커플링된 제3 다이를 더 포함하고,
    상기 양방향 TEC는 상기 제1 다이와 상기 제3 다이 사이에서 앞뒤로 동적으로 열을 발산하도록 추가로 조정되는,
    PoP 디바이스.
  12. 제1 항에 있어서,
    상기 제1 패키지는 상기 제1 기판에 커플링된 제3 다이를 더 포함하고,
    상기 PoP 디바이스는 제2 양방향 TEC를 더 포함하고,
    상기 양방향 TEC와 상기 제2 양방향 TEC의 조합은 상기 제1 다이와 상기 제3 다이 사이에서 앞뒤로 동적으로 열을 발산하도록 조정되는,
    PoP 디바이스.
  13. 제1 항에 있어서,
    상기 PoP 디바이스는, 음악 플레이어, 비디오 플레이어, 엔터테인먼트 유닛, 내비게이션 디바이스, 통신 디바이스, 모바일 디바이스, 모바일 폰, 스마트폰, 개인용 디지털 보조기구, 고정 위치 단말기, 태블릿 컴퓨터, 컴퓨터, 웨어러블 디바이스, 랩탑 컴퓨터, 서버, 및 자동차(automotive vehicle) 내의 디바이스를 포함하는 그룹으로부터 선택된 디바이스에 통합되는,
    PoP 디바이스.
  14. PoP 디바이스로서,
    제1 패키지;
    상기 제1 패키지에 커플링된 제2 패키지; 및
    양방향 열 전달 수단(bi-directional heat transfer means)을 포함하고,
    상기 제1 패키지는:
    제1 기판; 및
    상기 제1 기판에 커플링된 제1 다이를 포함하고,
    상기 제2 패키지는:
    제2 기판; 및
    상기 제2 기판에 커플링된 제2 다이를 포함하고,
    상기 양방향 열 전달 수단은, 상기 제1 다이와 상기 제2 기판 사이에 위치되고, 그리고 상기 제1 패키지와 상기 제2 패키지 사이에서 앞뒤로 동적으로 열을 발산하도록 구성되고,
    상기 양방향 열 전달 수단은:
    (i) 상기 제1 다이의 제1 온도 판독치가 상기 제1 다이의 제1 최대 온도와 동일하거나 또는 그보다 크고, 그리고 (ii) 상기 제2 다이의 제2 온도 판독치가 상기 제2 다이의 제2 최대 온도 미만일 때, 상기 제1 다이로부터 상기 제2 다이로 열을 발산시키고; 그리고
    (i) 상기 제2 온도 판독치가 상기 제2 최대 온도와 동일하거나 또는 그보다 크고, 그리고 (ii) 상기 제1 온도 판독치가 상기 제1 최대 온도 미만일 때, 상기 제2 다이로부터 상기 제1 다이로 열을 발산시키도록
    구성되는,
    PoP 디바이스.
  15. 제14 항에 있어서,
    상기 양방향 열 전달 수단은 제1 시간 기간에 상기 제1 다이로부터 상기 제2 다이로 열을 발산하도록 구성되는,
    PoP 디바이스.
  16. 제15 항에 있어서,
    상기 양방향 열 전달 수단은 제2 시간 기간에 상기 제2 다이로부터 상기 제1 다이로 열을 발산하도록 추가로 구성되는,
    PoP 디바이스.
  17. 제15 항에 있어서,
    상기 양방향 열 전달 수단은 상기 제2 기판을 통해 상기 제1 다이로부터 상기 제2 다이로 열을 발산하도록 구성되는,
    PoP 디바이스.
  18. 제14 항에 있어서,
    상기 양방향 열 전달 수단은 복수의 TEC(thermal electric cooler)들의 어레이인,
    PoP 디바이스.
  19. 제15 항에 있어서,
    상기 PoP 디바이스는, 음악 플레이어, 비디오 플레이어, 엔터테인먼트 유닛, 내비게이션 디바이스, 통신 디바이스, 모바일 디바이스, 모바일 폰, 스마트폰, 개인용 디지털 보조기구, 고정 위치 단말기, 태블릿 컴퓨터, 컴퓨터, 웨어러블 디바이스, 랩탑 컴퓨터, 서버, 및 자동차(automotive vehicle) 내의 디바이스를 포함하는 그룹으로부터 선택된 디바이스에 통합되는,
    PoP 디바이스.
  20. PoP(package on package) 디바이스의 열 관리를 위한 방법으로서,
    제1 다이의 제1 온도 판독치를 수신하는 단계;
    제2 다이의 제2 온도 판독치를 수신하는 단계;
    상기 제1 다이의 제1 온도 판독치가 상기 제1 다이의 제1 최대 온도와 동일하거나 또는 그보다 큰지 여부를 결정하는 단계;
    상기 제2 다이의 제2 온도 판독치가 상기 제2 다이의 제2 최대 온도와 동일하거나 또는 그보다 큰지 여부를 결정하는 단계;
    (i) 상기 제1 온도 판독치가 상기 제1 최대 온도와 동일하거나 또는 그보다 크고, 그리고 (ii) 상기 제2 온도 판독치가 상기 제2 최대 온도 미만일 때, 상기 제1 다이로부터 상기 제2 다이로 열을 발산하도록 양방향 TEC(thermal electric cooler)를 구성하는 단계; 및
    (i) 상기 제2 온도 판독치가 상기 제2 최대 온도와 동일하거나 또는 그보다 크고, 그리고 (ii) 상기 제1 온도 판독치가 상기 제1 최대 온도 미만일 때, 상기 제2 다이로부터 상기 제1 다이로 열을 발산하도록 상기 양방향 TEC(thermal electric cooler)를 구성하는 단계를 포함하는,
    PoP 디바이스의 열 관리를 위한 방법.
  21. 제20 항에 있어서,
    상기 제1 다이로부터 상기 제2 다이로 열을 발산하도록 상기 양방향 TEC를 구성하는 단계는 상기 양방향 TEC에 제1 신호를 전송하도록 TEC 제어기를 구성하는 단계를 포함하고,
    상기 제1 신호는 제1 극성을 갖는,
    PoP 디바이스의 열 관리를 위한 방법.
  22. 제21 항에 있어서,
    상기 제2 다이로부터 상기 제1 다이로 열을 발산하도록 상기 양방향 TEC를 구성하는 단계는 상기 양방향 TEC에 제2 신호를 전송하도록 상기 TEC 제어기를 구성하는 단계를 포함하고,
    상기 제2 신호는 상기 제1 극성과는 반대인 제2 극성을 갖는,
    PoP 디바이스의 열 관리를 위한 방법.
  23. 제20 항에 있어서,
    (i) 상기 제1 온도 판독치가 상기 제1 최대 온도 미만이고, 그리고 (ii) 상기 제2 온도 판독치가 상기 제2 최대 온도 미만일 때, 인액티브(inactive)되도록 상기 양방향 TEC를 구성하는 단계를 더 포함하는,
    PoP 디바이스의 열 관리를 위한 방법.
  24. 제20 항에 있어서,
    상기 제1 온도 판독치를 수신하는 단계, 상기 제2 온도 판독치를 수신하는 단계, 상기 제1 다이의 상기 제1 온도 판독치가 상기 제1 다이의 제1 최대 온도와 동일하거나 또는 그보다 큰지 여부를 결정하는 단계, 및 상기 제2 다이의 상기 제2 온도 판독치가 상기 제2 다이의 제2 최대 온도와 동일하거나 또는 그보다 큰지 여부를 결정하는 단계의 방법은, 열 제어기에 의해 수행되는,
    PoP 디바이스의 열 관리를 위한 방법.
  25. 제24 항에 있어서,
    상기 열 제어기는 상기 PoP 디바이스의 상기 제1 다이에서 구현되는,
    PoP 디바이스의 열 관리를 위한 방법.
  26. 제20 항에 있어서,
    상기 제1 다이의 상기 제1 온도 판독치를 수신하는 단계는, 적어도 하나의 제1 온도 센서로부터 적어도 하나의 제1 온도를 수신하는 단계를 포함하고, 그리고
    상기 제2 다이의 상기 제2 온도 판독치를 수신하는 단계는, 적어도 하나의 제2 온도 센서로부터 적어도 하나의 제2 온도를 수신하는 단계를 포함하는,
    PoP 디바이스의 열 관리를 위한 방법.
  27. 제21 항에 있어서,
    (i) 상기 제1 온도 판독치가 상기 제1 최대 온도와 동일하거나 또는 그보다 크고, 그리고 (ii) 상기 제2 온도 판독치가 상기 제2 최대 온도와 동일하거나 또는 그보다 클 때, 제1 다이 성능을 저하시키도록 상기 제1 다이에 명령하는 단계를 더 포함하는,
    PoP 디바이스의 열 관리를 위한 방법.
  28. 제27 항에 있어서,
    (i) 상기 제1 온도 판독치가 상기 제1 최대 온도와 동일하거나 또는 그보다 크고, 그리고 (ii) 상기 제2 온도 판독치가 상기 제2 최대 온도와 동일하거나 또는 그보다 클 때, 인액티브되도록 상기 양방향 TEC를 구성하는 단계를 더 포함하는,
    PoP 디바이스의 열 관리를 위한 방법.
  29. 제21 항에 있어서,
    (i) 상기 제1 온도 판독치가 상기 제1 최대 온도와 동일하거나 또는 그보다 크고, 그리고 (ii) 상기 제2 온도 판독치가 상기 제2 최대 온도와 동일하거나 또는 그보다 클 때, 제2 다이 성능을 저하시키도록 상기 제2 다이에 명령하는 단계를 더 포함하는,
    PoP 디바이스의 열 관리를 위한 방법.
  30. PoP(package on package) 디바이스의 열 관리를 수행하기 위한 하나 또는 그 초과의 명령들을 포함하는 비-일시적 프로세서 판독가능 저장 매체로서,
    상기 명령들은, 적어도 하나의 프로세싱 회로에 의해 실행될 때, 상기 적어도 하나의 프로세싱 회로로 하여금:
    제1 다이의 제1 온도 판독치를 수신하게 하고;
    제2 다이의 제2 온도 판독치를 수신하게 하고;
    상기 제1 다이의 상기 제1 온도 판독치가 상기 제1 다이의 제1 최대 온도와 동일하거나 그보다 큰지 여부를 결정하게 하고;
    상기 제2 다이의 상기 제2 온도 판독치가 상기 제2 다이의 제2 최대 온도와 동일하거나 그보다 큰지 여부를 결정하게 하고;
    (i) 상기 제1 온도 판독치가 상기 제1 최대 온도와 동일하거나 또는 그보다 크고, 그리고 (ii) 상기 제2 온도 판독치가 상기 제2 최대 온도 미만일 때, 상기 제1 다이로부터 상기 제2 다이로 열을 발산하도록 양방향 TEC(thermal electric cooler)를 구성하게 하고; 그리고
    (i) 상기 제2 온도 판독치가 상기 제2 최대 온도와 동일하거나 또는 그보다 크고, 그리고 (ii) 상기 제1 온도 판독치가 상기 제1 최대 온도 미만일 때, 상기 제2 다이로부터 상기 제1 다이로 열을 발산하도록 상기 양방향 TEC(thermal electric cooler)를 구성하게 하는,
    비-일시적 프로세서 판독가능 저장 매체.
KR1020177032567A 2015-05-11 2016-05-10 양방향 열 전기 냉각기를 포함하는 pop(package-on-package) 디바이스 KR102513960B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/709,276 US9746889B2 (en) 2015-05-11 2015-05-11 Package-on-package (PoP) device comprising bi-directional thermal electric cooler
US14/709,276 2015-05-11
PCT/US2016/031671 WO2016183099A1 (en) 2015-05-11 2016-05-10 Package-on-package (pop) device comprising bi-directional thermal electric cooler

Publications (2)

Publication Number Publication Date
KR20180005179A KR20180005179A (ko) 2018-01-15
KR102513960B1 true KR102513960B1 (ko) 2023-03-23

Family

ID=56027229

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020177032567A KR102513960B1 (ko) 2015-05-11 2016-05-10 양방향 열 전기 냉각기를 포함하는 pop(package-on-package) 디바이스

Country Status (9)

Country Link
US (1) US9746889B2 (ko)
EP (1) EP3295481A1 (ko)
JP (1) JP6783798B2 (ko)
KR (1) KR102513960B1 (ko)
CN (1) CN107534038B (ko)
BR (1) BR112017024277B1 (ko)
CA (1) CA2981824A1 (ko)
TW (1) TWI662665B (ko)
WO (1) WO2016183099A1 (ko)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9418926B1 (en) * 2015-05-18 2016-08-16 Micron Technology, Inc. Package-on-package semiconductor assemblies and methods of manufacturing the same
US9735131B2 (en) 2015-11-10 2017-08-15 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-stack package-on-package structures
US10177131B2 (en) 2016-03-02 2019-01-08 Samsung Electronics Co., Ltd. Semiconductor packages and methods of manufacturing the same
US9659911B1 (en) * 2016-04-20 2017-05-23 Powertech Technology Inc. Package structure and manufacturing method thereof
CN107579061B (zh) 2016-07-04 2020-01-07 晟碟信息科技(上海)有限公司 包含互连的叠加封装体的半导体装置
US10424559B2 (en) 2016-12-22 2019-09-24 Intel Corporation Thermal management of molded packages
CN108695284A (zh) * 2017-04-07 2018-10-23 晟碟信息科技(上海)有限公司 包括纵向集成半导体封装体组的半导体设备
CN109148397B (zh) * 2017-06-16 2023-02-28 日月光半导体制造股份有限公司 半导体装置封装
US10438930B2 (en) 2017-06-30 2019-10-08 Intel Corporation Package on package thermal transfer systems and methods
CN111052368A (zh) * 2017-09-28 2020-04-21 英特尔公司 有源硅上封装半导体封装
US10834853B2 (en) 2018-03-02 2020-11-10 Micron Technology, Inc. Electronic device with a card-level thermal regulator mechanism and associated systems, devices, and methods
US10692793B2 (en) * 2018-03-02 2020-06-23 Micron Technology, Inc. Electronic device with a package-level thermal regulator mechanism and associated systems, devices, and methods
US11152279B2 (en) * 2018-03-26 2021-10-19 Raytheon Company Monolithic microwave integrated circuit (MMIC) cooling structure
US10916488B2 (en) 2018-06-29 2021-02-09 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor package having thermal conductive pattern surrounding the semiconductor die
US11137809B2 (en) * 2018-12-20 2021-10-05 Advanced Micro Devices, Inc. Runtime localized cooling of high-performance processors
US11658095B2 (en) * 2019-03-29 2023-05-23 Intel Corporation Bump integrated thermoelectric cooler
US11830787B2 (en) 2019-08-06 2023-11-28 Intel Corporation Thermal management in integrated circuit packages
US11784108B2 (en) 2019-08-06 2023-10-10 Intel Corporation Thermal management in integrated circuit packages
US20210043543A1 (en) * 2019-08-06 2021-02-11 Intel Corporation Thermal management in integrated circuit packages
US12007170B2 (en) 2019-08-06 2024-06-11 Intel Corporation Thermal management in integrated circuit packages
EP3772750A1 (en) * 2019-08-07 2021-02-10 Infineon Technologies AG Semiconductor module arrangement
US20210066273A1 (en) * 2019-08-30 2021-03-04 Intel Corporation Laser ablation-based surface property modification and contamination removal
US20210320085A1 (en) * 2020-04-09 2021-10-14 Nanya Technology Corporation Semiconductor package
KR20220017022A (ko) * 2020-08-03 2022-02-11 삼성전자주식회사 반도체 패키지
US11765862B2 (en) * 2020-09-29 2023-09-19 Baidu Usa Llc Thermal management system for electronic components with thermoelectric element
KR20220071399A (ko) 2020-11-24 2022-05-31 삼성전자주식회사 반도체 모듈
KR20220151442A (ko) * 2021-05-06 2022-11-15 삼성전자주식회사 반도체 패키지
WO2023047407A1 (en) * 2021-09-24 2023-03-30 Pandiyarasan Veluswamy Smart jacket for all weather conditions
US20230376221A1 (en) * 2022-05-17 2023-11-23 Western Digital Technologies, Inc. Accelerated Cooling in Storage Devices

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017638A (ja) 2001-07-02 2003-01-17 Fujitsu Ltd 積層型マルチチップ半導体装置
US20120153454A1 (en) 2010-12-21 2012-06-21 Industrial Technology Research Institute Semiconductor device
JP2013118381A (ja) 2011-12-01 2013-06-13 Samsung Electronics Co Ltd 装置の温度を管理する方法及び熱電冷却パッケージ並びに携帯用モバイル装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW549573U (en) 2002-11-27 2003-08-21 Via Tech Inc IC package for a multi-chip module
US7034394B2 (en) 2003-10-08 2006-04-25 Intel Corporation Microelectronic assembly having thermoelectric elements to cool a die and a method of making the same
KR100629679B1 (ko) * 2004-07-01 2006-09-29 삼성전자주식회사 열전 냉각 소자를 갖는 반도체 칩 패키지
JP2006295119A (ja) * 2005-03-17 2006-10-26 Matsushita Electric Ind Co Ltd 積層型半導体装置
US20060243315A1 (en) * 2005-04-29 2006-11-02 Chrysler Gregory M Gap-filling in electronic assemblies including a TEC structure
JP2007115812A (ja) * 2005-10-19 2007-05-10 Seiko Epson Corp ペルチェモジュール及び電子機器
US20090071525A1 (en) 2007-09-17 2009-03-19 Lucent Technologies, Inc. Cooling Hot-Spots by Lateral Active Heat Transport
US8598700B2 (en) * 2008-06-27 2013-12-03 Qualcomm Incorporated Active thermal control for stacked IC devices
US9070662B2 (en) * 2009-03-05 2015-06-30 Volterra Semiconductor Corporation Chip-scale packaging with protective heat spreader
FR2951871B1 (fr) 2009-10-23 2011-12-16 St Microelectronics Sa Plaque d'interface entre circuits integres
US9006956B2 (en) * 2012-05-09 2015-04-14 Qualcomm Incorporated Piezoelectric active cooling device
US9625186B2 (en) * 2013-08-29 2017-04-18 Taiwan Semiconductor Manufacturing Co., Ltd. Cooling system for 3D IC
KR20150027583A (ko) * 2013-09-04 2015-03-12 삼성전자주식회사 열전 소자를 갖는 반도체 소자

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017638A (ja) 2001-07-02 2003-01-17 Fujitsu Ltd 積層型マルチチップ半導体装置
US20120153454A1 (en) 2010-12-21 2012-06-21 Industrial Technology Research Institute Semiconductor device
JP2013118381A (ja) 2011-12-01 2013-06-13 Samsung Electronics Co Ltd 装置の温度を管理する方法及び熱電冷却パッケージ並びに携帯用モバイル装置

Also Published As

Publication number Publication date
TW201642409A (zh) 2016-12-01
EP3295481A1 (en) 2018-03-21
JP2018514951A (ja) 2018-06-07
KR20180005179A (ko) 2018-01-15
US9746889B2 (en) 2017-08-29
BR112017024277B1 (pt) 2022-12-13
JP6783798B2 (ja) 2020-11-11
CN107534038A (zh) 2018-01-02
CN107534038B (zh) 2021-01-01
BR112017024277A2 (pt) 2018-07-24
CA2981824A1 (en) 2016-11-17
WO2016183099A1 (en) 2016-11-17
TWI662665B (zh) 2019-06-11
US20160334845A1 (en) 2016-11-17

Similar Documents

Publication Publication Date Title
KR102513960B1 (ko) 양방향 열 전기 냉각기를 포함하는 pop(package-on-package) 디바이스
US10748870B2 (en) Tri-layer COWOS structure
US10002857B2 (en) Package on package (PoP) device comprising thermal interface material (TIM) in cavity of an encapsulation layer
US20210120668A1 (en) Top-side connector interface for processor packaging
US9583430B2 (en) Package-on-package device
US10242976B2 (en) In-package photonics integration and assembly architecture
US8587134B2 (en) Semiconductor packages
US20180352649A1 (en) Connector interface for processor packaging
US20140225248A1 (en) Power distribution and thermal solution for direct stacked integrated circuits
US9153560B2 (en) Package on package (PoP) integrated device comprising a redistribution layer
TW201633500A (zh) 堆疊式封裝及具有其的可攜式電腦裝置
US9177831B2 (en) Die assembly on thin dielectric sheet
US10049999B2 (en) Electronic device
US20160035622A1 (en) PACKAGE ON PACKAGE (PoP) INTEGRATED DEVICE COMPRISING A PLURALITY OF SOLDER RESIST LAYERS
WO2016028637A1 (en) Integrated device comprising a heat-dissipation layer providing an electrical path for a ground signal
WO2018125050A1 (en) Stacked die cavity package
US11742270B2 (en) Landing pad apparatus for through-silicon-vias
US20220028826A1 (en) Stacked semiconductor die assemblies with substrate heat sinks and associated systems and methods
KR20240060599A (ko) 전기 습윤 디바이스를 포함하는 전자 디바이스

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant