KR102354987B1 - 온도에 따라 셀프 리프레쉬 사이클을 제어하는 리프레쉬 방법 - Google Patents

온도에 따라 셀프 리프레쉬 사이클을 제어하는 리프레쉬 방법 Download PDF

Info

Publication number
KR102354987B1
KR102354987B1 KR1020150147550A KR20150147550A KR102354987B1 KR 102354987 B1 KR102354987 B1 KR 102354987B1 KR 1020150147550 A KR1020150147550 A KR 1020150147550A KR 20150147550 A KR20150147550 A KR 20150147550A KR 102354987 B1 KR102354987 B1 KR 102354987B1
Authority
KR
South Korea
Prior art keywords
refresh
self
temperature
abr
clock signal
Prior art date
Application number
KR1020150147550A
Other languages
English (en)
Other versions
KR20170047105A (ko
Inventor
두수연
김철
오태영
박근태
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020150147550A priority Critical patent/KR102354987B1/ko
Priority to US15/224,683 priority patent/US9704558B2/en
Publication of KR20170047105A publication Critical patent/KR20170047105A/ko
Application granted granted Critical
Publication of KR102354987B1 publication Critical patent/KR102354987B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/406Management or control of the refreshing or charge-regeneration cycles
    • G11C11/40626Temperature related aspects of refresh operations
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/406Management or control of the refreshing or charge-regeneration cycles
    • G11C11/40603Arbitration, priority and concurrent access to memory cells for read/write or refresh operations
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/406Management or control of the refreshing or charge-regeneration cycles
    • G11C11/40615Internal triggering or timing of refresh, e.g. hidden refresh, self refresh, pseudo-SRAMs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/4076Timing circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/408Address circuits
    • G11C11/4082Address Buffers; level conversion circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/408Address circuits
    • G11C11/4087Address decoders, e.g. bit - or word line decoders; Multiple line decoders
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/409Read-write [R-W] circuits 
    • G11C11/4091Sense or sense/refresh amplifiers, or associated sense circuitry, e.g. for coupled bit-line precharging, equalising or isolating
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/04Arrangements for writing information into, or reading information out from, a digital store with means for avoiding disturbances due to temperature effects
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/22Read-write [R-W] timing or clocking circuits; Read-write [R-W] control signal generators or management 
    • G11C7/222Clock generating, synchronizing or distributing circuits within memory device
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/22Read-write [R-W] timing or clocking circuits; Read-write [R-W] control signal generators or management 
    • G11C7/225Clock input buffers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/406Management or control of the refreshing or charge-regeneration cycles
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/406Management or control of the refreshing or charge-regeneration cycles
    • G11C11/40618Refresh operations over multiple banks or interleaving

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Dram (AREA)

Abstract

온도에 따라 셀프 리프레쉬 사이클을 제어하는 메모리 장치의 리프레쉬 방법이 개시된다. 메모리 장치의 리프레쉬 방법은, 온도에 따라 제1 셀프 리프레쉬와 제2 셀프 리프레쉬를 수행하고, 제2 셀프 리프레쉬의 진입과 동시에 모든 뱅크 리프레쉬(ABR) 동작이 수행되지 않도록 셀프 리프레쉬 주기를 제어한다. 제1 셀프 리프레쉬 동안 모든 뱅크 리프레쉬(ABR) 동작이 수행되지 않은 구간과 제2 셀프 리프레쉬 동안 ABR 동작이 수행되지 않은 구간을 합한 구간이 셀프 리프레쉬 주기에 상응하는 경우, 제3 셀프 리프레쉬의 진입 시점에서 ABR 동작을 수행한다.

Description

온도에 따라 셀프 리프레쉬 사이클을 제어하는 리프레쉬 방법 {Refresh method for controlling self refresh cycle with temperature}
본 발명은 반도체 장치에 관한 것으로서, 더욱 상세하게는 메모리 장치의 셀프 리프레쉬에 따른 모든 뱅크 리프레쉬(ABR) 동작 사이클을 온도에 따라 적응적으로 변화시키는 리프레쉬 방법에 관한 것이다.
DRAM(Dynamic Random Access Memory)과 같은 휘발성 메모리 장치는 저장된 데이터를 유지하기 위하여 리프레쉬 동작을 수행한다. DRAM은 주기적으로 인가되는 리프레쉬 커맨드에 응답하여 메모리 셀 로우들을 리프레쉬하는 오토 리프레쉬와, 셀프 리프레쉬 진입 및 탈출 커맨드(Self Refresh Enter: SRE, Self Refresh Exit: SRX)에 응답하여 빌트-인 타이머를 이용하여 메모리 셀 로우들을 리프레쉬하는 셀프 리프레쉬를 수행한다. 셀프 리프레쉬 마다 모든 뱅크 리프레쉬(All Bank Rerefsh: ABR)로 동작되고 셀프 리프레쉬 진입 커맨드(SRE)가 자주 발행되는 경우, DRAM 셀의 데이터 리턴션에 필요한 시간보다 더 자주 리프레쉬 동작이 수행되어 리프레쉬 전력 소비가 커지고, 이로 인해 DRAM 성능이 저하될 수 있다.
본 발명의 목적은 리프레쉬 전력 소비를 줄이기 위하여 메모리 장치의 온도에 따라 셀프 리프레쉬 사이클을 제어하는 리프레쉬 방법을 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명의 실시예들에 따른 메모리 장치의 리프레쉬 방법은, 셀프 리프레쉬 진입 커맨드와 셀프 리프레쉬 탈출 커맨드에 응답하여 리프레쉬 클럭 신호를 생성하는 단계와, 리프레쉬 클럭 신호에 따라 메모리 셀 로우들을 리프레쉬하는 셀프 리프레쉬를 수행하는 단계를 포함한다. 셀프 리프레쉬는 메모리 장치 내부의 온도에 따라 제1 셀프 리프레쉬와 제2 셀프 리프레쉬를 수행하고, 제2 셀프 리프레쉬의 진입과 동시에 모든 뱅크 리프레쉬(ABR) 동작이 수행되지 않도록 셀프 리프레쉬 주기를 제어한다.
상기 목적을 달성하기 위하여, 본 발명의 실시예들에 따른 메모리 장치의 리프레쉬 방법은, 제1 온도에 따라 제1 셀프 리프레쉬를 수행하는 단계, 제2 온도에 따라 제2 셀프 리프레쉬를 수행하는 단계, 그리고 제1 셀프 리프레쉬 동안 모든 뱅크 리프레쉬(ABR) 동작이 수행되지 않은 구간과 제2 셀프 리프레쉬 동안 ABR 동작이 수행되지 않은 구간을 합한 구간이 셀프 리프레쉬 주기에 상응하는 경우, 제3 셀프 리프레쉬의 진입 시점에서 ABR 동작을 수행한다.
본 발명의 실시예들에 따른 메모리 장치의 리프레쉬 방법은, 온도에 따라 서로 다른 주기로 생성되는 리프레쉬 클럭 신호에 기초하여 셀프 리프레쉬의 ABR 동작을 수행함으로써, 셀프 리프레쉬의 ABR 사이클이 변경되고 셀프 리프레쉬의 진입과 동시에 ABR 동작이 수행되지 않게 되어, 리프레쉬 전류 및 리프레쉬 전력 소모를 줄일 수 있다.
도 1은 본 발명의 실시예들에 따른 리프레쉬 방법을 수행하는 메모리 장치를 설명하는 도면이다.
도 2는 메모리 장치의 과도한 리프레쉬 동작을 설명하는 도면이다.
도 3은 본 발명의 실시예에 따른 메모리 장치의 리프레쉬 방법을 설명하는 플로우챠트이다.
도 4 및 도 5는 본 발명의 실시예에 따른 셀프 리프레쉬의 ABR 사이클을 변경하는 리프레쉬 방법을 설명하는 도면들이다.
도 6은 본 발명의 실시예에 따른 셀프 리프레쉬의 ABR 사이클을 변경하는 리프레쉬 방법을 설명하는 타이밍 다이어그램이다.
도 7 및 도 8은 본 발명의 실시예에 따른 셀프 리프레쉬의 ABR 사이클을 변경하는 리프레쉬 방법을 설명하는 도면들이다.
도 9a 내지 도 9e는 본 발명의 실시예에 따른 리프레쉬 제어 회로를 설명하는 도면들이다.
도 10은 본 발명의 실시예에 따른 메모리 장치의 리프레쉬 방법을 설명하는 타이밍 다이어그램이다.
도 11은 본 발명의 실시예들에 따른 리프레쉬 블락을 포함하는 메모리 장치를 모바일 시스템에 응용한 예를 나타내는 블록도이다.
도 12는 본 발명의 실시예들에 따른 리프레쉬 블락을 포함하는 메모리 장치를 컴퓨팅 시스템에 응용한 예를 나타내는 블록도이다.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 대해 상세히 설명한다. 본 발명의 실시예는 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위하여 제공되는 것이다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용한다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 기하기 위하여 실제보다 확대하거나 축소하여 도시한 것이다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
반도체 메모리 장치, 예컨대 DRAM은 유한 데이터 리텐션(finite data retention) 특성을 갖는 메모리 장치이다. DRAM의 공정 스케일링이 지속됨에 따라 셀 커패시터의 커패시턴스 값이 작아지고 있다. 이에 따라, 비트 에러율 (BER: Bit Error Rate)이 증가함으로써, 메모리 셀에 저장된 데이터의 신뢰성이 저하될 수 있다. 이를 방지하기 위하여, DRAM은 메모리 셀에 저장된 데이터를 유지하기 위한 리프레쉬 동작을 수행한다.
DRAM은 독출 및 기입 동작을 포함하는 노멀 동작을 수행함에 따라 내부 온도가 상승할 수 있다. 노멀 동작 후, 셀프 리프레쉬 진입 커맨드(SRE)에 따라 수행되는 셀프 리프레쉬의 시작 시점에서의 제1 온도와 셀프 리프레쉬 중간에서의 제2 온도는 다를 수 있다. 제2 온도는 제1 온도 보다 낮을 수 있다. DRAM은 셀프 리프레쉬에 작용하는 리프레쉬 클럭 신호(POSC)를 이용하여 온도에 따라 셀프 리프레쉬 주기(tSREFI)를 다르게 설정할 수 있다. 본 발명의 실시예들에서는 리프레쉬 클럭 신호(POSC)를 이용하여, 셀프 리프레쉬 마다 모든 뱅크 리프레쉬(ABR)로 동작되지 않도록 셀프 리프레쉬에 따른 ABR 리프레쉬 사이클을 제어하는 리프레쉬 방법을 제안한다.
도 1은 본 발명의 실시예들에 따른 리프레쉬 방법을 수행하는 메모리 장치를 설명하는 도면이다.
도 1을 참조하면, 메모리 장치(100)는 반도체 소자를 기반으로 하는 저장 장치일 수 있다. 예시적으로, 메모리 장치(100)는 DRAM, SDRAM (Synchronous DRAM), DDR SDRAM (Double Data Rate SDRAM), LPDDR SDRAM (Low Power Double Data Rate SDRAM), GDDR SDRAM (Graphics Double Data Rate SDRAM), DDR2 SDRAM, DDR3 SDRAM, DDR4 SDRAM 등과 같은 동적 랜덤 억세스 메모리일 수 있다.
메모리 장치(100)는 메모리 셀 어레이(110), 로우 디코더(120), 센스 앰프부(130), 커맨드 디코더(140), 그리고 리프레쉬 블락(150)을 포함한다.
메모리 셀 어레이(110)는 제1 내지 제4 뱅크 어레이들(110a, 110b, 110c, 110d)을 포함할 수 있다. 제1 내지 제4 뱅크 어레이들(110a, 110b, 110c, 110d) 각각은 행들 및 열들로 배열되는 매트릭스 형태로 제공되는 복수의 메모리 셀들(MC)을 포함한다. 제1 내지 제4 뱅크 어레이들(110a, 110b, 110c, 110d) 각각은 메모리 셀들(MC)과 연결되는 복수개의 워드라인들(WL)과 복수개의 비트라인들(BL)을 포함한다. 복수의 워드라인들(WL)은 메모리 셀들(MC)의 행들과 연결되고, 복수의 비트라인들(BL)은 메모리 셀들(MC)의 열들과 연결될 수 있다. 하나의 워드라인(WL)에 연결된 메모리 셀들(MC)의 로우를 메모리 셀 로우라고 칭할 수 있다.
로우 디코더(120)는 제1 내지 제4 뱅크 어레이들(110a, 110b, 110c, 110d)에 각각 연결된 제1 내지 제4 뱅크 로우 디코더들(120a, 120b, 120c, 120d)을 포함할 수 있다. 제1 내지 제4 뱅크 로우 디코더들(120a, 120b, 120c, 120d) 각각은 어드레스 버퍼로부터 제공되는 해당 뱅크의 로우 어드레스 또는 리프레쉬 블락(150)에서 제공되는 리프레쉬 로우 어드레스를 수신할 수 있다. 제1 내지 제4 뱅크 로우 디코더들(120a, 120b, 120c, 120d)은 로우 어드레스 또는 리프레쉬 로우 어드레스를 디코딩하여, 로우 어드레스 또는 리프레쉬 로우 어드레스에 상응하는 워드라인(WL)을 활성화할 수 있다. 예를 들어, 제1 내지 제4 뱅크 로우 디코더들(120a, 120b, 120c, 120d)은 활성화된 워드라인(WL)으로 워드라인 구동 전압을 인가할 수 있다.
센스 앰프부(130)는 제1 내지 제4 뱅크 어레이들(110a, 110b, 110c, 110d)에 각각 연결된 제1 내지 제4 뱅크 센스 앰프들(130a, 130b, 130c, 130d)을 포함할 수 있다. 제1 내지 제4 뱅크 센스 앰프들(130a, 130b, 130c, 130d)은 제1 내지 제4 뱅크 어레이들(110a, 110b, 110c, 110d)에서 활성화된 워드라인(WL)에 의해 독출되는 데이터를 센싱 및 증폭할 수 있다. 활성화된 워드라인(WL)이 리프레쉬 로우 어드레스에 상응하는 경우, 증폭된 데이터는 메모리 셀(MC)에 제공되어 셀 커패시터에 리스토어됨으로써 리프레쉬된다. 활성화된 워드라인(WL)이 로우 어드레스에 상응하는 경우, 감지 증폭된 독출 데이터는 데이터 입출력 버퍼를 통하여 외부 장치로 제공될 수 있다.
제1 내지 제4 뱅크 어레이들(110a, 110b, 110c, 110d), 제1 내지 제4 뱅크 로우 디코더들(120a, 120b, 120c, 120d) 및 제1 내지 제4 뱅크 센스 앰프들(130a, 130b, 130c, 130d)은 제1 내지 제4 뱅크들(BANK0, BANK1, BANK2, BANK3)을 구성할 수 있다. 본 실시예는 4개의 뱅크들을 포함하는 메모리 장치(100)의 예가 도시되어 있으나, 실시예에 따라, 메모리 장치(100)는 임의의 수의 뱅크들을 포함할 수 있다.
커맨드 디코더(140)는 외부 장치, 예를 들어, 메모리 콘트롤러로부터 커맨드 신호(CMD)를 수신하고 디코딩할 수 있다. 커맨드 디코더(140)는 클럭 인에이블 신호(CKE), 칩 선택 신호(/CS), 로우 어드레스 스트로브 신호(/RAS), 칼럼 어드레스 스트로브 신호(/CAS), 기입 인에이블 신호(/WE) 등의 커맨드 신호(CMD)을 디코딩하여 커맨드 신호(CMD)에 상응하는 제어 신호들을 생성한다.
