KR102420691B1 - 희토류 자석 및 그것을 사용한 리니어 모터 - Google Patents

희토류 자석 및 그것을 사용한 리니어 모터 Download PDF

Info

Publication number
KR102420691B1
KR102420691B1 KR1020177030228A KR20177030228A KR102420691B1 KR 102420691 B1 KR102420691 B1 KR 102420691B1 KR 1020177030228 A KR1020177030228 A KR 1020177030228A KR 20177030228 A KR20177030228 A KR 20177030228A KR 102420691 B1 KR102420691 B1 KR 102420691B1
Authority
KR
South Korea
Prior art keywords
magnet
material particles
end region
magnetization
sintered body
Prior art date
Application number
KR1020177030228A
Other languages
English (en)
Other versions
KR20170132216A (ko
Inventor
마코토 후지하라
도시노부 호시노
쇼이치로 사이토
겐이치 후지카와
Original Assignee
닛토덴코 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 닛토덴코 가부시키가이샤 filed Critical 닛토덴코 가부시키가이샤
Publication of KR20170132216A publication Critical patent/KR20170132216A/ko
Application granted granted Critical
Publication of KR102420691B1 publication Critical patent/KR102420691B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F13/00Apparatus or processes for magnetising or demagnetising
    • H01F13/003Methods and devices for magnetising permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy
    • H01F41/028Radial anisotropy

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Linear Motors (AREA)
  • Powder Metallurgy (AREA)

Abstract

백 요크를 사용하지 않고 높은 자속량을 실현할 수 있는 희토류 자석 및 희토류 영구 자석을 가동자에 사용한 리니어 모터를 제공한다. 그 영구 자석을 형성하는 희토류 영구 자석 형성용 소결체는, 길이 방향으로 연장되는 제 1 표면과, 그 제 1 표면으로부터 두께 방향으로 간격을 가진 위치에 있고 길이 방향으로 연장되는 제 2 표면과, 길이 방향 양 단부의 단면을 갖는 길이 방향 단면 형상을 가지는 소정의 입체 형상으로 일체로 소결 성형된 것이다. 이 소결체는, 중앙 영역에 함유되는 자석 재료 입자의 자화 용이축이, 아치상 경로를 따라 지향되도록 배향된다. 또, 제 1 단부 영역에 있어서는, 자석 재료 입자의 자화 용이축이 제 1 표면으로부터 소결체의 내부로 들어가고, 제 2 표면을 향하게 되는 경로를 따라 지향되도록 배향된다. 제 2 단부 영역에 있어서는, 자석 재료 입자의 자화 용이축이 제 2 표면으로부터 소결체의 내부로 들어가고, 제 1 표면을 향하게 되는 경로를 따라 지향되도록 배향된다.

Description

희토류 자석 및 그것을 사용한 리니어 모터{RARE-EARTH MAGNET AND LINEAR MOTOR USING SAME}
본 발명은, 희토류 자석 및 그것을 사용한 리니어 모터에 관한 것이다. 특히, 본 발명은, 백 요크를 사용하지 않고 높은 자속 밀도를 생성할 수 있는 희토류 자석에 관한 것이다.
일반적으로, 리니어 모터는, 고정자와 그 고정자에 대향하도록 배치된 가동자를 구비한다. 일본 공개특허공보 2003-189589호 (특허문헌 1) 에는, 고정자를 가동자의 이동 방향으로 배열된 복수의 전기자 철심과 그 전기자 철심에 감겨진 복수의 코일로 이루어지는 전자석에 의해 구성하고, 가동자를 영구 자석 유닛에 의해 구성한 리니어 모터가 기재되어 있다. 가동자의 영구 자석 유닛은, 그 가동자의 이동 방향에 대해 횡 방향으로, 서로 병렬로 배치된 복수의 영구 자석으로 이루어지는 자석렬의 형태이며, 이웃하는 영구 자석의 자극이 서로 역극성이 되도록 배열된다. 그리고, 그 자석렬을 구성하는 복수의 영구 자석에는, 그 이측 (裏側), 즉 고정자와는 반대측의 면에, 그 자석렬의 자속을 N 극과 S 극 사이에서 순환시키기 위한 백 요크가 장착되어 있다. 이 특허문헌 1 에 기재된 리니어 모터의 구성은, 가동자를 코일 유닛으로 구성한 경우에 비해 가동자를 경량화할 수 있다는 이점을 가진다고 특허문헌 1 에 설명되어 있다.
또, 특허문헌 1 에는 기재되어 있지 않지만, 가동자의 영구 자석을 유지력이 높은, 예를 들어 Nd-Fe-B 계 자석과 같은 희토류 자석 재료에 의해 구성하여, 자석의 소형화 및 경량화를 도모한 리니어 모터가, 예를 들어 왕복동 부재와 같은, 소형 경량의 모터를 필요로 하는 용도에 사용되고 있다. 이와 같은 희토류 자석을 사용하는 구성에 있어서도, 영구 자석에는 백 요크가 불가결 부품으로서 장착되어 있다.
일본 공개특허공보 2003-189589호
특허문헌 1 에 기재된 리니어 모터에 있어서 가동자에 사용되는 영구 자석 유닛은, 상기 서술한 바와 같이, 자석렬의 자속을 N 극과 S 극 사이에서 순환시키기 위해서, 백 요크를 형성하는 것이 필요시된다.
본 발명은, 백 요크를 사용하지 않고 높은 자속량을 실현할 수 있는 희토류 자석을 제공하는 것을 주된 목적으로 한다.
본 발명은, 일 양태에 있어서, 희토류 영구 자석 형성용 소결체를 제공한다. 이 희토류 영구 자석 형성용 소결체는, 착자 (着磁) 됨으로써 영구 자석을 형성할 수 있다. 따라서, 본 발명은, 다른 양태에 있어서, 희토류 영구 자석을 제공하는 것이다. 또, 본 발명은, 또 다른 양태에 있어서, 희토류 영구 자석을 가동자에 사용한 리니어 모터를 제공한다.
본 발명의 일 양태에 의한 희토류 영구 자석 형성용 소결체는, 희토류 물질을 함유하는 자석 재료 입자를 함유한다. 그 자석 재료 입자는, 길이 방향으로 연장되는 제 1 표면과, 그 제 1 표면으로부터 두께 방향으로 간격을 가진 위치에 있고 길이 방향으로 연장되는 제 2 표면과, 길이 방향 양 단부의 단면 (端面) 을 갖는 길이 방향 단면 형상을 가지는 소정의 입체 형상으로, 일체로 소결 성형된 것이다. 이 소결체는, 길이 방향으로 보아 양단의 제 1 및 제 2 단부 영역의 사이에 위치하는 중앙 영역에 있어서는, 그 중앙 영역에 함유되는 자석 재료 입자는, 그 자화 용이축이, 그 중앙 영역의 길이 방향 중심을 지나 상기 제 1 표면에 수직인 길이 방향 중심선보다 제 1 단부 영역의 측에 위치하는 부분에서, 그 제 2 표면으로부터 소결체의 내부로 들어가고, 길이 방향 중심선을 길이 방향으로 횡단하고, 그 중앙 영역의 그 길이 방향 중심선보다 제 2 단부 영역의 측에 위치하는 부분에서, 그 제 2 표면을 향하게 되는 경로를 따라 지향 (指向) 되도록 배향된다.
또한, 제 1 단부 영역에 있어서는, 그 제 1 단부 영역에 함유되는 자석 재료 입자는, 그 자화 용이축이 제 2 표면으로부터 소결체의 내부로 들어가고, 제 1 표면을 향하게 되는 경로를 따라 지향되도록 배향된다. 또, 제 2 단부 영역에 있어서는, 그 제 2 영역에 함유되는 자석 재료 입자는, 그 자화 용이축이 제 1 표면으로부터 소결체의 내부로 들어가고, 제 2 표면을 향하게 되는 경로를 따라 지향되도록 배향된다.
이 경우, 그 중앙 영역에 있어서, 제 1 및 제 2 단부 영역에 각각 인접하는 부분으로서 제 1 표면에 가까운 코너 부분에서는, 그 부분에 함유되는 자석 재료 입자의 자화 용이축은, 상기 서술한 아치상 경로에 대응하는 만곡 경로를 따라 지향되도록 배향된다.
본 발명의 하나의 바람직한 형태에서는, 그 제 1 단부 영역에 함유되는 자석 재료 입자의 자화 용이축은, 그 제 1 표면에 대해 거의 직각의 방향을 향하게 되도록 패러렐 배향된다. 본 발명의 다른 바람직한 형태에서는, 그 제 1 단부 영역에 함유되는 자석 재료 입자의 자화 용이축은, 중앙 영역에 근접하는 지점에 있어서는, 제 1 표면에 가까워짐에 따라 중앙 영역에 가까워지는 방향으로 만곡상으로 경사지는 경로를 따라 지향되도록 배향된다. 또한, 본 발명의 바람직한 형태에서는, 그 제 2 단부 영역에 함유되는 자석 재료 입자의 자화 용이축은, 중앙 영역에 근접하는 지점에서는, 제 1 표면으로부터 멀어짐에 따라 중앙 영역으로부터 멀어지는 방향으로 만곡상으로 경사지는 경로를 따라 지향되도록 배향된다.
본 발명의 또 다른 바람직한 형태에서는, 제 1 및 제 2 단부 영역에 함유되는 자석 재료 입자의 자화 용이축은, 그 제 1 표면에 대해 거의 직각의 방향을 향하게 되도록 패러렐 배향된다. 그리고, 중앙 영역에 있어서는, 그 중앙 영역에 함유되는 자석 재료 입자의 자화 용이축은, 중앙 영역의 길이 방향 중심선을 길이 방향의 원점으로 하고, 그 길이 방향 중심선으로부터 제 2 단부 영역 방향의 거리를 +b, 그 길이 방향 중심선으로부터 제 1 단부 영역 방향의 거리를 -b, 중앙 영역과 상기 제 1 및 제 2 단부 영역의 경계까지의 거리를 bmax 로 하였을 때, 그 자화 용이축의 배향 방향과 상기 제 1 표면 사이의 각도로서 정의되는 배향각 θ 가,
θ (°) = (b/bmax) × c × 90 (단 c 는 정수 (定數) 이고, 배향각 θ 는 반시계 방향을 정 (正) 으로 하고, 시계 방향을 부 (負) 로 하고, (b/bmax) × c < -1 일 때는 θ = -90°, (b/bmax) × c > 1 일 때는 θ = 90°로 한다)
이 되도록 배향된다. 이 경우에는, 그 배향각은, 그 길이 방향 중심선으로부터의 거리 b 가 동일한 위치에 있어서는 두께 방향으로 일정해진다.
본 발명의 또 다른 바람직한 형태에서는, 배향각 θ (°) 를 정하는 상기 식에 있어서의 「c」는 정수가 아니고, 가변의 계수이다. 이 경우, 그 계수 c 는, 제 1 표면에 있어서 최소가 되고, 제 2 표면에 있어서 최대가 되도록, 그 제 1 표면으로부터 그 제 2 표면을 향하여 두께 방향으로 점차 증가하도록 변화된다. 상세하게 말하면, 배향각 θ 를 정의하는 상기 식에 있어서, (b/bmax) × c < -1 일 때에는 θ = -90°이고, (b/bmax) × c > 1 일 때에는 θ = 90°가 된다. 그리고, 계수 c 는, 제 1 표면에 있어서 최소가 되고, 제 2 표면에 있어서 최대가 되도록, 그 제 1 표면으로부터 그 제 2 표면을 향하여 두께 방향으로 점차 증가하도록 변화된다.
본 발명의 더욱 바람직한 형태에 있어서는, 자석 재료 입자는 Nd-Fe-B 계 자석 재료에 의해 구성된다.
본 발명은 또, 상기 서술한 희토류 영구 자석 형성용 소결체에 착자함으로써 제작된 희토류 영구 자석을 제공한다. 또한, 본 발명은, 이와 같이 하여 제작된 희토류 영구 자석을 적어도 1 개 구비하는 가동자와, 그 희토류 영구 자석의 그 제 2 표면에 대해 간격을 가지고 배치된 고정 자극으로 이루어지는 리니어 모터를 제공한다. 이 경우, 리니어 모터에 있어서는, 가동자의 희토류 자석은, 길이 방향이 그 가동자의 이동 방향에 대해 교차하도록 배치되는 것이 바람직하다.
본 발명에 의하면, 희토류 영구 자석 형성용 소결체는, 그 구성 재료인 자석 재료 입자의 자화 용이축이 상기 서술한 바와 같이 배향되어 있으므로, 그 소결체에 착자함으로써 제작되는 희토류 영구 자석의 자화 방향도, 자화 용이축의 배향 방향을 따른 것이 된다. 따라서, 희토류 영구 자석은, 중앙 영역의 양측 사이에서 순환하는 자속을 발생시키게 되어, 백 요크를 사용하지 않고 충분한 자속 밀도를 얻는 것이 가능해진다.
도 1 은, 왕복동 부재에 있어서의 구동용 리니어 모터의 가동자에 사용되는 전형적인 영구 자석 유닛의 배열을 나타내는 도면으로서, (a) 는 평면도, (b) 는 측면도이다.
도 2 는, 도 1 에 나타내는 영구 자석 유닛을 리니어 모터에 장착한 상태를 나타내는 개략도이다.
도 3 은, 본 발명에 의한 영구 자석 형성용 소결체에 있어서의 자석 재료 입자의 자화 용이축의 배향을 전체적으로 나타내는 개략적인 길이 방향 단면도로서, (a) 는 본 발명의 일 실시형태를, (b) 는 다른 실시형태를, (c) 는 높은 피크 자속 밀도가 얻어지는 바람직한 실시형태를, (d) 는 (c) 의 실시형태의 변형예를 각각 나타내는 것이며, (e) 는 (c) 의 실시형태에 있어서의 자석 재료 입자의 자화 용이축의 배향각과 길이 방향 위치의 관계를, (f) 는 (d) 의 실시형태에 있어서의 자석 재료 입자의 자화 용이축의 배향각과 길이 방향 및 두께 방향 위치의 관계를, 각각 나타내는 도표이다.
도 4 는, 도 3(a) 에 나타내는 실시형태에 관련된 도면으로서, (a) 는 영구 자석 형성용 소결체에 있어서의 자화 용이축의 배향의 상세를 나타내는 측면도, (b) 는 그 영구 자석 형성용 소결체에 착자함으로써 제작된 영구 자석의 자속 밀도를 종래의 자석과의 대비로 나타내는 도표이다.
도 5 의 (a) 및 (b) 는, 도 3(b) 에 나타내는 본 발명의 실시형태에 있어서의 도 4(a)(b) 에 각각 대응하는 도면이고, (c) 및 (d) 는, 도 3(c) 및 (d) 의 실시형태에 있어서의 도 4(b) 에 대응하는 도면, (e) 및 (f) 는 도 3(c) 및 (d) 의 실시형태에 있어서의 자속량의 증가를 나타내는 도표이다.
도 6 은, 도 4(a) 에 나타내는 자화 용이축의 배향을 갖는 영구 자석 형성용 소결체를 제작하는 공정에 있어서의 자계 인가 상태를 나타내는 측면도이다.
도 7 은, 도 4(a) 에 나타내는 영구 자석 형성용 소결체의 제조 공정을 나타내는 개략도이고, (a) ∼ (d) 는 그린 시트 형성까지의 각 단계를 나타낸다.
도 8 은, 본 발명의 일 실시형태에 의한 희토류 영구 자석 형성용 소결체에 착자함으로써 형성된 영구 자석을 구비하는 소형 리니어 모터의 일례를 나타내는 것으로, (a) 는 측면도, (b) 는 평면도이다.
도 9 는, 본 발명의 몇 개의 실시형태에 있어서의 자석 형성용 소결체를 제조하기 위한 다른 방법을 나타내는 도면으로서, (a)(b)(c)(d)(e) 는, 제조의 각 단계를 순서대로 나타내는 개략도이다.
도 1 에, 종래의 리니어 모터에 사용되도록 배열된 2 개의 영구 자석 (1a, 1b) 을 갖는 자석 유닛 (1) 을 나타낸다. 각각의 자석 (1a, 1b) 은, 길이 방향 치수 (L) 와, 폭 방향 치수 (W) 와, 두께 (t) 를 갖는다. 이 자석 유닛 (1) 이 가동자로서 리니어 모터에 장착되었을 때의, 그 가동자의 이동 방향을 도 1(a) 에 화살표 A 로 나타낸다.
각각의 자석 (1a, 1b) 은, 길이 방향의 일단부에 S 극을, 타단부에 N 극을 갖는 구성이고, 그 길이 방향이 가동자의 이동 방향에 대해 평행해지도록 배치된다. 이들 자석 (1a, 1b) 에는, 백 요크 (2) 가 장착되어 있다. 전형적인 왕복동 부재에 사용되는 자석 유닛 (1) 에 있어서는, 각 영구 자석 (1a, 1b) 의 길이 L 은 20 mm, 폭 W 는 8 mm, 두께 (t) 는 1.3 mm 이다. 백 요크 (2) 는, 길이 L 이 영구 자석 (1a, 1b) 의 길이보다 약간 긴 25 mm 이고, 폭 8 mm 인 장방형이고, 두께 (t) 는 2.0 mm 이다.
이 자석 유닛 (1) 은, 도 2 에 나타내는 바와 같이, 철심에 감겨진 코일 (3a, 3b, 3c) 로 이루어지는 전자석의 열을 구비하는 고정자 (3) 에 대향하여 배치된다. 이 상태에 있어서, 백 요크 (2) 는, 영구 자석 (1a, 1b) 을 사이에 두고 고정자 (3) 와는 반대측에 배치된다.
도 3 은, 본 발명의 개념을 나타내기 위하여, 본 발명의 4 개의 상이한 실시형태에 따른 희토류 영구 자석 형성용 소결체 (5a, 5b, 5c, 5d) 를 나타내는 개략도이다. 도 3(a) 에 본 발명의 제 1 실시형태에 따른 영구 자석 형성용 소결체 (5a) 를, 도 3(b) 에 본 발명의 제 2 실시형태에 따른 영구 자석 형성용 소결체 (5b) 를, 도 3(c) 에 본 발명의 제 3 실시형태에 따른 영구 자석 형성용 소결체 (5c) 를, 도 3(d) 에 본 발명의 제 4 실시형태에 따른 영구 자석 형성용 소결체 (5d) 를, 길이 방향 단면도에 의해 각각 나타낸다. 도 3(a) 에 나타내는 실시형태에서는, 영구 자석 형성용 소결체 (5a) 는, 예를 들어 Nd-Fe-B 계 자석 재료 와 같은 희토류 자석 재료의 입자를 소결함으로써 제조된 구성이고, 길이 L 의 방향으로 연장되는 제 1 표면 (6) 과, 그 제 1 표면 (6) 으로부터 두께 방향으로 두께 (t) 에 상당하는 간격을 가지고 길이 L 의 방향으로 연장되는 제 2 표면 (7) 을 갖는다. 소결체 (5a) 의 길이 L 방향 양 단부에는 단면 (8) 이 형성되어 있다. 도 3(a) 에는 나타내어져 있지 않지만, 소결체 (5a) 는, 도 1 에 나타내는 영구 자석 (1a, 1b) 과 마찬가지로, 폭 방향 치수 (W) 를 갖는다. 따라서, 희토류 영구 자석 형성용 소결체 (5a) 는, 전체적으로 장방체의 형상이며, 왕복동 부재용의 리니어 모터에 사용하는 경우에는, 도 1 에 대해 전술한 바와 동일한 길이 방향 치수 (L) 와 폭 방향 치수 (W) 를 갖는 것으로 할 수 있다.
도 3(a) 에 나타내는 실시형태에 있어서는, 길이 방향 중심선 (C) 으로부터 길이 방향 양측으로 소정의 길이만큼 연장되는 중앙 영역 (9) 에 있어서, 그 영역 (9) 에 함유되는 자석 재료 입자 (도시 생략) 의 자화 용이축 (10a) 은, 길이 방향 중심선 (C) 의 제 2 표면 (7) 상의 점을 중심으로, 하향으로 아치상의 경로를 따라 지향되도록 배향된다. 또한, 그 중앙 영역 (9) 으로부터 일방의 단면 (8) 까지의 제 1 단부 영역 (11) 에 함유되는 자석 재료 입자의 자화 용이축 (10b) 은, 길이 방향으로 연장되는 제 2 표면 (7) 으로부터 제 1 표면 (6) 을 향하게 되는 경로를 따라 거의 평행하게 지향되도록 패러렐 배향되고, 그 중앙 영역 (9) 으로부터 타방의 단면 (8) 까지의 제 2 단부 영역 (12) 에 함유되는 자석 재료 입자의 자화 용이축 (10c) 은, 길이 방향으로 연장되는 제 1 표면 (6) 으로부터 제 2 표면 (7) 을 향하게 되는 경로를 따라 거의 평행하게 지향되도록 패러렐 배향된다.
도 3(b) 에 나타내는 실시형태에 있어서는, 길이 방향 중심선 (C) 으로부터 길이 방향 양측으로 소정의 길이만큼 연장되는 중앙 영역 (19) 에 있어서, 그 영역 (19) 에 함유되는 자석 재료 입자 (도시 생략) 의 자화 용이축 (20a) 은, 도 3(a) 에 나타내는 실시형태에 있어서와 마찬가지로, 길이 방향 중심선 (C) 의 제 2 표면 (7) 상의 점을 중심으로, 하향으로 아치상의 경로를 따라 지향되도록 배향된다. 그러나, 이 실시형태의 경우에는, 그 중앙 영역 (19) 으로부터 일방의 단면 (8) 까지의 제 1 단부 영역 (21) 에 함유되는 자석 재료 입자의 자화 용이축 (20b) 은, 길이 방향으로 연장되는 제 2 표면 (7) 으로부터 제 1 표면 (6) 을 향하게 되고, 그 제 1 표면 (6) 에 가까워짐에 따라 중앙 영역 (19) 에 가까워지는 만곡 경로를 따라 지향되도록 배향되고, 그 중앙 영역 (19) 으로부터 타방의 단면 (8) 까지의 제 2 단부 영역 (22) 에 함유되는 자석 재료 입자의 자화 용이축 (20c) 은, 길이 방향으로 연장되는 제 1 표면 (6) 으로부터 제 2 표면 (7) 을 향하게 되고, 그 제 2 표면 (7) 에 가까워짐에 따라 중앙 영역 (19) 으로부터 멀어지는 만곡 경로를 따라 지향되도록 배향된다.
도 3(c) 에 나타내는 실시형태에 있어서는, 길이 방향 중심선 (C) 으로부터 길이 방향 양측으로 소정의 길이만큼 연장되는 중앙 영역 (29) 에 있어서, 그 영역 (29) 에 함유되는 자석 재료 입자 (도시 생략) 의 자화 용이축 (30a) 은, 길이 방향 중심선 (C) 으로부터의 거리 b 가 커짐에 따라 커지는 경사각으로, 제 1 표면 (6) 에 대해 경사지도록 배향되어 있다. 상세하게 말하면, 도 3(c) 에 나타내는 바와 같이, 길이 방향 중심선 (C) 과 제 1 표면 (6) 의 교차점 (O) 으로부터 제 1 단부 영역 (31) 의 방향으로 잰 거리를 「-b」라고 하고, 그 교차점 (O) 으로부터 제 2 단부 영역 (32) 의 방향으로 잰 거리를 「+b」라고 하였을 때, 거리 「b」에 있어서의 자석 재료 입자의 자화 용이축 (30a) 은, 제 1 표면 (6) 에 대한 경사각인 배향각 θ 가,
θ (°) = (b/bmax) × c × 90
(단 c 는 정수이고, 배향각 θ 는 반시계 방향을 정으로 하고, 시계 방향을 부로 하고, (b/bmax) × c < -1 일 때에는 θ = -90°, (b/bmax) × c > 1 일 때에는 θ = 90°로 한다)
이 되도록 배향되고, 그 배향각은, 그 길이 방향 중심선으로부터의 거리 b 가 동일한 위치에 있어서는 두께 방향으로 거의 일정하다. 단부 영역 (31, 32) 에 있어서는, 그 영역 (31, 32) 에 함유되는 자석 재료 입자의 자화 용이축 (30b, 30c) 은, 패러렐 배향이 된다.
도 3(d) 에 나타내는 실시형태에 있어서는, 도 3(c) 의 실시형태에 있어서와 마찬가지로, 길이 방향 중심선 (C) 으로부터 길이 방향 양측으로 소정의 길이만큼 연장되는 중앙 영역 (39) 에 있어서, 그 영역 (39) 에 함유되는 자석 재료 입자 (도시 생략) 의 자화 용이축 (40a) 은, 길이 방향 중심선 (C) 으로부터의 거리 b 가 커짐에 따라 커지는 경사각으로, 제 1 표면 (6) 에 대해 경사지도록 배향되고 있다. 그러나, 본 실시형태에 있어서의 자석 재료 입자의 자화 용이축 (40a) 의 배향각 θ 를 규정하는 식 θ (°) = (b/bmax) × c × 90 중의 「c」는 정수가 아니고, 제 1 표면 (6) 으로부터의 두께 방향의 거리 「a」에 따라 상이한 값을 취하는 계수이다. 이 관계는, 도 3(f) 에 나타내는 그래프로 나타내어진다. 이 경우, 거리 「b」가 동일해지는 길이 방향 위치에 있어서는, 배향각 θ 는, 두께 방향의 거리 「a」가 커짐에 따라 작아진다. 단부 영역 (41, 42) 에 있어서는, 그 영역 (41, 42) 에 함유되는 자석 재료 입자의 자화 용이축 (40b, 40c) 은, 패러렐 배향이 된다.
도 4(a) 에, 도 3(a) 의 실시형태에 의한 희토류 영구 자석 형성용 소결체 (5a) 에 있어서의 자석 재료 입자의 자화 용이축 (10a) 의 배향을 상세하게 나타낸다. 중앙 영역 (9) 에 있어서는, 개개의 자석 재료 입자의 자화 용이축 (10a) 은, 제 1 단부 영역 (11) 에 있어서 제 2 표면 (7) 으로부터 소결체 (5a) 내로 들어가고, 그 소결체 (5a) 내를 지나, 제 2 단부 영역 (12) 에 있어서 다시 제 2 표면 (7) 에 이르는 거의 원호상 또는 아치상의 경로를 따라 지향되도록 배향된다. 제 1 단부 영역 (11) 에 있어서는, 그 영역 (11) 에 함유되는 자석 재료 입자의 자화 용이축 (10b) 은 제 2 표면 (7) 으로부터 제 1 표면 (6) 을 향하는 거의 평행한 경로를 따라 지향하는 패러렐 배향이 된다. 반대로, 제 2 단부 영역 (12) 에 있어서는, 그 영역 (12) 에 함유되는 자석 재료 입자의 자화 용이축 (10c) 은 제 1 표면 (6) 으로부터 제 2 표면 (7) 을 향하는 거의 평행한 경로를 따라 지향하는 패러렐 배향이 된다.
또한, 중앙 영역 (9) 에 있어서, 제 1 및 제 2 단부 영역 (11, 12) 에 각각 인접하는 부분 중, 제 1 표면 (6) 에 가까운 코너 부분 (9a, 9b) 에서는, 그 부분 (9a, 9b) 에 함유되는 자석 재료 입자의 자화 용이축 (10a1, 10a2) 은, 상기 서술한 원호상 또는 아치상 경로에 대응하는 만곡 경로를 따라 지향되도록 배향된다.
이와 같이 형성된 희토류 영구 자석 형성용 소결체 (5a) 에 착자함으로써 얻어진 희토류 영구 자석은, 제 1 단부 영역 (11) 에 있어서의 제 1 표면 (6) 으로부터 나와 제 2 단부 영역 (12) 에 있어서의 제 1 표면 (6) 에 이르고, 제 2 단부 영역 (12) 에 있어서의 제 2 표면 (7) 으로부터 나와 제 1 단부 영역 (11) 에 있어서의 제 2 표면 (7) 에 이르도록 순환하는 자속을 발생시키는 것이 된다. 즉, 이 영구 자석은, 백 요크를 형성하지 않고, 높은 자속 밀도를 생성할 수 있다.
도 4(b) 는, 본 발명의 그 실시형태에 의한 Nd-Fe-B 계 자석에 있어서의 자속 밀도의 증대를, 종래의 Nd-Fe-B 계 자석과 대비하여 나타내는 도표이다. 이 대비는, 도 1 에 관련하여 전술한 치수를 갖는 Nd-Fe-B 계 소결 자석에 대해 실시한 것이다. 전술한 바와 같이, 종래의 소결 자석에서는, 소결체는 두께 1.3 mm 이며, 그 소결체에 두께 2 mm 의 백 요크가 장착된다. 도 4(b) 에서는, 자석에 의해 생성되는 자속 밀도를 길이 방향 중심으로부터의 거리에 관련하여 나타내는 것이고, 곡선 a-1 이 비교예가 되는 종래의 자석에 있어서의 자속 밀도이다. 이것에 대해, 곡선 b-1, b-2, b-3, b-4, b-5, b-6, b-7 은, 각각, 두께 1.3 mm, 1.5 mm, 1.8 mm, 2.0 mm, 2.5 mm, 3.0 mm, 3.3 mm 로 한 경우의, 본 발명의 그 실시형태에 의한 백 요크를 가지지 않는 Nd-Fe-B 계 자석에 있어서의 자속 밀도를 나타내는 것이다. 도면으로부터 알 수 있는 바와 같이, 본 발명의 실시형태에 의한 자석에서는, 백 요크를 갖지 않는 구성임에도 불구하고, 두께 1.3 mm 의 경우에서도, 종래의 자석보다 높은 피크 자속 밀도를 얻을 수 있다. 또한, 소결체 (5a) 의 두께가 1.8 mm 보다 큰 경우에는, 백 요크가 없음에도 불구하고, 자석의 길이 방향 거의 전체 길이에 걸쳐, 백 요크와 소결체를 합친 두께가 2.3 mm 인 비교예의 자석보다 높은 자속 밀도로 자속을 생성할 수 있다. 그리고, 두께가 동등해지는 곡선 b-7 의 예에서는, 자속 밀도는 비교예와 대비하여, 43 % 이상의 증가를 나타낸다.
도 5(a) 에, 도 3(b) 의 실시형태에 의한 희토류 영구 자석 형성용 소결체 (5a) 에 있어서의 자석 재료 입자의 자화 용이축 (20a, 20b, 20c) 의 배향을 상세하게 나타낸다. 중앙 영역 (19) 에 있어서는, 개개의 자석 재료 입자의 자화 용이축 (20a) 은, 제 1 단부 영역 (21) 에 있어서 제 2 표면 (7) 으로부터 소결체 (5a) 내로 들어가고, 그 소결체 (5a) 내를 지나, 제 2 단부 영역 (12) 에 있어서 다시 제 2 표면 (7) 에 이르는 거의 원호상 또는 아치상의 경로를 따라 지향되도록 배향된다. 제 1 단부 영역 (21) 에 있어서는, 그 영역 (21) 에 함유되는 자석 재료 입자의 자화 용이축 (20b) 은 제 2 표면 (7) 으로부터 제 1 표면 (6) 을 향하는 경로를 따라 지향하는 배향이 되지만, 이 경로는, 제 2 표면 (7) 으로부터 제 1 표면 (6) 에 가까워짐에 따라 중앙 영역 (19) 의 방향으로 가까워지는 원호상의 만곡선이 된다. 반대로, 제 2 단부 영역 (22) 에 있어서는, 그 영역 (22) 에 함유되는 자석 재료 입자의 자화 용이축 (20c) 은 제 1 표면 (6) 으로부터 제 2 표면 (7) 을 향하는 원호상 만곡 경로를 따라 지향하는 배향이 된다.
이와 같이 형성된 희토류 영구 자석 형성용 소결체 (5a) 에 착자함으로써 얻어진 희토류 영구 자석은, 전술한 실시형태에 있어서와 마찬가지로, 제 1 단부 영역 (21) 에 있어서의 제 1 표면 (6) 으로부터 나와 제 2 단부 영역 (22) 에 있어서의 제 1 표면 (6) 에 이르고, 제 2 단부 영역 (22) 에 있어서의 제 2 표면 (7) 으로부터 나와 제 1 단부 영역 (21) 에 있어서의 제 2 표면 (7) 에 이르도록 순환하는 자속을 발생시키는 것이 된다. 따라서, 이 영구 자석도, 백 요크를 형성하지 않고, 높은 자속 밀도를 생성할 수 있다.
도 5(b) 는, 본 발명의 그 제 2 실시형태에 의한 Nd-Fe-B 계 자석에 있어서의 자속 밀도의 증대를, 종래의 Nd-Fe-B 계 자석과 대비하여 나타내는 도 4(b) 와 마찬가지의 도표이고, 곡선 a-1 이 비교예가 되는 종래의 자석에 있어서의 자속 밀도이다. 이것에 대해, 곡선 c-1, c-2, c-3, c-4, c-5, c-6, c-7 이, 각각, 두께 1.3 mm, 1.5 mm, 1.8 mm, 2.0 mm, 2.5 mm, 3.0 mm, 3.3 mm 로 한 경우의, 본 발명의 그 제 2 실시형태에 의한 백 요크를 가지지 않는 Nd-Fe-B 계 자석에 있어서의 자속 밀도를 나타내는 것이다. 도면으로부터 알 수 있는 바와 같이, 본 발명의 제 2 실시형태에 의한 자석에서는, 제 1 실시형태에 있어서의 자석과 같이, 자속 밀도를 나타내는 곡선은 현저한 피크를 나타내지 않고, 비교적 완만한 곡선이 된다. 또, 이 제 2 실시형태에 의한 자석은, 소결체 (5a) 의 두께가 1.8 mm 일 때, 비교예의 자석과 거의 동등한 자속 밀도가 되고, 소결체 (5a) 의 두께가 1.8 mm 보다 큰 경우에는, 백 요크가 없음에도 불구하고, 백 요크와 소결체를 합친 두께가 2.3 mm 인 비교예의 자석보다 높은 자속 밀도의 자속을 생성한다. 그리고, 두께가 동등해지는 곡선 c-7 의 예에서는, 자속 밀도는 비교예와 대비하여, 39 % 이상의 증가를 나타낸다.
도 5(c) 는, 도 3(c) 에 나타내는 실시형태에 의한 자석 형성용 소결체 (5c) 에 착자함으로써 얻어진 Nd-Fe-B 계 희토류 영구 자석에 있어서의 자속 밀도의 증대를, 종래의 Nd-Fe-B 계 자석과 대비하여 나타내는 도 4(b) 및 도 5(b) 와 마찬가지의 도표이고, 곡선 a-1 이 비교예가 되는 종래의 자석에 있어서의 자속 밀도이다. 이것에 대해, 곡선 d-1, d-2, d-3, d-4, d-5, d-6, d-7 이, 각각, 두께 1.3 mm, 1.5 mm, 1.8 mm, 2.0 mm, 2.5 mm, 3.0 mm, 3.3 mm 로 한 경우의, 본 발명의 그 실시형태에 의한 백 요크를 가지지 않는 자석에 있어서의 자속 밀도를 나타내는 것이다. 도면으로부터 알 수 있는 바와 같이, 이 실시형태에 의해 얻어지는 자석은, 자속 밀도 곡선에 높은 피크가 생기므로, 짧은 주기로 가동자의 이동 방향이 전환되는 왕복동 부재의 구동용 리니어 모터에 사용하기에 적합한 것이 된다. 도 5(e) 에, 이 실시형태에 의해 얻어지는 자석에 있어서의, 자석의 두께 (t) 와 그 자석에 의해 생성되는 자속량 (μWb) 의 관계를 종래의 자석과의 대비로 나타낸다. 도 5(e) 에 있어서, 파선이 종래의 자석에 있어서의 자속량을 나타내고 있고, 실선으로 나타내는 실시예의 자석은, 두께 1.8 mm 보다 큰 범위에 있어서 종래의 자석보다 높은 자속량을 발현하는 것을 알 수 있다.
도 5(d) 는, 도 3(d) 에 나타내는 실시형태에 의한 자석 형성용 소결체 (5d) 에 착자함으로써 얻어진 Nd-Fe-B 계 희토류 영구 자석에 있어서의 자속 밀도의 증대를, 종래의 Nd-Fe-B 계 자석과 대비하여 나타내는 도 4(b) 및 도 5(b) 와 마찬가지의 도표이고, 곡선 a-1 이 비교예가 되는 종래의 자석에 있어서의 자속 밀도이다. 이것에 대해, 곡선 e-1, e-2, e-3, e-4, e-5 가, 각각, 두께 1.3 mm, 1.8 mm, 2.5 mm, 3.0 mm, 3.3 mm 로 한 경우의, 본 발명의 그 실시형태에 의한 백 요크를 가지지 않는 자석에 있어서의 자속 밀도를 나타내는 것이다. 도면으로부터 알 수 있는 바와 같이, 이 실시형태에 의해 얻어지는 자석은, 자속 밀도 곡선이 비교적 평평한 형상이다. 도 5(f) 에, 이 실시형태에 의해 얻어지는 자석에 있어서의, 자석의 두께 (t) 와 그 자석에 의해 생성되는 자속량 (μWb) 의 관계를 종래의 자석과의 대비로 나타낸다. 도 5(f) 에 있어서, 파선이 종래의 자석에 있어서의 자속량을 나타내고 있고, 실선으로 나타내는 실시예의 자석은, 두께 1.8 mm 보다 큰 범위에 있어서 종래의 자석보다 높은 자속량을 발현하는 것을 알 수 있다.
[희토류 영구 자석 형성용 소결체의 제조 방법]
다음으로, 도 4(a) 에 나타내는 실시형태에 의한 희토류 영구 자석 형성용 소결체 (5a) 의 제조 방법에 대해 도 7 을 참조하여 설명한다. 도 7 은, 본 실시형태에 관련된 영구 자석 형성용 소결체 (5a) 의 제조 공정을 나타내는 개략도이다.
먼저, 소정 분율의 Nd-Fe-B 계 합금으로 이루어지는 자석 재료의 잉곳을 주조법에 의해 제조한다. 대표적으로는, 네오디뮴 자석에 사용되는 Nd-Fe-B 계 합금은, Nd 가 30 wt%, 전해철인 것이 바람직한 Fe 가 67 wt%, B 가 1.0 wt% 인 비율로 함유되는 조성을 갖는다. 이어서, 이 잉곳을, 스탬프 밀 또는 크러셔 등의 공지된 수단을 사용하여 200 ㎛ 정도의 크기로 조분쇄한다. 대체적 (代替的) 으로는, 잉곳을 용해하고, 스트립 캐스트법에 의해 플레이크를 제작하고, 수소 해쇄법으로 조분화한다. 그로 인해, 조분쇄 자석 재료 입자 (115) 가 얻어진다 (도 7(a) 참조).
이어서, 조분쇄 자석 재료 입자 (115) 를, 비드 밀 (116) 에 의한 습식법 또는 제트 밀을 사용한 건식법 등의 공지된 분쇄 방법에 의해 미분쇄한다. 예를 들어, 비드 밀 (116) 에 의한 습식법을 사용한 미분쇄에서는, 분쇄 매체인 비드 (116a) 를 충전한 비드 밀 (116) 에 용매를 충전하고, 그 용매에 조분쇄 자석 재료 입자 (115) 를 투입한다. 그리고, 용매 중에서 조분쇄 자석 재료 입자 (115) 를 소정 범위의 입경 (예를 들어 0.1 ㎛ ∼ 5.0 ㎛) 으로 미분쇄하여, 용매 중에 자석 재료 입자를 분산시킨다 (도 7(b) 참조). 그 후, 습식 분쇄 후의 용매에 함유되는 자석 입자를 진공 건조 등의 수단에 의해 건조시키고, 건조된 자석 입자를 취출한다 (도시 생략). 여기서, 분쇄에 사용하는 용매의 종류에는 특별히 제한은 없고, 이소프로필알코올, 에탄올, 메탄올 등의 알코올류, 아세트산에틸 등의 에스테르류, 펜탄, 헥산 등의 저급 탄화수소류, 벤젠, 톨루엔, 자일렌 등 방향족류, 케톤류, 그것들의 혼합물 등을 사용할 수 있다. 용매로는, 유기 용매에 한정되지 않고, 액화 아르곤 등의 불활성 가스의 액화물, 그 밖의 무기 용매를 사용할 수 있다. 어느 경우에 있어서도, 용매 중에 산소 원자를 함유하지 않는 용매를 사용하는 것이 바람직하다.
한편, 제트 밀에 의한 건식법을 사용하는 미분쇄에 있어서는, 조분쇄한 자석 재료 입자 (115) 를, (a) 산소 함유량이 실질적으로 0 % 인 질소 가스, Ar 가스, He 가스 등의 불활성 가스로 이루어지는 분위기 중, 또는 (b) 산소 함유량이 0.0001 ∼ 0.5 % 인 질소 가스, Ar 가스, He 가스 등의 불활성 가스로 이루어지는 분위기 중에서, 제트 밀에 의해 미분쇄하여, 예를 들어 0.7 ㎛ ∼ 5.0 ㎛ 와 같은 소정 범위의 평균 입경을 갖는 미립자로 한다. 여기서, 산소 농도가 실질적으로 0 % 란, 산소 농도가 완전히 0 % 인 경우에 한정되지 않고, 미분의 표면에 매우 적게 산화 피막을 형성하는 정도의 양의 산소를 함유해도 되는 것을 의미한다.
다음으로, 비드 밀 (116) 외 그 밖의 수단에 의해 미분쇄된 자석 재료 입자를 원하는 형상으로 성형한다. 이 자석 재료 입자의 성형을 위해서, 상기 서술한 바와 같이 미분쇄된 자석 재료 입자 (115) 와 바인더를 혼합한 혼합물을 준비한다. 바인더로는, 수지 재료를 사용하는 것이 바람직하고, 바인더에 수지를 사용하는 경우에는, 구조 중에 산소 원자를 함유하지 않으며, 또한 해(解)중합성이 있는 폴리머를 사용하는 것이 바람직하다. 또, 후술과 같이 자석 입자와 바인더의 혼합물을, 예를 들어 장방체 형상과 같은 원하는 형상으로 성형할 때에 생긴 혼합물의 잔여물을 재이용할 수 있도록 하기 위해서, 또한, 혼합물을 가열하여 연화된 상태에서 자기장 배향을 실시할 수 있도록 하기 위해서, 열가소성 수지를 사용하는 것이 바람직하다. 구체적으로는, 이하의 일반식 (1) 에 나타내는 모노머로 형성되는 1 종 또는 2 종 이상의 중합체 또는 공중합체로 이루어지는 폴리머가 바람직하게 사용된다.
[화학식 1]
Figure 112017103359665-pct00001
(단, R1 및 R2 는, 수소 원자, 저급 알킬기, 페닐기 또는 비닐기를 나타낸다)
상기 조건에 해당하는 폴리머로는, 예를 들어 이소부틸렌의 중합체인 폴리이소부틸렌 (PIB), 이소프렌의 중합체인 폴리이소프렌 (이소프렌 고무, IR), 1,3-부타디엔의 중합체인 폴리부타디엔 (부타디엔 고무, BR), 스티렌의 중합체인 폴리스티렌, 스티렌과 이소프렌의 공중합체인 스티렌-이소프렌 블록 공중합체 (SIS), 이소부틸렌과 이소프렌의 공중합체인 부틸 고무 (IIR), 스티렌과 부타디엔의 공중합체인 스티렌-부타디엔 블록 공중합체 (SBS), 스티렌과 에틸렌, 부타디엔의 공중합체인 스티렌-에틸렌-부타디엔-스티렌 공중합체 (SEBS), 스티렌과 에틸렌, 프로필렌의 공중합체인 스티렌-에틸렌-프로필렌-스티렌 공중합체 (SEPS), 에틸렌과 프로필렌의 공중합체인 에틸렌-프로필렌 공중합체 (EPM), 에틸렌, 프로필렌과 함께 디엔 모노머를 공중합시킨 EPDM, 에틸렌의 중합체인 폴리에틸렌, 프로필렌의 중합체인 폴리프로필렌, 2-메틸-1-펜텐의 중합체인 2-메틸-1-펜텐 중합 수지, 2-메틸-1-부텐의 중합체인 2-메틸-1-부텐 중합 수지, α-메틸스티렌의 중합체인 α-메틸스티렌 중합 수지 등이 있다. 또, 바인더에 사용하는 수지로는, 산소 원자, 질소 원자를 함유하는 모노머의 중합체 또는 공중합체 (예를 들어, 폴리부틸메타크릴레이트나 폴리메틸메타크릴레이트 등) 를 소량 함유하는 구성으로 해도 된다. 또한, 상기 일반식 (1) 에 해당하지 않는 모노머가 일부 공중합되어 있어도 된다. 그 경우라 하더라도, 본 발명의 목적을 달성하는 것이 가능하다.
또한, 바인더에 사용하는 수지로는, 자기장 배향을 적절히 실시하기 위해 250 ℃ 이하에서 연화되는 열가소성 수지, 보다 구체적으로는 유리 전이점 또는 유동 개시 온도가 250 ℃ 이하인 열가소성 수지를 사용하는 것이 바람직하다.
열가소성 수지 중에 자석 재료 입자를 분산시키기 위해서, 분산제를 적당량 첨가하는 것이 바람직하다. 분산제로서는, 알코올, 카르복실산, 케톤, 에테르, 에스테르, 아민, 이민, 이미드, 아미드, 시안, 인계 관능기, 술폰산, 이중 결합이나 삼중 결합 등의 불포화 결합을 갖는 화합물, 액상 포화 탄화수소 화합물 중, 적어도 하나를 첨가하는 것이 바람직하다. 복수를 혼합하여 사용해도 된다.
그리고, 후술하는 바와 같이, 자석 재료 입자와 바인더의 혼합물에 대해 자기장을 인가하여 그 자석 재료를 자기장 배향함에 있어서는, 혼합물을 가열하여 바인더 성분이 연화된 상태에서 자기장 배향 처리를 실시한다.
자석 재료 입자에 혼합되는 바인더로서 상기 서술한 조건을 만족시키는 바인더를 사용함으로써, 소결 후의 희토류 영구 자석 형성용 소결체 내에 잔존하는 탄소량 및 산소량을 저감시키는 것이 가능해진다. 구체적으로는, 소결 후에 자석 형성용 소결체 내에 잔존하는 탄소량을 2000 ppm 이하, 보다 바람직하게는 1000 ppm 이하로 할 수 있다. 또, 소결 후에 자석 형성용 소결체 내에 잔존하는 산소량을 5000 ppm 이하, 보다 바람직하게는 2000 ppm 이하로 할 수 있다.
바인더의 첨가량은, 슬러리 또는 가열 용융된 콤파운드를 성형하는 경우에, 성형의 결과로서 얻어지는 성형체의 두께 정밀도가 향상되도록, 자석 재료 입자 간의 공극을 적절히 충전할 수 있는 양으로 한다. 예를 들어, 자석 재료 입자와 바인더의 합계량에 대한 바인더의 비율이 1 wt% ∼ 40 wt%, 보다 바람직하게는 2 wt% ∼ 30 wt%, 더욱 바람직하게는 3 wt% ∼ 20 wt% 로 한다.
이하의 실시예에서는, 혼합물을 일단 제품 형상 이외로 성형한 상태에서 자기장을 인가하여 자석 재료 입자의 자화 용이축의 배향을 실시하고, 그 후에 소결 처리를 실시함으로써, 예를 들어 도 4(a) 에 나타내는 형상과 같은, 원하는 제품 형상으로 한다. 특히, 이하의 실시예에서는, 자석 재료 입자와 바인더로 이루어지는 혼합물, 즉 콤파운드 (117) 를, 시트 형상의 그린 성형체 (이하, 「그린 시트」라고 한다) 로 일단 성형한 후에, 배향 처리를 위한 성형체 형상으로 한다. 혼합물을 특히 시트 형상으로 성형하는 경우에는, 예를 들어 자석 재료 입자와 바인더의 혼합물인 콤파운드 (117) 를 가열한 후에 시트 형상으로 성형하는 핫 멜트 도공에 의하거나, 또는, 자석 재료 입자와 바인더와 유기 용매를 함유하는 슬러리를 기재 상에 도공함으로써 시트상으로 성형하는 슬러리 도공 등에 의한 성형을 채용할 수 있다.
이하에 있어서는, 특히 핫 멜트 도공법에 의한 그린 시트 형성에 관련하여 실시형태를 설명하지만, 본 발명은, 그러한 특정 도공법에 한정되는 것은 아니고, 예를 들어, 핫 멜트의 다이 압출 등, 다른 방법을 사용할 수 있다.
이하에 있어서는, 특히 핫 멜트 도공을 사용한 그린 시트 성형에 대해 설명하지만, 본 발명은, 그러한 특정 도공법에 한정되는 것은 아니다.
이미 서술한 바와 같이, 비드 밀 (116) 에 의하거나, 다른 방법으로 미분쇄 된 자석 재료 입자에 바인더를 혼합함으로써, 자석 재료 입자와 바인더로 이루어지는 점토상의 혼합물, 즉 콤파운드 (117) 를 제작한다. 여기서, 바인더로는, 상기 서술한 바와 같이 수지, 분산제의 혼합물을 사용할 수 있다. 예를 들어, 수지로는, 구조 중에 산소 원자를 함유하지 않으며, 또한 해중합성이 있는 폴리머 로 이루어지는 열가소성 수지를 사용하는 것이 바람직하고, 한편, 분산제로는, 알코올, 카르복실산, 케톤, 에테르, 에스테르, 아민, 이민, 이미드, 아미드, 시안, 인계 관능기, 술폰산, 이중 결합이나 삼중 결합 등의 불포화 결합을 갖는 화합물 중, 적어도 하나를 첨가하는 것이 바람직하다. 또, 바인더의 첨가량은, 상기 서술한 바와 같이 첨가 후의 콤파운드 (117) 에 있어서의 자석 재료 입자와 바인더의 합계량에 대한 바인더의 비율이 1 wt% ∼ 40 wt%, 보다 바람직하게는 2 wt% ∼ 30 wt%, 더욱 바람직하게는 3 wt% ∼ 20 wt% 가 되도록 한다.
여기서 분산제의 첨가량은 자석 재료 입자의 입자경에 따라 결정하는 것이 바람직하고, 자석 재료 입자의 입자경이 작을수록 첨가량을 많게 하는 것이 추천 된다. 구체적인 첨가량으로는, 자석 재료 입자에 대해 0.1 부 ∼ 10 부, 보다 바람직하게는 0.3 부 ∼ 8 부로 한다. 첨가량이 적은 경우에는 분산 효과가 작고, 배향성이 저하될 우려가 있다. 또, 첨가량이 많은 경우에는, 자석 재료 입자를 오염시킬 우려가 있다. 자석 재료 입자에 첨가된 분산제는, 자석 재료 입자의 표면에 부착되어, 자석 재료 입자를 분산시켜 점토상 혼합물을 부여함과 함께, 후술하는 자기장 배향 처리에 있어서, 자석 재료 입자의 회동 (回動) 을 보조하도록 작용한다. 그 결과, 자기장을 인가하였을 때에 배향이 용이하게 이루어져, 자석 입자의 자화 용이축 방향을 거의 동일 방향으로 일정하게 하는 것, 즉, 배향도를 높게 하는 것이 가능해진다. 특히, 자석 재료 입자에 바인더를 혼합하는 경우에는, 입자 표면에 바인더가 존재하게 되기 때문에, 자기장 배향 처리시의 마찰력이 높아지고, 그 때문에 입자의 배향성이 저하될 우려가 있어, 분산제를 첨가하는 것의 효과가 보다 높아진다.
자석 재료 입자와 바인더의 혼합은, 질소 가스, Ar 가스, He 가스 등의 불활성 가스로 이루어지는 분위기하에서 실시하는 것이 바람직하다. 자석 재료 입자와 바인더의 혼합은, 예를 들어 자석 재료 입자와 바인더를 각각 교반기에 투입하고, 교반기로 교반함으로써 실시한다. 이 경우에 있어서, 혼련성을 촉진시키기 위해 가열 교반을 실시해도 된다. 또한, 자석 재료 입자와 바인더의 혼합도, 질소 가스, Ar 가스, He 가스 등 불활성 가스로 이루어지는 분위기에서 실시하는 것이 바람직하다. 또, 특히 자석 입자를 습식법으로 분쇄한 경우에 있어서는, 분쇄에 사용한 용매로부터 자석 입자를 취출하지 않고 바인더를 용매 중에 첨가하여 혼련하고, 그 후에 용매를 휘발시켜, 콤파운드 (117) 를 얻도록 해도 된다.
계속해서, 콤파운드 (117) 를 시트상으로 성형함으로써, 전술한 그린 시트를 제조한다. 핫 멜트 도공을 채용하는 경우에는, 콤파운드 (117) 를 가열함으로써 그 콤파운드 (117) 를 용융시켜, 유동성을 가진 상태로 한 후, 지지 기재 (118) 상에 도공한다. 그 후, 방열에 의해 콤파운드 (117) 를 응고시켜, 지지 기재 (118) 상에 장척 시트상의 그린 시트 (119) 를 형성한다. 이 경우, 콤파운드 (117) 를 가열 용융시킬 때의 온도는, 사용하는 바인더의 종류나 양에 따라 상이하지만, 통상적으로는 50 ∼ 300 ℃ 로 한다. 단, 사용하는 바인더의 유동 개시 온도보다 높은 온도로 할 필요가 있다. 또한, 슬러리 도공을 사용하는 경우에는, 다량의 용매 중에 자석 재료 입자와 바인더, 및, 임의이지만, 배향을 조장하는 첨가제를 분산시키고, 슬러리를 지지 기재 (118) 상에 도공한다. 그 후, 건조시켜 용매를 휘발시킴으로써, 지지 기재 (118) 상에 장척 시트상의 그린 시트 (119) 를 형성한다.
여기서, 용융된 콤파운드 (117) 의 도공 방식은, 슬롯 다이 방식 또는 캘린더 롤 방식 등의, 층 두께 제어성이 우수한 방식을 이용하는 것이 바람직하다. 특히, 높은 두께 정밀도를 실현하기 위해는, 특히 층 두께 제어성이 우수한, 즉, 기재의 표면에 고정밀도의 두께의 층을 도공할 수 있는 방식인 다이 방식이나 콤마 도공 방식을 이용하는 것이 바람직하다. 예를 들어, 슬롯 다이 방식에서는, 가열시켜 유동성을 갖는 상태로 한 콤파운드 (117) 를 기어 펌프에 의해 압송하여 다이에 주입하고, 다이로부터 토출시킴으로써 도공을 실시한다. 또, 캘린더 롤 방식에서는, 가열한 2 개의 롤의 닙 간극에, 콤파운드 (117) 를 제어한 양으로 이송하고, 롤을 회전시키면서, 지지 기재 (118) 상에, 롤의 열에 의해 용융된 콤파운드 (117) 를 도공한다. 지지 기재 (118) 로는, 예를 들어 실리콘 처리 폴리에스테르 필름을 사용하는 것이 바람직하다. 또한, 소포제를 사용하거나, 가열 진공 탈포를 실시함으로써, 도공되고 전개된 콤파운드 (117) 의 층 중에 기포가 남지 않도록 충분히 탈포 처리하는 것이 바람직하다. 혹은, 지지 기재 (118) 상에 도공하는 것이 아니라, 압출 성형이나 사출 성형에 의해 용융된 콤파운드 (117) 를 시트상으로 성형하면서 지지 기재 (118) 상에 압출함으로써, 지지 기재 (118) 상에 그린 시트 (119) 를 성형할 수도 있다.
도 7 에 나타내는 실시형태에서는, 슬롯 다이 (120) 를 사용하여 콤파운드 (117) 의 도공을 실시하도록 하고 있다. 이 슬롯 다이 방식에 의한 그린 시트 (119) 의 형성 공정에서는, 도공 후의 그린 시트 (119) 의 시트 두께를 실측하고, 그 실측치에 기초한 피드백 제어에 의해, 슬롯 다이 (120) 와 지지 기재 (118) 사이의 닙 간극을 조절하는 것이 바람직하다. 이 경우에 있어서, 슬롯 다이 (120) 에 공급하는 유동성 콤파운드 (117) 의 양의 변동을 최대한 저하시켜, 예를 들어 ±0.1 % 이하의 변동으로 억제하고, 추가로 도공 속도의 변동도 최대한 저하시켜, 예를 들어 ±0.1 % 이하의 변동으로 억제하는 것이 바람직하다. 이와 같은 제어에 의해, 그린 시트 (119) 의 두께 정밀도를 향상시키는 것이 가능하다. 또한, 형성되는 그린 시트 (119) 의 두께 정밀도는, 예를 들어 1 mm 와 같은 설계치에 대해 ±10 % 이내, 보다 바람직하게는 ±3 % 이내, 더욱 바람직하게는 ±1 % 이내로 하는 것이 바람직하다. 캘린더 롤 방식에서는, 캘린더 조건을 마찬가지로 실측치에 기초하여 피드백 제어함으로써, 지지 기재 (118) 에 전사되는 콤파운드 (117) 의 막 두께를 제어하는 것이 가능하다.
그린 시트 (119) 의 두께는, 0.05 mm ∼ 20 mm 의 범위로 설정하는 것이 바람직하다. 두께를 0.05 mm 보다 얇게 하면, 필요한 자석 두께를 달성하기 위해서 다층을 적층해야 하게 되므로, 생산성이 저하되게 된다.
다음으로, 상기 서술한 핫 멜트 도공에 의해 지지 기재 (118) 상에 형성된 그린 시트 (119) 로부터 원하는 자석 치수에 대응하는 치수의 직방체 형상으로 잘라내진 가공용 시트편을 도 6 에 나타내는 바와 같이 U 자형으로 구부려 자계 인가용 가공편 (123) 을 제조한다. 본 실시형태에 있어서는, 가공편 (123) 은, 반원형의 원호부 (123a) 와, 그 원호부 (123a) 의 양단으로부터 접선 방향으로 연장되는 직선부 (123b, 123c) 로 이루어진다. 원호부 (123a) 는 최종적으로 얻어지는 영구 자석 형성용 소결체 (5a) 의 중앙 영역 (9) 에 대응하고, 직선부 (123b) 는 소결체 (5a) 의 제 1 단부 영역 (11) 에, 직선부 (123c) 는 소결체 (5a) 의 제 2 단부 영역 (12) 에 각각 대응한다.
이 가공편 (123) 은, 도면의 지면에 직각인 방향의 폭 치수를 갖고, 이 폭 치수 및 두께와 길이 치수는, 후술하는 소결 공정에 있어서의 치수의 축소를 예상하여, 소결 공정 후에 소정의 자석 치수가 얻어지도록 정한다.
도 6 에 나타내는 가공편 (123) 에는, 직선부 (123b, 123c) 의 표면에 직각이 되는 방향으로 평행 자기장 (121) 이 인가된다. 이 자기장 인가에 의해, 가공편 (123) 에 함유되는 자석 재료 입자의 자화 용이축이, 도 6 에 화살표 122 로 나타내는 바와 같이, 자기장의 방향으로 배향된다. 구체적으로 서술하면, 가공편 (123) 은, 그 가공편 (123) 에 대응하는 형상의 캐비티를 갖는 자기장 인가용 형 (型) 내에 수용되고 (도시 생략), 가열함으로써 가공편 (123) 에 함유되는 바인더를 연화시킨다. 상세하게는, 가공편 (123) 내에 함유되는 바인더의 저장 탄성률이 108 Pa 이하, 바람직하게는 107 Pa 이하가 될 때까지 가공편 (123) 을 가열하여, 바인더를 연화시킨다. 그로 인해, 자석 재료 입자는 바인더 내에서 회동할 수 있게 되어, 그 자화 용이축을 평행 자기장 (121) 을 따른 방향으로 배향시킬 수 있다.
여기서, 가공편 (123) 을 가열하기 위한 온도 및 시간은, 사용하는 바인더의 종류 및 양에 따라 상이하지만, 예를 들어 40 ∼ 250 ℃ 에서 0.1 ∼ 60 분으로 한다. 여하튼, 가공편 (123) 내의 바인더를 연화시키기 위해서는, 가열 온도는, 사용되는 바인더의 유리 전이점 또는 유동 개시 온도 이상의 온도로 할 필요가 있다. 가공편 (123) 을 가열하기 위한 수단으로는, 예를 들어 핫 플레이트에 의한 가열, 또는 실리콘 오일과 같은 열 매체를 열원에 사용하는 방식이 있다. 자기장 인가에 있어서의 자기장의 강도는, 5000 [Oe] ∼ 150000 [Oe], 바람직하게는, 10000 [Oe] ∼ 120000 [Oe] 으로 할 수 있다. 그 결과, 가공편 (123) 에 함유되는 자석 재료 입자의 자화 용이축이, 도 6 에 나타내는 바와 같이, 평행 자기장 (121) 을 따른 방향으로 평행하게 배향된다. 이 자기장 인가 공정에서는, 복수 개의 가공편 (123) 에 대해 동시에 자기장을 인가하는 구성으로 할 수도 있다. 이를 위해서는, 복수 개의 캐비티를 갖는 형을 사용하거나, 혹은, 복수 개의 형을 나열하고, 동시에 평행 자기장 (121) 을 인가하면 된다. 가공편 (123) 에 자기장을 인가하는 공정은, 가열 공정과 동시에 실시해도 되고, 가열 공정을 실시한 후로서 가공편 (123) 의 바인더가 응고되기 전에 실시해도 된다.
다음으로, 도 6 에 나타내는 자기장 인가 공정에 의해 자석 재료 입자의 자화 용이축이 화살표 122 로 나타내는 바와 같이 평행 배향된 가공편 (123) 을, 자기장 인가용 형으로부터 취출하고, 가늘고 긴 길이 방향 치수의 장방체형 캐비티 (124) 를 갖는 최종 성형용 형 내로 옮겨, 소결 처리용 가공편으로 성형한다. 이 성형에 의해, 가공편 (123) 은, 원호부 (123a) 가 직선상의 중앙 영역 (9) 에 대응하는 형상이 되고, 동시에, 양단의 직선부 (123b, 123c) 는 중앙 영역과 직선상으로 정렬되는 형상이 된다. 이 성형 공정에 의해 형성되는 소결 처리용 가공편에 있어서는, 직선상의 중앙 영역 (9) 에 대응하는 영역에 함유되는 자석 재료 입자의 자화 용이축은, 도 4(a) 에 나타내는 바와 같이 원호상의 경로를 따라 지향되는 배향이 된다. 또한, 양단의 단부 영역 (11, 12) 에 대응하는 직선부에 함유되는 자석 재료 입자의 자화 용이축은, 도 4(a) 에 나타내는 바와 같이, 두께 방향의 평행 경로를 따라 지향되는 패러렐 배향이 된다.
이와 같이 하여 자석 재료 입자의 자화 용이축이 배향된 배향 후의 소결 처리용 가공편을, 대기압, 혹은, 대기압보다 높은 압력 또는 낮은 압력 (예를 들어, 1.0 Pa 또는 1.0 MPa) 으로 조절한 비산화성 분위기에 있어서, 바인더 분해 온도에서 수 시간 ∼ 수십 시간 (예를 들어 5 시간) 유지함으로써 가소 (假燒) 처리를 실시한다. 이 처리에서는, 수소 분위기 또는 수소와 불활성 가스의 혼합 가스 분위기를 사용하는 것이 추천된다. 수소 분위기하에서 가소 처리를 실시하는 경우에는, 가소 중의 수소의 공급량은, 예를 들어 5 ℓ/min 으로 한다. 가소 처리를 실시함으로써, 바인더에 함유되는 유기 화합물을 해중합 반응, 그 밖의 반응에 의해 모노머로 분해시키고, 비산시켜 제거하는 것이 가능해진다. 즉, 소결 처리용 시트편 (125) 에 잔존하는 탄소의 양을 저감시키는 처리인 탈카본 처리가 실시되게 된다. 또, 가소 처리는, 소결 처리용 시트편 (125) 내에 잔존하는 탄소의 양을 2000 ppm 이하, 보다 바람직하게는 1000 ppm 이하로 하는 조건에서 실시하는 것이 바람직하다. 그로 인해, 그 후의 소결 처리에서 소결 처리용 시트편 (125) 전체를 치밀하게 소결시키는 것이 가능해져, 잔류 자속 밀도 및 보자력의 저하를 억제하는 것이 가능해진다. 또한, 상기 서술한 가소 처리를 실시할 때의 가압 조건을 대기압보다 높은 압력으로 하는 경우에는, 압력은 15 MPa 이하로 하는 것이 바람직하다. 여기서, 가압 조건은, 대기압보다 높은 압력, 보다 구체적으로는 0.2 MPa 이상으로 하면, 특히 잔존 탄소량 경감의 효과를 기대할 수 있다.
바인더 분해 온도는, 바인더 분해 생성물 및 분해 잔류물의 분석 결과에 기초하여 결정할 수 있다. 구체적으로는, 바인더의 분해 생성물을 포집하고, 모노머 이외의 분해 생성물이 생성되지 않으며, 또한 잔류물의 분석에 있어서도 잔류하는 바인더 성분의 부반응에 의한 생성물이 검출되지 않는 온도 범위를 선택하는 것이 추천된다. 바인더의 종류에 따라 상이하지만, 200 ℃ ∼ 900 ℃, 보다 바람직하게는 400 ℃ ∼ 600 ℃, 예를 들어 450 ℃ 로 하면 된다.
상기 서술한 가소 처리에 있어서는, 일반적인 희토류 자석의 소결 처리와 비교하여, 승온 속도를 작게 하는 것이 바람직하다. 구체적으로는, 승온 속도를 2 ℃/min 이하, 예를 들어 1.5 ℃/min 으로 함으로써, 바람직한 결과를 얻을 수 있다. 따라서, 가소 처리를 실시하는 경우에는, 도 9 에 나타내는 바와 같이 2 ℃/min 이하의 소정의 승온 속도로 승온하고, 미리 설정된 설정 온도 (바인더 분해 온도) 에 도달한 후에, 그 설정 온도에서 수 시간 ∼ 수십 시간 유지함으로써 가소 처리를 실시한다. 이와 같이, 가소 처리에 있어서 승온 속도를 작게 함으로써, 소결 처리용 시트편 (125) 내의 탄소가 급격하게 제거되는 경우가 없이 단계적으로 제거되게 되므로, 충분한 레벨까지 잔량 탄소를 감소시켜, 소결 후의 영구 자석 형성용 소결체의 밀도를 상승시키는 것이 가능해진다. 즉, 잔류 탄소량을 감소시킴으로써, 영구 자석 중의 공극을 감소시킬 수 있다. 상기 서술한 바와 같이, 승온 속도를 10 ℃/min 정도로 하면, 소결 후의 영구 자석 형성용 소결체의 밀도를 98 % 이상 (7.40 g/cm3 이상) 으로 할 수 있고, 착자 후의 자석에 있어서 높은 자석 특성을 달성하는 것을 기대할 수 있다.
계속해서, 가소 처리에 의해 가소된 소결 처리용 가공편을 소결하는 소결 처리가 실시된다. 소결 처리로는, 진공 중에서의 무가압 소결법을 채용할 수도 있지만, 본 실시형태에서는, 소결 처리용 가공편을 폭 방향으로 1 축 가압한 상태에서 소결하는 1 축 가압 소결법을 채용하는 것이 바람직하다. 이 방법에서는, 도 4(a) 에 나타내는 것과 동일한 형상의 캐비티를 갖는 소결용 형 (도시 생략) 내에 소결 처리용 시트편 (125) 을 장전하고, 형을 닫고, 폭 방향으로 가압하면서 소결을 실시한다. 이 가압 소결 기술로는, 예를 들어, 핫 프레스 소결, 열간 정수압 가압 (HIP) 소결, 초고압 합성 소결, 가스 가압 소결, 방전 플라즈마 (SPS) 소결 등, 공지된 기술 중 어느 것을 채용해도 된다. 특히, 1 축 방향으로 가압 가능하고, 통전 소결에 의해 소결이 수행되는 SPS 소결을 사용하는 것이 바람직하다.
또한, SPS 소결로 소결을 실시하는 경우에는, 가압 압력을, 예를 들어 0.01 MPa ∼ 100 MPa 로 하고, 수 Pa 이하의 진공 분위기에서 940 ℃ 까지 10 ℃/분의 승온 속도로 온도 상승시키고, 그 후 5 분 유지하는 것이 바람직하다. 이어서 냉각시키고, 다시 300 ℃ ∼ 1000 ℃ 로 승온시켜 2 시간, 그 온도로 유지하는 열처리를 실시한다. 이와 같은 소결 처리의 결과, 소결 처리용 가공편으로부터, 도 4(a) 에 나타내는 자화 용이축 배향을 갖는 희토류 영구 자석 형성용 소결체 (5a) 가 제조된다. 이와 같이, 소결 처리용 가공편을 폭 방향으로 가압한 상태에서 소결하는 1 축 가압 소결법에 의하면, 소결 처리용 가공편 내의 자석 재료 입자에 부여된 자화 용이축의 배향이 변화되는 것을 억제할 수 있다.
도 5(a) 에 나타내는 자석 재료 입자의 자화 용이축 배향을 갖는 희토류 영구 자석 형성용 소결체를 제작하기 위해서는, 도 6 에 나타내는 가공편 (123) 대신에, 직선부 (123b, 123c) 가 없는, 원호부 (123a) 만의 반원형의 가공편을 사용하면, 전체에 걸쳐 자화 용이축이 원호상 경로를 따라 지향되는 배향의 소결체가 얻어진다. 이 경우에 있어서, 가공편의 단부에 있어서의 곡률 반경을, 단부를 향하여 점차 증가되도록 하면, 단부 영역에 있어서의 만곡 경로가 중앙 영역에 있어서의 원호상 경로와는 상이한 곡률의 것으로 할 수도 있다.
도 8 은, 본 발명의 희토류 영구 자석 형성용 소결체 (5a) 에 착자함으로써 형성된 영구 자석 (131) 을 탑재한 가동자 (130) 와, 그 가동자 (130) 에 대향하도록 배치된 고정자 (132) 로 구성되는 소형 리니어 모터 (140) 의 일례를 나타내는 것이다. 가동자 (130) 에는, 본 발명의 실시형태에 의한 영구 자석 (131) 이 2 개, 병렬로, 또한, 극성이 반대가 되도록 배치되어, 자석렬을 형성하고 있다. 자석렬에는, 그 리니어 모터 (140) 에 의해 구동되는 피구동 부재 (134) 가 장착된다. 고정자 (132) 는, 철심에 감겨진 복수의 코일 (133a, 133b, 133c) 이, 화살표 141 로 나타내는 가동자 (130) 의 이동 방향으로 간격을 가지고 배치되어 있다. 이 리니어 모터의 구성 자체는 통상적인 것이기 때문에, 그 상세한 것에 대한 설명은 생략한다. 본 발명의 희토류 영구 자석은, 백 요크를 사용하지 않고 높은 자속 밀도를 확보할 수 있으므로, 영구 자석 유닛의 두께를 종래의 영구 자석에 비해 얇게 할 수 있으며, 또한, 동일한 두께의 영구 자석 유닛으로 비교한 경우, 리니어 모터의 출력을 대폭적으로 높일 수 있다.
도 9 는, 도 3(d) 에 나타내는 자화 용이축 배향을 갖는 희토류 영구 자석 형성용 소결체 (5d) 를 제작하기 위한 방법의 일례를 나타내는 것이다. 도 9(a) 는 최초 공정을 나타내는 것으로, 도 7(d) 와 동일한 공정에 의해, 얇은 그린 시트 (150) 가 복수 장 형성된다. 이 그린 시트 (150) 는, 자화 용이축 (151) 이 길이 방향으로 배향된 자석 재료 입자를 함유한다. 이 그린 시트 (150) 를, 도 9(b) 에 나타내는 바와 같이, U 자형과 유사한 형상으로 구부린다. 이 공정에서, 굽힘 곡률이 상이한 복수 장의 그린 시트 (150a ∼ 150f) 를 제조하고, 도 9(c) 에 나타내는 바와 같이, 이들 복수 장의 그린 시트 (150a ∼ 150f) 를 중첩시켜 열융착한다. 이어서, 중앙부의 필요한 지점을, 도 9(d) 에 나타내는 바와 같이 잘라내어, 중앙부 (152) 를 형성한다. 그 후, 도 9(e) 에 나타내는 바와 같이, 도 9 (d) 의 공정에서 얻어진 그 중앙부 (152) 의 길이 방향 양 단부에, 자화 용이축이 패러렐 배향된 그린 시트 (153, 154) 를 첩합 (貼合) 시키고, 열융착하여 성형체 (155) 를 형성한다. 마지막으로, 도 9(e) 의 공정에서 얻어진 성형체 (155) 를 소결함으로써, 도 3(d) 에 나타내는 자석 형성용 소결체 (5d) 를 얻을 수 있다. 도 9(b) 의 굽힘 공정에 있어서, 굽힘 형상을 적절히 정함으로써, 도 9(d) 의 공정에서 잘라내지는 중앙부 (152) 에 있어서의 자석 재료 입자의 자화 용이축의 배향을 원하는 바와 같이 정할 수 있다. 따라서, 도 3(c) 에 나타내는 구성도, 동일한 방법으로 형성하는 것이 가능하다.
이상, 본 발명을 특정 실시형태에 관련하여 설명하였지만, 본 발명은 이들 특정 실시형태에 한정되는 것은 아니고, 특허 청구의 범위에 기재된 사상에 포함되는 모든 것이 본 발명에 포함되는 것이다.
1 : 자석 유닛
1a, 1b : 영구 자석
2 : 백 요크
3 : 고정자
3a, 3b, 3c : 코일
5a, 5b : 희토류 영구 자석 형성용 소결체
6 : 제 1 표면
7 : 제 2 표면
8 : 단면
9, 19 : 중앙 영역
10a, 10b, 10c, 20a, 20b, 20c : 자화 용이축
11, 21 : 제 1 단부 영역
12, 22 : 제 2 단부 영역
115 : 조분쇄 자석 재료 입자
116 : 비드 밀
117 : 콤파운드
119 : 그린 시트
120 : 슬롯 다이
121 : 평행 자기장
123 : 가공편
130 : 가동자
131 : 영구 자석
132 : 고정자
133a, 133b, 133c : 코일
140 : 리니어 모터
L : 길이 방향 치수
W : 폭 방향 치수
t : 두께
C : 길이 방향 중앙부

Claims (11)

  1. 희토류 물질을 함유하는 자석 재료 입자를 함유하고, 길이 방향으로 연장되는 제 1 표면과, 상기 제 1 표면으로부터 두께 방향으로 간격을 가진 위치에 있고 길이 방향으로 연장되는 제 2 표면과, 길이 방향 양 단부의 단면을 갖는 길이 방향 단면 형상을 가지는 방형(方形)으로, 상기 자석 재료 입자가 일체로 소결 성형된, 희토류 영구 자석 형성용 소결체로서,
    길이 방향으로 보아 양단의 제 1 단부 영역 및 제 2 단부 영역의 사이에, 이들 단부 영역과 일체의 소결체로서 연속하여 위치하는 중앙 영역에 있어서는, 상기 중앙 영역에 함유되는 상기 자석 재료 입자는, 자화 용이축이, 상기 중앙 영역의 길이 방향 중앙부를 지나 상기 제 1 표면에 수직인 길이 방향 중심선보다 상기 제 1 단부 영역의 측에 위치하는 부분에서, 상기 제 2 표면으로부터 상기 소결체의 내부로 들어가고, 상기 길이 방향 중심선을 길이 방향으로 횡단하고, 상기 중앙 영역의 상기 길이 방향 중심선보다 상기 제 2 단부 영역의 측에 위치하는 부분에서, 상기 제 2 표면을 향하게 되는 경로를 따라 지향되도록 배향되고,
    상기 제 1 단부 영역에 있어서는, 상기 제 1 단부 영역에 함유되는 상기 자석 재료 입자는, 상기 자화 용이축이 상기 제 2 표면으로부터 상기 소결체의 내부로 들어가고, 상기 제 1 표면을 향하게 되도록 배향되고,
    상기 제 2 단부 영역에 있어서는, 상기 제 2 단부 영역에 함유되는 상기 자석 재료 입자는, 상기 자화 용이축이 상기 제 1 표면으로부터 상기 소결체의 내부로 들어가고, 상기 제 2 표면을 향하게 되도록 배향된 것을 특징으로 하는 희토류 영구 자석 형성용 소결체.
  2. 제 1 항에 있어서,
    상기 제 1 단부 영역에 함유되는 상기 자석 재료 입자의 자화 용이축은, 상기 제 2 표면에 대해 직각의 방향을 향하게 되도록 패러렐 배향된 것을 특징으로 하는 희토류 영구 자석 형성용 소결체.
  3. 제 1 항에 있어서,
    상기 제 2 단부 영역에 함유되는 상기 자석 재료 입자의 자화 용이축은, 상기 제 2 표면에 대해 직각의 방향을 향하게 되도록 패러렐 배향된 것을 특징으로 하는 희토류 영구 자석 형성용 소결체.
  4. 제 1 항에 있어서,
    상기 제 1 단부 영역에 함유되는 상기 자석 재료 입자의 자화 용이축은, 상기 중앙 영역에 근접하는 지점에 있어서는, 상기 제 1 표면에 가까워짐에 따라 상기 중앙 영역에 가까워지는 방향으로 경사지는 경로를 따라 지향되도록 배향된 것을 특징으로 하는 희토류 영구 자석 형성용 소결체.
  5. 제 1 항에 있어서,
    상기 제 2 단부 영역에 함유되는 상기 자석 재료 입자의 자화 용이축은, 상기 중앙 영역에 근접하는 지점에서는, 상기 제 1 표면으로부터 멀어짐에 따라 상기 중앙 영역으로부터 멀어지는 방향으로 경사지는 경로를 따라 지향되도록 배향된 것을 특징으로 하는 희토류 영구 자석 형성용 소결체.
  6. 제 1 항에 있어서,
    상기 제 1 단부 영역 및 상기 제 2 단부 영역에 함유되는 상기 자석 재료 입자의 자화 용이축은, 상기 제 1 표면에 대해 직각의 방향을 향하게 되도록 패러렐 배향되어 있고,
    상기 중앙 영역에 함유되는 상기 자석 재료 입자의 자화 용이축은, 상기 중앙 영역의 길이 방향 중심선을 길이 방향의 원점으로 하고, 상기 길이 방향 중심선으로부터 상기 제 2 단부 영역 방향의 거리를 +b, 상기 길이 방향 중심선으로부터 상기 제 1 단부 영역 방향의 거리를 -b, 중앙 영역과 상기 제 1 단부 영역 및 상기 제 2 단부 영역의 경계까지의 거리를 bmax 로 하였을 때, 상기 자화 용이축의 배향 방향과 상기 제 1 표면 사이의 각도로서 정의되는 배향각 θ 가,
    θ (°) = (b/bmax) × c × 90 (단, c 는 정수이고, 배향각 θ 는 반시계 방향을 정으로 하고, 시계 방향을 부로 하고, (b/bmax) × c < -1 일 때에는 θ = -90°, (b/bmax) × c > 1 일 때에는 θ = 90°로 한다)
    이 되도록 배향되고, 상기 배향각은, 상기 길이 방향 중심선으로부터의 거리 b 가 동일한 위치에 있어서는 두께 방향으로 일정한 것을 특징으로 하는 희토류 영구 자석 형성용 소결체.
  7. 제 1 항에 있어서,
    상기 제 1 단부 영역 및 상기 제 2 단부 영역에 함유되는 상기 자석 재료 입자의 자화 용이축은, 상기 제 1 표면에 대해 직각의 방향을 향하게 되도록 패러렐 배향되어 있고,
    상기 중앙 영역에 함유되는 상기 자석 재료 입자의 자화 용이축은, 상기 중앙 영역의 길이 방향 중심선을 길이 방향의 원점으로 하고, 상기 길이 방향 중심선으로부터 상기 제 2 단부 영역 방향의 거리를 +b, 상기 길이 방향 중심선으로부터 상기 제 1 단부 영역 방향의 거리를 -b, 중앙 영역과 상기 제 1 단부 영역 및 상기 제 2 단부 영역의 경계까지의 거리를 bmax 로 하였을 때, 상기 자화 용이축의 배향 방향과 상기 제 1 표면 사이의 각도로서 정의되는 배향각 θ 가,
    θ (°) = (b/bmax) × c × 90 (단, 배향각 θ 는 반시계 방향을 정으로 하고, 시계 방향을 부로 하고, (b/bmax) × c < -1 일 때에는 θ = -90°, (b/bmax) × c > 1 일 때에는 θ = 90°로 한다)
    이 되도록 배향되고, 상기 c 는, 상기 제 1 표면에 있어서 최소가 되고, 상기 제 2 표면에 있어서 최대가 되도록, 상기 제 1 표면으로부터 상기 제 2 표면을 향하여 두께 방향으로 점차 증가하도록 변화되는 계수인 것을 특징으로 하는 희토류 영구 자석 형성용 소결체.
  8. 제 1 항에 있어서,
    상기 자석 재료 입자는 Nd-Fe-B 계 자석 재료인 것을 특징으로 하는 희토류 영구 자석 형성용 소결체.
  9. 제 1 항 내지 제 8 항 중 어느 한 항에 기재된 희토류 영구 자석 형성용 소결체에 착자함으로써 제작된 것을 특징으로 하는 희토류 영구 자석.
  10. 제 9 항에 기재된 희토류 영구 자석을 구비하는 가동자와, 상기 희토류 영구 자석의 상기 제 1 표면에 대해 간격을 가지고 배치된 고정 자극으로 이루어지는 리니어 모터.
  11. 제 10 항에 있어서,
    상기 가동자의 상기 희토류 영구 자석은, 길이 방향이 상기 가동자의 이동 방향과 평행해지도록 배치된 것을 특징으로 하는 리니어 모터.
KR1020177030228A 2015-03-24 2016-03-24 희토류 자석 및 그것을 사용한 리니어 모터 KR102420691B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2015061081 2015-03-24
JPJP-P-2015-061081 2015-03-24
JPJP-P-2016-022770 2016-02-09
JP2016022770 2016-02-09
PCT/JP2016/059390 WO2016152975A1 (ja) 2015-03-24 2016-03-24 希土類磁石及びそれを用いたリニアモータ

Publications (2)

Publication Number Publication Date
KR20170132216A KR20170132216A (ko) 2017-12-01
KR102420691B1 true KR102420691B1 (ko) 2022-07-13

Family

ID=56977450

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020177030228A KR102420691B1 (ko) 2015-03-24 2016-03-24 희토류 자석 및 그것을 사용한 리니어 모터

Country Status (7)

Country Link
US (1) US11239014B2 (ko)
EP (1) EP3276802B1 (ko)
JP (1) JP6945446B2 (ko)
KR (1) KR102420691B1 (ko)
CN (1) CN107408877B (ko)
TW (1) TWI682409B (ko)
WO (1) WO2016152975A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110622262B (zh) * 2017-04-07 2022-11-15 日东电工株式会社 稀土类烧结磁体及其制造方法、以及线性马达
USD982375S1 (en) 2019-06-06 2023-04-04 Sharkninja Operating Llc Food preparation device
CN112908664B (zh) * 2019-12-03 2022-12-20 北京中科三环高技术股份有限公司 一种制备稀土烧结磁体的方法
WO2022208622A1 (ja) * 2021-03-29 2022-10-06 三菱電機株式会社 着磁装置および着磁方法
CN114172343B (zh) * 2021-12-10 2023-03-24 合肥工业大学 基于气隙磁通密度波形正弦化设计的混合式磁极直线电机

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001006924A (ja) * 1999-06-22 2001-01-12 Toda Kogyo Corp 吸着用永久磁石
JP2010104136A (ja) * 2008-10-23 2010-05-06 Mitsubishi Electric Corp リニアモータ

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572801A (en) 1980-06-05 1982-01-08 Mitsubishi Metal Corp Production of sintered permanent magnet
JPS6169104A (ja) 1984-09-12 1986-04-09 Sumitomo Special Metals Co Ltd 半円状異方性フェライト磁石の製造方法
JPS62245604A (ja) 1986-04-18 1987-10-26 Seiko Epson Corp 希土類焼結磁石の製造方法
DE3913276A1 (de) * 1989-04-22 1990-10-25 Siemens Ag Eletrische maschine, insbesondere gleichstrom-kleinmotor
JPH02308512A (ja) 1989-05-24 1990-12-21 Hitachi Metals Ltd 偏倚異方性を有するR―Fe―B系永久磁石及びその製造方法
GB9225696D0 (en) 1992-12-09 1993-02-03 Cookson Group Plc Method for the fabrication of magnetic materials
JP3216865B2 (ja) * 1994-08-09 2001-10-09 日立金属株式会社 リニアモータ
US5808381A (en) 1994-08-09 1998-09-15 Hitachi Metals, Ltd. Linear motor
US6304162B1 (en) * 1999-06-22 2001-10-16 Toda Kogyo Corporation Anisotropic permanent magnet
JP3865351B2 (ja) 1999-08-31 2007-01-10 株式会社Neomax アクチュエータ用磁気回路
US7382067B2 (en) 2001-12-03 2008-06-03 Shinko Electric Co., Ltd. Linear actuator
JP2003189589A (ja) 2001-12-21 2003-07-04 Canon Inc 可動磁石型リニアモータ、露光装置及びデバイス製造方法
JP2003318012A (ja) 2002-04-19 2003-11-07 Toda Kogyo Corp モーター用永久磁石
CN1148762C (zh) * 2002-06-14 2004-05-05 钢铁研究总院 多织构整体烧结成型稀土永磁体及制备方法
US6992553B2 (en) 2002-06-18 2006-01-31 Hitachi Metals, Ltd. Magnetic-field molding apparatus
JP3997427B2 (ja) * 2002-06-18 2007-10-24 日立金属株式会社 極異方性リング磁石の製造に用いる磁場中成形装置
JP2004031780A (ja) 2002-06-27 2004-01-29 Nissan Motor Co Ltd 希土類磁石およびその製造方法、ならびに希土類磁石を用いてなるモータ
CN100380779C (zh) 2003-07-22 2008-04-09 爱知制钢株式会社 薄型混合磁化环状磁铁和具有轭部的薄型混合磁化环状磁铁、以及无电刷电机
JP2006087204A (ja) 2004-09-15 2006-03-30 Tdk Corp リング状磁石及びその製造方法
JP2008252968A (ja) 2007-03-29 2008-10-16 Matsushita Electric Ind Co Ltd 流体軸受装置およびそれを備えたスピンドルモータ、ディスク駆動装置およびその製造方法
US7839044B2 (en) 2007-03-23 2010-11-23 Panasonic Corporation Rotor magnet, spindle motor comprising the same, recording and reproducing apparatus, and jig for manufacturing the same
CN101816117B (zh) * 2007-08-01 2015-06-03 菲舍尔和佩克尔应用有限公司 磁性元件、转子及其制造方法、电机以及具有所述电机的电器
JP5359192B2 (ja) 2007-11-12 2013-12-04 パナソニック株式会社 異方性永久磁石型モータ
JP5444630B2 (ja) 2008-04-07 2014-03-19 ダイキン工業株式会社 ロータ及び埋込磁石型モータ
JP5300325B2 (ja) 2008-05-26 2013-09-25 三菱電機株式会社 リニアモータ
JP2010098080A (ja) * 2008-10-16 2010-04-30 Hitachi Metals Ltd R−t−b系焼結磁石の製造方法
JP5274302B2 (ja) 2009-02-24 2013-08-28 三菱電機株式会社 回転電機
JP2011109004A (ja) 2009-11-20 2011-06-02 Yokohama National Univ 磁気異方性磁石の製造方法
MX2013011851A (es) 2011-04-13 2014-03-13 Boulder Wind Power Inc Arreglo que enfoca el flujo para imanes permantes, metodos de abricacion de tales arreglos y maquinas que incluyen tales arreglos.
EP2685474B1 (en) 2011-06-24 2020-12-23 Nitto Denko Corporation Production method for rare earth permanent magnet
JP5969781B2 (ja) 2012-03-12 2016-08-17 日東電工株式会社 希土類永久磁石の製造方法
US10770207B2 (en) 2012-03-12 2020-09-08 Nitto Denko Corporation Rare-earth permanent magnet and method for manufacturing rare-earth permanent magnet
JP2015156405A (ja) * 2012-05-24 2015-08-27 パナソニック株式会社 異方性ボンド磁石とその製造方法およびそれらを用いたモータ
JP5936688B2 (ja) 2013-07-31 2016-06-22 株式会社日立製作所 永久磁石材料
JP2015032669A (ja) 2013-08-01 2015-02-16 日産自動車株式会社 焼結磁石の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001006924A (ja) * 1999-06-22 2001-01-12 Toda Kogyo Corp 吸着用永久磁石
JP2010104136A (ja) * 2008-10-23 2010-05-06 Mitsubishi Electric Corp リニアモータ

Also Published As

Publication number Publication date
TW201709228A (zh) 2017-03-01
US20180114620A1 (en) 2018-04-26
EP3276802A4 (en) 2019-01-02
WO2016152975A1 (ja) 2016-09-29
JP6945446B2 (ja) 2021-10-06
US11239014B2 (en) 2022-02-01
KR20170132216A (ko) 2017-12-01
CN107408877B (zh) 2020-06-16
CN107408877A (zh) 2017-11-28
EP3276802B1 (en) 2022-09-07
TWI682409B (zh) 2020-01-11
EP3276802A1 (en) 2018-01-31
JPWO2016152975A1 (ja) 2018-01-25

Similar Documents

Publication Publication Date Title
JP6648111B2 (ja) 希土類磁石形成用焼結体及び希土類焼結磁石
KR102420691B1 (ko) 희토류 자석 및 그것을 사용한 리니어 모터
KR102421822B1 (ko) 희토류 영구자석 및 희토류 영구자석을 갖는 회전기
JP6695857B2 (ja) 非平行の磁化容易軸配向を有する希土類永久磁石形成用焼結体の製造方法
KR101601583B1 (ko) 희토류 영구 자석, 희토류 영구 자석의 제조 방법 및 희토류 영구 자석의 제조 장치
JP6899327B2 (ja) 永久磁石ユニットの製造方法
KR102123194B1 (ko) 희토류 영구 자석의 제조 방법
KR20140134259A (ko) 희토류 영구 자석 및 희토류 영구 자석의 제조 방법
KR20140131904A (ko) 희토류 영구 자석 및 희토류 영구 자석의 제조 방법
JP6251545B2 (ja) 加圧焼結装置及び加圧焼結方法
JP7274826B2 (ja) 希土類焼結磁石とこれに用いる希土類焼結磁石用焼結体、及び、これらを製造するために用いることができる磁場印加装置
WO2015121916A1 (ja) 永久磁石、永久磁石の製造方法、spmモータ及びspmモータの製造方法
WO2017022685A1 (ja) 希土類磁石形成用焼結体及び希土類焼結磁石
TW201301319A (zh) 稀土類永久磁鐵及稀土類永久磁鐵之製造方法
JP2016032025A (ja) 永久磁石及び永久磁石の製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant