WO2017022685A1 - 希土類磁石形成用焼結体及び希土類焼結磁石 - Google Patents

希土類磁石形成用焼結体及び希土類焼結磁石 Download PDF

Info

Publication number
WO2017022685A1
WO2017022685A1 PCT/JP2016/072393 JP2016072393W WO2017022685A1 WO 2017022685 A1 WO2017022685 A1 WO 2017022685A1 JP 2016072393 W JP2016072393 W JP 2016072393W WO 2017022685 A1 WO2017022685 A1 WO 2017022685A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
orientation
rare earth
material particles
angle
Prior art date
Application number
PCT/JP2016/072393
Other languages
English (en)
French (fr)
Inventor
憲一 藤川
出光 尾関
有樹 加藤
藤原 誠
克也 久米
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to JP2017532585A priority Critical patent/JPWO2017022685A1/ja
Publication of WO2017022685A1 publication Critical patent/WO2017022685A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]

Definitions

  • the present invention relates to a sintered body for forming a rare earth magnet for forming a rare earth sintered magnet and a rare earth sintered magnet obtained by magnetizing the sintered body.
  • the present invention is obtained by magnetizing a sintered body for forming a rare earth magnet having a structure in which a large number of magnet material particles each including a rare earth material and each having an easy magnetization axis are sintered together.
  • the present invention relates to a rare earth sintered magnet.
  • Rare earth sintered magnets are attracting attention as a high-performance permanent magnet that can be expected to have a high coercive force and residual magnetic flux density, and are being put into practical use, and are being developed for further enhancement of performance.
  • a paper titled “High coercivity of Nd—Fe—B sintered magnets by crystal atomization” published by the Japan Institute of Metals, Vol. 76, No. 1 (2012), pp. 12-16, et al.
  • Non-Patent Document 1 recognizes that it is well known that the coercive force increases as the particle size of the magnet material is reduced.
  • a rare earth sintered magnet is manufactured using magnet forming material particles having an average powder particle diameter of 1 ⁇ m in order to increase the coercive force.
  • a mixture made of a lubricant composed of magnet material particles and a surfactant is filled in a carbon mold, and the mold is placed in an air-core coil. It is described that magnet material particles are oriented by applying a pulsed magnetic field in a fixed manner. However, in this method, the orientation of the magnetic material particles is uniquely determined by the pulsed magnetic field applied by the air-core coil, so that the permanent magnet material particles are oriented in different desired directions at different positions in the magnet. You can't get a magnet.
  • Non-Patent Document 1 the extent to which the easy axis of magnetization of magnetic material particles oriented by applying a pulse magnetic field is deviated from the intended orientation direction, and the orientation angle deviation is No consideration has been given to how it affects the performance of the magnet.
  • Patent Document 1 discloses that when a rare earth permanent magnet having rare earth elements R and Fe and B as basic constituent elements is manufactured, a plurality of magnetized material particles having easy axes of magnetization oriented in different directions. Disclosed is a method of forming a permanent magnet having a plurality of regions in which easy axes of magnetization of magnet material particles are oriented in different directions by holding the magnet bodies in a heated state and bonding the magnets. ing. According to the method for forming a permanent magnet described in Patent Document 1, in each of a plurality of regions, a rare earth permanent magnet composed of a plurality of regions including magnet material particles having easy magnetization axes oriented in different directions. It is possible to manufacture. However, this patent document 1 does not describe anything about how much the orientation imparted to the magnetic material particles in each magnet body is deviated from the intended orientation direction.
  • Patent Document 2 discloses a manufacturing method of an annular rare earth permanent magnet in which an even number of permanent magnet pieces are arranged and connected in the circumferential direction.
  • the method of manufacturing a rare earth permanent magnet taught in Patent Document 2 uses a powder press apparatus having a sector cavity to form a sector permanent magnet piece having upper and lower sector main surfaces and a pair of side surfaces.
  • the rare earth alloy powder is press-molded while filling the sector cavity with the rare earth alloy powder and applying an orientation magnetic field to the rare earth alloy powder in the cavity by upper and lower punches having orientation coils.
  • permanent magnet pieces having polar anisotropy are formed between the north pole and south pole of each main surface.
  • a permanent magnet piece having an oriented magnetization orientation is formed.
  • An even number of polar anisotropic permanent magnet pieces formed in this way are connected in an annular shape so as to have opposite polarities of adjacent permanent magnet pieces, thereby obtaining an annular permanent magnet.
  • Patent Document 2 is also magnetized so that every other magnet-shaped permanent magnet piece connected in an annular shape has the magnetization direction of every other magnet piece as an axial direction, and these axial orientations.
  • An arrangement of magnet pieces in which the magnetization direction of the magnet pieces arranged between the magnet pieces is a radial direction is also described.
  • the polarities of the main surfaces of the magnet pieces magnetized in the axial direction arranged alternately are different from each other, and every other radial direction arranged between the magnet pieces magnetized in the axial direction
  • the magnet pieces magnetized magnetized to have the same poles opposed to each other, thereby concentrating the magnetic flux on the magnetic pole of one main surface of one of the magnet pieces magnetized in the axial direction.
  • Patent Document 2 It is described that it can be efficiently focused on the magnetic pole of one main surface of the other magnet piece magnetized in the axial direction. However, this Patent Document 2 also does not describe anything about how much the orientation imparted to each magnetic material particle is deviated from the intended orientation direction.
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2015-32669 (Patent Document 3) and Japanese Patent Application Laid-Open No. 6-244046 (Patent Document 4) describe a flat green compact by press-molding a magnet material powder containing rare earth elements R, Fe and B.
  • Patent Document 4 To form a sintered magnet by applying a parallel magnetic field to the green compact, sintering at a sintering temperature, and then under temperature conditions not exceeding the sintering temperature, Disclosed is a direction in which a radially oriented rare earth permanent magnet is formed by press-molding the sintered magnet into an arc shape by using an arc-shaped pressing portion.
  • this patent document 3 discloses a method that can form a radially oriented magnet using a parallel magnetic field, since bending from a flat plate shape to an arc shape is performed after the magnet material is sintered, Molding is difficult, and it is impossible to make large deformations or complex shapes. Therefore, the magnets that can be manufactured by this method are limited to the radially oriented magnets described in Patent Document 4. Furthermore, this patent document 4 does not describe anything about how much the orientation imparted to each magnetic material particle is deviated from the intended orientation direction.
  • Patent Document 5 discloses a plate-shaped permanent magnet used for an embedded magnet type motor.
  • the permanent magnet disclosed in Patent Document 5 has a radial orientation in which the inclination angle of the magnetization easy axis with respect to the thickness direction continuously changes from the both ends in the width direction toward the center in the width direction in the cross section. Yes. More specifically, the easy axis of magnetization of the magnet is oriented so as to converge at one point on an imaginary line extending in the thickness direction from the center in the width direction in the cross section of the magnet.
  • Patent Document 5 states that it can be formed with a magnetic field orientation that can be easily realized at the time of molding and can be easily manufactured.
  • the method taught in Patent Document 5 applies a magnetic field that is focused on one point outside the magnet at the time of magnet forming, and the orientation of the easy magnetization axis in the formed magnet is limited to the radial orientation. Therefore, for example, it is impossible to form a permanent magnet in which the easy axis is oriented so that the orientation is parallel to the thickness direction in the central region in the width direction in the cross section and the oblique orientation is in the regions at both ends in the width direction.
  • This Patent Document 5 also does not describe anything about how much the orientation imparted to each magnetic material particle is deviated from the intended orientation direction.
  • Patent Document 6 JP-A-2005-44820 discloses a method for producing a polar anisotropic rare earth sintered ring magnet that does not substantially generate cogging torque when incorporated in a motor.
  • the rare earth sintered ring magnet disclosed herein has magnetic poles at a plurality of positions spaced in the circumferential direction, and the magnetization direction is a normal direction at the magnetic pole position, and a tangential direction at an intermediate position between adjacent magnetic poles. It is magnetized so that The manufacturing method of the rare earth sintered ring magnet described in Patent Document 6 is limited to the production of a polar anisotropic magnet. In this manufacturing method, within a single sintered magnet, in a plurality of arbitrary regions. It is impossible to manufacture magnets in which different orientations are given to the magnet material particles. Further, this Patent Document 6 does not describe anything about how much the orientation imparted to the individual magnet material particles is deviated from the intended orientation direction.
  • Patent Document 7 discloses a single, plate-shaped, fan-shaped permanent magnet having a configuration in which magnet material particles are oriented in different directions in a plurality of regions.
  • a plurality of regions are formed in the permanent magnet, and in one region, the magnet material particles are oriented in a pattern parallel to the thickness direction, and in other regions adjacent thereto, the magnet material particles are An orientation having an angle with respect to the orientation direction of the magnet material particles in the one region is given.
  • a permanent magnet having such orientation of magnet material particles adopts a powder metallurgy method and applies a magnetic field in an appropriate direction from an orientation member when pressure molding is performed in a mold. It is described that it can be manufactured.
  • Patent Document 7 the permanent magnet manufacturing method described in Patent Document 7 can only be applied to the manufacture of a magnet having a specific orientation, and the shape of the magnet to be manufactured is limited. Further, this Patent Document 7 does not describe anything about how much the orientation imparted to the individual magnetic material particles is deviated from the intended orientation direction.
  • Patent Document 8 describes a mixture of a magnet material particle containing a rare earth element and a binder into a predetermined shape, and a parallel magnetic field is applied to the molded body to form a magnet material particle.
  • a method for producing a permanent magnet is described in which the orientation of the magnet material particles is made non-parallel by causing the orientation to be parallel to each other and deforming the shaped body into another shape.
  • the magnet disclosed in Patent Document 8 is a so-called bonded magnet having a configuration in which magnet material particles are bonded by a resin composition, and is not a sintered magnet. Since the bond magnet has a structure in which the resin composition is interposed between the magnet material particles, the bonded magnet has inferior magnetic properties as compared with the sintered magnet, and a high-performance magnet cannot be formed.
  • Patent Document 9 forms a mixture in which magnet material particles containing rare earth elements are mixed with a resin binder, and the mixture is formed into a sheet to create a green sheet.
  • Magnetic field orientation is performed by applying a magnetic field to the sheet, and a green binder that has been magnetically oriented is subjected to a calcination treatment to decompose and disperse the resin binder, and then sintered at a firing temperature to produce a rare earth sintered magnet.
  • a method of forming is disclosed.
  • the magnet manufactured by the method described in Patent Document 9 has a configuration in which the easy axis of magnetization is oriented in one direction, and this method is used in a single sintered magnet and in a plurality of arbitrary regions. It is not possible to manufacture magnets in which different orientations are given to magnetic material particles. In addition, this Patent Document 9 does not describe anything about the degree of deviation of the orientation imparted to individual magnet material particles from the intended orientation direction.
  • the main object of the present invention is to maintain the deviation of the orientation angle of the easy axis of each magnet material particle within the predetermined range with respect to the orientation axis angle of the magnet material particle in an arbitrary minute section in the magnet cross section.
  • An object of the present invention is to provide a sintered body for forming a rare earth magnet and a rare earth sintered magnet.
  • the present invention provides a rare-earth sintered magnet having a novel high-precision orientation that has not existed before and a sintered body for forming such a magnet.
  • a sintered body for forming a rare earth magnet having a configuration in which a large number of magnet material particles each including a rare earth material and each having an easy magnetization axis are integrally sintered.
  • the sintered body for forming a rare earth magnet has a length dimension in the length direction and a thickness dimension in the thickness direction between the first surface and the second surface in a cross section in the transverse direction perpendicular to the length direction. And a three-dimensional shape having a width dimension in the width direction perpendicular to the thickness direction.
  • each of a plurality of magnet material particles in a quadrangular section at an arbitrary position in the plane including the thickness direction and the width direction is the most frequent.
  • the orientation angle variation angle determined based on the difference in orientation angle of each easy magnetization axis of the magnet material particles with respect to the orientation axis angle defined as the orientation angle is 9.0 ° or less.
  • the compartment is defined as a square compartment comprising 30 or more, for example 200 or 300, magnet material particles.
  • the quadrangular section is preferably a square. In another form, the section is defined as a square section with sides of 35 ⁇ m.
  • the average particle diameter of the magnet material particles is preferably 3 ⁇ m or less. Furthermore, in the said aspect of this invention, it is preferable that the difference of the orientation axis
  • a rare earth sintered magnet formed by magnetizing the sintered body for forming a rare earth magnet described above.
  • the sintered body for rare earth magnet formation of the present invention having the above configuration has a configuration in which a large number of magnet material particles are integrally sintered, for example, compared to the bonded magnet disclosed in Patent Document 8
  • the density of the magnet material particles is significantly increased.
  • the rare earth sintered magnet obtained by magnetizing the sintered body for forming a rare earth magnet exhibits excellent magnet performance that is not comparable to a bonded magnet.
  • the sintered body is defined as a quadrangular section including 30 or more, for example, 200 or 300 magnet material particles, or a plurality of particles in an arbitrary quadrangular section defined as a square section having a side of 35 ⁇ m.
  • the orientation angle variation angle of the easy magnetization axis of the magnet material particles of the magnet material particles is set to a high-precision orientation within a small range of 9.0 °, the rare earth obtained by magnetizing the sintered body Sintered magnets exhibit superior magnet performance compared to conventional rare earth sintered magnets.
  • the display of the distribution of orientation angles based on EBSD analysis is shown, and an example of a pole figure obtained by EBSD analysis at the center and both ends of the magnet is shown.
  • the display of the distribution of the orientation angle based on EBSD analysis is shown, Comprising: The orientation axis angle in the cross section of the magnet in alignment with A2 axis
  • FIG. 6 is an end view of a rotor portion showing a state in which a permanent magnet is embedded in the rotor core shown in FIG. 5. It is a cross-sectional view of an electric motor to which the permanent magnet of the present invention can be applied. It is a figure which shows distribution of the magnetic flux density in the rare earth permanent magnet formed from the sintered compact by embodiment shown in FIG.
  • FIG. 1 It is the schematic which shows the manufacturing process of the sintered compact for permanent magnet formation shown in FIG. 1 which is one Embodiment of this invention, and shows each step until green sheet formation. It is the schematic which shows the manufacturing process of the sintered compact for permanent magnet formation shown in FIG. 1 which is one Embodiment of this invention, and shows each step until green sheet formation. It is the schematic which shows the manufacturing process of the sintered compact for permanent magnet formation shown in FIG. 1 which is one Embodiment of this invention, and shows each step until green sheet formation. It is the schematic which shows the manufacturing process of the sintered compact for permanent magnet formation shown in FIG. 1 which is one Embodiment of this invention, and shows each step until green sheet formation.
  • the orientation angle means an angle in the direction of the easy axis of the magnet material particles with respect to a predetermined reference line. (Orientation axis angle)
  • the section for determining the orientation axis angle is a square section including 30 or more magnet material particles or a square section having a side of 35 ⁇ m.
  • FIG. 1 shows the orientation angle and orientation axis angle.
  • FIG. 1 (a) is a cross-sectional view showing an example of the orientation of the easy axis of magnet material particles in a rare earth magnet.
  • the rare earth magnet M includes a first surface S-1 and a first surface S. -1 to a second surface S-2 that is spaced by a thickness t, and a width W. End faces E-1 and E-2 are formed at both ends in the width W direction. Yes.
  • the first surface S-1 and the second surface S-2 are flat surfaces parallel to each other.
  • the first surface S-1 and the second surface S are shown.
  • -2 is represented by two straight lines parallel to each other.
  • the end surface E-1 is an inclined surface inclined in the upper right direction with respect to the first surface S-1, and similarly, the end surface E-2 is upper left with respect to the second surface S-2.
  • the inclined surface is inclined in the direction.
  • Arrow B-1 schematically shows the direction of the orientation axis of the easy axis of magnetization of the magnet material particles in the central region in the width direction of the rare earth magnet M.
  • the arrow B-2 schematically shows the direction of the orientation axis of the easy magnetization axis of the magnetic material particles in the region adjacent to the end face E-1.
  • an arrow B-3 schematically shows the direction of the orientation axis of the easy axis of magnetization of the magnetic material particles in the region adjacent to the end face E-2.
  • FIG. 1B is a schematic enlarged view showing a procedure for determining the “orientation angle” and the “orientation axis angle” of the easy magnetization axis of each magnetic material particle.
  • An arbitrary portion of the rare-earth magnet M shown in FIG. 1A, for example, the quadrangular section R shown in FIG. 1A is enlarged and shown in FIG.
  • the quadrangular section R includes a large number of magnet material particles P such as 30 or more, for example, 200 to 300. As the number of magnet material particles included in the quadrangular section increases, the measurement accuracy increases, but even about 30 particles can be measured with sufficient accuracy.
  • Each magnet material particle P has an easy axis P-1.
  • the easy magnetization axis P-1 usually has no directionality, but becomes a vector having directionality by magnetizing magnetic material particles. In FIG. 1 (b), in consideration of the polarity to be magnetized, an easy magnetization axis is indicated by an arrow.
  • the easy magnetization axis P-1 of each magnetic material particle P has an “orientation angle” that is an angle between a direction in which the easy magnetization axis is directed and a reference line. Then, among the “orientation angles” of the easy magnetization axis P-1 of the magnet material particles P in the quadrangular section R shown in FIG. To do. (Orientation angle variation angle)
  • FIG. 2 is a chart showing a procedure for obtaining the orientation angle variation angle.
  • the distribution of the difference ⁇ in the orientation angle of the easy magnetization axes of the individual magnetic material particles with respect to the easy magnetization axis is represented by a curve C.
  • the position at which the cumulative frequency shown on the vertical axis is maximum is 100%, and the value of the orientation angle difference ⁇ at which the cumulative frequency is 50% is the half width.
  • the orientation angle of the easy magnetization axis P-1 in each magnetic material particle P can be obtained by an “electron backscattering diffraction analysis method” (EBSD analysis method) based on a scanning electron microscope (SEM) image.
  • EBSD analysis method based on a scanning electron microscope (SEM) image.
  • SEM scanning electron microscope
  • EBSD detection method AZtecHKL EBSD Nordlys Nano Integrated
  • JSM-70001F manufactured by JEOL Ltd.
  • EDAX a scanning electron microscope equipped with an EBSD detector manufactured by Oxford Instruments, JSM-70001F manufactured by JEOL Ltd., located in Akishima City, Tokyo, or EDAX.
  • SUPER40VP manufactured by ZEISS which is a scanning electron microscope equipped with an EBSD detector manufactured by KK (Hikari High Speed EBSD Detector).
  • FIG. 3 shows an example of orientation display of the easy axis by the EBSD analysis method.
  • FIG. 3 (a) is a perspective view showing the direction of the rare earth magnet axis, and FIG. It shows an example of a pole figure obtained by EBSD analysis in the section.
  • FIG. 3 (a) is a perspective view showing the direction of the rare earth magnet axis, and FIG. It shows an example of a pole figure obtained by EBSD analysis in the section.
  • FIG. 3C shows the orientation axis angle in the cross section of the magnet along the A2 axis.
  • the orientation angle can be displayed by dividing the orientation vector of the easy magnetization axis of the magnetic material particle into a component in a plane including the A1 axis and the A2 axis and a component in a plane including the A1 axis and the A3 axis.
  • the A2 axis is the width direction
  • the A1 axis is the thickness direction.
  • the center diagram of FIG. 3B shows that the orientation of the easy magnetization axis is substantially in the direction along the A1 axis at the center in the width direction of the magnet.
  • FIG. 3B shows that the orientation of the easy magnetization axis at the left end in the width direction of the magnet is inclined from the bottom to the top right along the plane of the A1 axis-A2 axis. .
  • the diagram on the right side of FIG. 3B shows that the orientation of the easy axis at the right end in the width direction of the magnet is inclined from the bottom to the top left along the plane of the A1 axis-A2 axis.
  • Such an orientation is shown in FIG. 3C as an orientation vector. (Crystal orientation map)
  • FIG. 4 is a cross-sectional view showing a sintered body 1 for forming a rare earth magnet according to one embodiment of the present invention, and an upper side 2 sometimes called a second surface and a lower side 3 sometimes called a first surface. And a rectangular parallelepiped shape having a length in a direction perpendicular to the paper surface of the figure. That is, the upper side 2 and the lower side 3 extend in parallel with each other, and the distance between the upper side 2 and the lower side 3 is the thickness.
  • the direction along the upper side 2 and the lower side 3 is the width direction, and both end portions 4 and 5 define the width dimension.
  • the rare earth magnet-forming sintered body 1 contains an Nd—Fe—B based magnet material as the magnet material.
  • the Nd—Fe—B based magnet material contains 27 to 40 wt% of Nd, 0.8 to 2 wt% of B, and 60 to 75 wt% of Fe which is electrolytic iron.
  • This magnet material is used for the purpose of improving magnetic properties, such as Dy, Tb, Co, Cu, Al, Si, Ga, Nb, V, Pr, Mo, Zr, Ta, Ti, W, Ag, Bi, Zn, Mg, etc. Other elements may be included in small amounts.
  • the sintered body 1 for forming a rare earth magnet is obtained by integrally sintering the above-described fine particles of the magnet material, and magnet material oriented from the lower side 3 toward the upper side 2.
  • the particles have an orientation of the easy axis of magnetization, and the orientation of this easy axis is a parallel orientation, all parallel to each other.
  • the magnet-forming sintered body 1 is obtained by integrally sintering fine particles of the magnet material described above, and has an upper side 2 and a lower side 3 that are parallel to each other.
  • the end surfaces 4, 5 are formed as inclined surfaces that are inclined with respect to the upper side 2 and the lower side 3.
  • the upper side 2 is a side corresponding to the cross section of the second surface
  • the lower side 3 is a side corresponding to the cross section of the first surface.
  • the inclination angle of the end faces 4 and 5 is defined as an angle ⁇ between the extension lines 4 a and 5 a of the end faces 4 and 5 and the upper side 2.
  • the inclination angle ⁇ is 45 ° to 80 °, more preferably 55 ° to 80 °.
  • the magnet-forming sintered body 1 is formed in a shape having a trapezoidal width direction cross section in which the upper side 2 is shorter than the lower side 3.
  • the magnet-forming sintered body 1 has a plurality of regions divided into a center region 6 having a predetermined size and end regions 7 and 8 on both ends in the width direction along the upper side 2 and the lower side 3. .
  • the magnetic material particles included in the region 6 have a parallel orientation in which the easy axis of magnetization is substantially perpendicular to the upper side 2 and the lower side 3 and parallel to the thickness direction.
  • the magnetization easy axes of the magnetic material particles included in the regions 7 and 8 are directed from the bottom to the top with respect to the thickness direction, and the orientation direction is the center region 6.
  • the inclination angle is an angle along the inclination angle ⁇ of the end faces 4 and 5, and in the position adjacent to the central region 6, It is substantially perpendicular to the end surface 4 and gradually increases from the position adjacent to the end faces 4 and 5 toward the central region 6.
  • Such orientation of the easy axis is shown in FIG. 5A by the arrow 9 for the parallel orientation of the central region 6 and by the arrow 10 for the tilted orientation of the end regions 7 and 8.
  • the easy axis of magnetization of the magnetic material particles contained in these regions is directed from the corner where the upper side 2 and the end surfaces 4 and 5 intersect to the center.
  • the end regions 7 and 8 are oriented so as to converge in a predetermined range corresponding to the widthwise dimension.
  • the density of the magnet material particles whose easy axis is directed to the upper side 2 is higher than in the central region 6.
  • the ratio of the dimension in the width direction of the upper side 2 corresponding to the central region 6, that is, the ratio of the parallel length P to the dimension L in the width direction of the upper side 2, that is, the parallel ratio P / L is 0.
  • the dimensions of the central region 6 and the end regions 7 and 8 are determined so as to be 05 to 0.8, more preferably 0.2 to 0.5.
  • the orientation of the easy axis of the magnet material in the end regions 7 and 8 described above is exaggerated in FIG.
  • the easy axis C of each of the magnetic material particles is oriented so as to be inclined along the inclination angle ⁇ of the end face 4 substantially along the end face 4 in a portion adjacent to the end face 4. And this inclination angle increases gradually as it approaches a center part from an edge part. That is, the orientation of the easy axis C of the magnet material particles converges from the lower side 3 toward the upper side 2, and the density of the magnet material particles in which the easy axis C is directed to the upper side 2 is parallel orientation. It becomes higher than the case of.
  • FIG. 6 is an enlarged view of the rotor core portion of the electric motor 20 suitable for embedding and using the rare earth magnet formed by magnetizing the magnet-forming sintered body 1 having the orientation of the easy axis described above. It is sectional drawing shown.
  • the rotor core 21 is rotatably arranged in the stator 23 so that the peripheral surface 21a thereof faces the stator 23 through the air gap 22.
  • the stator 23 includes a plurality of teeth 23a arranged at intervals in the circumferential direction, and a field coil 23b is wound around the teeth 23a.
  • the air gap 22 described above is formed between the end face of each tooth 23 a and the peripheral face 21 a of the rotor core 21.
  • a magnet insertion slot 24 is formed in the rotor core 21.
  • the slot 24 includes a linear center portion 24a and a pair of inclined portions 24b extending obliquely from both ends of the center portion 24a in the direction of the peripheral surface 21a of the rotor core 21.
  • the inclined portion 24 b is located at the end portion of the inclined portion 24 b close to the peripheral surface 21 a of the rotor core 21.
  • FIG. 7 shows a state in which the rare earth magnet 30 formed by magnetizing the magnet-forming sintered body 1 having the orientation of the easy magnetization axis described above is inserted into the magnet insertion slot 24 of the rotor core 21 shown in FIG. .
  • the rare earth permanent magnet 30 is inserted into the linear central portion 24a of the slot 24 for magnet insertion formed in the rotor core 21 so that the upper side 2 thereof faces outward, that is, toward the stator 23 side. .
  • a part of the straight central portion 24a and the inclined portion 24b of the slot 24 are left as a gap.
  • the whole electric motor 20 formed by inserting a permanent magnet into the slot 24 of the rotor core 21 is shown in a cross-sectional view in FIG.
  • FIG. 9 shows the distribution of magnetic flux density in the rare earth permanent magnet 30 formed by the above-described embodiment.
  • the magnetic flux density D in the side end regions 7 and 8 of the magnet 30 is higher than the magnetic flux density E in the central region 6. Therefore, when the magnet 30 is operated by being embedded in the rotor core 21 of the electric motor 20, demagnetization at the end of the magnet 30 is suppressed even if magnetic flux from the stator 23 acts on the end of the magnet 30. Thus, a sufficient magnetic flux remains after demagnetization, and the output of the motor 20 is prevented from decreasing.
  • FIG. 10 is a schematic diagram showing a manufacturing process of the sintered body 1 for forming permanent magnets according to the two embodiments described above.
  • a magnet material ingot made of a Nd—Fe—B alloy at a predetermined fraction is manufactured by a casting method.
  • an Nd—Fe—B alloy used in a neodymium magnet has a composition containing Nd of 30 wt%, preferably iron containing 67 wt% and B of 1.0 wt%.
  • this ingot is roughly pulverized to a size of about 200 ⁇ m using a known means such as a stamp mill or a crusher.
  • the ingot can be melted, flakes can be produced by strip casting, and coarsely pulverized by hydrogen cracking. Thereby, coarsely pulverized magnet material particles 115 are obtained (see FIG. 10A).
  • the coarsely pulverized magnet material particles 115 are finely pulverized by a wet method using a bead mill 116 or a dry method using a jet mill.
  • the coarsely pulverized magnet particles 115 are made to have a particle diameter within a predetermined range in a solvent, for example, 0.1 ⁇ m to 5.0 ⁇ m, and preferably the average particle diameter is 3 ⁇ m or less.
  • the magnetic material particles are dispersed in a solvent (see FIG. 10B). Thereafter, the magnet particles contained in the solvent after wet pulverization are dried by means such as vacuum drying, and the dried magnet particles are taken out (not shown).
  • the type of solvent used for grinding is not particularly limited, alcohols such as isopropyl alcohol, ethanol and methanol, esters such as ethyl acetate, lower hydrocarbons such as pentane and hexane, benzene, toluene, xylene and the like.
  • Organic solvents such as aromatics, ketones, and mixtures thereof, or inorganic solvents such as liquefied argon, liquefied nitrogen, and liquefied helium can be used. In this case, it is preferable to use a solvent containing no oxygen atom in the solvent.
  • the coarsely pulverized magnet material particles 115 are subjected to (a) nitrogen gas having an oxygen content of 0.5% or less, preferably substantially 0%, Ar gas, Jet mill in an atmosphere composed of an inert gas such as He gas, or (b) an atmosphere composed of an inert gas such as nitrogen gas, Ar gas or He gas having an oxygen content of 0.0001 to 0.5%
  • the oxygen concentration being substantially 0% is not limited to the case where the oxygen concentration is completely 0%, but contains oxygen in such an amount as to form an oxide film very slightly on the surface of the fine powder. Means that it may be.
  • the magnet material particles finely pulverized by the bead mill 116 or the like are formed into a desired shape.
  • a mixture obtained by mixing the finely pulverized magnet material particles 115 and the binder made of the resin material as described above, that is, a composite material is prepared.
  • the resin used as the binder is preferably a depolymerizable polymer that does not contain an oxygen atom in the structure.
  • the composite material of the magnet particles and the binder can be reused for the remainder of the composite material generated when the composite material is formed into a desired shape, and the composite material is heated and softened. It is preferable to use a thermoplastic resin as the resin material so that the magnetic field orientation can be performed.
  • a polymer composed of one or two or more polymers or copolymers formed from the monomer represented by the following general formula (1) is preferably used.
  • R 1 and R 2 represent a hydrogen atom, a lower alkyl group, a phenyl group or a vinyl group.
  • polystyrene resin examples include polyisobutylene (PIB), which is a polymer of isobutylene, polyisoprene (isoprene rubber, IR), which is a polymer of isoprene, and polybutadiene (butadiene) that is a polymer of 1,3-butadiene.
  • PIB polyisobutylene
  • IR polyisoprene rubber
  • IR isoprene rubber
  • IR isoprene rubber
  • butadiene butadiene
  • Rubber, BR polystyrene as a polymer of styrene, styrene-isoprene block copolymer (SIS) as a copolymer of styrene and isoprene, butyl rubber (IIR) as a copolymer of isobutylene and isoprene, styrene and butadiene Styrene-butadiene block copolymer (SBS), a copolymer of styrene, ethylene, styrene-ethylene-butadiene-styrene copolymer (SEBS), a copolymer of styrene, ethylene, and propylene Styrene-ethylene as a coalescence -Propylene-styrene copolymer (SEPS), ethylene-propylene copolymer (EPM), which is a copolymer of ethylene and propylene, EPDM obtained by copoly
  • the resin used for the binder may include a small amount of a polymer or copolymer of a monomer containing an oxygen atom or a nitrogen atom (for example, polybutyl methacrylate, polymethyl methacrylate, etc.). Furthermore, a monomer that does not correspond to the general formula (1) may be partially copolymerized. Even in that case, the object of the present invention can be achieved.
  • thermoplastic resin that softens at 250 ° C. or lower in order to appropriately perform magnetic field orientation, more specifically, a thermoplastic resin having a glass transition point or a flow start temperature of 250 ° C. or lower is used. It is desirable.
  • Dispersants include alcohols, carboxylic acids, ketones, ethers, esters, amines, imines, imides, amides, cyan, phosphorus functional groups, sulfonic acids, compounds having unsaturated bonds such as double bonds and triple bonds, and It is desirable to add at least one of the liquid saturated hydrocarbon compounds. A mixture of a plurality of these substances may be used.
  • the mixture is heated so that the binder component is softened and magnetic field orientation is performed.
  • the amount of carbon remaining in the sintered body for magnet formation after sintering can be 2000 ppm or less, more preferably 1000 ppm or less.
  • the amount of oxygen remaining in the sintered body for magnet formation after sintering can be 5000 ppm or less, more preferably 2000 ppm or less.
  • the amount of the binder added is an amount that can appropriately fill the gaps between the magnetic material particles so as to improve the thickness accuracy of the molded product obtained as a result of molding when molding a slurry or a heat-melted composite material.
  • the ratio of the binder to the total amount of the magnet material particles and the binder is 1 wt% to 40 wt%, more preferably 2 wt% to 30 wt%, and even more preferably 3 wt% to 20 wt%.
  • the magnetic material particles are oriented in the magnetic field by applying a parallel magnetic field in the form of a molded body once formed into a shape other than the product shape.
  • the molded body is further formed into a desired product shape and then subjected to a sintering treatment, whereby, for example, a sintered magnet having a desired product shape such as a trapezoidal shape shown in FIG. To do.
  • a mixture of magnetic material particles and a binder that is, a composite material 117 is once molded into a sheet-shaped green molded body (hereinafter referred to as “green sheet”), and then molded for orientation treatment.
  • green sheet sheet-shaped green molded body
  • the composite material is particularly formed into a sheet shape, for example, by heating the composite material 117 that is a mixture of magnet material particles and a binder and then forming into a sheet shape, or by combining the magnet material particles and the binder Slurry formed into a sheet by applying a composite material 117, which is a mixture, into a mold and heating and pressing, or by applying a slurry containing magnetic material particles, a binder, and an organic solvent on a substrate Molding by coating or the like can be employed.
  • molding may be performed by placing the composite material 117 in a molding die and pressurizing at a pressure of 0.1 to 100 MPa while heating to room temperature to 300 ° C.
  • a method can be used in which the composite material 117 heated to a softening temperature is pressed and filled into a mold by applying an injection pressure.
  • a binder As already described, by mixing a binder with magnetic material particles finely pulverized by a bead mill 116 or the like, a clay-like mixture composed of magnet material particles and a binder, that is, a composite material 117 is produced.
  • a binder a mixture of a resin and a dispersant can be used as described above.
  • the resin material it is preferable to use a thermoplastic resin that does not contain an oxygen atom in the structure and is made of a depolymerizable polymer.
  • the dispersant alcohol, carboxylic acid, ketone, ether
  • the amount of the binder added is such that the ratio of the binder to the total amount of the magnetic material particles and the binder in the composite material 117 after the addition is 1 wt% to 40 wt%, more preferably 2 wt% to 30 wt%. Is 3 wt% to 20 wt%.
  • the addition amount of the dispersant is preferably determined according to the particle diameter of the magnet material particles, and it is recommended that the addition amount be increased as the particle diameter of the magnet material particles is smaller.
  • the specific amount of addition is 0.1 to 10 parts by weight, more preferably 0.3 to 8 parts by weight with respect to 100 parts by weight of the magnet material particles.
  • the addition amount is small, the dispersion effect is small and the orientation may be lowered.
  • there is too much addition amount there exists a possibility of contaminating a magnet material particle.
  • the dispersing agent added to the magnet material particles adheres to the surface of the magnet material particles, disperses the magnet material particles to give a clay-like mixture, and assists the rotation of the magnet material particles in the orientation process in the magnetic field described later.
  • orientation is easily performed when a magnetic field is applied, and the easy magnetization axis directions of the magnet particles can be aligned in substantially the same direction, that is, the degree of orientation can be increased.
  • the binder is present on the particle surface, so that the frictional force during the magnetic field orientation treatment is increased, which may reduce the orientation of the particles. The effect of adding further increases.
  • the mixing of the magnet material particles and the binder is preferably performed in an atmosphere made of an inert gas such as nitrogen gas, Ar gas, or He gas.
  • the mixing of the magnet material particles and the binder is performed, for example, by putting the magnet material particles and the binder into a stirrer and stirring with the stirrer. In this case, heating and stirring may be performed to promote kneading properties.
  • the binder is added to the solvent and kneaded without taking out the magnet particles from the solvent used for pulverization, and then the solvent is volatilized. May be obtained.
  • the green sheet described above is created by forming the composite material 117 into a sheet shape.
  • the composite material 117 is heated to melt the composite material 117 so as to have fluidity, and then applied onto the support substrate 118. Thereafter, the composite material 117 is solidified by heat radiation, and a long sheet-like green sheet 119 is formed on the support base 118 (see FIG. 10D).
  • the temperature at which the composite material 117 is heated and melted varies depending on the type and amount of the binder used, but is usually 50 ° C. to 300 ° C. However, the temperature needs to be higher than the flow start temperature of the binder to be used.
  • the slurry When slurry coating is used, the slurry is coated on the support substrate 118 by dispersing magnet material particles, a binder, and optionally, an additive that promotes orientation in a large amount of solvent. To do. Thereafter, the long sheet-like green sheet 119 is formed on the support substrate 118 by drying and volatilizing the solvent.
  • the die method and the comma coating method are particularly excellent in layer thickness controllability, that is, a method capable of applying a high-accuracy thickness layer to the surface of the substrate.
  • the composite material 117 heated and fluidized is pumped by a gear pump, injected into the die, and discharged from the die for coating.
  • the composite material 117 is fed into the nip gap between two heated rolls in a controlled amount, and the composite material 117 melted by the heat of the roll on the support substrate 118 while rotating the roll.
  • a silicone-treated polyester film is preferably used as the support substrate 118.
  • the composite material 117 melted by extrusion molding or injection molding is extruded on the support substrate 118 while being molded into a sheet shape, thereby forming a green on the support substrate 118.
  • the sheet 119 can also be formed.
  • the composite material 117 is applied using a slot die 120.
  • the sheet thickness of the green sheet 119 after coating is measured, and the nip between the slot die 120 and the support substrate 118 is controlled by feedback control based on the measured value. It is desirable to adjust the gap. In this case, it is possible to reduce the fluctuation of the amount of the fluid composite material 117 supplied to the slot die 120 as much as possible, for example, to suppress the fluctuation to ⁇ 0.1% or less, and also to reduce the fluctuation of the coating speed as much as possible. For example, it is desirable to suppress fluctuations of ⁇ 0.1% or less. By such control, it is possible to improve the thickness accuracy of the green sheet 119.
  • the thickness accuracy of the formed green sheet 119 is preferably within ⁇ 10%, more preferably within ⁇ 3%, and even more preferably within ⁇ 1% with respect to a design value such as 1 mm.
  • the film thickness of the composite material 117 transferred to the support base material 118 can be controlled by feedback control of the calendar conditions based on actually measured values.
  • the thickness of the green sheet 119 is preferably set in the range of 0.05 mm to 20 mm. If the thickness is less than 0.05 mm, it is necessary to carry out multilayer lamination in order to achieve the necessary magnet thickness, so that productivity is lowered.
  • a processing sheet piece 123 cut out to a size corresponding to a desired magnet size is created from the green sheet 119 formed on the support base material 118 by the hot melt coating described above.
  • the processing sheet piece 123 corresponds to a desired magnet shape in the embodiment shown in FIG. 4, but corresponds to the first molded body in the case of the embodiment shown in FIGS.
  • the shape is different from the desired magnet shape. More specifically, in the embodiment shown in FIGS. 5 to 8, the processing sheet piece 123 that is the first molded body is applied with a parallel magnetic field to the processing sheet piece 123, and the processing sheet piece 123.
  • the magnet material particles included in the magnet are oriented so that the easy axes of magnetization are parallel, and then the processing sheet piece 123 is deformed to have a desired magnet shape. It is formed into a shape that can obtain the easy axis orientation.
  • the processing sheet piece cut out from the green sheet 119 has a rectangular shape shown in FIG. 4, and the actual size cut out is expected to reduce the size in the sintering process described later. It is determined so that a predetermined magnet size is obtained after the sintering process.
  • the processing sheet piece 123 as the first molded body has a trapezoidal cross-section rare earth permanent as a final product as shown in FIG.
  • the magnet-forming sintered body 1 has a cross-sectional shape having a linear region 6a having a length in the width direction corresponding to the central region 6 and arc-shaped regions 7a and 8a continuous at both ends of the linear region 6a.
  • the processing sheet piece 123 has a length dimension in a direction perpendicular to the paper surface of the drawing, and the cross-sectional dimension and the width dimension are predetermined after the sintering process in anticipation of the dimension reduction in the sintering process described later. It is determined so that the magnet dimensions can be obtained.
  • a parallel external magnetic field is applied to the processing sheet piece cut out from the green sheet 119 from the outside of the lower side 3 in a direction perpendicular to the lower side 3.
  • the parallel external magnetic field By applying the parallel external magnetic field, the easy axis of magnetization of the magnetic material particles existing in the processing sheet piece is oriented in a direction perpendicular to the lower side 3 as indicated by an arrow 9 in FIG. This orientation is a parallel orientation.
  • a parallel magnetic field 121 is also applied to the processing sheet piece 123 shown in FIG. 11A in a direction perpendicular to the surface of the linear region 6a.
  • this magnetic field By applying this magnetic field, the easy axis of magnetization of the magnetic material particles contained in the processing sheet piece 123 is oriented in the direction of the magnetic field, that is, parallel to the thickness direction, as indicated by an arrow 122 in FIG.
  • the processing sheet piece is in a magnetic field application mold having a cavity having a shape corresponding to the processing sheet piece.
  • the binder contained in the processing sheet piece is softened by heating (not shown). Thereby, the magnetic material particles can be rotated in the binder, and the easy axis of magnetization can be oriented with high accuracy in the direction along the parallel magnetic field 121.
  • the temperature and time for heating the processing sheet piece vary depending on the type and amount of the binder used, but for example, 40 to 250 ° C. and 0.1 to 60 minutes. In any case, in order to soften the binder in the processing sheet piece, the heating temperature needs to be higher than the glass transition point or the flow start temperature of the binder used.
  • a means for heating the processing sheet piece for example, there is a system using a hot plate or a heat medium such as silicone oil as a heat source.
  • the strength of the magnetic field in the magnetic field application can be 5000 [Oe] to 150,000 [Oe], preferably 10,000 [Oe] to 120,000 [Oe].
  • the magnetization easy axis of the crystal of the magnet material particles included in the processing sheet piece is along the parallel magnetic field 121 as indicated by reference numeral 9 in FIG. 4 or as indicated by reference numeral 122 in FIG. Oriented in parallel with each other.
  • a configuration in which a magnetic field is simultaneously applied to a plurality of processing sheet pieces may be employed.
  • a mold having a plurality of cavities may be used, or a plurality of molds may be arranged and the parallel magnetic field 121 may be applied simultaneously.
  • the step of applying a magnetic field to the processing sheet piece may be performed simultaneously with the heating step, or after the heating step and before the binder in the processing sheet piece is solidified.
  • the processing sheet piece in which the external magnetic field is applied and the magnetization easy axes of the magnet material particles are aligned in parallel is directly sent to the calcining process and the sintering process described later. It is done.
  • the processing sheet in which the easy axis of magnetization of the magnet material particles is parallel-aligned as indicated by the arrow 122 by the magnetic field application step shown in FIG. The piece 123 is taken out of the magnetic field application mold and transferred into a final molding mold 126 having a trapezoidal cavity 124 having an elongated longitudinal dimension shown in FIGS.
  • the processing sheet piece 123 is pressed in the cavity 124 by the male mold 127 having a mold shape, and the arc-shaped regions 7a and 8a at both ends of the processing sheet piece 123 are linearly connected to the central linear region 6a. Thus, it is deformed and formed into a sheet piece for sintering treatment 125 shown in FIG. This sintering treatment sheet piece 125 corresponds to the second molded body.
  • the processing sheet piece 123 has a shape in which the arc-shaped regions 7a and 8a at both ends are linearly continuous with respect to the central linear region 6a, and at the same time, inclined surfaces 125a, 125b is formed to form an elongated trapezoidal shape.
  • the easy axis of magnetization of the magnetic material particles contained in the central linear region 6a is maintained in a parallel alignment state aligned parallel to the thickness direction.
  • the upwardly convex shape is transformed into a linear shape that continues to the central linear region. As a result, as shown in FIG. The orientation converges on the upper side in the corresponding region.
  • the sintered sheet piece 125 after the orientation in which the easy axis of magnetization of the magnetic material particles is oriented is sent to the calcination step.
  • the sheet pieces to be subjected to the calcining process and the sintering process, including the processing method sheet pieces sent to the calcining process through the magnetic field orientation process This is referred to as a sheet piece for binding process 125 ”.
  • a sheet piece for binding process 125 In any of the embodiment shown in FIG. 4 and the embodiment shown in FIGS.
  • the calcination treatment in the calcination step is performed at atmospheric pressure or a pressure higher or lower than atmospheric pressure, for example, 0.1 MPa to In a non-oxidizing atmosphere adjusted to 70 MPa, preferably 1.0 Pa to 1.0 MPa, the calcination treatment is performed by maintaining the binder decomposition temperature for several hours to several tens of hours, for example, 5 hours. In this treatment, it is recommended to use a hydrogen atmosphere or a mixed gas atmosphere of hydrogen and an inert gas.
  • the supply amount of hydrogen during the calcination is, for example, 5 L / min.
  • the organic compound contained in the binder can be decomposed into monomers by a depolymerization reaction or other reaction, and scattered to be removed. That is, a decarbonization process, which is a process of reducing the amount of carbon remaining in the sintering process sheet piece 125, is performed. Further, the calcination treatment is desirably performed under the condition that the amount of carbon remaining in the sintering treatment sheet piece 125 is 2000 ppm or less, more preferably 1000 ppm or less. As a result, it is possible to finely sinter the entire sheet piece for sintering 125 in the subsequent sintering process, and it is possible to suppress a decrease in residual magnetic flux density and coercive force.
  • a pressure when making pressurization conditions at the time of performing the calcination process mentioned above into a pressure higher than atmospheric pressure, it is desirable that a pressure shall be 15 Mpa or less.
  • the pressurizing condition is a pressure higher than the atmospheric pressure, more specifically 0.2 MPa or more, the effect of reducing the residual carbon amount can be expected.
  • the binder decomposition temperature varies depending on the type of binder, but the temperature of the calcining treatment may be 200 ° C. to 900 ° C., more preferably 300 ° C. to 500 ° C., for example 450 ° C.
  • a preferable result can be obtained by setting the temperature rising rate to 2 ° C./min or less, for example, 1.5 ° C./min. Therefore, when performing the calcination treatment, as shown in FIG. 12, the temperature is increased at a predetermined temperature increase rate of 2 ° C./min or less, and after reaching a preset temperature, that is, a binder decomposition temperature, The calcination treatment is performed by maintaining the set temperature for several hours to several tens of hours.
  • the carbon in the sheet piece for sintering process 125 is not removed abruptly and is removed stepwise. It is possible to increase the density of the sintered body for forming a permanent magnet after sintering by reducing the remaining carbon to the level. That is, by reducing the amount of residual carbon, the voids in the permanent magnet can be reduced. As described above, if the rate of temperature rise is about 2 ° C./min, the density of the sintered body for forming a permanent magnet after sintering can be 98% or more, for example, 7.40 g / cm 3 or more. It can be expected to achieve high magnet characteristics in the magnet after magnetizing.
  • the sintering process which sinters the sheet piece 125 for sintering processes calcined by the calcining process is performed.
  • a pressureless sintering method in a vacuum can be adopted.
  • the sheet piece for sintering process 125 is perpendicular to the paper surface of FIG. 4 or FIG. It is preferable to employ a uniaxial pressure sintering method in which sintering is performed in a state of being uniaxially pressed in the length direction of the sheet piece for sintering treatment 125 that is the direction of. In this method, in the case of the embodiment shown in FIG.
  • each of the sintering treatment sheet pieces 125 is loaded into a sintering mold (not shown) having a cavity having the same trapezoidal cross section as that indicated by reference numeral “124” in FIG. 11B, and the mold is closed. Then, sintering is performed while pressing in the length direction of the sheet piece 125 for sintering treatment which is a direction perpendicular to the paper surface of FIG. 4 or FIG.
  • the embodiment shown in FIGS. 5 to 9 will be described in detail.
  • Uniaxial pressure sintering is used in which the sintering sheet piece 125 is sintered in a state in which it is pressed in the length direction in the same direction as the axial direction of 21.
  • the pressure sintering technique include hot press sintering, hot isostatic pressing (HIP) sintering, ultrahigh pressure synthetic sintering, gas pressure sintering, and discharge plasma (SPS).
  • HIP hot isostatic pressing
  • SPS discharge plasma
  • the pressurizing pressure is, for example, 0.01 MPa to 100 MPa, and a vacuum atmosphere of several Pa or less is 900 ° C. to 1000 ° C., for example up to 940 ° C., 3 ° C./min. It is preferable to raise the temperature at a temperature increase rate of ⁇ 30 ° C./min, for example 10 ° C./min, and then hold until the rate of change per 10 seconds in the pressurizing direction becomes zero. This holding time is usually about 5 minutes. Next, it is cooled and heated again to 300 ° C. to 1000 ° C., and a heat treatment is performed for 2 hours.
  • the sintered body 1 for forming a rare earth permanent magnet of the present invention is manufactured from the sheet piece 125 for sintering treatment.
  • the magnet material particles in the sintering process sheet piece 125 are given. It is possible to suppress disorder in the orientation of the easy magnetization axis.
  • the resin material in the sintering treatment sheet piece 125 is evaporated, and the residual resin amount is very small if any.
  • the magnet material particles in a state where the resin is evaporated are sintered together to form a sintered body.
  • the sintering process melts the rare earth-rich phase having a high rare earth concentration in the magnet material particles, filling the voids existing between the magnet material particles, and R2Fe14B composition (R is a rare earth element containing yttrium). ) And a dense sintered body composed of a rare earth-rich phase.
  • the rare earth permanent magnet forming sintered body 1 is inserted into the magnet insertion slot 24 of the rotor core 21 shown in FIG. 2 in an unmagnetized state. Thereafter, the rare earth permanent magnet forming sintered body 1 inserted into the slot 24 is magnetized along the easy magnetization axis of the magnetic material particles contained therein, that is, the C axis. Specifically, with respect to the plurality of rare earth permanent magnet forming sintered bodies 1 inserted into the plurality of slots 24 of the rotor core 21, N poles and S poles are alternately arranged along the circumferential direction of the rotor core 21. Magnetize so that it is placed. As a result, the permanent magnet 1 can be manufactured.
  • the rare earth permanent magnet-forming sintered body 1 For the magnetization of the rare earth permanent magnet-forming sintered body 1, any known means such as a magnetizing coil, a magnetizing yoke, a condenser magnetizing power supply device, etc. may be used. Alternatively, the rare earth permanent magnet forming sintered body 1 may be magnetized before being inserted into the slot 24 to form a rare earth permanent magnet, and the magnetized magnet may be inserted into the slot 24.
  • a composite material which is a mixture of magnet material particles and a binder, is formed and processed while being heated to a temperature exceeding the softening point of the composite material.
  • a parallel magnetic field to the sheet piece from the outside, it becomes possible to orient the easy magnetization axis in a desired direction with high accuracy. For this reason, the variation in the orientation direction can be prevented, and the performance of the magnet can be enhanced.
  • the mixture with the binder is formed, the degree of orientation can be further improved without rotation of the magnet particles after orientation, as compared with the case of using compacting or the like.
  • the method of performing orientation by applying a magnetic field to a composite material that is a mixture of magnetic material particles and a binder it is possible to appropriately increase the number of windings through which current for magnetic field formation passes. Since a large magnetic field strength can be ensured during orientation and a magnetic field can be applied for a long time with a static magnetic field, it is possible to realize a high degree of orientation with little variation. If the orientation direction is corrected after orientation as in the embodiment shown in FIG. 9 without FIG. 5, it is possible to ensure orientation with high orientation and little variation.
  • the realization of a high degree of orientation with little variation leads to a reduction in variation in shrinkage due to sintering. Therefore, the uniformity of the product shape after sintering can be ensured. As a result, it can be expected that the burden on the external processing after sintering is reduced and the stability of mass production is greatly improved.
  • a magnetic field is applied to the composite material that is a mixture of magnet particles and a binder, and in the case of the embodiment shown in FIGS. Magnetic field orientation is performed by manipulating the direction of the easy magnetization axis by deforming into a final shaped body.
  • Example 1 a sintered body for forming a rare earth magnet having the shape shown in FIG. 4 was prepared according to the procedure described below. ⁇ Coarse grinding>
  • Alloy composition A (Nd: 27.00 wt%, Pr: 4.60 wt%, B: 1.00 wt%, Ga: 0.10 wt%, Nb: 0.2 wt%, Co: 2 obtained by the strip casting method 0.0 wt%, Cu: 0.10 wt%, the balance including Fe, and other inevitable impurities) were occluded with hydrogen at room temperature and held at 0.85 MPa for 1 day. Then, hydrogen crushing was performed by holding at 0.2 MPa for 1 day while cooling with liquefied Ar. ⁇ Fine grinding>
  • methyl caproate 1 part by weight of methyl caproate was mixed with 100 parts by weight of coarsely pulverized alloy coarse powder, and then pulverized by a helium jet mill pulverizer (device name: PJM-80HE, manufactured by NPK).
  • the pulverized alloy particles were collected and separated by a cyclone method, and the ultrafine powder was removed.
  • the supply rate during pulverization was 1 kg / h
  • the introduction pressure of He gas was 0.6 MPa
  • the flow rate was 1.3 m 3 / min
  • the oxygen concentration was 1 ppm or less
  • the dew point was ⁇ 75 ° C. or less.
  • the average particle diameter of the obtained magnet material particles was 1.1 ⁇ m. ⁇ Kneading>
  • the composite material after the orientation treatment was subjected to decarbonization treatment under a hydrogen pressure atmosphere of 0.8 Mpa.
  • the temperature was raised from room temperature to 480 ° C. at a temperature raising rate of 0.95 ° C./min, and kept at 480 ° C. for 2 hours.
  • the hydrogen flow rate at this time was 2 to 3 L / min.
  • Example 2 described as having 1-octene treatment, 40 parts by weight of 1-octene was added to 100 parts by weight of the magnet material particles after jet milling and before mixing the magnet material particles with the binder composition. 1 part octene and its reaction product are removed by vacuum distillation after stirring for 1 hour at 60 ° C. with a mixer (equipment name: TX-0.5, manufactured by Inoue Seisakusho). Went. ⁇ Sintered particle size>
  • the sintered particle size of the obtained sintered body for forming a rare earth magnet was obtained by subjecting the surface of the sintered body to surface treatment by SiC paper polishing, buffing, and milling, and then an EBSD detector (AZtec HKL EBSD l Nordlys Nano Integrated, SEM (equipment name: JSM-7001F, manufactured by JEOL Ltd.) equipped with Oxford® Instruments or scanning electron microscope (SUPRA40VP manufactured by ZEISS) equipped with EBSD detector (Hikari High Speed EBSD Detector) manufactured by EDAX analyzed.
  • the viewing angle was set so that the number of particles was at least 200, and the step was 0.1 to 1 ⁇ m.
  • the orientation angle of the obtained sintered body was determined by measuring the surface of the sintered body by SiC paper polishing, buffing, and milling, and then an SBSD equipped with an EBSD detector (AZtec HKL EBSD Nordlys Nano Integrated, Oxford Instruments). (JSM-7001F, manufactured by JEOL) or a scanning electron microscope (SUPRA40VP manufactured by ZEISS) equipped with an EBSD detector manufactured by EDAX (Hikari High Speed EBSD Detector).
  • the EBSD analysis was performed at a viewing angle of 35 ⁇ m and a pitch of 0.2 ⁇ m. In order to improve the analysis accuracy, analysis was performed so that at least 30 sintered particles were included.
  • a pole figure as shown in FIG. 3B was created by EBSD analysis, and in the pole figure, the direction in which the C axis (001) faces most frequently was defined as the orientation vector at the analysis point.
  • a pole figure is created by correcting the orientation vector so that the orientation vector becomes the center of the pole figure (in the direction of 0 °) by an operation using analysis software Channel 5 (manufactured by Oxford Instruments), and then the C axis (001) from the 0 ° direction.
  • the deviation angle is calculated in units of pixels, the cumulative ratio obtained by integrating the frequency of the deviation angle from 90 ° to 0 ° is plotted on a graph, and the angle at which the cumulative ratio becomes 50% is expressed as “the orientation angle variation angle (half of ⁇ ). Price range) ”.
  • Non-Patent Document 1 As comparative examples, the characteristics of the rare earth magnet described in Non-Patent Document 1 (Comparative Examples 1 and 2) and the rare earth magnet described in JP 2001-210508 A (Patent Document 10) were examined. . The results are shown in Table 6. From Table 6, it was confirmed that the magnet described in Non-Patent Document 1 has a significant difference in magnetic characteristics even with the maximum magnetic energy product (BH) max in addition to the residual magnetic flux density Br. It can also be seen that the magnet described in claim 10 has a significant difference in magnetic properties at the maximum magnetic energy product (BH) max . Note that the residual magnetic flux density Br is not described in claim 10.
  • Examples 1 and 2 rare earth sintered magnets having a half-value width of ⁇ , which is an index of the orientation angle variation angle, on the order of 8 ° and a very small variation in orientation angle were obtained.
  • the residual magnetic flux density Br is improved, and (BH) max that is an index of energy that can be extracted from the magnet is also improved.
  • the rare earth sintered magnet described in Non-Patent Document 1 has Br of 1.43 T and (BH) max of 49.0 MGOe, and the magnet obtained by the present invention has been conventionally considered to have the highest performance. It has been confirmed that it has characteristics superior to those of magnets.
  • SYMBOLS 1 Sintered body for rare earth permanent magnet formation 2 ... Upper side 3 ... Lower side 4, 5 ... End surface 6 ... Central area

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

磁石断面内における任意の微小区画内における、磁石材料粒子配向軸角度に対する各磁石材料粒子の磁化容易軸の配向角のずれが所定範囲内に維持されるように構成された希土類磁石形成用焼結体及び希土類焼結磁石を提供する。希土類磁石形成用焼結体は、長さ方向の長さ寸法と、該長さ方向に直角な横方向の断面における、第1の表面と第2の表面との間の厚み方向の厚み寸法と、該厚み方向に対し直交する幅方向の幅寸法とをもった、立体形状を有する。厚み方向と幅方向とを含む面内の任意の位置にある4角形区画内における複数の磁石材料粒子のそれぞれの、予め設定された基準線に対する磁化容易軸の配向角のうち、最も頻度が高い配向角として定義される配向軸角度に対する、前期磁石材料粒子の各々の磁化容易軸の配向角の差に基づいて定められる配向角バラツキ角度が、9.0°以下である。一形態においては、該区画は、磁石材料粒子を30個以上、例えば200個或は300個含む4角形区画として定められる。4角形区画は、正方形であることが好ましい。他の形態においては、該区画は、一辺が35μmの正方形区画として定められる。

Description

希土類磁石形成用焼結体及び希土類焼結磁石
 本発明は、希土類焼結磁石を形成するための希土類磁石形成用焼結体及び該焼結体に着磁することにより得られる希土類焼結磁石に関する。特に本発明は、希土類物質を含み各々が磁化容易軸を有する多数の磁石材料粒子が一体に焼結された構成を有する希土類磁石形成用焼結体及び該焼結体に着磁することにより得られる希土類焼結磁石に関する。
 希土類焼結磁石は、高い保磁力及び残留磁束密度を期待できる高性能永久磁石として注目され、実用化されており、一層の高性能化のために開発が進んでいる。例えば、日本金属学会誌第76巻第1号(2012)12頁ないし16頁に掲載された宇根康裕他の「結晶微粒化によるNd-Fe-B焼結磁石の高保磁力化」と題する論文(非特許文献1)は、磁石材料の粒径を細かくしていくと保磁力が増大することは、よく知られている、との認識のもとに、Nd-Fe-B系焼結磁石の高保磁力化のために、平均粉末粒径が1μmの磁石形成用材料粒子を用いて希土類焼結磁石の製造を行う例が記載されている。この非特許文献1に記載された希土類焼結磁石の製造方法においては、磁石材料粒子と界面活性剤からなる潤滑剤を混合した混合物をカーボン製モールドに充填し、該モールドを空芯コイル内に固定してパルス磁界を印加することにより、磁石材料粒子を配向させることが記載されている。しかし、この方法では、磁石材料粒子の配向は、空芯コイルにより印加されるパルス磁界により一義的に定まるので、磁石内の異なる位置で、それぞれ異なる所望の方向に磁石材料粒子を配向させた永久磁石を得ることはできない。また、この非特許文献1においては、パルス磁界の印加により配向された磁石材料粒子の磁化容易軸が、意図される配向方向に対してどの程度ずれているのかという点、及びその配向角度ずれが磁石の性能にどのように影響するのかという点については、何も考察していない。
 特開平6-302417号公報(特許文献1)は、希土類元素RとFe及びBを基本構成元素とする希土類永久磁石の製造に際して、磁石材料粒子の磁化容易軸がそれぞれ異なる方向に配向した複数の磁石体を接合した状態で、高温加熱状態に保持し、磁石間を接着することにより、磁石材料粒子の磁化容易軸が異なる方向に配向した複数の領域を有する永久磁石を形成する方法が開示されている。この特許文献1に記載された永久磁石形成方法によれば、複数の領域のそれぞれにおいて、磁化容易軸が任意でかつ異なる方向に配向した磁石材料粒子を含む、複数の領域からなる希土類永久磁石を製造することが可能である。しかし、この特許文献1は、個々の磁石体における磁石材料粒子に付与される配向が、意図される配向方向に対してどの程度ずれているのか、という点については何も述べていない。
 特開2006-222131号公報(特許文献2)は、偶数個の永久磁石片を周方向に配置し、連結した円環状の希土類永久磁石の製造方法を開示する。この特許文献2において教示された希土類永久磁石の製造方法は、上下の扇形主面と一対の側面とを有する扇形の永久磁石片を形成するために、扇形のキャビティを有する粉末プレス装置を使用し、該扇形キャビティ内に希土類合金粉末を充填し、配向コイルを有する上下のパンチによって、該キャビティ内の希土類合金粉末に配向磁場を印加しながら、該希土類合金粉末をプレス成型するものである。この工程によって、各々の主面のN極とS極との間で極異方性を有する永久磁石片が形成される。詳細に述べると、一方の主面と一方の側面とが交わる角部から、他方の主面の方向に弧状に湾曲し、該一方の主面と他方の側面とが交わる角部に延びる方向に配向した磁化配向を有する永久磁石片が形成される。このようにして形成された極異方性永久磁石片の偶数個を、隣り合う永久磁石片の対向する極性となるように円環状に連結して、円環状永久磁石が得られる。
 特許文献2は又、円環状に連結される偶数個の扇状永久磁石片のうち、一つ置きに配置される磁石片の磁化方向を軸方向とし、これら軸方向配向となるように磁化された磁石片の間に配置される磁石片の磁化方向を径方向とした磁石片の配列も記載している。この配置では、一つ置きに配置される軸方向に磁化された磁石片の主面の極性が互いに異極となり、軸方向に磁化された磁石片の間に配置される一つ置きの径方向に磁化された磁石片は、同極が互いに対向するようにすることにより、軸方向に磁化された一方の磁石片の一方の主面の磁極に磁束を集中させ、該磁極からの磁束を、軸方向に磁化された他方の磁石片の一方の主面の磁極に効率よく集束させることができる、と説明されている。しかし、この特許文献2も、個々の磁石材料粒子に付与される配向が、意図される配向方向に対してどの程度ずれているのか、という点については何も述べていない。
 特開2015-32669号公報(特許文献3)及び特開平6-244046号公報(特許文献4)は、希土類元素RとFe及びBを含む磁石材料粉末をプレス成形して平板状の圧粉体を形成し、この圧粉体に平行磁場を印加して磁場配向を行い、焼結温度で焼結して焼結磁石を形成し、次いで、焼結温度を超えない温度条件のもとで、押圧部が円弧状の型を用いて該焼結磁石を円弧状に加圧成形することにより、ラジアル配向の希土類永久磁石を形成する方向を開示する。この特許文献3は、平行磁場を用いてラジアル配向の磁石を形成することができる方法を開示するものではあるが、平板形状から円弧状への曲げ成形が磁石材料の焼結後に行われるため、成形が困難であり、大きな変形又は複雑な形状への変形を行うことは、不可能である。したがって、この方法により製造できる磁石は、該特許文献4に記載されたラジアル配向磁石に限られることになる。さらに、この特許文献4も、個々の磁石材料粒子に付与される配向が、意図される配向方向に対してどの程度ずれているのか、という点については何も述べていない。
 特許第5444630号公報(特許文献5)は、埋込磁石型モータに使用される平板形状の永久磁石を開示する。この特許文献5に開示された永久磁石は、横断面内において、厚み方向に対する磁化容易軸の傾斜角度が、幅方向両端部から幅方向中央部に向けて連続的に変化するラジアル配向とされている。具体的に述べると、磁石の磁化容易軸は、磁石の横断面内における幅方向中央部から厚み方向に延びる仮想線上の一点に集束するように配向される。このような磁化容易軸のラジアル配向を有する永久磁石の製造方法として、特許文献5では、成形時に実現容易な磁場配向で形成でき、容易に製造することができる、と述べられている。この特許文献5において教示された方法は、磁石成形時に、磁石外の一点に集束する磁場を印加するものであり、形成される磁石における磁化容易軸の配向は、ラジアル配向に限られる。したがって、例えば、横断面内の幅方向中央領域では厚み方向に平行な配向となり、幅方向両端部の領域では斜め配向となるように磁化容易軸が配向された永久磁石を形成することはできない。この特許文献5も、個々の磁石材料粒子に付与される配向が、意図される配向方向に対してどの程度ずれているのか、という点については何も述べていない。
 特開2005-44820号公報(特許文献6)は、モータに組み込まれたときにコギングトルクを実質的に発生させない極異方性希土類焼結リング磁石の製造方法を開示する。ここに開示された希土類焼結リング磁石は、周方向に間隔をもった複数の位置に磁極を有し、磁化方向が、該磁極位置では法線方向となり、隣接する磁極の中間位置では接線方向となるように磁化されている。この特許文献6に記載された希土類焼結リング磁石の製造方法は、極異方性の磁石製造に限られ、この製造方法では、単一の焼結磁石内で、任意の複数の領域内において、磁石材料粒子に対し、それぞれ異なる方向の配向が与えられた磁石を製造することはできない。また、この特許文献6も、個々の磁石材料粒子に付与される配向が、意図される配向方向に対してどの程度ずれているのかという点については何も述べていない。
 特開2000-208322号公報(特許文献7)は、複数の領域において磁石材料粒子が異なる方向に配向された構成を有する、単一の、板状で扇形の永久磁石が開示されている。該特許文献7では、該永久磁石に複数の領域が形成され、一方の領域では磁石材料粒子が厚み方向に平行なパターンに配向され、これに隣接する他の領域では、磁石材料粒子に対し、該一方の領域における磁石材料粒子の配向方向に対して角度をもった配向が付与される。特許文献7には、このような磁石材料粒子の配向を有する永久磁石が、粉末冶金法を採用し、金型内で加圧成形を行う際に、配向部材から適切な方向の磁界を印加することにより、製造できると記載されている。しかし、この特許文献7に記載された永久磁石製造方法も、特定の配向をもった磁石の製造に適用できるだけであり、製造される磁石の形状も限られたものとなる。また、この特許文献7も、個々の磁石材料粒子に付与される配向が、意図される配向方向に対してどの程度ずれているのかという点については何も述べていない。
 国際出願公開再公表公報WO2007/119393号(特許文献8)は、希土類元素を含む磁石材料粒子と結合剤との混合物を所定形状に成形し、この成形体に平行磁界を印加して磁石材料粒子に平行な配向を生じさせ、この成形体を別の形状に変形させることによって、磁石材料粒子の配向を非平行にする永久磁石の製造方法が記載されている。この特許文献8に開示された磁石は、磁石材料粒子が樹脂組成物により結合された構成を有する、いわゆるボンド磁石であって、焼結磁石ではない。ボンド磁石は、磁石材料粒子の間に樹脂組成物が介在する構造をもつため、焼結磁石と比べて磁気特性が劣るものとなり、高性能の磁石を形成することはできない。
 特開2013-191612号公報(特許文献9)は、希土類元素を含む磁石材料粒子を樹脂結合剤と混合した混合物を形成し、この混合物をシート状に成形してグリーンシートを作成し、このグリーンシートに磁場を印加することによって磁場配向を行い、磁場配向されたグリーンシートに仮焼処理を行って樹脂結合剤を分解し、飛散させ、次いで焼成温度で焼結して、希土類焼結磁石を形成する方法が開示されている。この特許文献9に記載された方法により製造される磁石は、磁化容易軸が一方向に配向された構成であり、この方法は、単一の焼結磁石内で、任意の複数の領域内における磁石材料粒子に対し、それぞれ異なる方向の配向が与えられた磁石を製造することはできない。また、この特許文献9も、個々の磁石材料粒子に付与される配向が、意図される配向方向に対してどの程度ずれているのかという点については何も述べていない。
特開平6-302417号公報 特開2006-222131号公報 特開2015-32669号公報 特開平6-244046号公報 特許第5444630号公報 特開2005-44820号公報 特開2000-208322号公報 国際出願公開再公表公報WO2007/119393号 特開2013-191612号公報 特開2001-210508号公報
日本金属学会誌第76巻第1号(2012)12頁ないし16頁
 上述したように、希土類永久磁石の製造に関連する特許文献及び非特許文献のいずれも、磁石断面内において磁石材料粒子の磁化容易軸の配向ばらつきについては、何も述べていない。本発明者らは、磁石内の異なる位置でそれぞれ異なる所望の方向に磁石材料粒子を配向させた、上記文献記載の希土類焼結磁石及び現在実用化されている希土類焼結磁石における、後述する定義に基づく配向角のバラツキを検証したが、いずれも、配向角のバラツキ角度は、9°より大きいことを確認した。しかし、磁石断面内における微小区画内に含まれる複数の磁石材料粒子の磁化容易軸の配向が、意図される配向方向からずれる場合には、そのずれが大きくなるほど、磁石の性能が低下する。
 したがって、本発明の主目的は、磁石断面内における任意の微小区画内における、磁石材料粒子配向軸角度に対する各磁石材料粒子の磁化容易軸の配向角のずれが所定範囲内に維持されるように構成された希土類磁石形成用焼結体及び希土類焼結磁石を提供することである。言い換えると、本発明は、従来存在しなかった新規な高精度配向をもった希土類焼結磁石及びそのような磁石を形成するための焼結体を提供するものである。
 本発明は、上記の目的を達成するため、一態様において、希土類物質を含み各々が磁化容易軸を有する多数の磁石材料粒子が一体に焼結された構成を有する希土類磁石形成用焼結体を提供する。この希土類磁石形成用焼結体は、長さ方向の長さ寸法と、該長さ方向に直角な横方向の断面における、第1の表面と第2の表面との間の厚み方向の厚み寸法と、該厚み方向に対し直交する幅方向の幅寸法とをもった、立体形状を有する。厚み方向と幅方向とを含む面内の任意の位置にある4角形区画内における複数の磁石材料粒子のそれぞれの、予め設定された基準線に対する磁化容易軸の配向角のうち、最も頻度が高い配向角として定義される配向軸角度に対する、前記磁石材料粒子の各々の磁化容易軸の配向角の差に基づいて定められる配向角バラツキ角度が、9.0°以下である。一形態においては、該区画は、磁石材料粒子を30個以上、例えば200個或いは300個含む4角形区画として定められる。4角形区画は、正方形であることが好ましい。他の形態においては、該区画は、一辺が35μmの正方形区画として定められる。
 本発明の上記態様においては、磁石材料粒子の平均粒径は、3μm以下であることが好ましい。さらに、本発明の上記態様においては、複数の該4角形区画のそれぞれにおける配向軸角度の差が10°以下であることが好ましい。さらに好ましい態様においては、この配向軸角度の差は、5°以下である。このような配向軸角度差が小さい配向は、パラレル配向と呼ぶことができる。
 本発明の別の態様においては、上述した希土類磁石形成用焼結体に着磁することによって形成された希土類焼結磁石が提供される。
 上記の構成を有する本発明の希土類磁石形成用焼結体は、多数の磁石材料粒子が一体に焼結された構成を有するものであるから、例えば特許文献8に開示されたボンド磁石に比べて磁石材料粒子の密度が大幅に高くなる。したがって、この希土類磁石形成用焼結体を着磁することによって得られた希土類焼結磁石は、ボンド磁石とは比較にならないほど優れた磁石性能を呈する。また、該焼結体は、磁石材料粒子を30個以上、例えば200個或いは300個含む4角形区画として定められるか、又は、一辺が35μmの正方形区画として定められる任意の4角形区画内における複数の磁石材料粒子の磁化容易軸の配向角バラツキ角度が、9.0°という小さい範囲に収まるような、高精度の配向とされているので、該焼結体に着磁することによって得られる希土類焼結磁石は、従来の希土類焼結磁石に比べて優れた磁石性能を呈するものとなる。
配向角及び配向軸角度を示す概略図であり、希土類磁石における磁石材料粒子の磁化容易軸の配向の一例を示す横断面図である。 配向角及び配向軸角度を示す概略図であり、個々の磁石材料粒子の磁化容易軸の「配向角」及び「配向軸角度」を定める手順を示す概略拡大図である。 配向角バラツキ角度を求める手順を示す図表である。 EBSD解析に基づく配向角の分布の表示を示すものであって、希土類磁石の軸の方向を示す斜視図を示す。 EBSD解析に基づく配向角の分布の表示を示すものであって、該磁石の中央部と両端部におけるEBSD解析により得られた極点図の例を示す。 EBSD解析に基づく配向角の分布の表示を示すものであって、(a)におけるA2軸に沿った磁石の断面における配向軸角度を示す。 本発明の一実施形態による希土類磁石形成用焼結体の一例を横断面で示す断面図である。 本発明の他の実施形態による希土類磁石形成用焼結体の一例を横断面で示す断面図であり、全体を示す断面図である。 本発明の他の実施形態による希土類磁石形成用焼結体の一例を横断面で示す断面図であり、端部の拡大図である。 本発明の一実施形態による希土類焼結磁石が埋め込まれる電動モータのロータコアに設けられた磁石挿入用スロットの一例を示すロータ部分の断面図である。 図5に示すロータコアに永久磁石が埋め込まれた状態を示すロータ部分の端面図である。 本発明の永久磁石を適用することができる電動モータの横断面図である。 図5に示す実施形態による焼結体から形成される希土類永久磁石における磁束密度の分布を示す図である。 本発明の一実施形態である、図1に示す永久磁石形成用焼結体の製造工程を示す概略図であり、グリーンシート形成までの各段階を示す。 本発明の一実施形態である、図1に示す永久磁石形成用焼結体の製造工程を示す概略図であり、グリーンシート形成までの各段階を示す。 本発明の一実施形態である、図1に示す永久磁石形成用焼結体の製造工程を示す概略図であり、グリーンシート形成までの各段階を示す。 本発明の一実施形態である、図1に示す永久磁石形成用焼結体の製造工程を示す概略図であり、グリーンシート形成までの各段階を示す。 本実施形態における磁石材料粒子の磁化容易軸配向処理を示す加工用シート片の断面図であり、磁場印加時のシート片の断面形状を示す。 本実施形態における磁石材料粒子の磁化容易軸配向処理を示す加工用シート片の断面図であり、磁場印加後に変形処理を施された焼結処理用シート片の断面形状を示す。 本実施形態における磁石材料粒子の磁化容易軸配向処理を示す加工用シート片の断面図であり、第1の成形体を第2の成形体にする曲げ変形加工工程を示す。 仮焼処理における好ましい昇温速度を示すグラフである。
 以下、本発明の実施形態を図について説明する。実施形態の説明に先立って、用語の定義及び配向角の測定について説明する。
〔配向角〕
 配向角は、予め定めた基準線に対する磁石材料粒子の磁化容易軸の方向の角度を意味する。
〔配向軸角度〕
 磁石の特定の面内において予め定めた区画内にある磁石形成材料粒子の配向角のうち、最も頻度が高い配向角である。本発明においては、配向軸角度を定める区画は、磁石材料粒子を30個以上含む四角形区画又は一辺が35μmの正方形区画とする。
 図1に配向角及び配向軸角度を示す。図1(a)は、希土類磁石における磁石材料粒子の磁化容易軸の配向の一例を示す横断面図であり、該希土類磁石Mは、第1の表面S-1と、該第1の表面S-1から厚みtだけ間隔をもった位置にある第2の表面S-2と、幅Wとを有し、幅W方向の両端部には、端面E-1、E-2が形成されている。図示例では、第1の表面S-1と第2の表面S-2とは、互いに平行な平坦面であり、図示の横断面では、これら第1の表面S-1及び第2の表面S-2は、互いに平行な2つの直線で表される。端面E-1は、第1の表面S-1に対して上右方向に傾斜した傾斜面となっており、同様に、端面E-2は、第2の表面S-2に対して上左方向に傾斜した傾斜面となっている。矢印B-1は、該希土類磁石Mの幅方向中央領域における磁石材料粒子の磁化容易軸の配向軸の方向を概略的に示す。これに対して、矢印B-2は、端面E-1に隣接する領域における磁石材料粒子の磁化容易軸の配向軸の方向を概略的に示す。同様に、矢印B-3は、端面E-2に隣接する領域における磁石材料粒子の磁化容易軸の配向軸の方向を概略的に示す。
 「配向軸角度」は、矢印B-1、B-2、B-3で表されるこれら配向軸と、一つの基準線との間の角度である。基準線は任意に設定することができるが、図1(a)に示す例のように、第1の表面S-1の断面が直線で表される場合には、該第1の表面S-1の断面を基準線とすることが便利である。図1(b)は、個々の磁石材料粒子の磁化容易軸の「配向角」及び「配向軸角度」を定める手順を示す概略拡大図である。図1(a)に示す希土類磁石Mの任意の個所、例えば図1(a)に示す4角形区画Rが図1(b)に拡大して示される。この4角形区画Rには、30個以上、例えば200個ないし300個といった、多数の磁石材料粒子Pが含まれる。4角形区画に含まれる磁石材料粒子の数が多いほど、測定精度は高まるが、30個程度でも、十分な精度で測定することができる。それぞれの磁石材料粒子Pは、磁化容易軸P-1を有する。磁化容易軸P-1は、通常は方向性を持たないが、磁石材料粒子が着磁されることによって方向性をもったベクトルとなる。図1(b)では、着磁される予定の極性を考慮して、磁化容易軸に方向性を付与した矢印で示す。
 図1(b)に示すように、個々の磁石材料粒子Pの磁化容易軸P-1は、該磁化容易軸が指向する方向と基準線との間の角度である「配向角」を有する。そして、図1(b)に示される4角形区画R内の磁石材料粒子Pの磁化容易軸P-1の「配向角」のうち、最も頻度の高い配向角を、「配向軸角度」Bとする。
〔配向角バラツキ角度〕
 任意の4角形区画における配向軸角度と、該区画内に存在する磁石材料粒子のすべてについて、その磁化容易軸の配向角との差を求め、該配向角の差の分布における半値幅により表される角度の値を配向角バラツキ角度とする。図2は、配向角バラツキ角度を求める手順を示す図表である。図2において、磁化容易軸に対する個々の磁石材料粒子の磁化容易軸の配向角の差Δθの分布が、曲線Cにより表される。縦軸に示す累積頻度が最大になる位置を100%とし、累積頻度が50%になる配向角差Δθの値が半値幅である。
〔配向角の測定〕
 個々の磁石材料粒子Pにおける磁化容易軸P-1の配向角は、走査電子顕微鏡(SEM)画像に基づく「電子後方散乱回折解析法」(EBSD解析法)により求めることができる。この解析のための装置としては、Oxford Instruments社製のEBSD検出器(AZtecHKL EBSD NordlysNano Integrated)を備えた走査電子顕微鏡である、東京都昭島市所在の日本電子株式会社製JSM-70001F、もしくは、EDAX社製のEBSD検出器(Hikari High Speed EBSD Detector)を備えた走査電子顕微鏡である、ZEISS社製SUPRA40VPがある。また、外部委託によりEBSD解析を行う事業体としては、東京都中央区日本橋所在のJFEテクノリサーチ株式会社及び大阪府茨木市所在の株式会社日東分析センターがある。EBSD解析によれば、所定の区画内に存在する磁石材料粒子の磁化容易軸の配向角及び配向軸角度を求めることができ、これらの値に基づき、配向角バラツキ角度も取得することができる。図3は、EBSD解析法による磁化容易軸の配向表示の一例を示すもので、図3(a)は、希土類磁石の軸の方向を示す斜視図を、同(b)は、中央部と両端部におけるEBSD解析により得られた極点図の例を示すものである。また、図3(c)にA2軸に沿った磁石の断面における配向軸角度を示す。配向角は、磁石材料粒子の磁化容易軸の配向ベクトルを、A1軸とA2軸を含む平面における成分と、A1軸とA3軸を含む平面における成分に分けて表示することができる。A2軸は幅方向であり、A1軸は厚み方向である。図3(b)の中央の図は、磁石の幅方向中央においては、磁化容易軸の配向がほぼA1軸に沿った方向であることを示す。これに対し、図3(b)の左の図は、磁石の幅方向左端部における磁化容易軸の配向が下から右上方向にA1軸-A2軸の面に沿って傾斜していることを示す。同様に、図3(b)の右の図は、磁石の幅方向右端部における磁化容易軸の配向が下から左上方向にA1軸-A2軸の面に沿って傾斜していることを示す。このような配向を、配向ベクトルとして、図3(c)に示す。
〔結晶方位図〕
 任意の区画内に存在する個々の磁石材料粒子について、観察面に垂直な軸に対する該磁石材料粒子の磁化容易軸の傾斜角を表示する図である。この図は、走査電子顕微鏡(SEM)画像に基づき作成することができる。
〔好ましい実施形態〕
 以下、本発明の実施の形態を図について説明する。図4は、本発明の一実施形態による希土類磁石形成用焼結体1を示す断面図であり、第2の表面と呼ばれることがある上辺2と第1の表面と呼ばれることがある下辺3と、図の紙面に直交する方向の長さとを有する長方体形状である。すなわち、上辺2と下辺3は互いに平行に延び、これら上辺2と下辺3の間隔が厚みとなる。図4において、上辺2及び下辺3に沿った方向が幅方向であり、両端部4、5が幅寸法を定める。
 図5ないし図8に、本発明の他の実施形態による希土類磁石形成用焼結体と、該焼結体から形成される永久磁石を組み込んだ電動モータの一例を示す。図5ないし図8において、図4に示す実施形態の部分と対応する部分は、図4と同一の符号で示す。図4に示す実施形態及び図5ないし図8に示す実施形態のいずれにおいても、希土類磁石形成用焼結体1は、磁石材料として、Nd-Fe-B系磁石材料を含む。典型的には、Nd-Fe-B系磁石材料は、Ndを27ないし40wt%、Bを0.8ないし2wt%、電解鉄であるFeを60ないし75wt%の割合で含む。この磁石材料は、磁気特性向上を目的として、Dy、Tb、Co、Cu、Al、Si、Ga、Nb、V、Pr、Mo、Zr、Ta、Ti、W、Ag、Bi、Zn、Mg等の他元素を少量含んでも良い。
 図4に示す実施形態においては、希土類磁石形成用焼結体1は、上述した磁石材料の微細粒子が一体に焼結成形されたものであり、下辺3から上辺2に向けて指向する磁石材料粒子の磁化容易軸の配向を有し、この磁化容易軸の配向は、すべてが互いに平行なパラレル配向である。
 図5(a)を参照すると、この実施形態による磁石形成用焼結体1は、上述した磁石材料の微細粒子が一体に焼結成形されたものであり、互いに平行な上辺2と下辺3、及び左右両端の端面4、5を有し、該端面4、5は、図4の実施形態とは異なり、上辺2及び下辺3に対し傾斜した傾斜面として形成されている。上辺2は、第2の表面の断面に対応する辺であり、下辺3は、第1の表面の断面に対応する辺である。端面4、5の傾斜角は、該端面4、5の延長線4a、5aと上辺2との間の角度θとして定義される。好ましい形態では、傾斜角θは、45°ないし80°、より好ましくは55°ないし80°である。その結果、磁石形成用焼結体1は、上辺2が下辺3より短い台形の幅方向断面を有する形状に形成されている。
 磁石形成用焼結体1は、上辺2及び下辺3に沿った幅方向に、所定の寸法の中央領域6と、両端部側の端部領域7、8とに区分された複数の領域を有する。中央領域6においては、該領域6に含まれる磁石材料粒子は、その磁化容易軸が上辺2及び下辺3に対して実質的に直角な、厚み方向に平行に配向したパラレル配向となっている。これに対して、端部領域7、8では、該領域7、8に含まれる磁石材料粒子の磁化容易軸は、厚み方向に対して、下から上に向けて、配向方向が中央領域6の方向に傾斜しており、その傾斜角は、端面4、5に隣接する位置では該端面4、5の傾斜角θに沿った角度であり、中央領域6に隣接する位置では、該上辺2に対しほぼ直角であり、端面4、5に隣接する位置から中央領域6に近づくにしたがって漸次大きくなる。このような磁化容易軸の配向を、図5(a)に、中央領域6のパラレル配向については、矢印9で、端部領域7、8の傾斜配向については、矢印10で、それぞれ示す。端部領域7、8の傾斜配向に関し、別の表現をすれば、これら領域に含まれる磁石材料粒子の磁化容易軸は、上辺2と端面4、5とが交差する角部から中央部に向けて、端部領域7、8の幅方向寸法に対応する所定の範囲の領域に集束するように配向される。この配向の結果、端部領域7、8においては、磁化容易軸が上辺2に指向される磁石材料粒子の密度が、中央領域6におけるよりも高くなる。本発明の好ましい形態では、中央領域6に対応する上辺2の幅方向の寸法、すなわち、パラレル長Pと、上辺2の幅方向寸法Lとの比、すなわち、パラレル率P/Lが、0.05ないし0.8、より好ましくは0.2ないし0.5となるように、中央領域6と端部領域7,8の寸法が定められる。
 上記した端部領域7、8における磁石材料の磁化容易軸の配向を、端部領域7について図5(b)に誇張して示す。図5(b)において、磁石材料粒子の各々の磁化容易軸Cは、端面4に隣接する部分では該端面4にほぼ沿って、該端面4の傾斜角θだけ傾斜して配向される。そして、該傾斜角は、端部から中央部に近づくにしたがって、漸次増加する。すなわち、磁石材料粒子の磁化容易軸Cの配向は、下辺3の側から上辺2に向けて集束するようになり、磁化容易軸Cが上辺2に指向される磁石材料粒子の密度は、パラレル配向の場合に比して高くなる。
 図6は、上述した磁化容易軸の配向を有する磁石形成用焼結体1を着磁させることによって形成された希土類磁石を埋め込んで使用するのに適した電動モータ20のロータコア部分を拡大して示す断面図である。ロータコア21は、その周面21aがエアギャップ22を介してステータ23と対向するように、該ステータ23内に回転自在に配置される。ステータ23は、周方向に間隔をもって配設された複数のティース23aを備えており、このティース23aに界磁コイル23bが巻かれる。上述のエアギャップ22は、各ティース23aの端面とロータコア21の周面21aとの間に形成されることになる。ロータコア21には、磁石挿入用スロット24が形成されている。このスロット24は、直線状中央部分24aと、該中央部分24aの両端部からロータコア21の周面21aの方向に斜めに延びる一対の傾斜部分24bとを有する。図6から分かるように、傾斜部分24bは、その末端部がロータコア21の周面21aに近接した位置にある。
 上述した磁化容易軸の配向を有する磁石形成用焼結体1を着磁させることによって形成された希土類磁石30を図6に示すロータコア21の磁石挿入用スロット24に挿入した状態を図7に示す。図7に示すように、希土類永久磁石30は、その上辺2が外側に、すなわちステータ23側に向くように、ロータコア21に形成された磁石挿入用スロット24の直線状中央部分24aに挿入される。挿入された磁石30の両端より外側には、スロット24の直線状中央部分24aの一部と傾斜部分24bが空隙部として残される。このように、ロータコア21のスロット24に永久磁石が挿入されることによって形成された電動モータ20の全体を、図8に横断面図で示す。
 図9は、上述した実施形態により形成される希土類永久磁石30における磁束密度の分布を示すものである。図9に示すように、磁石30の両側端部領域7、8における磁束密度Dは、中央領域6における磁束密度Eより高くなる。そのため、この磁石30を電動モータ20のロータコア21に埋め込んで作動させたとき、磁石30の端部にステータ23からの磁束が作用しても磁石30の端部の減磁が抑制され、磁石30の端部には、減磁後も十分な磁束が残されることになり、モータ20の出力が低下することが防止される。
[希土類永久磁石形成用焼結体の製造方法]
 次に、図4に示す実施形態及び図5ないし図9に示す実施形態による希土類磁石形成用焼結体1を製造するための本発明の一実施形態による製造方法について、図10を参照して説明する。図10は、上述した2つの実施形態に係る永久磁石形成用焼結体1の製造工程を示す概略図である。
 先ず、所定分率のNd-Fe-B系合金からなる磁石材料のインゴットを鋳造法により製造する。代表的には、ネオジム磁石に使用されるNd-Fe-B系合金は、Ndが30wt%、電解鉄であることが好ましいFeが67wt%、Bが1.0wt%の割合で含まれる組成を有する。次いで、このインゴットを、スタンプミル又はクラッシャー等の公知の手段を使用して粒径200μm程度の大きさに粗粉砕する。代替的には、インゴットを溶解し、ストリップキャスト法によりフレークを作製し、水素解砕法で粗粉化することもできる。それによって、粗粉砕磁石材料粒子115が得られる(図10(a)参照)。
 次いで、粗粉砕磁石材料粒子115を、ビーズミル116による湿式法又はジェットミルを用いた乾式法等によって微粉砕する。例えば、ビーズミル116による湿式法を用いた微粉砕では、溶媒中で粗粉砕磁石粒子115を所定範囲の粒径、例えば0.1μmないし5.0μm、好ましくは、平均粒径が3μm以下になるように微粉砕し、溶媒中に磁石材料粒子を分散させた状態にする(図10(b)参照)。その後、湿式粉砕後の溶媒に含まれる磁石粒子を真空乾燥などの手段によって乾燥させて、乾燥した磁石粒子を取り出す(図示せず)。ここで、粉砕に用いる溶媒の種類には特に制限はなく、イソプロピルアルコール、エタノール、メタノールなどのアルコール類、酢酸エチル等のエステル類、ペンタン、ヘキサンなどの低級炭化水素類、ベンゼン、トルエン、キシレンなど芳香族類、ケトン類、それらの混合物等の有機溶媒、又は、液化アルゴン、液化窒素、液化ヘリウム等の無機溶媒を使用することができる。この場合において、溶媒中に酸素原子を含まない溶媒を用いることが好ましい。
 一方、ジェットミルによる乾式法を用いる微粉砕においては、粗粉砕した磁石材料粒子115を、(a)酸素含有量が0.5%以下、好ましくは実質的に0%の窒素ガス、Arガス、Heガスなどの不活性ガスからなる雰囲気中、又は(b)酸素含有量が0.0001ないし0.5%の窒素ガス、Arガス、Heガスなどの不活性ガスからなる雰囲気中で、ジェットミルにより微粉砕し、6.0μm以下、例えば0.7μmないし5.0μmといった所定範囲の平均粒径を有する微粒子とする。ここで、酸素濃度が実質的に0%とは、酸素濃度が完全に0%である場合に限定されず、微粉の表面にごく僅かに酸化被膜を形成する程度の量の酸素を含有するものであっても良いことを意味する。
 次に、ビーズミル116等で微粉砕された磁石材料粒子を所望形状に成形する。この磁石材料粒子の成形のために、上述のように微粉砕された磁石材料粒子115と樹脂材料からなるバインダーとを混合した混合物、すなわち、複合材料を準備する。バインダーとして用いられる樹脂は、構造中に酸素原子を含まず、かつ、解重合性のあるポリマーが好ましい。また、後述のように磁石粒子とバインダーとの複合材料を、所望形状に成形する際に生じる複合材料の残余物を再利用できるようにするために、かつ、複合材料を加熱して軟化した状態で磁場配向を行うことができるようにするために、樹脂材料としては、熱可塑性樹脂を用いることが好ましい。具体的には、以下の一般式(1)に示されるモノマーから形成される1種又は2種以上の重合体又は共重合体からなるポリマーが好適に用いられる。
Figure JPOXMLDOC01-appb-C000001
(但し、R1及びR2は、水素原子、低級アルキル基、フェニル基又はビニル基を表す)
 上記条件に該当するポリマーとしては、例えばイソブチレンの重合体であるポリイソブチレン(PIB)、イソプレンの重合体であるポリイソプレン(イソプレンゴム、IR)、1,3-ブタジエンの重合体であるポリブタジエン(ブタジエンゴム、BR)、スチレンの重合体であるポリスチレン、スチレンとイソプレンの共重合体であるスチレン-イソプレンブロック共重合体(SIS)、イソブチレンとイソプレンの共重合体であるブチルゴム(IIR)、スチレンとブタジエンの共重合体であるスチレン-ブタジエンブロック共重合体(SBS)、スチレンとエチレン、ブタジエンの共重合体であるスチレン-エチレン-ブタジエン-スチレン共重合体(SEBS)、スチレンとエチレン、プロピレンの共重合体であるスチレン-エチレン-プロピレン-スチレン共重合体(SEPS)、エチレンとプロピレンの共重合体であるエチレン-プロピレン共重合体(EPM)、エチレン、プロピレンとともにジエンモノマーを共重合させたEPDM、2-メチル-1-ペンテンの重合体である2-メチル-1-ペンテン重合樹脂、2-メチル-1-ブテンの重合体である2-メチル-1-ブテン重合樹脂、等がある。また、バインダーに用いる樹脂としては、酸素原子、窒素原子を含むモノマーの重合体又は共重合体(例えば、ポリブチルメタクリレートやポリメチルメタクリレート等)を少量含む構成としても良い。更に、上記一般式(1)に該当しないモノマーが一部共重合していても良い。その場合であっても、本発明の目的を達成することが可能である。
 なお、バインダーに用いる樹脂としては、磁場配向を適切に行うために250℃以下で軟化する熱可塑性樹脂、より具体的には、ガラス転移点又は流動開始温度が250℃以下の熱可塑性樹脂を用いることが望ましい。
 熱可塑性樹脂中に磁石材料粒子を分散させるために、分散剤(配向潤滑剤)を適量添加することが望ましい。分散剤としては、アルコール、カルボン酸、ケトン、エーテル、エステル、アミン、イミン、イミド、アミド、シアン、リン系官能基、スルホン酸、二重結合や三重結合などの不飽和結合を有する化合物、及び、液状飽和炭化水素化合物のうち、少なくともひとつを添加することが望ましい。これら物質の複数を混合して用いても良い。そして、後述するように、磁石材料粒子とバインダーとの混合物すなわち複合材料に対して磁場を印加して該磁石材料を磁場配向するにあたっては、混合物を加熱してバインダー成分が軟化した状態で磁場配向処理を行う。
 磁石材料粒子に混合されるバインダーとして上記条件を満たすバインダーを用いることによって、焼結後の希土類永久磁石形成用焼結体内に残存する炭素量及び酸素量を低減させることが可能となる。具体的には、焼結後に磁石形成用焼結体内に残存する炭素量を、2000ppm以下、より好ましくは1000ppm以下とすることができる。また、焼結後に磁石形成用焼結体内に残存する酸素量を、5000ppm以下、より好ましくは2000ppm以下とすることができる。
 バインダーの添加量は、スラリー又は加熱溶融した複合材料を成形する場合に、成形の結果として得られる成形体の厚み精度が向上するように、磁石材料粒子間の空隙を適切に充填できる量とする。例えば、磁石材料粒子とバインダーの合計量に対するバインダーの比率が、1wt%ないし40wt%、より好ましくは2wt%ないし30wt%、さらに好ましくは3wt%ないし20wt%とする。
 以下の実施形態では、複合材料を一旦製品形状以外の形状に成形した成形体の状態で平行磁場を印加して磁場における磁石材料粒子の配向を行い、図5ないし図9に示す実施形態の場合には、その後に、さらに、該成形体を所望の製品形状にし、次いで焼結処理を行うことによって、例えば図5(a)に示す台形形状のような、所望の製品形状の焼結磁石とする。特に、以下の実施形態では、磁石材料粒子とバインダーとからなる混合物すなわち複合材料117を、シート形状のグリーン成形体(以下、「グリーンシート」という)に一旦成形した後に、配向処理のための成形体形状とする。複合材料を特にシート形状に成形する場合には、例えば磁石材料粒子とバインダーとの混合物である複合材料117を加熱した後にシート形状に成形するホットメルト塗工によるか、磁石材料粒子とバインダーとの混合物である複合材料117を成形型に入れて加熱および加圧する方法によるか、又は、磁石材料粒子とバインダーと有機溶媒とを含むスラリーを基材上に塗工することによりシート状に成形するスラリー塗工等による成形を採用することができる。
 以下においては、特にホットメルト塗工を用いたグリーンシート成形について説明するが、本発明は、そのような特定の成型法に限定されるものではない。例えば、複合材料117を成形用型に入れ、室温~300℃に加熱しながら、0.1ないし100MPaの圧力で加圧することにより、成形を行ってもよい。この場合において、より具体的には、軟化する温度に加熱した複合材料117を、射出圧を加えて金型に押込み充填して成形する方法をとることができる。
 既に述べたように、ビーズミル116等で微粉砕された磁石材料粒子にバインダーを混合することにより、磁石材料粒子とバインダーとからなる粘土状の混合物すなわち複合材料117を作製する。ここで、バインダーとしては、上述したように樹脂及び分散剤の混合物を用いることができる。例えば、樹脂材料としては、構造中に酸素原子を含まず、かつ解重合性のあるポリマーからなる熱可塑性樹脂を用いることが好ましく、一方、分散剤としては、アルコール、カルボン酸、ケトン、エーテル、エステル、アミン、イミン、イミド、アミド、シアン、リン系官能基、スルホン酸、二重結合や三重結合などの不飽和結合を有する化合物のうち、少なくとも一つを添加することが好ましい。また、バインダーの添加量は、上述したように添加後の複合材料117における磁石材料粒子とバインダーの合計量に対するバインダーの比率が、1wt%ないし40wt%、より好ましくは2wt%ないし30wt%、さらに好ましくは3wt%ないし20wt%となるようにする。
 ここで分散剤の添加量は磁石材料粒子の粒子径に応じて決定することが好ましく、磁石材料粒子の粒子径が小さい程、添加量を多くすることが推奨される。具体的な添加量としては、磁石材料粒子100重量部に対して0.1重量部ないし10重量部、より好ましくは0.3重量部ないし8重量部とする。添加量が少ない場合には分散効果が小さく、配向性が低下する恐れがある。また、添加量が多すぎる場合は、磁石材料粒子を汚染する恐れがある。磁石材料粒子に添加された分散剤は、磁石材料粒子の表面に付着し、磁石材料粒子を分散させ粘土状混合物を与えるとともに、後述の磁場での配向処理において、磁石材料粒子の回動を補助するように作用する。その結果、磁場を印加した際に配向が容易に行われ、磁石粒子の磁化容易軸方向をほぼ同一方向に揃えること、すなわち、配向度を高くすることが可能になる。特に、磁石材料粒子にバインダーを混合すると、粒子表面にバインダーが存在するようになるため、磁場配向処理時の摩擦力が高くなり、そのために粒子の配向性が低下する恐れがあり、分散剤を添加することの効果がより高まる。
 磁石材料粒子とバインダーとの混合は、窒素ガス、Arガス、Heガスなどの不活性ガスからなる雰囲気のもとで行うことが好ましい。磁石材料粒子とバインダーとの混合は、例えば磁石材料粒子とバインダーをそれぞれ攪拌機に投入し、攪拌機で攪拌することにより行う。この場合において、混練性を促進する為に加熱攪拌を行っても良い。さらに、磁石材料粒子とバインダーの混合も、窒素ガス、Arガス、Heガスなど不活性ガスからなる雰囲気で行うことが望ましい。また、特に磁石材料粒子を湿式法で粉砕する場合には、粉砕に用いた溶媒から磁石粒子を取り出すことなく、バインダーを溶媒中に添加して混練し、その後に溶媒を揮発させ、複合材料117を得るようにしても良い。
 続いて、複合材料117をシート状に成形することにより、前述したグリーンシートを作成する。ホットメルト塗工を採用する場合には、複合材料117を加熱することにより該複合材料117を溶融し、流動性を有する状態にした後、支持基材118上に塗工する。その後、放熱により複合材料117を凝固させて、支持基材118上に長尺シート状のグリーンシート119を形成する(図10(d)参照)。この場合において、複合材料117を加熱溶融する際の温度は、用いるバインダーの種類や量によって異なるが、通常は50℃ないし300℃とする。但し、用いるバインダーの流動開始温度よりも高い温度とする必要がある。なお、スラリー塗工を用いる場合には、多量の溶媒中に磁石材料粒子とバインダー、及び、任意ではあるが、配向を助長する添加剤を分散させて、スラリーを支持基材118上に塗工する。その後、乾燥して溶媒を揮発させることにより、支持基材118上に長尺シート状のグリーンシート119を形成する。
 ここで、溶融した複合材料117の塗工方式は、スロットダイ方式又はカレンダーロール方式等の、層厚制御性に優れる方式を用いることが好ましい。特に、高い厚み精度を実現する為には、特に層厚制御性に優れた、すなわち、基材の表面に高精度の厚さの層を塗工できる方式である、ダイ方式やコンマ塗工方式を用いることが望ましい。例えば、スロットダイ方式では、加熱して流動性を有する状態にした複合材料117をギアポンプにより圧送してダイに注入し、ダイから吐出することにより塗工を行う。また、カレンダーロール方式では、加熱した2本のロールのニップ間隙に、複合材料117を制御した量で送り込み、ロールを回転させながら、支持基材118上に、ロールの熱で溶融した複合材料117を塗工する。支持基材118としては、例えばシリコーン処理ポリエステルフィルムを用いることが好ましい。さらに、消泡剤を用いるか、加熱真空脱泡を行うことによって、塗工され展開された複合材料117の層中に気泡が残らないように、充分に脱泡処理することが好ましい。或いは、支持基材118上に塗工するのではなく、押出成型や射出成形によって溶融した複合材料117をシート状に成型しながら支持基材118上に押し出すことによって、支持基材118上にグリーンシート119を成形することもできる。
 図10に示す実施形態では、スロットダイ120を用いて複合材料117の塗工を行うようにしている。このスロットダイ方式によるグリーンシート119の形成工程では、塗工後のグリーンシート119のシート厚みを実測し、その実測値に基づいたフィードバック制御により、スロットダイ120と支持基材118との間のニップ間隙を調節することが望ましい。この場合において、スロットダイ120に供給する流動性複合材料117の量の変動を極力低下させること、例えば±0.1%以下の変動に抑えること、さらに塗工速度の変動も極力低下させること、例えば±0.1%以下の変動に抑えることが望ましい。このような制御によって、グリーンシート119の厚み精度を向上させることが可能である。なお、形成されるグリーンシート119の厚み精度は、例えば1mmといった設計値に対して、±10%以内、より好ましくは±3%以内、さらに好ましくは±1%以内とすることが好ましい。カレンダーロール方式では、カレンダー条件を同様に実測値に基づいてフィードバック制御することで、支持基材118に転写される複合材料117の膜厚を制御することが可能である。
 グリーンシート119の厚みは、0.05mmないし20mmの範囲に設定することが望ましい。厚みを0.05mmより薄くすると、必要な磁石厚みを達成するために、多層積層しなければならなくなるので、生産性が低下することになる。
 次に、上述したホットメルト塗工によって支持基材118上に形成されたグリーンシート119から、所望の磁石寸法に対応する寸法に切り出された加工用シート片123を作成する。この加工用シート片123は、図4に示す実施形態では、所望の磁石の形状に対応するものであるが、図5ないし図8に示す実施形態の場合には第1の成形体に対応するもので、その形状は、所望の磁石の形状とは異なる。詳細に述べると、図5ないし図8に示す実施形態では、該第1の成形体である加工用シート片123は、該加工用シート片123に平行磁場が印加され、該加工用シート片123に含まれる磁石材料粒子の磁化容易軸が平行になるように配向され、その後に、該加工用シート片123を変形させて所望の磁石形状としたとき、その所望の形状を有する磁石において、所望の磁化容易軸配向が得られるような形状に成形される。
 図4に示す実施形態では、グリーンシート119から切り出される加工用シート片は、図4に示す長方体形状とし、切り出される実際の寸法は、後述する焼結工程における寸法の縮小を見込んで、焼結工程後に所定の磁石寸法が得られるように定める。これに対して、図5ないし図9に示す実施形態においては、第1の成形体である加工用シート片123は、図11(a)に示すように、最終製品となる台形断面の希土類永久磁石形成用焼結体1における中央領域6に対応する幅方向長さの直線状領域6aと、該直線状領域6aの両端に連続する円弧状領域7a、8aを有する断面形状である。この加工用シート片123は、図の紙面に直角な方向の長さ寸法を有し、断面の寸法及び幅寸法は、後述する焼結工程における寸法の縮小を見込んで、焼結工程後に所定の磁石寸法が得られるように定める。
 図4に示す実施形態の場合には、グリーンシート119から切り出された加工用シート片に対して下辺3の外側から該下辺3に対して直角方向に、平行外部磁場が印加される。この平行外部磁場の印加により、加工用シート片内に存在する磁石材料粒子の磁化容易軸は、図4に矢印9で示すように、下辺3に直角な方向に配向する。この配向は、パラレル配向である。上述したようにグリーンシート119を構成し、後述するように加熱して磁場印加を行うことにより、高精度で磁化容易軸を配向させることが可能になる。
 図11(a)に示す加工用シート片123に対しても、直線状領域6aの表面に直角になる方向に平行磁場121が印加される。この磁場印加により、加工用シート片123に含まれる磁石材料粒子の磁化容易軸が、図11(a)に矢印122で示すように、磁場の方向に、すなわち厚み方向に平行に配向される。
 この工程においては、図4に示す実施形態及び図5ないし図9に示す実施形態のいずれにおいても、加工用シート片は、該加工用シート片に対応する形状のキャビティを有する磁場印加用型内に収容され(図示せず)、加熱することにより加工用シート片に含まれるバインダーを軟化させる。それによって、磁石材料粒子はバインダー内で回動できるようになり、その磁化容易軸を平行磁場121に沿った方向に高精度で配向させることができる。
 ここで、加工用シート片を加熱するための温度及び時間は、用いるバインダーの種類及び量によって異なるが、例えば40ないし250℃で0.1ないし60分とする。いずれにしても、加工用シート片内のバインダーを軟化させるためには、加熱温度は、用いられるバインダーのガラス転移点又は流動開始温度以上の温度とする必要がある。加工用シート片を加熱するための手段としては、例えばホットプレートによる加熱、又はシリコーンオイルのような熱媒体を熱源に用いる方式がある。磁場印加における磁場の強さは、5000[Oe]~150000[Oe]、好ましくは、10000[Oe]~120000[Oe]とすることができる。その結果、加工用シート片に含まれる磁石材料粒子の結晶の磁化容易軸が、図4に符号9で示すように、又は図11(a)に符号122で示すように、平行磁場121に沿った方向に、平行に配向される。この磁場印加工程では、複数個の加工用シート片に対して同時に磁場を印加する構成とすることもできる。このためには、複数個のキャビティを有する型を使用するか、或いは、複数個の型を並べて、同時に平行磁場121を印加すればよい。加工用シート片に磁場を印加する工程は、加熱工程と同時に行っても良いし、加熱工程を行った後であって、加工用シート片内のバインダーが凝固する前に行っても良い。
 次に、図4に示す実施形態の場合には、外部磁場が印加されて磁石材料粒子の磁化容易軸がパラレル配向された加工用シート片は、そのまま後述する仮焼工程及び焼結工程に送られる。これに対して、図5ないし図9の実施形態の場合には、図11(a)に示す磁場印加工程により磁石材料粒子の磁化容易軸が矢印122で示すように平行配向された加工用シート片123を、磁場印加用の型から取り出し、図11(b)(c)に示す細長い長さ方向寸法の台形キャビティ124を有する最終成形用型126内に移して、該キャビティ124に対応する凸型形状を有する雄型127により該加工用シート片123をキャビティ124内で押圧し、加工用シート片123の両端部の円弧状領域7a、8aを、中央の直線状領域6aに直線状に連続するように変形させて、図11(b)に示す焼結処理用シート片125に成形する。この焼結処理用シート片125が、第2の成形体に対応する。
 この成形により、加工用シート片123は、両端の円弧状領域7a、8aが、中央の直線状領域6aに対して直線状に連続する形状になり、同時に、両端部には、傾斜面125a、125bが形成されて、細長い台形状を構成する。この成形工程により形成される焼結処理用シート片125においては、中央の直線状領域6aに含まれる磁石材料粒子の磁化容易軸は、厚み方向に平行に配向されたパラレル配向状態に維持されるが、両端の領域7a、8aにおいては、上向きに凸の形状が中央の直線状領域に連続する直線形状に変形される結果、図11(b)に示すように、磁化容易軸は、それぞれの対応する領域における上辺に集束する配向になる。
 このようにして磁石材料粒子の磁化容易軸が配向された配向後の焼結処理用シート片125は、仮焼工程に送られる。以下の説明においては、図4に示す実施形態における、磁場配向工程を経て仮焼工程に送られた加工法シート片も含めて、仮焼処理及び焼結処理が行われるシート片を、「焼結処理用シート片125」と呼ぶ。図4に示す実施形態及び図5ないし図9に示す実施形態のいずれにおいても、仮焼工程における仮焼処理は、大気圧、或いは、大気圧より高い圧力又は低い圧力、例えば、0.1MPaないし70MPa、好ましくは1.0Paないしは1.0MPaに調節した非酸化性雰囲気において、バインダー分解温度で数時間ないし数十時間、例えば5時間保持することにより仮焼処理を行う。この処理では、水素雰囲気又は水素と不活性ガスの混合ガス雰囲気を用いることが推奨される。水素雰囲気のもとで仮焼処理を行う場合には、仮焼中の水素の供給量は、例えば5L/minとする。仮焼処理を行うことによって、バインダーに含まれる有機化合物を、解重合反応、その他の反応によりモノマーに分解し、飛散させて除去することが可能となる。すなわち、焼結処理用シート片125に残存する炭素の量を低減させる処理である脱カーボン処理が行われることとなる。また、仮焼処理は、焼結処理用シート片125内に残存する炭素の量が2000ppm以下、より好ましくは1000ppm以下とする条件で行うことが望ましい。それによって、その後の焼結処理で焼結処理用シート片125の全体を緻密に焼結させることが可能となり、残留磁束密度及び保磁力の低下を抑制することが可能になる。なお、上述した仮焼処理を行う際の加圧条件を大気圧より高い圧力とする場合には、圧力は15MPa以下とすることが望ましい。ここで、加圧条件は、大気圧より高い圧力、より具体的には0.2MPa以上とすれば、特に残存炭素量軽減の効果が期待できる。
 バインダー分解温度は、バインダーの種類により異なるが、仮焼処理の温度は、200℃ないし900℃、より好ましくは300℃ないし500℃、例えば450℃とすればよい。
 上述の仮焼処理においては、一般的な希土類磁石の焼結処理と比較して、昇温速度を小さくすることが好ましい。具体的には、昇温速度を2℃/min以下、例えば1.5℃/minとすることにより、好ましい結果を得ることができる。従って、仮焼処理を行う場合には、図12に示すように2℃/min以下の所定の昇温速度で昇温し、予め設定された設定温度、すなわち、バインダー分解温度に到達した後に、該設定温度で数時間ないし数十時間保持することにより仮焼処理を行う。このように、仮焼処理において昇温速度を小さくすることによって、焼結処理用シート片125内の炭素が急激に除去されることがなく、段階的に除去されるようになるので、十分なレベルまで残量炭素を減少させて、焼結後の永久磁石形成用焼結体の密度を上昇させることが可能となる。すなわち、残留炭素量を減少させることにより、永久磁石中の空隙を減少させることができる。上述のように、昇温速度を2℃/min程度とすれば、焼結後の永久磁石形成用焼結体の密度を98%以上、例えば7.40g/cm3以上とすることができ、着磁後の磁石において高い磁石特性を達成することが期待できる。
 続いて、仮焼処理によって仮焼された焼結処理用シート片125を焼結する焼結処理が行われる。焼結処理としては、真空中での無加圧焼結法を採用することもできるが、ここに説明する実施形態では、焼結処理用シート片125を、図4又は図11の紙面に垂直の方向である焼結処理用シート片125の長さ方向に一軸加圧した状態で焼結する一軸加圧焼結法を採用することが好ましい。この方法では、図4に示す実施形態の場合には、図4に示すような長方形キャビティを有する焼結用型(図示せず)内に、図5ないし図9に示す実施形態の場合には、図11(b)に符号「124」で示すものと同じ台形形状断面のキャビティを有する焼結用型(図示せず)内に、それぞれ焼結処理用シート片125を装填し、型を閉じて、図4又は図11の紙面に垂直の方向である焼結処理用シート片125の長さ方向に加圧しながら焼結を行う。図5ないし図9に示す実施形態の場合について、特に詳細に述べると、焼結処理用シート片125から形成される希土類永久磁石を、図6に示す磁石挿入用スロット24に収容したときにロータコア21の軸方向と同方向となる方向に、焼結処理用シート片125を長さ方向に加圧した状態で焼結する一軸加圧焼結が用いられる。いずれの実施形態においても、加圧焼結技術としては、例えば、ホットプレス焼結、熱間静水圧加圧(HIP)焼結、超高圧合成焼結、ガス加圧焼結、放電プラズマ(SPS)焼結等、公知の技術のいずれを採用してもよい。特に、一軸方向に加圧可能であるホットプレス焼結を用いることが好ましい。なお、ホットプレス焼結で焼結を行う場合には、加圧圧力を、例えば0.01MPa~100MPaとし、数Pa以下の真空雰囲気で900℃~1000℃、例えば940℃まで、3℃/分~30℃/分、例えば10℃/分の昇温速度で温度上昇させ、その後、加圧方向の10秒当たりの変化率が0になるまで保持することが好ましい。この保持時間は、通常は5分程度である。次いで冷却し、再び300℃~1000℃に昇温して2時間、その温度に保持する熱処理を行う。このような焼結処理の結果、焼結処理用シート片125から、本発明の希土類永久磁石形成用焼結体1が製造される。このように、焼結処理用シート片125を長さ方向に加圧した状態で焼結する一軸加圧焼結法によれば、焼結処理用シート片125内の磁石材料粒子に与えられた磁化容易軸の配向乱れを抑制することが可能である。この焼結段階で、焼結処理用シート片125内の樹脂材料は、殆どすべてが蒸散し、残存樹脂量は、あったとしても非常に微量なものとなる。
 なお、焼結処理により、樹脂が蒸散させられた状態の前記磁石材料粒子が互いに焼結して焼結体を形成する。典型的には、焼結処理により、前記磁石材料粒子における、希土類濃度の高い希土類リッチ相が溶融し、前記磁石材料粒子間に存在した空隙を埋めながら、R2Fe14B組成(Rはイットリウムを含む希土類元素)を有する主相と希土類リッチ相とからなる緻密な焼結体を形成する。
 図5ないし図9に示す実施形態の場合、希土類永久磁石形成用焼結体1は、図2に示すロータコア21の磁石挿入用スロット24内に、未着磁の状態で挿入される。その後、このスロット24内に挿入された希土類永久磁石形成用焼結体1に対して、その中に含まれる磁石材料粒子の磁化容易軸すなわちC軸に沿って着磁を行う。具体的に述べると、ロータコア21の複数のスロット24に挿入された複数の希土類永久磁石形成用焼結体1に対して、ロータコア21の周方向に沿って、N極とS極とが交互に配置されるように着磁を行う。その結果、永久磁石1を製造することが可能となる。なお、希土類永久磁石形成用焼結体1の着磁には、例えば着磁コイル、着磁ヨーク、コンデンサー式着磁電源装置等の公知の手段のいずれを用いてもよい。また、希土類永久磁石形成用焼結体1は、スロット24に挿入する前に着磁を行って、希土類永久磁石とし、この着磁された磁石をスロット24に挿入するようにしてもよい。
 上記に説明した希土類永久磁石形成用焼結体の製造方法によれば、磁石材料粒子とバインダーとを混合した混合物である複合材料を成形し、複合材料の軟化点を超える温度に加熱しながら加工用シート片に外部から平行磁場を印加することによって、磁化容易軸を高精度で所望の方向に配向させることが可能となる。このため、配向方向のバラつきも防止でき、磁石の性能を高めることができる。さらに、バインダーとの混合物を成形するので、圧粉成形等を用いる場合と比較して、配向後に磁石粒子が回動することもなく、配向度を一層向上させることが可能となる。磁石材料粒子とバインダーとの混合物である複合材料に対して磁場を印加して配向を行う方法によれば、磁場形成のための電流を通す巻き線の巻き数を適宜増やすことができるため、磁場配向を行う際の磁場強度を大きく確保することができ、かつ静磁場で長時間の磁場印加を施すことができるので、バラつきの少ない高い配向度を実現することが可能となる。そして、図5なし図9に示す実施形態のように、配向後に配向方向を補正するようにすれば、高配向でバラつきの少ない配向を確保することが可能となる。
 このように、バラつきの少ない高配向度が実現できるということは、焼結による収縮のバラつきの低減に繋がる。したがって、焼結後の製品形状の均一性を確保することができる。その結果、焼結後の外形加工に対する負担が軽減され、量産の安定性が大きく向上することが期待できる。また、磁場配向の工程では、磁石粒子とバインダーとの混合物である複合材料に対して磁場を印加するとともに、図5ないし図9に示す実施形態の場合には、磁場の印加された複合材料を最終形状の成形体へと変形することによって磁化容易軸の方向を操作して、磁場配向が行われる。したがって、一旦磁場配向された複合材料を変形することによって、配向方向を補正し、減磁対象領域に向けて磁化容易軸を適切に集束させるように配向することが可能となる。その結果、複雑な配向を与える場合にも、高精度で、バラつきの少ない配向を達成することが可能になる。
 以下、本発明の方法の実施例を説明する。
 以下に記載する実施例では、下記表1に示す製品番号の材料を使用した。
Figure JPOXMLDOC01-appb-T000002
 〔実施例1〕
 実施例1として、図4に示す形状の希土類磁石形成用焼結体を、以下に述べる手順で作成した。
 <粗粉砕>
 ストリップキャスティング法により得られた、合金組成A(Nd:27.00wt%、Pr:4.60wt%、B:1.00wt%、Ga:0.10wt%、Nb:0.2wt%、Co:2.0wt%、Cu:0.10wt%、残部Fe、その他不可避不純物を含む)の合金を、室温にて水素を吸蔵させ、0.85MPaで1日保持した。その後、液化Arで冷却しながら、0.2MPaで1日保持することにより、水素解砕を行った。
 <微粉砕>
 粗粉砕された合金粗粉100重量部に対して、カプロン酸メチル1重量部を混合した後、ヘリウムジェットミル粉砕装置(装置名:PJM-80HE、NPK製)により粉砕を行った。粉砕した合金粒子の捕集は、サイクロン方式により分離回収し、超微粉は除去した。粉砕時の供給速度を1kg/hとし、Heガスの導入圧力は0.6MPa、流量1.3m3/min、酸素濃度1ppm以下、露点-75℃以下であった。得られた磁石材料粒子の平均粒径は、1.1μmであった。
 <混練>
 粉砕後の合金粒子100重量部に対して、1-オクタデシン1.7重量部、1-オクタデセン4.3重量部、およびポリイソブチレン(PIB)B150のトルエン溶液(8重量%)を62.5重量部加え、ミキサー(装置名:TX-0.5、井上製作所製)により60℃で1時間加熱撹拌を行った。トルエン留去後、真空下で2時間混練を行ない、粘土状の複合材料を作製した。
 <磁場配向>
 この複合材料を幅50mm、長さ37mm、厚み3mmのキャビティを有するステンレス鋼(SUS)製の型に充填し充填した後、超伝導ソレノイドコイル(装置名:JMTD-12T100、JASTEC製)により、外部から平行磁場を印加して配向処理を行った。配向は、外部磁場の強さ7T、配向処理温度80℃の条件のもとで、10分間行った。外部磁場は、キャビティの厚み方向に対して、平行となるように印加した。配向処理温度に保持したまま、ソレノイドコイルから取り出し、その後、脱磁処理を施した。脱磁処理は、-0.2Tから+0.18T、さらに-0.16Tへと強度を変化させながら、ゼロ磁場へと漸減させることにより行った。
 <仮焼(脱炭素)工程>
 配向処理後の複合材料に対して、0.8Mpaの水素加圧雰囲気下で、脱炭素処理を行った。この処理においては、室温から480℃まで、0.95℃/minの昇温速度で昇温し、480℃に2時間保持した。このときの水素流量は2~3L/minであった。
 <焼結>
 脱炭素処理の後、真空下において昇温速度8℃/minで980℃まで昇温し、この温度に2時間保持することにより、焼結を行った。
 <焼鈍>
 得られた焼結体を、室温から500℃まで0.5時間かけて昇温した後、500℃で1時間保持し、その後急冷することにより焼鈍を行って、希土類磁石形成用焼結体を得た。
 〔実施例2〕
 表2~4に記載の条件に変更したこと以外は、実施例1と同様の操作を行い、希土類磁石形成用焼結体を得た。
 ここで、1-オクテン処理ありと記載された実施例2では、ジェットミル粉砕後に、磁石材料粒子をバインダー組成と混合する前に、該磁石材料粒子100重量部に対し、1-オクテンを40重量部添加し、ミキサー(装置名:TX-0.5、井上製作所製)によって、60℃で1時間撹拌した後、1-オクテンとその反応物を真空留去することで、磁粉の脱水素処理を行った。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 <焼結粒子径>
 得られた希土類磁石形成用焼結体の焼結粒子径は、焼結体の表面を、SiCペーパー研磨、バフ研磨、及び、ミリングにより表面処理をした後に、EBSD検出器(AZtecHKL EBSD NordlysNano Integrated 、Oxford Instruments製)を備えたSEM(装置名:JSM-7001F、日本電子製)、もしくは、EDAX社製のEBSD検出器(Hikari High Speed EBSD Detector)を備えた走査電子顕微鏡(ZEISS社製SUPRA40VP)により分析した。視野角は粒子個数が少なくとも200個以上入るように設定し、ステップは0.1~1μmとした。
 分析データはChanel5(Oxford Instruments製)、もしくは、OIM解析ソフト ver5.2(EDAX社製)により解析を行い、粒界の判断は結晶方位のズレ角度が2°以上となる部分を粒界層として、データ処理を行った。主相のみを抽出し、その円相当径の個数平均値を焼結粒子径とした。
 <磁気特性評価>
 得られた各焼結体に対して研磨を行い、BHトレーサー(TRF-5BH-25、東英工業製)を使用して、残留磁束密度(Br)、角型度(Hk/Hcj)、磁気エネルギー積(BH)maxを測定した。
 <配向角バラツキ角度(Δθの半値幅)の測定>
 得られた焼結体の配向角度は、焼結体の表面をSiCペーパー研磨、バフ研磨、及びミリングにより表面処理をした後、EBSD検出器(AZtecHKL EBSD NordlysNano Integrated 、Oxford Instruments製)を備えたSEM(JSM-7001F、日本電子製)、もしくは、EDAX社製のEBSD検出器(Hikari High Speed EBSD Detector)を備えた走査電子顕微鏡(ZEISS社製SUPRA40VP)により分析した。なお、EBSDの分析は、35μmの視野角で、0.2μmピッチにて行った。分析精度を向上させるために、少なくとも30個の焼結粒子が入るように分析を行った。
 EBSD分析により図3(b)に示すような極点図を作成し、その極点図において、C軸(001)が最も高頻度で向いている方向をその分析点における配向ベクトルとした。
 解析ソフトであるChanel5(Oxford Instruments製)による操作により、上記配向ベクトルが極点図の中心となるよう(0°の方向)に補正した極点図を作成後、0°方向からのC軸(001)のずれ角度をピクセル単位で算出し、当該ずれ角度の頻度を90°から0°にかけて積算した累積比率をグラフにプロットし、累計比率が50%となる角度を「配向角バラツキ角度(Δθの半値幅) 」とした。
Figure JPOXMLDOC01-appb-T000006
 比較例として、非特許文献1に記載の希土類磁石(比較例1及び2)、及び、特開2001‐210508号公報(特許文献10)に記載の希土類磁石(比較例3)の特性を調べた。その結果を表6に示す。この表6から、非特許文献1に記載の磁石に対しては、残留磁束密度Brに加えて、最大磁気エネルギー積(BH)maxでも磁気特性として優位な差があることが確認された。また、特許請求の範囲文献10に記載の磁石に対しても、最大磁気エネルギー積(BH)maxで磁気特性として優位な差があることが分かる。なお、特許請求の範囲文献10には、残留磁束密度Brは記載されていない。
Figure JPOXMLDOC01-appb-T000007
 実施例1、2では、配向角バラツキ角度の指標であるΔθの半値幅が、8°台であり、非常に配向角のバラツキの小さい希土類焼結磁石が得られた。このように、配向角バラツキ角度を抑制した結果、残留磁束密度Brが向上し、かつ、磁石から取り出すことができるエネルギーの指標である(BH)maxも向上していた。因みに、非特許文献1に記載された希土類焼結磁石は、Brが1.43T、(BH)maxが49.0MGOeであり、本発明により得られる磁石は、従来最も高性能と考えられていた磁石よりも優れた特性を有することが確認できた。
1・・・希土類永久磁石形成用焼結体
2・・・上辺
3・・・下辺
4、5・・・端面
6・・・中央領域
7、8・・・端部領域
20・・・電動モータ
21・・・ロータコア
21a・・・周面
22・・・エアギャップ
23・・・ステータ
23a・・・ティース
23b・・・界磁コイル
24・・・磁石挿入用スロット
24a・・・直線状中央部分
24b・・・傾斜部分
30・・・希土類磁石
117・・・複合材料
118・・・支持基材
119・・・グリーンシート
120・・・スロットダイ
123・・・加工用シート片
125・・・焼結処理用シート片
C・・・磁化容易軸
θ・・・傾斜角

Claims (5)

  1.  希土類物質を含み各々が磁化容易軸を有する多数の磁石材料粒子が一体に焼結された構成を有する希土類磁石形成用焼結体であって、
     長さ方向の長さ寸法と、該長さ方向に直角な横方向の断面における、第1の表面と第2の表面との間の厚み方向の厚み寸法と、該厚み方向に対し直交する幅方向の幅寸法とを有する、立体形状に形成されており、
     前記厚み方向と前記幅方向とを含む面内の任意の位置にある、前記磁石材料粒子を30個以上含む4角形区画内におけるすべての前記磁石材料粒子のそれぞれの、予め設定された基準線に対する磁化容易軸の配向角のうち、最も頻度が高い配向角として定義される配向軸角度に対する、前記磁石材料粒子の各々の磁化容易軸の配向角の差に基づいて定められる配向角バラツキ角度が、9.0°以下である
    ことを特徴とする希土類磁石形成用焼結体。
  2.  希土類物質を含み各々が磁化容易軸を有する多数の磁石材料粒子が一体に焼結された構成を有する希土類磁石形成用焼結体であって、
     長さ方向の長さ寸法と、該長さ方向に直角な横方向の断面における、第1の表面と第2の表面との間の厚み方向の厚み寸法と、該厚み方向に対し直交する幅方向の幅寸法とを有する、立体形状に形成されており、
     前記厚み方向と前記幅方向とを含む面内の任意の位置にある、一辺が35μmの正方形区画内におけるすべての前記磁石材料粒子のそれぞれの、予め設定された基準線に対する磁化容易軸の配向角のうち、最も頻度が高い配向角として定義される配向軸角度に対する、前記磁石材料粒子の各々の磁化容易軸の配向角の差に基づいて定められる配向角バラツキ角度が、9.0°以下である
    ことを特徴とする希土類磁石形成用焼結体。
  3.  請求項1又は請求項2に記載した希土類磁石形成用焼結体であって、前記磁石材料粒子の平均粒径が3μm以下であることを特徴とする希土類磁石形成用焼結体。
  4.  請求項1から請求項3までのいずれか1項に記載した希土類磁石形成用焼結体であって、複数の前記正方形区画のそれぞれにおける前記配向軸角度の差が10°以下であることを特徴とする希土類磁石形成用焼結体。
  5.  請求項1から請求項4までのいずれか1項に記載した希土類磁石形成用焼結体に着磁することによって形成された希土類焼結磁石。
PCT/JP2016/072393 2015-07-31 2016-07-29 希土類磁石形成用焼結体及び希土類焼結磁石 WO2017022685A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017532585A JPWO2017022685A1 (ja) 2015-07-31 2016-07-29 希土類磁石形成用焼結体及び希土類焼結磁石

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-151763 2015-07-31
JP2015151763 2015-07-31

Publications (1)

Publication Number Publication Date
WO2017022685A1 true WO2017022685A1 (ja) 2017-02-09

Family

ID=57943077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072393 WO2017022685A1 (ja) 2015-07-31 2016-07-29 希土類磁石形成用焼結体及び希土類焼結磁石

Country Status (3)

Country Link
JP (1) JPWO2017022685A1 (ja)
TW (1) TWI676998B (ja)
WO (1) WO2017022685A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI832207B (zh) * 2022-04-13 2024-02-11 李秀銀 磁石、磁石用漿料及其製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08167515A (ja) * 1994-12-09 1996-06-25 Sumitomo Special Metals Co Ltd R−Fe−B系永久磁石材料の製造方法
WO2015015586A1 (ja) * 2013-07-31 2015-02-05 株式会社日立製作所 永久磁石材料
JP2015094014A (ja) * 2013-11-13 2015-05-18 日東電工株式会社 加圧焼結装置及び加圧焼結方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08167515A (ja) * 1994-12-09 1996-06-25 Sumitomo Special Metals Co Ltd R−Fe−B系永久磁石材料の製造方法
WO2015015586A1 (ja) * 2013-07-31 2015-02-05 株式会社日立製作所 永久磁石材料
JP2015094014A (ja) * 2013-11-13 2015-05-18 日東電工株式会社 加圧焼結装置及び加圧焼結方法

Also Published As

Publication number Publication date
TW201717224A (zh) 2017-05-16
JPWO2017022685A1 (ja) 2018-05-24
TWI676998B (zh) 2019-11-11

Similar Documents

Publication Publication Date Title
KR102453981B1 (ko) 희토류 자석 형성용 소결체 및 희토류 소결 자석
JP6695857B2 (ja) 非平行の磁化容易軸配向を有する希土類永久磁石形成用焼結体の製造方法
KR102421822B1 (ko) 희토류 영구자석 및 희토류 영구자석을 갖는 회전기
JP6560832B2 (ja) 希土類焼結磁石形成用焼結体及びその製造方法
JP2021106271A (ja) 希土類磁石形成用焼結体及び希土類焼結磁石
US10629348B2 (en) Permanent magnet unit, rotating machine having permanent magnet unit, and method for manufacturing permanent magnet unit
JP6786476B2 (ja) 希土類永久磁石形成用焼結体及び希土類永久磁石を有する回転電機
WO2017022685A1 (ja) 希土類磁石形成用焼結体及び希土類焼結磁石
US20200161032A1 (en) Rare-earth sintered magnet and rare-earth sintered magnet sintered body for use with same, and magnetic field applying device usable for manufacturing same
JP2015207687A (ja) 永久磁石及び永久磁石の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16832964

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017532585

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16832964

Country of ref document: EP

Kind code of ref document: A1