커맨드 디코더(140)는 셀프 리프레쉬 진입 커맨드(SRE)에 응답하여 셀프 리프레쉬 신호(PSELF)를 생성할 수 있다. 셀프 리프레쉬 신호(PSELF)는 리프레쉬 블락(150)에서 리프레쉬 클럭 신호(POSC)가 생성되도록 하고, 리프레쉬 클럭 신호(POSC)에 따라 메모리 셀 어레이(110) 내 메모리 셀 로우에 연결되는 메모리 셀들(MC)의 데이터를 리프레쉬하는 셀프 리프레쉬가 수행되도록 한다.
리프레쉬 블락(150)은 셀프 리프레쉬 신호(PSELF)에 응답하여 리프레쉬 클럭 신호(POSC)를 생성하고, 리프레쉬 클럭 신호(POSC)를 이용하여 셀프 리프레쉬 주기(tSREFI)를 제어한다. 리프레쉬 블락(150)은 오실레이터(152), 온도 센서(154) 그리고 리프레쉬 제어 회로(156)를 포함한다.
오실레이터(152)는 셀프 리프레쉬 신호(PSELF)에 응답하여 리프레쉬 클럭 신호(POSC)를 생성한다. 온도 센서(154)는 메모리 장치(100)의 온도를 측정하고, 측정된 온도를 온도 정보로서 오실레이터(152)와 리프레쉬 제어 회로(156)에 제공할 수 있다. 실시예에 따라, 온도 센서(154)는 리프레쉬 블락(150)이 아닌 메모리 장치(100) 내 다른 회로 영역에 배치될 수 있다. 실시예에 따라, 메모리 장치(100)의 온도는 외부 장치로부터 제공될 수 있다.
오실레이터(152)는 온도 센서(154)의 온도 정보에 따라 가변되는 주기를 갖는 리프레쉬 클럭 신호(POSC)를 생성하거나, 온도 정보에 상관없이 고정된 주기를 갖는 리프레쉬 클럭 신호(POSC)를 생성할 수 있다. 리프레쉬 클럭 신호(POSC)는 리프레쉬 제어 회로(156)로 제공되어 셀프 리프레쉬 주기(tSREFI)를 제어하는 데 이용될 수 있다.
리프레쉬 제어 회로(156)은 온도 정보에 기초하여 리프레쉬 클럭 신호(POSC)를 수신하고 카운팅 동작을 수행하는 카운터(158)를 포함할 수 있다. 카운터(158)의 출력은 리프레쉬 로우 어드레스로서 제1 내지 제4 뱅크들(BANK0, BANK1, BANK2, BANK3)로 제공될 수 있다. 리프레쉬 제어 회로(156)는 온도 정보에 따라 카운터(158)의 카운트 최대값을 설정할 수 있다. 카운터(158)는 설정된 카운트 최대값까지 리프레쉬 클럭 신호(POSC)를 카운트할 수 있다.
리프레쉬 블락(150)은 고정 주기를 갖는 리프레쉬 클럭 신호(POSC)와 온도에 따라 설정되는 카운트 최대값에 기초하여, 셀프 리프레쉬의 진입과 동시에 모든 뱅크 리프레쉬(ABR) 동작이 수행되지 않도록 제어할 수 있다. 리프레쉬 블락(150)은 온도에 따라 가변되는 주기를 갖는 리프레쉬 클럭 신호(POSC)와 고정된 카운트 최대값에 기초하여, 셀프 리프레쉬의 진입과 동시에 모든 뱅크 리프레쉬(ABR) 동작이 수행되지 않도록 제어할 수 있다. 리프레쉬 블락(150)은 온도에 따라 제1 셀프 리프레쉬와 제2 셀프 리프레쉬를 수행하고, 제1 셀프 리프레쉬 동안 ABR 동작이 수행되지 않은 구간과 제2 셀프 리프레쉬 동안 ABR 동작이 수행되지 않은 구간을 합한 구간이 셀프 리프레쉬 주기에 상응하는 경우, 제3 셀프 리프레쉬의 진입 시점에서 ABR 동작이 수행되도록 제어할 수 있다. 리프레쉬 블락(150)에 의해 셀프 리프레쉬의 ABR 동작 시점이 제어됨으로써, 셀프 리프레쉬 사이클이 가변될 수 있다.
도 2는 메모리 장치의 과도한 리프레쉬 동작을 설명하는 도면이다.
도 2를 참조하면, 메모리 장치, 예컨대, DRAM에서 셀프 리프레쉬와 기입 및 독출 동작의 노멀 동작이 수행될 수 있다. 셀프 리프레쉬는 셀프 리프레쉬 진입 커맨드(SRE)에 응답하여 진입되고, 셀프 리프레쉬 탈출 커맨드(SRX)에 응답하여 종료될 수 있다.
제1 셀프 리프레쉬(Self Refresh_1)에서, SRE 커맨드에 따른 셀프 리프레쉬 진입 시점에서 제1 ABR 동작(ABR1)이 수행되고, 리프레쉬 주기(tREFI) 후에 제2 ABR 동작(ABR2)이 수행될 수 있다. 리프레쉬 주기(tREFI)는, 메모리 장치의 표준에 의해 정의되는 리프레쉬 주기, 예를 들면, 메모리 셀 로우들을 32ms, 64ms 등으로 리프레쉬하도록 설정된 주기를 나타낸다.
제2 ABR 동작(ABR2)에 따른 리프레쉬 동작이 완료되기 전에 SRX 커맨드에 의해 제1 셀프 리프레쉬(Self Refresh_1)가 종료되고, 노멀 동작이 발행될 수 있다. 제2 ABR 동작(ABR2)이 수행된 시간(T1)은 리프레쉬 주기(tREFI) 보다 짧은 시간일 것이다.
노멀 동작 수행 후, 제2 셀프 리프레쉬(Self Refresh_2)에서 SRE 커맨드에 따른 셀프 리프레쉬 진입 시점에서 제3 ABR 동작(ABR3)이 수행되고, 리프레쉬 주기(tREFI) 후에 제4 ABR 동작(ABR3)이 수행될 수 있다. 제1 셀프 리프레쉬(Self Refresh_1)의 제2 ABR 동작(ABR2)이 수행된 시간(T1) 후에, 제2 셀프 리프레쉬(Self Refresh_2)의 제3 ABR 동작(ABR3)이 수행되면, DRAM은 메모리 셀의 데이터 리턴션에 필요한 시간보다 더 자주 리프레쉬 동작이 수행되어, 리프레쉬 전력 소비가 커질 수 있다.
이하에서 설명되는 본 발명의 실시예들에 따른 리프레쉬 방법은 리프레쉬 전력 소비를 줄이기 위하여, 셀프 리프레쉬 진입 마다 ABR 동작이 수행되지 않도록 셀프 리프레쉬에 따른 ABR 사이클을 제어한다. 또한, 도 2에서, 제1 ABR 동작(ABR1) 시점에서의 온도(TEMP0), 제2 ABR 동작(ABR2) 시점에서의 온도(TEMP1), 그리고 제3 ABR 동작(ABR3) 시점에서의 온도(TEMP2)가 서로 다른 점을 고려하여, 온도가 높으면 리프레쉬 주기를 짧게 설정하고, 온도가 낮으면 리프레쉬 주기를 길게 설정할 수 있다면, 리프레쉬 전력 소비를 더욱 줄일 수 있을 것이다.
도 3은 본 발명의 실시예에 따른 메모리 장치의 리프레쉬 방법을 설명하는 플로우챠트이다.
도 1과 연계하여 도 3을 참조하면, 메모리 장치(100)의 온도 센서(154)는 메모리 장치(100)의 온도를 측정하고(S310), 오실레이터(152)는 셀프 리프레쉬 진입 커맨드(SRE)와 셀프 리프레쉬 탈출 커맨드(SRX)에 따른 셀프 리프레쉬 신호(PSELF)에 응답하여 리프레쉬 클럭 신호(POSC)를 생성한다(S320). 실시에에 따라, 메모리 장치(100)의 온도는 메모리 장치(100)의 온도를 감지하는 외부 장치에서 제공될 수 있다. 리프레쉬 제어 회로(156)는 리프레쉬 클럭 신호(POSC)에 따라 메모리 셀 어레이(110)의 메모리 셀 로우들을 리프레쉬하는 셀프 리프레쉬를 수행한다(S330).
셀프 리프레쉬를 수행하는 단계(S330)는 온도에 따라 제1 셀프 리프레쉬와 제2 셀프 리프레쉬를 수행하고, 셀프 리프레쉬 진입 커맨드(SRE)과 동시에 모든 뱅크 리프레쉬(ABR) 동작이 수행되지 않도록 한다. 이에 따라, 셀프 리프레쉬에서 ABR 사이클이 변경될 수 있다. 셀프 리프레쉬의 ABR 사이클 변경은 도 4 내지 도 10에서 구체적으로 설명된다.
도 4 및 도 5는 본 발명의 실시예에 따른 셀프 리프레쉬의 ABR 사이클을 변경하는 리프레쉬 방법을 설명하는 도면들이다. 도 4는 셀프 리프레쉬의 ABR 동작 시점이 변경되는 것을 보여주는 타이밍 다이어그램이고, 도 5는 온도별 리프레쉬 윈도우(tREFW)를 설명하는 그래프이다.
도 4를 참조하면, 제1 셀프 리프레쉬(Self Refresh_1)와 제2 셀프 리프레쉬(Self Refresh_2) 사이에 노멀 동작(Normal Operation)이 수행될 수 있다. 노멀 동작(Normal Operation)은 제1 셀프 리프레쉬(Self Refresh_1)의 제2 ABR 동작(ABR2)에 따른 리프레쉬 처리(refresh processing) 동작이 완료되기 전에 발행될 수 있다. 리프레쉬 처리 동작은 메모리 셀 어레이(110, 도 1)의 모든 뱅크들(BANK0-BANK3)의 모든 메모리 셀 로우들에 대한 리프레쉬가 수행되도록 하는 동작으로 해석될 수 있다. 본 실시예에서 리프레쉬 클럭 신호(POSC)는 제1 및 제2 셀프 리프레쉬(Self Refresh_1, Self Refresh_2) 동안, 메모리 장치(100, 도 1)의 온도에 상관없이 오실레이터(152)에서 고정된 주기로 생성되어 제공될 수 있다.
제1 셀프 리프레쉬(Self Refresh_1) 동안, 제1 ABR 동작(ABR1) 시점에서의 메모리 장치(100, 도 1)의 제1 온도(TEMP0)와 제2 ABR 동작(ABR2) 시점에서의 제2 온도(TEMP1)는 서로 다를 수 있다. 예컨대, 제2 온도(TEMP1)는 제1 온도(TEMP0) 보다 낮을 수 있다. 제2 셀프 리프레쉬(Self Refresh_2)가 진입되는 시점의 제3 온도(TEMP2)는 직전에 수행된 노멀 동작(Normal Operation)으로 인해 높은 온도를 가질 수 있다. 예시적으로, 제3 온도(TEMP2)는 제1 온도(TEMP0) 보다 높을 수 있다.
제1 셀프 리프레쉬(Self Refresh_1)의 제1 ABR 동작(ABR1)에 따라, 리프레쉬 제어 회로(156, 도 1)는 제1 온도(TEMP0)에 따라 리프레쉬 클럭 신호(POSC)를 카운트하면서 모든 뱅크(BANK0-BANK3, 도 1) 내 모든 메모리 셀 로우들에 대한 리프레쉬 처리 동작이 수행되도록 할 수 있다. 제1 온도(TEMP0)에 따라 제1 ABR 동작(ABR1)이 수행된 구간을 제1 리프레쉬 윈도우(N0) 라고 칭하자.
제1 셀프 리프레쉬(Self Refresh_1)의 제2 ABR 동작(ABR2)에 따라, 리프레쉬 제어 회로(156)는 제2 온도(TEMP1)에 따라 카운터(158, 도 1)의 카운트 최대값을 제1 카운트 최대값(K1)으로 설정할 수 있다. 리프레쉬 클럭 신호(POSC)와 제1 카운트 최대값(K1)에 따라 수행되는 제2 ABR 동작(ABR2)은 제2 리프레쉬 윈도우(N1)를 가질 수 있다.
제2 리프레쉬 윈도우(N1)은, 도 5에 도시된 바와 같이, 제1 리프레쉬 윈도우(N0) 보다 넓을 수 있다. 이는 제2 온도(TEMP1)가 제1 온도(TEMP0) 보다 낮기 때문에, 제2 온도(TEMP1)에서는 리프레쉬 주기가 길게 설정될 수 있으므로, 제2 리프레쉬 윈도우(N1)가 넓어진다는 것을 의미한다. 그런데, 도 4에서 보여주는 제2 ABR 동작(ABR2)의 제2 리프레쉬 윈도우(N1)는 제2 ABR 동작(ABR2)에 따른 리프레쉬 처리(refresh processing) 동작이 완료되기 전에 발행된 노멀 동작(Normal Operation)으로 인하여, 제1 ABR 동작(ABR1)의 제1 리프레쉬 윈도우(N0) 보다 작게 나타날 수 있다.
노멀 동작(Normal Operation) 수행 후 제2 셀프 리프레쉬(Self Refresh_2)의 진입에서, 리프레쉬 제어 회로(156)는 제3 온도(TEMP3)에 따라 카운터(158)의 카운트 최대값을 제2 카운트 최대값(K2)으로 설정할 수 있다. 제2 카운트 최대값(K2)는 제1 카운트 최대값(K1)보다 큰 값으로 설정될 수 있다. 이는 제3 온도(TEMP3)가 제2 온도(TEMP2) 보다 높기 때문에, 제3 온도(TEMP3)에서는 리프레쉬 주기가 짧게 설정될 수 있으므로, 제2 카운트 최대값(K2)이 크게 설정된다는 것을 의미한다.
제2 셀프 리프레쉬(Self Refresh_2)의 진입 후, 리프레쉬 클럭 신호(POSC)와 제2 카운트 최대값(K2)에 따라 제3 리프레쉬 윈도우(N2)가 결정될 수 있다. 제3 리프레쉬 윈도우(N2) 동안 제1 셀프 리프레쉬(Self Refresh_1)의 제2 ABR 동작(ABR2)에 따른 리프레쉬 처리 동작이 수행될 수 있다. 이에 따라, 제1 셀프 리프레쉬(Self Refresh_1)의 제2 ABR 동작(ABR2)은 제2 리프레쉬 윈도우(N1)와 제3 리프레쉬 윈도우(N2) 동안 수행될 수 있다.
제2 셀프 리프레쉬(Self Refresh_2)에서 수행될 제3 ABR 동작(ABR3)의 시작 시점은 제1 및 제2 카운트 최대값들(K1, K2)과 제2 및 제3 리프레쉬 윈도우들(N1, N2)에 기초하여 결정될 수 있다. 제3 ABR 동작(ABR3)의 시작 시점은, 제1 카운트 최대값(K1)과 제2 리프레쉬 윈도우(N1)의 곱인 제1 온도 주기값(K1*N1)과 제2 카운트 최대값(K2)과 제3 리프레쉬 윈도우(N2)의 곱인 제2 온도 주기값(K1*N1)의 평균값으로 결정될 수 있다. 즉, 제2 셀프 리프레쉬(Self Refresh_2)의 제3 ABR 동작(ABR3)은 제2 셀프 리프레쉬(Self Refresh_2)의 진입과 동시에 수행되지 않는다.
제2 셀프 리프레쉬(Self Refresh_2)의 제3 ABR 동작(ABR3)에 따라, 리프레쉬 제어 회로(156)는 제4 온도(TEMP3)에 따라 리프레쉬 클럭 신호(POSC)를 카운트하면서 모든 뱅크(BANK0-BANK3, 도 1) 내 모든 메모리 셀 로우들에 대한 리프레쉬 처리 동작을 수행하여 제4 리프레쉬 윈도우(N4)를 가질 수 있다.
제1 및 제2 셀프 리프레쉬들(Self Refresh_1, Self Refresh_2)에서, 제1 ABR 동작(ABR1)에 따른 제1 리프레쉬 윈도우(N0), 제2 ABR 동작(ABR2)에 따른 제2 및 제3 리프레쉬 윈도우(N1, N2), 그리고 제3 ABR 동작(ABR3)에 따른 제4 리프레쉬 윈도우(N3)는 온도에 따라 서로 다를 수 있다. 즉, 셀프 리프레쉬의 ABR 사이클이 변경될 수 있다.
상술한 바와 같이, 고정 주기를 갖는 리프레쉬 클럭 신호(POSC)와 온도에 따라 설정되는 카운트 최대값들(K1, K2)을 이용하여 제2 셀프 리프레쉬(Self Refresh_2)의 제3 ABR 동작 시점이 제1 온도 주기값(K1*N1)과 제2 온도 주기값(K1*N1)의 평균값으로 결정됨에 따라, 제2 셀프 리프레쉬(Self Refresh_2)의 진입과 동시에 ABR 동작이 수행되지 않도록 함으로써, 리프레쉬 전류 및 리프레쉬 전력 소모를 줄일 수 있다.
도 6은 본 발명의 실시예에 따른 셀프 리프레쉬의 ABR 사이클을 변경하는 리프레쉬 방법을 설명하는 타이밍 다이어그램이다.
도 6을 참조하면, 제1 셀프 리프레쉬(Self Refresh_1)와 제2 셀프 리프레쉬(Self Refresh_2) 사이에 노멀 동작(Normal Operation)이 수행되고, 노멀 동작(Normal Operation)은 제1 셀프 리프레쉬(Self Refresh_1)의 제2 ABR 동작(ABR2)에 따른 리프레쉬 처리(refresh processing) 동작이 완료되기 전에 발행될 수 있다.
본 실시예에서, 제1 및 제2 셀프 리프레쉬(Self Refresh_1, Self Refresh_2)에서의 ABR 동작은, 모든 뱅크(BANK0-BANK3, 도 1) 내 모든 메모리 셀 로우들에 대한 리프레쉬 처리 동작이 수행되도록 하기 위하여, 리프레쉬 클럭 신호(POSC)을 초기값 0부터 최대값 n까지 카운트하는 카운터(158, 도1)에 의해 수행될 수 있다. 카운트 최대값은 n으로 모든 메모리 셀 로우들의 수에 상응하는 값으로 고정될 수 있다.
리프레쉬 클럭 신호(POSC)는 제1 및 제2 셀프 리프레쉬(Self Refresh_1, Self Refresh_2) 동안, 메모리 장치(100, 도 1)의 오실레이터(152)에서 온도에 따라 가변되는 주기로 생성되어 제공될 수 있다. 리프레쉬 클럭 신호(POSC)는 높은 온도에서는 짧은 주기를 갖도록 생성되고, 낮은 온도에서는 긴 주기를 갖도록 생성될 수 있다.
제1 셀프 리프레쉬(Self Refresh_1) 동안 제1 ABR 동작(ABR1) 시점에서의 제1 온도(TEMP0)와 제2 ABR 동작(ABR2) 시점에서의 제2 온도(TEMP1), 그리고 노말 동작 수행 후 제2 셀프 리프레쉬(Self Refresh_2)가 진입되는 시점의 제3 온도(TEMP2)를 비교하면, 예컨대, 제2 온도(TEMP1)는 제1 온도(TEMP0) 보다 낮고, 제3 온도(TEMP2)는 제1 온도(TEMP0) 보다 높을 수 있다.
제1 셀프 리프레쉬(Self Refresh_1)의 제1 ABR 동작(ABR1)에 따라, 리프레쉬 제어 회로(156, 도 1)는 제1 온도(TEMP0)에 따라 제1 주기(t1)를 갖는 리프레쉬 클럭 신호(POSC)를 생성할 수 있다. 카운터(158)가 제1 주기(t1)의 리프레쉬 클럭 신호(POSC)를 0 에서 n까지 카운트하면서 출력하는 카운트 출력값에 따라, 모든 뱅크(BANK0-BANK3) 내 모든 메모리 셀 로우들에 대한 리프레쉬 처리 동작이 수행될 수 있다.
제1 셀프 리프레쉬(Self Refresh_1)의 제2 ABR 동작(ABR2)에 따라, 리프레쉬 제어 회로(156)는 제2 온도(TEMP1)에 따라 제2 주기(t2)를 갖는 리프레쉬 클럭 신호(POSC)를 생성할 수 있다. 제2 온도(TEMP1)는 제1 온도(TEMP0) 보다 낮기 때문에, 제2 주기(t2)는 제1 주기(t1) 보다 길게 설정될 수 있다. 이는 낮은 온도에서 리프레쉬 주기를 증가시킬 수 있음을 의미한다. 카운터(158)가 제2 주기(t2)의 리프레쉬 클럭 신호(POSC)를 0 에서 카운트하면서 출력하는 카운트 출력값에 따라, 뱅크(BANK0-BANK3) 내 해당 메모리 셀 로우들에 대한 리프레쉬 동작을 수행할 수 있다. 제2 ABR 동작(ABR2)에 따른 리프레쉬 처리(refresh processing) 동작이 완료되기 전에 발행된 노멀 동작(Normal Operation) 때문에, 카운터(158)는 카운트 출력값, 예컨대, 2에서 카운트 동작을 중단할 수 있다.
노멀 동작(Normal Operation) 수행 후, 제2 셀프 리프레쉬(Self Refresh_2)의 진입 후, 리프레쉬 제어 회로(156)는 제3 온도(TEMP2)에 따라 제3 주기(t3)를 갖는 리프레쉬 클럭 신호(POSC)를 생성할 수 있다. 제3 온도(TEMP2)는 제1 온도(TEMP0) 보다 높기 때문에, 제3 주기(t3)는 제1 주기(t1) 보다 짧게 설정될 수 있다. 이는 높은 온도에서 리프레쉬 주기를 감소시킬 수 있음을 의미한다. 카운터(158)는 제1 셀프 리프레쉬(Self Refresh_1)에서 중단된 카운트 출력값 2에 이어서, 제3 주기(t3)의 리프레쉬 클럭 신호(POSC)를 3부터 다시 카운트하면서 출력하는 카운트 출력값에 따라, 제1 셀프 리프레쉬(Self Refresh_1)의 제2 ABR 동작(ABR2)에 따른 리프레쉬 처리 동작이 수행되도록 할 수 있다.
제2 셀프 리프레쉬(Self Refresh_2)에서 수행될 제3 ABR 동작(ABR3)의 시작 시점은, 제1 셀프 리프레쉬(Self Refresh_1)의 제2 ABR 동작(ABR2)에 따라 제2 주기(t2)의 리프레쉬 클럭 신호(POSC)와 제3 주기(t3)의 리프레쉬 클럭 신호(POSC)를 0 에서 n까지 카운트하면서 수행된 모든 뱅크(BANK0-BANK3) 내 모든 메모리 셀 로우들에 대한 리프레쉬 처리 동작이 수행된 후로 결정될 수 있다. 따라서, 제2 셀프 리프레쉬(Self Refresh_2)의 제3 ABR 동작(ABR3)은 제2 셀프 리프레쉬(Self Refresh_2)의 진입과 동시에 수행되지 않는다.
제2 셀프 리프레쉬(Self Refresh_2)의 제3 ABR 동작(ABR3)에 따라, 리프레쉬 제어 회로(156)는 제4 온도(TEMP3)에 따라 생성되는 제4 주기(t4)의 리프레쉬 클럭 신호(POSC)를 카운트하면서 모든 뱅크(BANK0-BANK3) 내 모든 메모리 셀 로우들에 대한 리프레쉬 처리 동작을 수행할 수 있다.
제1 및 제2 셀프 리프레쉬들(Self Refresh_1, Self Refresh_2)에서, 제1 ABR 동작(ABR1), 제2 ABR 동작(ABR2), 그리고 제3 ABR 동작(ABR3)이 온도에 따라 서로 다른 클럭 주기들(t1, t2, t3, t4)로 생성되는 리프레쉬 클럭 신호(POSC)에 기초하여 해당 ABR 동작의 리프레쉬 처리 동작을 수행함으로써, 셀프 리프레쉬의 ABR 사이클이 변경되고, 제2 셀프 리프레쉬(Self Refresh_2)의 진입과 동시에 ABR 동작이 수행되지 않게 되어 리프레쉬 전류 및 리프레쉬 전력 소모를 줄일 수 있다.
도 7 및 도 8은 본 발명의 실시예에 따른 셀프 리프레쉬의 ABR 사이클을 변경하는 리프레쉬 방법을 설명하는 도면들이다. 도 7은 노멀 동작으로 인하여 중단된 ABR 동작 구간들을 보여주는 타이밍 다이어그램이고, 도 8은 리프레쉬 제어 회로를 설명하는 도면이다.
도 7을 참조하면, 제1 셀프 리프레쉬(Self Refresh_1)의 진입과 동시에 제1 온도(TEMP0)에 따른 제1 주기(t1)의 리프레쉬 클럭 신호(POSC)에 기초하여 제1 ABR 동작(ABR1)이 수행되고, 이어서 제2 온도(TEMP1)에 따른 제2 주기(t2)의 리프레쉬 클럭 신호(POSC)에 기초하여 제2 ABR 동작(ABR2)이 수행될 수 있다.
제1 셀프 리프레쉬(Self Refresh_1)의 제2 ABR 동작(ABR2)의 리프레쉬 처리 동작이 완료되기 전에 제1 노멀 동작(Normal Operation1)의 발행으로 인하여, 제2 ABR 동작(ABR2)이 중단될 수 있다. 제1 셀프 리프레쉬(Self Refresh_1)에서 제2 ABR 동작(ABR2)이 수행된 제1 구간(Ka)에 대한 정보는 리프레쉬 제어 회로(156, 도 1)로 제공될 수 있다.
제1 노멀 동작(Normal Operation1) 수행 후, 제2 셀프 리프레쉬(Self Refresh_2) 진입과 동시에 제3 온도(TEMP2)에 따라 제3 주기(t3)를 갖는 리프레쉬 클럭 신호(POSC)에 기초하여 제3 ABR 동작(ABR3)이 수행될 수 있다. 제3 ABR 동작(ABR3)은 변화된 제4 온도(TEMP3)에 따라 제4 주기(t4)를 갖는 리프레쉬 클럭 신호(POSC)에 기초하여 제3 ABR 동작(ABR3)의 리프레쉬 처리 동작이 수행될 수 있다.
이 후, 제5 온도(TEMP4)에 따른 제5 주기(t5)의 리프레쉬 클럭 신호(POSC)에 기초하여 제4 ABR 동작(ABR4)이 수행될 수 있다. 제4 ABR 동작(ABR4)의 리프레쉬 처리 동작이 완료되기 전에 제2 노멀 동작(Normal Operation2)의 발행으로 인하여 제4 ABR 동작(ABR4)이 중단될 수 있다. 제2 셀프 리프레쉬(Self Refresh_2)에서 제4 ABR 동작(ABR4)이 수행된 제2 구간(Kb)에 대한 정보는 리프레쉬 제어 회로(156)로 제공될 수 있다.
리프레쉬 제어 회로(156)는, 도 8에 도시된 바와 같이, 제1 셀프 리프레쉬의 제1 구간(Ka)과 제2 셀프 리프레쉬의 제2 구간(Kb)을 합하는 가산기(810)을 이용하여 제1 및 제2 구간들(Ka, Kb)의 합이 셀프 리프레쉬 주기(tSREFI)에 도달하면 캐리 출력 신호(Carry_Out)를 출력할 수 있다. 캐리 출력 신호(Carry_Out)는 다음 셀프 리프레쉬 진입과 동시에 ABR 동작이 수행되도록 지시하는 신호이다. 셀프 리프레쉬 주기(tSREFI)는 DRAM 표준에서 규정된 리프레쉬 주기(tREFI) 보다 길게 설정될 수 있다.
리프레쉬 제어 회로(156)에서, 제1 및 제2 구간들(Ka, Kb)의 합이 셀프 리프레쉬 주기(tSREFI)에 도달하지 않으면, 가산기(810)의 출력은 플립플롭(820)으로 제공될 수 있다. 플립플롭(820)은 셀프 리프레쉬 탈출 커맨드(SEX)에 응답하여 가산기(810)의 출력을 입력할 수 있다. 플립플롭(820)의 출력은 가산기(810)의 입력으로 제공될 수 있다.
가산기(810)는 중단된 ABR 동작 구간들(Ka, Kb)과 플립플롭(820)의 출력의 합이 셀프 리프레쉬 주기(tSREFI)에 도달하면, ABR 동작을 지시하는 캐리 출력 신호(Carry_Out)를 출력할 수 있다. 실시예에 따라, 가산기(810)는 중단된 ABR 동작 구간들(Ka, Kb)과 플립플롭(820)의 출력의 합이 셀프 리프레쉬 주기(tSREFI)와는 다른 리프레쉬 주기(tREFI)로 설정된 값에 도달하면, ABR 동작을 지시하는 캐리 출력 신호(Carry_Out)를 출력할 수 있다.
리프레쉬 제어 회로(156)는 캐리 출력 신호(Carry_Out)에 응답하여 제3 셀프 리프레쉬(Self Refresh_3) 진입과 동시에 제5 ABR 동작(ABR5)이 수행되도록 제어할 수 있다.
도 9a 내지 도 9e는 본 발명의 실시예에 따른 리프레쉬 제어 회로를 설명하는 도면들이다. 도 9a는 도 1의 리프레쉬 제어 회로를 설명하는 회로 다이어그램이고, 도 9b는 카운터의 동작을 설명하는 타이밍 다이어그램이고, 도 9c는 온도에 따른 온도 정보를 설명하는 도면이고, 도 9d는 카운트 먹스부의 동작을 설명하는 테이블이고, 도 9e는 가산기의 동작을 설명하는 테이블이다.
도 9a를 참조하면, 리프레쉬 제어 회로(156)는 도 8에서 설명된 가산기(810)와 플립플롭(820)에 연결되는 카운터(158)를 보여준다. 카운터(158)는 클럭 분주기(912), 클럭 래치부(914), 그리고 카운트 먹스부(916)를 포함한다.
클럭 분주기(912)는 리프레쉬 클럭 신호(POSC)를 카운트함으로써, 1배(X1), 2배(X2), 4배(X4), 8배(X8), 16배(X16), 32배(X32) 및 64배(X64)로 분주시킬 수 있다. 클럭 래치부(914)는, 도 9b에 도시된 바와 같이, 클럭 분주기(912)에서 출력되는 분주된 클럭 신호들(X1, X2, X4, X8, X16, X32, X64)을 셀프 리프레쉬 제어 신호(PSRAS)에 응답하여 래치하여 제1 카운트 출력(CNT_P[6:0])으로 출력할 수 있다. 셀프 리프레쉬 제어 신호(PSRAS)는 셀프 리프레쉬 신호(PSELF, 도 1)의 일종으로 해석될 수 있다.
카운트 먹스부(916)는 온도 센서(154, 도 1)에서 제공되는 온도 정보(DT[2:0])에 따라 제2 카운트 출력(CNT[6:0])을 출력할 수 있다. 온도와 온도 정보(DT[2:0]) 사이의 관계는, 도 9c에 도시된 바와 같이, 바이너리(binary) 정보를 데시멀(decimal) 정보로 환산하여, 온도가 높아질수록 온도 정보는 DT=6, 5, 4 순으로 나타낼 수 있다.
카운트 먹스부(916)는 온도 정보 DT=6일 때 X1 내지 X64 분주된 클럭 신호들에 기초하여 7 비트의 제2 카운트 출력(CNT[6:0])이 출력되도록 할 수 있다. 카운트 먹스부(916)는 온도 정보 DT=5일 때 X1 내지 X32 분주된 클럭 신호들에 기초하여 6 비트의 제2 카운트 출력(CNT[5:0])이 출력되도록 하고, 온도 정보 DT=4일 때, X1 내지 X16 분주된 클럭 신호들에 기초하여 5 비트의 제2 카운트 출력(CNT[4:0])이 출력되도록 할 수 있다. 온도 정보(DT[2:0])와 제2 카운트 출력(CNT[6:0]) 사이의 관계는, 온도 정보(DT[2:0])에 따라 선택적으로 분주된 클럭 신호들(X1, X2, X4, X8, X16, X32, X64)이 선택되어, 도 9d의 테이블과 같이 나타낼 수 있다.
가산기(810)는 제1 입력(A)으로 제공되는 제2 카운트 출력(CNT[6:0]) 및 제2 입력(B)으로 제공되는 플립플롭(820)의 출력을 입력하고, 도 9e의 진리표에 따라, 캐리 출력 신호(Carry_Out)를 출력할 수 있다. 가산기(810)와 플립플롭(820)는 도 8에서 설명한 바와 같이, 온도 정보(DT[2:0])에 따라 가변되는 제2 카운트 출력(CNT[6:0])과 플립플롭(820)의 출력의 합이 셀프 리프레쉬 주기(tSREFI)에 도달하면, ABR 동작을 지시하는 캐리 출력 신호(Carry_Out)를 출력할 수 있다. 리프레쉬 제어 회로(156)는 캐리 출력 신호(Carry_Out)에 응답하여 다음 셀프 리프레쉬 진입과 동시에 ABR 동작이 수행되도록 제어할 수 있다.
도 10은 본 발명의 실시예에 따른 리프레쉬 방법을 설명하는 타이밍 다이어그램이다.
도 10을 참조하면, 메모리 장치(100, 도 1)에서 리프레쉬 동작이 셀프 리프레쉬와 오토 리프레쉬로 구분되고, 오토 리프레쉬는 메모리 콘트롤러(이하, `콘트롤러`라고 칭한다)의 리프레쉬 커맨드에 의해 수행되는 노멀 리프레쉬에 속하는 것으로 설명될 수 있다. 셀프 리프레쉬와 노멀 리프레쉬는, 통상적으로 모든 뱅크 리프레쉬(ABR) 되도록 수행될 수 있다.
노멀 리프레쉬 동안 콘트롤러에 의한 ABR 동작들(ABR_N1~ABR_N3)이 수행되고, 셀프 리프레쉬 동안 DRAM 내부적으로 ABR 동작(ABR_S1)이 수행될 수 있다. 메모리 장치(100)는 온도에 따라 가변되는 주기를 갖는 리프레쉬 클럭 신호(POSC)를 이용하여 콘트롤러에 의한 ABR 동작(ABR_N1~ABR_N3)과 DRAM 내부의 ABR 동작(ABR_S1)을 구분할 수 있다. 즉, DRAM 내부의 ABR 동작(ABR_S1) 동안에만 리프레쉬 클럭 신호(POSC)가 생성될 수 있다.
콘트롤러에 의한 ABR 동작들(ABR_N1~ABR_N3)은 리프레쉬 주기(tREFI)로 수행될 수 있다. DRAM 표준에서, 셀프 리프레쉬 탈출(SRX) 커맨드와 셀프 리프레쉬 진입(SRE) 커맨드 사이에 적어도 하나의 엑스트라 리프레쉬(Exra Refresh) 커맨드가 요구될 수 있다. DRAM SRX 커맨드 후에, 리프레쉬 주기(tREFI)에서 노멀 리프레쉬 커맨드에 추가하여, DRAM은 SRE 커맨드 전에 최소한 하나의 엑스트라 리프레쉬(Extra Refresh) 커맨드가 요구된다. 이에 따라, DRAM은 콘트롤러에 의한 엑스트라 ABR 동작(Extra_ABR)을 더 수행하고 콘트롤러에 의한 ABR 동작(ABR_N3)을 수행할 수 있다.
리프레쉬 제어 회로(154, 도 9a)에 의해, 셀프 리프레쉬에서 DRAM 내부의 ABR 동작들이 중단된 구간들의 합이 셀프 리프레쉬 주기(tSREF)에 상응하는지 여부를 나타내는 캐리 출력 신호(Carry_Out)를 출력할 수 있다. 캐리 출력 신호(Carry_Out)가 로직 로우("L")인 경우(Case1), 셀프 리프레쉬 진입과 동시에 ABR 동작을 수행하지 않도록 제어될 수 있다. 캐리 출력 신호(Carry_Out)가 로직 하이("H")인 경우(Case2), 셀프 리프레쉬 진입과 동시에 DRAM 내부의 ABR 동작(ABR_S1)을 수행할 수 있다.
도 11은 본 발명의 실시예들에 따른 리프레쉬 블락을 포함하는 메모리 장치를 모바일 시스템에 응용한 예를 나타내는 블록도이다.
도 11을 참조하면, 모바일 시스템(1100)은 버스(1102)를 통하여 서로 연결되는 어플리케이션 프로세서(1110), 통신(Connectivity)부(1120), 제1 메모리 장치(1130), 제2 메모리 장치(1140), 사용자 인터페이스(1150) 및 파워 서플라이(1160)를 포함할 수 있다. 제1 메모리 장치(1130)는 휘발성 메모리 장치로 설정되고, 제2 메모리 장치(1140)는 비휘발성 메모리 장치로 설정될 수 있다.
실시예에 따라, 모바일 시스템(1100)은 휴대폰(Mobile Phone), 스마트 폰(Smart Phone), 개인 정보 단말기(Personal Digital Assistant; PDA), 휴대형 멀티미디어 플레이어(Portable Multimedia Player; PMP), 디지털 카메라(Digital Camera), 음악재생기(Music Player), 휴대용 게임 콘솔(Portable Game Console), 네비게이션(Navigation)시스템 등과 같은 임의의 모바일 시스템일 수 있다.
어플리케이션 프로세서(1110)는 인터넷 브라우저, 게임, 동영상 등을 제공하는 어플리케이션들을 실행할 수 있다. 실시예에 따라, 어플리케이션 프로세서(1110)는 하나의 프로세서 코어(Single Core)를 포함하거나, 복수의 프로세서 코어들(Multi-Core)을 포함할 수 있다. 예를 들어, 어플리케이션 프로세서(1110)는 듀얼 코어(Dual-Core), 퀴드 코어(Quid-Core), 헥사 코어(Hexa-Core)를 포함할 수 있다. 또한, 실시예에 따라, 어플리케이션 프로세서(1110)는 내부 또는 외부에 위치한 캐시 메모리(Cache Memory)를 더 포함할 수 있다.
통신부(1120)는 외부 장치와 무선 통신 또는 유선 통신을 수행할 수 있다. 예를 들어, 통신부(1120)는 이더넷(Ethernet) 통신, 근거리 자기장 통신(Near Field Communication; NFC), 무선 식별(Radio Frequency Identification; RFID) 통신, 이동 통신(Mobile Telecommunication), 메모리 카드 통신, 범용 직렬 버스(Universal Serial Bus; USB) 통신 등을 수행할 수 있다. 예를 들어, 통신부(1120)는 베이스밴드 칩 셋(Baseband Chipset)을 포함할 수 있고, GSM, GRPS, WCDMA, HSxPA 등의 통신을 지원할 수 있다.
휘발성 메모리 장치인 제1 메모리 장치(1130)는 어플리케이션 프로세서(1110)에 의해 처리되는 데이터를 기입 데이터로서 저장하거나, 동작 메모리(Working Memory)로서 작동할 수 있다. 제1 메모리 장치(1130)는 셀프 리프레쉬 커맨드에 응답하여 리프레쉬 클럭 신호를 생성하고, 리프레쉬 클럭 신호를 이용하여 셀프 리프레쉬의 모든 뱅크 리프레쉬(ABR) 사이클을 제어하는 리프레쉬 블락(1132)을 포함한다. 메모리 장치(1130)는 고정 주기를 갖는 리프레쉬 클럭 신호와 온도에 따라 설정되는 카운트 최대값에 기초하여, 셀프 리프레쉬의 진입과 동시에 모든 뱅크 리프레쉬(ABR) 동작이 수행되지 않도록 제어할 수 있다. 메모리 장치(1130)는 온도에 따라 가변되는 주기를 갖는 리프레쉬 클럭 신호와 고정된 카운트 최대값에 기초하여, 셀프 리프레쉬의 진입과 동시에 모든 뱅크 리프레쉬(ABR) 동작이 수행되지 않도록 제어할 수 있다. 메모리 장치(1130)는 온도에 따라 제1 셀프 리프레쉬와 제2 셀프 리프레쉬를 수행하고, 제1 셀프 리프레쉬 동안 ABR 동작이 수행되지 않은 구간과 제2 셀프 리프레쉬 동안 ABR 동작이 수행되지 않은 구간을 합한 구간이 셀프 리프레쉬 주기에 상응하는 경우, 제3 셀프 리프레쉬의 진입 시점에서 모든 뱅크 리프레쉬(ABR) 동작이 수행되도록 제어할 수 있다.
비휘발성 메모리 장치인 제2 메모리 장치(1140)는 모바일 시스템(1100)을 부팅하기 위한 부트 이미지를 저장할 수 있다. 예를 들어, 비휘발성 메모리 장치(1140)는 EEPROM(Electrically Erasable Programmable Read-Only Memory), 플레시 메모리(Flash Memory), PRAM(Phase Change Random Access Memory), RRAM(Resistance Random Access Memory), NFGM(Nano Floating Gate Memory), PoRAM(Polymer Random Access Memory), MRAM(Magnetic Random Access Memory), FRAM(Ferroelectric Random Access Memory) 또는 이와 유사한 메모리로 구현될 수 있다.
사용자 인터페이스(1150)는 키패드, 터치 스크린과 같은 하나 이상의 입력 장치, 및/또는 스피커, 디스플레이 장치와 하나 이상의 출력 장치를 포함할 수 있다. 파워 서플라이(1160)의 동작 전압을 공급할 수 있다. 또한, 실시예에 따라, 모바일 시스템(1100)은 카메라 이미지 프로세서(Camera Image Processor; CIP)를더 포함할 수 있고, 메모리 카드(Memory Card), 솔리드 스테이트 드라이브(Solid State Drive; SSD), 하드 디스크 드라이브(Hard Disk Drive; HDD), 씨디롬(CD-ROM) 등과 같은 저장 장치를 더 포함할 수 있다.
도 12는 본 발명의 실시예들에 따른 리프레쉬 블락을 포함하는 메모리 장치를 컴퓨팅 시스템에 응용한 예를 나타내는 블록도이다.
도 12를 참조하면, 컴퓨터 시스템(1200)은 프로세서(1210), 입출력 허브(1220), 입출력 컨트롤러 허브(1230), 메모리 장치(1240) 및 그래픽 카드(1250)를 포함한다. 실시예에 따라, 컴퓨터 시스템(1200)은 개인용 컴퓨터(Personal Computer: PC), 서버 컴퓨터(Server Computer), 워크스테이션(Workstation), 노트북(Laptop), 휴대폰(Mobile Phone), 스마트 폰(Smart Phone), 개인 정보 단말기(Personal digital assistant: PDA), 휴대형 멀티미디어 플레이어(Portable Multimedia Player: PMP), 디지털 카메라(Digital Camera), 디지털 TV(Digital Television), 셋-탑 박스(Set-Top Box), 음악 재생기(Music Player), 휴대용 게임 콘솔(Portable game console), 네비게이션(Navigation) 시스템 등과 같은 임의의 컴퓨팅 시스템일 수 있다.
프로세서(1210)는 특정 계산들 또는 태스크들과 같은 다양한 컴퓨팅 기능들을 실행할 수 있다. 예를 들어, 프로세서(1210)는 마이크로 프로세서 또는 중앙 처리 장치(Central Processing Unit: CPU) 일 수 있다. 실시예에 따라, 프로세서(1210)는 하나의 프로세서 코어(Single Core)를 포함하거나, 복수의 프로세서 코어들(Multi-Core)을 포함할 수 있다. 예를 들어, 프로세서(1210)는 듀얼 코어(Dual-Core), 쿼드 코어(Quad-Core), 헥사 코드(Hexa-Core) 등을 포함할 수 있다. 또한, 도 12에는 하나의 프로세서(1210)를 포함하는 컴퓨팅 시스템(1200)이 도시되어 있으나, 실시예에 따라, 컴퓨팅 시스템(1200)은 복수의 프로세서들을 포함할 수 있다. 또한 실시예에 따라, 프로세서(1210)는 내부 또는 외부에 위치한 캐시 메모리(Cache Memory)를 더 포함할 수 있다.
프로세서(1210)는 메모리 장치(1240)의 동작을 제어하는 메모리 콘트롤러(1211)를 포함할 수 있다. 프로세서(1210)에 포함된 메모리 콘트롤러(1211)는 집적 메모리 콘트롤러(Intergrated Memory Controller: IMC) 라 불릴 수 있다. 실시예에 따라, 메모리 콘트롤러(1211)는 입출력 허브(1220) 내에 위치할 수 있다. 메모리 콘트롤러(1211)를 포함하는 입출력 허브(1220)는 메모리 콘트롤러 허브(memory Controller Hub: MCH)라 불릴 수 있다.
메모리 장치(1230)는 셀프 리프레쉬 커맨드에 응답하여 리프레쉬 클럭 신호를 생성하고, 리프레쉬 클럭 신호를 이용하여 셀프 리프레쉬의 모든 뱅크 리프레쉬(ABR) 사이클을 제어하는 리프레쉬 블락(1132)을 포함한다. 메모리 장치(1230)는 고정 주기를 갖는 리프레쉬 클럭 신호와 온도에 따라 설정되는 카운트 최대값에 기초하여, 셀프 리프레쉬의 진입과 동시에 모든 뱅크 리프레쉬(ABR) 동작이 수행되지 않도록 제어할 수 있다. 메모리 장치(1230)는 온도에 따라 가변되는 주기를 갖는 리프레쉬 클럭 신호와 고정된 카운트 최대값에 기초하여, 셀프 리프레쉬의 진입과 동시에 모든 뱅크 리프레쉬(ABR) 동작이 수행되지 않도록 제어할 수 있다. 메모리 장치(1230)는 온도에 따라 제1 셀프 리프레쉬와 제2 셀프 리프레쉬를 수행하고, 제1 셀프 리프레쉬 동안 ABR 동작이 수행되지 않은 구간과 제2 셀프 리프레쉬 동안 ABR 동작이 수행되지 않은 구간을 합한 구간이 셀프 리프레쉬 주기에 상응하는 경우, 제3 셀프 리프레쉬의 진입 시점에서 모든 뱅크 리프레쉬(ABR) 동작이 수행되도록 제어할 수 있다.
입출력 허브(1220)는 그래픽 카드(1250)와 같은 장치들과 프로세서(1210) 사이의 데이터 전송을 관리할 수 있다. 입출력 허브(1220)는 다양한 방식의 인터페이스를 통하여 프로세서(1210)에 연결될 수 있다. 예를 들어, 입출력 허브(1220)와 프로세서(1210)는, 프론트 사이드 버스(Front Side Bus; FSB), 시스템 버스(System Bus), 하이퍼트랜스포트(HyperTransport), 라이트닝 데이터 트랜스포트(Lighting Data Transport; LDT), 퀵패스 인터커넥트(QuickPath Interconnect; QPI), 공통 시스템 인터페이스, 주변 구성요소 인터페이스-익스프레스(Peripheral Component Interface-Express; CSI 등의 다양한 표준의 인터페이스로 연결할 수 있다. 도 12에는 하나의 입출력 허브(1220)를 포함하는 컴퓨팅 시스템(1200)이 도시되어 있으나, 실시예에 따라, 컴퓨팅 시스템(1200)은 복수의 입출력 허브들을 포함할 수 있다.
입출력 허브(1220)는 장치들과의 다양한 인터페이스들을 제공할 수 있다. 예를 들어, 입출력 허브(1220)는 가속 그래픽 포트(Accelerated Graphics Port;AGP) 인터페이스, 주변 구성요소 인터페이스-익스프레스(Peripheral Component Interface-Express; PCIe), 통신 스트리밍 구조(Communications Streaming Architecture; CSA) 인터페이스 등을 제공할 수 있다.
그래픽 카드(1250)는 AGP 또는 PCIe를 통하여 입출력 허브(1220)와 연결될 수 있다. 그래픽 카드(1250)는 영상을 표시하기 위한 디스플레이 장치(미도시)를 제어할 수 있다. 그래픽카드(1250)는 이미지 데이터 처리를 위한 내부 프로세서 및 내부 프로세서 및 내부 반도체 메모리 장치를 포함할 수 있다. 실시예에 따라, 입출력 허브(1220)는, 입출력 허브(1220)의 외부에 위치한 그래픽 카드(1250)와 함께, 또는 그래픽 카드(1250) 대신에 입출력 허브(1220)의 내부에 그래픽 장치를 포함할 수 있다. 입출력 허브(1220)에 포함된 그래픽 장치는 집적 그래픽(Integrated Graphics)이라 불릴 수 있다. 또한, 메모리 컨트롤러 및 그래픽 장치를 포함하는 입출력 허브(1220)는 그래픽 및 메모리 컨트롤러 허브(Graphics and Memory Controller Hub; GMCH)라 불릴 수 있다.
입출력 컨트롤러 허브(1230)는 다양한 시스템 인터페이스들이 효율적으로 동작하도록 데이터 버퍼링 및 인터페이스 중재를 수행할 수 있다. 입출력 컨트롤러 허브(1230)는 내부 버스를 통하여 입출력 허브(1220)와 연결될 수 있다. 예를 들어, 입출력 허브(1220)와 입출력 컨트롤러 허브(1230)는 다이렉트 미디어 인터페이스(Direct Media Interface; DMI), 허브 인터페이스, 엔터프라이즈 사우스브릿지 인터페이스(Enterprise Southbridge interface; ESI), PCIe 등을 통하여 연결될 수 있다.
입출력 컨트롤러 허브(1230)는 주변 장치들과의 다양한 인터페이스들을 제공할 수 있다. 예를 들어, 입출력 컨트롤러 허브(1230)는 범용 직렬 버스(Universal Serial Bus; USB)포트, 직렬 ATA(Serial Advanced Technology Attachment; SATA) 포트, 범용 입출력(General Purpose Input/output; GPIO), 로우 핀 카운트(Low Pin Count; LPC) 버스, 직렬 주변 인터페이스(Serial Peripheral Interface; SPI), PCI, PCIe 등을 제공할 수 있다.
실시예에 따라, 프로세서(1210), 입출력 허브(1220) 또는 입출력 컨트롤러 허브(1230) 중 2 이상의 구성 요소들이 하나의 칩셋으로 구현될 수 있다.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.

Claims (10)

  1. 셀프 리프레쉬 진입 커맨드와 셀프 리프레쉬 탈출 커맨드에 응답하여 리프레쉬 클럭 신호를 생성하는 단계; 및
    상기 리프레쉬 클럭 신호에 따라 메모리 셀 로우들을 리프레쉬하는 셀프 리프레쉬를 수행하는 단계를 포함하고,
    상기 셀프 리프레쉬는 메모리 장치 내부의 온도에 따라 제1 셀프 리프레쉬와 제2 셀프 리프레쉬를 수행하고, 상기 제2 셀프 리프레쉬의 진입과 동시에 모든 뱅크 리프레쉬(ABR) 동작이 수행되지 않도록 셀프 리프레쉬 주기를 제어하는 것을 특징으로 하는 메모리 장치의 리프레쉬 방법.
  2. 제1항에 있어서, 상기 셀프 리프레쉬를 수행하는 단계는
    상기 제1 셀프 리프레쉬 및 제2 셀프 리프레쉬 동안 고정 주기를 갖는 상기 리프레쉬 클럭 신호를 생성하는 단계;
    상기 제1 셀프 리프레쉬 동안의 제1 온도에 따라 제1 카운트 최대값을 설정하는 단계;
    상기 제2 셀프 리프레쉬 동안의 제2 온도에 따라 제2 카운트 최대값을 설정하는 단계; 및
    상기 리프레쉬 클럭 신호와 상기 제1 및 제2 카운트 최대값들에 기초하여 상기 제2 셀프 리프레쉬의 상기 ABR 동작을 수행하는 단계를 포함하는 것을 특징으로 하는 메모리 장치의 리프레쉬 방법.
  3. 제2항에 있어서, 상기 제2 셀프 리프레쉬의 상기 ABR 동작을 수행하는 단계는,
    상기 제1 셀프 리프레쉬 동안의 상기 리프레쉬 클럭 신호의 제1 클럭 사이클 수와 상기 제1 카운트 최대값을 곱한 제1 온도 주기값을 구하는 단계;
    상기 제2 셀프 리프레쉬 동안의 상기 리프레쉬 클럭 신호의 제2 클럭 사이클 수와 상기 제1 카운트 최대값을 곱한 제2 온도 주기값을 구하는 단계; 및
    상기 제1 온도 주기값과 상기 제2 온도 주기값을 평균한 시점에서, 상기 제2 셀프 리프레쉬의 상기 ABR 동작을 시작하는 단계를 포함하는 것을 특징으로 하는 메모리 장치의 리프레쉬 방법.
  4. 제1항에 있어서, 상기 셀프 리프레쉬를 수행하는 단계는
    상기 제1 셀프 리프레쉬 동안 제1 온도에 따라 제1 주기를 갖는 제1 리프레쉬 클럭 신호를 생성하는 단계;
    상기 제2 셀프 리프레쉬 동안 제2 온도에 따라 제2 주기를 갖는 제2 리프레쉬 클럭 신호를 생성하는 단계;
    상기 제1 및 제2 셀프 리프레쉬 동안의 카운트 최대값을 설정하는 단계; 및
    상기 제1 및 제2 주기를 갖는 상기 제1 및 제2 리프레쉬 클럭 신호들과 상기 카운트 최대값에 기초하여 상기 제2 셀프 리프레쉬의 상기 ABR 동작을 수행하는 단계를 포함하는 것을 특징으로 하는 메모리 장치의 리프레쉬 방법.
  5. 제4항에 있어서, 상기 제2 셀프 리프레쉬의 상기 ABR 동작을 수행하는 단계는,
    상기 제1 셀프 리프레쉬 동안의 상기 제1 리프레쉬 클럭 신호의 제1 클럭 사이클 수를 카운트하는 단계;
    상기 제1 클럭 사이클 수에 연이어, 상기 제2 셀프 리프레쉬 동안의 상기 제2 리프레쉬 클럭 신호의 제2 클럭 사이클 수를 카운트하는 단계; 및
    상기 제2 클럭 사이클 수가 상기 카운트 최대값인 시점에서, 상기 제2 셀프 리프레쉬의 상기 ABR 동작을 시작하는 단계를 포함하는 것을 특징으로 하는 메모리 장치의 리프레쉬 방법.
  6. 제1 온도에 따라 제1 셀프 리프레쉬를 수행하는 단계;
    제2 온도에 따라 제2 셀프 리프레쉬를 수행하는 단계; 및
    상기 제1 셀프 리프레쉬 동안 모든 뱅크 리프레쉬(ABR) 동작이 수행되지 않은 제1 구간과 상기 제2 셀프 리프레쉬 동안 상기 ABR 동작이 수행되지 않은 제2 구간을 합한 구간이 셀프 리프레쉬 주기에 상응하는 경우, 제3 셀프 리프레쉬의 진입 시점에서 상기 ABR 동작을 수행하는 단계를 포함하는 메모리 장치의 리프레쉬 방법.
  7. 제6항에 있어서, 상기 메모리 장치의 리프레쉬 방법은,
    상기 제1 셀프 리프레쉬 동안 상기 제1 온도에 따라 제1 주기를 갖는 제1 리프레쉬 클럭 신호를 생성하는 단계; 및
    상기 제2 셀프 리프레쉬 동안 상기 제2 온도에 따라 제2 주기를 갖는 제2 리프레쉬 클럭 신호를 생성하는 단계를 더 포함하는 것을 특징으로 하는 메모리 장치의 리프레쉬 방법.
  8. 제7항에 있어서, 상기 제3 셀프 리프레쉬의 진입 시점에서 상기 ABR 동작을 수행하는 단계는,
    상기 제1 구간의 상기 제1 리프레쉬 클럭 신호의 제1 클럭 사이클 수를 카운트하는 단계;
    상기 제2 구간의 상기 제2 리프레쉬 클럭 신호의 제2 클럭 사이클 수를 카운트하는 단계; 및
    상기 제1 리프레쉬 클럭 신호에 대한 상기 제1 주기와 상기 제1 클럭 사이클 수를 곱한 제1 시간과 상기 제2 리프레쉬 클럭 신호에 대한 상기 제2 주기와 상기 제2 클럭 사이클 수를 곱한 제2 시간의 합이 상기 셀프 리프레쉬 주기에 상응하는 경우, 상기 제3 셀프 리프레쉬의 진입 시점에서 상기 ABR 동작을 수행하는 단계를 포함하는 것을 특징으로 하는 메모리 장치의 리프레쉬 방법.
  9. 제8항에 있어서, 상기 제3 셀프 리프레쉬의 진입 시점에서 상기 ABR 동작을 수행하는 단계는,
    상기 제1 시간과 상기 제2 시간의 합이 상기 셀프 리프레쉬 주기에 상응하지 않으면, 셀프 리프레쉬 탈출 커맨드에 응답하여 상기 제1 및 제2 시간들의 합을 플립플롭에 입력하는 단계; 및
    상기 제1 및 제2 시간의 합에다가 상기 플립플롭의 출력을 합하여 상기 셀프 리프레쉬 주기에 상응하는 시점에서, 상기 셀프 리프레쉬의 상기 ABR 동작을 시작하는 단계를 더 포함하는 것을 특징으로 하는 메모리 장치의 리프레쉬 방법.
  10. 제8항에 있어서, 상기 제1 및 제2 클럭 사이클 수를 카운트하는 단계는,
    상기 제1 리프레쉬 클럭 신호를 카운트하여 제1 분주된 클럭 신호들을 생성하는 단계;
    상기 제2 리프레쉬 클럭 신호를 카운트하여 제2 분주된 클럭 신호들을 생성하는 단계;
    상기 제1 온도의 온도 정보에 기초하여 상기 제1 분주된 클럭 신호들을 선택적으로 래치하여 상기 제1 클럭 사이클 수를 제공하는 단계; 및
    상기 제2 온도의 온도 정보에 기초하여 상기 제2 분주된 클럭 신호들을 선택적으로 래치하여 상기 제2 클럭 사이클 수를 제공하는 단계를 포함하는 것을 특징으로 하는 메모리 장치의 리프레쉬 방법.
KR1020150147550A 2015-10-22 2015-10-22 온도에 따라 셀프 리프레쉬 사이클을 제어하는 리프레쉬 방법 KR102354987B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020150147550A KR102354987B1 (ko) 2015-10-22 2015-10-22 온도에 따라 셀프 리프레쉬 사이클을 제어하는 리프레쉬 방법
US15/224,683 US9704558B2 (en) 2015-10-22 2016-08-01 Refresh method of controlling self-refresh cycle with temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150147550A KR102354987B1 (ko) 2015-10-22 2015-10-22 온도에 따라 셀프 리프레쉬 사이클을 제어하는 리프레쉬 방법

Publications (2)

Publication Number Publication Date
KR20170047105A KR20170047105A (ko) 2017-05-04
KR102354987B1 true KR102354987B1 (ko) 2022-01-24

Family

ID=58558913

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150147550A KR102354987B1 (ko) 2015-10-22 2015-10-22 온도에 따라 셀프 리프레쉬 사이클을 제어하는 리프레쉬 방법

Country Status (2)

Country Link
US (1) US9704558B2 (ko)
KR (1) KR102354987B1 (ko)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9875785B2 (en) * 2015-10-01 2018-01-23 Qualcomm Incorporated Refresh timer synchronization between memory controller and memory
US10564900B2 (en) 2016-03-04 2020-02-18 Western Digital Technologies, Inc. Temperature variation compensation
US9996281B2 (en) 2016-03-04 2018-06-12 Western Digital Technologies, Inc. Temperature variation compensation
US10446242B2 (en) 2016-05-27 2019-10-15 Western Digital Technologies, Inc. Temperature variation compensation
KR102398209B1 (ko) 2017-11-06 2022-05-17 삼성전자주식회사 반도체 메모리 장치, 메모리 시스템 그리고 그것의 리프레쉬 방법
KR20190054812A (ko) * 2017-11-14 2019-05-22 삼성전자주식회사 메모리 장치의 구동 방법 및 이를 수행하는 메모리 장치
US10262719B1 (en) * 2017-12-22 2019-04-16 Nanya Technology Corporation DRAM and refresh method thereof
KR102443555B1 (ko) * 2018-04-16 2022-09-16 에스케이하이닉스 주식회사 반도체 메모리 장치
US20190378564A1 (en) * 2018-06-11 2019-12-12 Nanya Technology Corporation Memory device and operating method thereof
US10504581B1 (en) * 2018-06-26 2019-12-10 Nanya Technology Corporation Memory apparatus and operating method thereof
US10572377B1 (en) 2018-09-19 2020-02-25 Micron Technology, Inc. Row hammer refresh for content addressable memory devices
KR20200123682A (ko) * 2019-04-22 2020-10-30 에스케이하이닉스 주식회사 메모리 시스템
US11049545B2 (en) 2019-04-23 2021-06-29 Micron Technology, Inc. Methods for adjusting row hammer refresh rates and related memory devices and systems
US11031066B2 (en) * 2019-06-24 2021-06-08 Micron Technology, Inc. Methods for adjusting memory device refresh operations based on memory device temperature, and related memory devices and systems
JP6975298B1 (ja) 2020-09-03 2021-12-01 華邦電子股▲ふん▼有限公司Winbond Electronics Corp. 半導体記憶装置
KR102412680B1 (ko) * 2020-10-20 2022-06-23 윈본드 일렉트로닉스 코포레이션 반도체 기억장치
WO2022256322A1 (en) * 2021-06-01 2022-12-08 Rambus Inc. Dynamic random access memory (dram) with configurable wordline and bitline voltages
US20230317135A1 (en) * 2022-04-05 2023-10-05 Micron Technology, Inc. Techniques to refresh memory systems operating in low power states

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU6988494A (en) 1993-05-28 1994-12-20 Rambus Inc. Method and apparatus for implementing refresh in a synchronous dram system
JP3177207B2 (ja) 1998-01-27 2001-06-18 インターナショナル・ビジネス・マシーンズ・コーポレ−ション リフレッシュ間隔制御装置及び方法、並びにコンピュータ
KR100654003B1 (ko) 2005-11-29 2006-12-06 주식회사 하이닉스반도체 반도체 장치의 셀프 리프레쉬 주기 측정회로
JP5038742B2 (ja) 2007-03-01 2012-10-03 ルネサスエレクトロニクス株式会社 セルフリフレッシュ制御回路、半導体装置
KR100855578B1 (ko) 2007-04-30 2008-09-01 삼성전자주식회사 반도체 메모리 소자의 리프레시 주기 제어회로 및 리프레시주기 제어방법
JP5012898B2 (ja) 2007-07-18 2012-08-29 富士通株式会社 メモリリフレッシュ装置およびメモリリフレッシュ方法
JP2011170943A (ja) 2010-02-22 2011-09-01 Sony Corp 記憶制御装置、記憶装置、記憶装置システム
KR20130081472A (ko) 2012-01-09 2013-07-17 삼성전자주식회사 반도체 메모리 장치 및 반도체 메모리 장치의 리프레쉬 방법
US8787105B2 (en) * 2012-05-10 2014-07-22 Nanya Technology Corporation Dynamic random access memory with multiple thermal sensors disposed therein and control method thereof

Also Published As

Publication number Publication date
KR20170047105A (ko) 2017-05-04
US9704558B2 (en) 2017-07-11
US20170117033A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
KR102354987B1 (ko) 온도에 따라 셀프 리프레쉬 사이클을 제어하는 리프레쉬 방법
US9767882B2 (en) Method of refreshing memory device
KR102193682B1 (ko) 선택적 ecc 기능을 갖는 반도체 메모리 장치
US9653141B2 (en) Method of operating a volatile memory device and a memory controller
US10062427B2 (en) Semiconductor memory device for controlling having different refresh operation periods for different sets of memory cells
US9336851B2 (en) Memory device and method of refreshing in a memory device
US9042194B2 (en) Refresh method, refresh address generator, volatile memory device including the same
US9412429B2 (en) Memory device with multiple voltage generators
KR102193444B1 (ko) 반도체 메모리 장치 및 이를 포함하는 메모리 시스템
US10031684B2 (en) Techniques for a write zero operation
KR20160120630A (ko) 멀티칩 패키지에서 온도 편차를 이용하여 동작 제어하는 방법 및 장치
KR20140076735A (ko) 휘발성 메모리 장치 및 메모리 시스템
KR20170030304A (ko) 스위처블 감지 증폭기를 갖는 메모리 장치
US9147461B1 (en) Semiconductor memory device performing a refresh operation, and memory system including the same
US20190198087A1 (en) Memory device for controlling refresh operation by using cell characteristic flags
KR20160094767A (ko) 아이들 구간에서 정보 전달 기능을 수행하는 메모리 장치 및 방법
KR20140106770A (ko) 반도체 메모리 장치, 이의 테스트 방법 및 동작 방법
US20140237177A1 (en) Memory module and memory system having the same
KR20160061704A (ko) 페이지 상태 알림 기능이 있는 메모리 장치
US9449673B2 (en) Memory device and memory system having the same
KR20160024503A (ko) 반도체 메모리 장치 및 이를 포함하는 메모리 시스템

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant