KR102112746B1 - 전극 재료 및 에너지 저장 장치 - Google Patents

전극 재료 및 에너지 저장 장치 Download PDF

Info

Publication number
KR102112746B1
KR102112746B1 KR1020177027328A KR20177027328A KR102112746B1 KR 102112746 B1 KR102112746 B1 KR 102112746B1 KR 1020177027328 A KR1020177027328 A KR 1020177027328A KR 20177027328 A KR20177027328 A KR 20177027328A KR 102112746 B1 KR102112746 B1 KR 102112746B1
Authority
KR
South Korea
Prior art keywords
micro
porous material
energy storage
storage device
array porous
Prior art date
Application number
KR1020177027328A
Other languages
English (en)
Other versions
KR20180006882A (ko
Inventor
커창 린
이주이 황
Original Assignee
커창 린
이주이 황
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 커창 린, 이주이 황 filed Critical 커창 린
Publication of KR20180006882A publication Critical patent/KR20180006882A/ko
Application granted granted Critical
Publication of KR102112746B1 publication Critical patent/KR102112746B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • H01M4/808Foamed, spongy materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

전극 재료는 미세-배열 다공성 재료를 포함한다. 상기 미세-배열 다공성 재료는 <20%의 분산도로 <1000 μm의 실질적으로 균일한 크기를 갖는 복수의 기공을 포함하고, Ni, Al, Ti, Sn 및 Mn과 같은 금속을 포함한다. 금속 미세-배열 다공성 전극 재료는 다공성 전극 재료의 표면 상에 금속 산화물을 형성하도록 표면-처리될 수 있거나, 또는 RuO2, TaO를 포함하는 금속 산화물로 코팅될 수 있다. 상기 미세-배열 다공성 전극 재료를 함유하는 전기 에너지 저장 장치, 예컨대 슈퍼커패시터 또는 리튬 배터리는 종래 재료와 비교하여 유의하게 개선된 성능을 가질 수 있다.

Description

전극 재료 및 에너지 저장 장치
배경기술
슈퍼커패시터 또는 리튬 배터리와 같은 전기 에너지 저장 장치는 전기 및 하이브리드 전기 자동차, 휴대용 전자 장치 및 고정식 전기 에너지 저장 장치에 널리 사용된다. 전기 에너지 저장 장치의 전극은 전형적으로 높은 에너지 용량을 달성하기 위해 큰 표면적을 갖도록 구성된다. 슈퍼커패시터에서, 이는 얇은 절연 플라스틱 또는 종이 재료에 의해 분리된 나선형-권취의 긴 전도성 포일에 의해 및/또는 특별한 구조 또는 조성을 갖는 재료로 제조되거나 코팅된 전극을 적용함으로써 달성될 수 있다.
본 개시내용은 전극 재료, 및 구체적으로 전극에 사용하기 위한 미세-배열 다공성 재료에 관한 것이고, 또한 전기 에너지 저장 장치에서의 이의 적용에 관한 것이다.
슈퍼커패시터 또는 배터리와 같은 기존의 전기 에너지 저장 장치의 전극은 전극의 상대 표면적을 상승시켜 그에 저장된 전기 에너지의 용량을 추가로 증가시키기 위해 활성탄과 같은 다공성 재료로 제조되거나 코팅될 수 있다. 이러한 탄소 전극 재료는 전형적으로 0.5 μm 내지 100 μm 범위의 입자 크기를 갖고, 약 90 내지 95% 범위의 공극률을 갖는다. 이러한 탄소 전극 재료는 25 nm 내지 1000 nm의 기공 크기 분산도(variation)를 가질 수 있다.
본원의 개시내용은 전극 재료를 포함한다. 상기 전극 재료는 높은 표면적-대-부피 비의 미세-배열 다공성 재료를 포함한다. 이러한 미세-배열 다공성 재료는 막의 형상을 취할 수 있고, 100 cm2보다 더 큰, 예컨대 20 cm × 20 cm의 표면적을 가질 수 있고, 예를 들어 약 1000 μm 미만, 바람직하게는 약 0.1 μm 미만의 기공 크기를 가질 수 있고, 약 40 내지 85% 범위, 바람직하게는 약 74%의 공극률을 가질 수 있다. 미세-배열 다공성 재료 내 기공의 크기는 약 20% 미만, 바람직하게는 약 10% 미만의 분산도로 실질적으로 균일하다. 이러한 특징은 전극 재료의 상이한 영역 사이의 안정된 물질 이동을 허용하여, 전극 재료의 비균일한 조성에 의해 초래되는 저항의 불균등한 분포로 인한 국부적 저항 가열을 효과적으로 감소시킨다. 또한, 미세 배열 다공성 전극 재료의 현저히 보다 큰 공극 공간은 전극 재료 내에서 전해질의 균등한 확산을 갖는 것을 가능하게 하여, 전하가 전극의 표면 상에 안정하게 저장되는 것을 허용하며, 이는 종래의 탄소 전극 재료에서 실행될 수 없는 특징이다.
일부 구현예에서, 전극에 사용하기 위한 미세-배열 다공성 재료는 다공성 재료의 기계적 강도를 증가시키기 위해 고체 재료로 충전되는 복수의 입계 영역을 포함할 수 있으며, 비(比)표면적은 4100/mm보다 더 높고, 크기 분산도는 약 10% 미만이고, 상기 입계 영역은 약 5μm 내지 15cm의 크기를 갖는다.
일부 구현예에서, 전극에 사용하기 위한 미세-배열 다공성 재료는 Ni, Al, Ti, Sn, Mn, Zr, V, Nb, Ta, W, Cr, Fe, Co, Rh, Ir, Pt, Pd, Cu, Ag, Au 및 Ru와 같은 금속을 포함한다. 일부 구현예에서, 금속 미세-배열 다공성 재료는 각각 Ni, Al, Ti, Sn, Mn 및 Ru 미세-배열 다공성 재료의 표면 상에 NiO, Al2O3, TiO2, SnO2, MnO2, Mn2O3, RuO 및 RuO2와 같은 금속 산화물을 형성하도록 추가로 처리될 수 있다. 일부 구현예에서, 금속 미세-배열 다공성 재료는 RuO2, TaO, BaTiO3, SrTiO3, PZT, Cu2O, ZnO, Fe2O3, Co3O4, SnO2, V2O5, Ni(OH)2, Co(OH)2 및 PLZT와 같은 금속 산화물로 코팅될 수 있다. 예는 RuO2로 코팅된 Al 미세-배열 다공성 전극 재료 및 TaO로 코팅된 Ti 미세-배열 다공성 전극 재료를 포함한다. 또한 일부 다른 구현예에서, 미세-배열 다공성 전극 재료는 RuO2, TiO2, MnO2, Mn2O3, Co3O4, SnO2, V2O5 및 Fe2O3과 같은 금속 산화물을 전적으로 포함할 수 있다.
일부 구현예에서, 전극에 사용하기 위한 미세-배열 다공성 재료는 기공의 공극 공간에 추가의 보다 작은 규모의 전극 재료를 추가로 포함할 수 있다. 이러한 보다 작은 규모의 전극 재료의 예는 흑연, 그래핀, 메조카본 미소구, 석유 코크, 탄소 섬유, 열분해 탄소 수지 및 LiCoO2를 포함한다. 이러한 특징은 추가의 보다 작은 규모의 전극 재료를 함유하는 미세-배열 다공성 전극 재료를 포함하는 전극의 상대 표면적을 추가로 증가시킬 수 있다.
일부 구현예에서, 전극에 적용된 미세-배열 다공성 재료는 전극의 표면 상에 입자-형상의 유전체 재료 층을 추가로 포함할 수 있으며, 이는 전극의 상대 표면적을 추가로 증가시킨다. 상기 유전체 재료는 Al2O3, BaTiO3, SrTiO3, BaxSr1-xTiO3, PZT, TaO, Cu2O, ZnO, Fe2O3, SnO2, Co3O4, V2O5, PLZT 또는 TiO2 중 적어도 하나로부터 선택될 수 있다.
일부 구현예에서, 전기 에너지 저장 장치는 양극 및/또는 음극이 미세-배열 다공성 전극 재료를 포함하는 슈퍼커패시터이다. 이와 같은 슈퍼커패시터는 이중-층 커패시터에서의 전극의 매우 큰 상대 표면적으로 인하여 전통적인 커패시터보다 훨씬 더 높은 이중-층 정전용량을 가질 수 있다. 슈퍼커패시터가 미세-배열 금속 다공성 전극 재료 상에 금속 산화물, 예컨대 MnO2, NiO, RuO2를 추가로 포함하는 일부 구현예에서, 전극에서의 금속 산화물의 사용은 슈퍼커패시터의 패러데이 유사 정전용량을 추가로 크게 증가시킬 수 있다. 이러한 특징은 슈퍼커패시터에 저장된 전기 에너지의 용량을 극적으로 상승시킬 수 있다.
일부 구현예에서, 전기 에너지 저장 장치는 금속 미세-배열 다공성 전극 및 상기 전극의 표면에 금속 산화물, 예컨대 Ni/NiO, Al/Al2O3 및 Ti/TiO2를 포함하는 슈퍼커패시터이다. 이와 같은 슈퍼커패시터는 유의하게 감소된 전기 저항을 가질 수 있고, 이에 따라 크게 개선된 충방전율 및 수명을 가질 수 있다. 이러한 구성은 전기 저항으로 인해 생성되는 열의 양을 감소시킬 수 있고, 금속 산화물 전극으로의 전자 이동 거리를 단축시켜, 감소된 전기 저항 및 에너지 저장 동안 감소된 에너지 낭비를 유발할 수 있다. 또한, 전극 재료 및 커패시터 전극 전도체는 일체로 형성 또는 연결될 수 있고, 이에 의해 전극 재료 및 외부 전극 납선 사이의 저항과 같은 문제를 감소시킬 수 있다. 전도성 집전체 및 미세-배열 전극 재료 사이의 효과적인 전기적 연결을 가짐으로써, 이러한 금속-금속 산화물 구성은, 집전체 및 전극 재료, 예컨대 활성탄 사이의 비-이상적인 연결로 인하여 전형적으로 높은 전기 저항을 갖는 종래 슈퍼커패시터와 비교하여 유의하게 감소된 전기 저항을 가질 수 있다.
일부 구현예에서, 전기 에너지 저장 장치는 애노드 및 캐소드 사이에 배치된 세퍼레이터를 포함하는 슈퍼커패시터이다.
일부 구현예에서, 세퍼레이터는 이온 교환 막/미세다공성 막일 수 있다. 일부 구현예에서, 복수의 미세-배열 다공성 막이 이용된다. 예를 들어, 제1 미세-배열 다공성 재료가 캐소드로서 사용되고, 제2 미세-배열 다공성 재료가 애노드로서 사용되고, 상이한 기공 크기를 갖는 제3 미세-배열 다공성 막이 세퍼레이터로서 이용될 수 있다.
일부 다른 구현예에서, 전해질 그 자체가 슈퍼커패시터의 캐소드로서 작용할 수 있고, 미세-배열 다공성 재료가 애노드로서 작용할 수 있다. 이러한 구성에서, 전용 세퍼레이터는 필요하지 않을 수 있다. 대신에, 금속 산화물 코팅이 전기적 세퍼레이터로서의 역할을 할 수 있다.
일부 구현예에서, 수성 전해질이 슈퍼커패시터에 사용된다. 일부 다른 구현예에서, 비-수성 전해질이 슈퍼커패시터에 사용된다.
일부 구현예에서, 전해질은 전극으로서 작용할 수 있다. 전해질은 유기 물질로 구성된 액체이거나 또는 기공 내에 배치된 고체 분말일 수 있다.
일부 구현예에서, 전기 에너지 저장 장치는 복수의 슈퍼커패시터를 포함하는 고용량, 긴 수명의 전원 배터리이며, 상기 복수의 슈퍼커패시터는 전극에 미세-배열 다공성 재료를 포함한다. 상기 전원 배터리는, 예를 들어 전기 자동차 및 가정용 에너지 저장 장치에 사용될 수 있다.
일부 구현예에서, 전기 에너지 저장 장치는 단기간 내에 높은 전력 출력을 가능하게 하는 고전력 배터리이며, 상기 고전력 배터리는, 복수의 슈퍼커패시터 각각의 전극에 미세-배열 다공성 재료를 포함하는 복수의 슈퍼커패시터를 포함한다. 이러한 유형의 배터리는, 예를 들어 시동기에 사용될 수 있다.
일부 구현예에서, 전기 에너지 저장 장치는 리튬 이온 배터리이다. 리튬 이온 배터리의 양극 (애노드)은 금속 미세-배열 다공성 재료를 포함하며, 상기 금속 미세-배열 다공성 재료의 표면은 리튬화 삼원 전이 금속 산화물, 예컨대 Li-MnO2 및 LiFePO4의 조성을 갖는다. 일부 구현예에서, 리튬 배터리의 음극 (캐소드)은 미세-배열 다공성 재료를 또한 포함하고, 조성의 예는 Cu, Ni 및 Mn을 포함한다.
도 1은 에너지 저장 장치 내 전극에 사용하기 위한 미세-배열 다공성 재료를 예시한다.
도 2는 일부 구현예에 따른, 기공 내부에 추가의 보다 작은 규모의 전극 재료를 함유하는 미세-배열 다공성 전극 재료를 예시한다.
도 3은 일부 구현예에 따른, 이의 전극에 미세-배열 다공성 재료를 포함하는 슈퍼커패시터를 예시한다.
도 4는 일부 구현예에 따른, 이의 전극에 미세-배열 다공성 재료를 포함하는 리튬 배터리를 예시한다.
도 5는 일부 구현예에 따른 슈퍼커패시터 또는 배터리의 횡단면도이다.
도 6은 일부 구현예에 따른 리튬 배터리의 모식도이다.
도 7은 일부 다른 구현예에 따른 슈퍼커패시터 또는 배터리의 횡단면도이다.
도 8은 미세-배열 다공성 필름을 제조하는 데 사용되는 조밀-패킹된 콜로이드 입자의 템플레이트를 예시한다.
도 9는 템플레이트 제거 후의 미세-배열 다공성 필름을 예시한다.
도 10은 대면적 미세-배열 다공성 필름을 예시한다.
도 11은 가요성 전자장치를 위한 전원으로서 사용될 수 있는 가요성 미세-배열 다공성 필름을 예시한다.
도 1은 슈퍼커패시터 또는 리튬 배터리와 같은 전기 에너지 저장 장치의 전극에 사용되는 높은 표면적-대-부피 비의 미세-배열 다공성 재료를 예시한다. 미세-배열 다공성 재료는 막(101)의 형상을 가질 수 있고, 100 cm2보다 더 큰, 예컨대 20 cm × 20 cm의 표면적을 가질 수 있고, 예를 들어 이의 횡단면도(102)에서 25 μm의 두께를 가질 수 있다. 미세-배열 다공성 재료는 2D 뷰(103) 및 3D 뷰(104)에 도시된 바와 같이 고도로 패킹된 미세-배열 기공을 함유한다. 기공은, 예를 들어 약 1000 μm 미만, 바람직하게는 약 0.1 μm 미만의 크기를 가질 수 있고, 40 내지 85%, 바람직하게는 약 74%의 공극률을 가질 수 있다. 미세-배열 다공성 재료 내 기공의 크기는 약 20% 미만, 바람직하게는 약 10% 미만의 분산도로 실질적으로 균일하다.
훨씬 더 작은 기공 크기 및 공극률로 인하여, 도 1에 개시된 전기 에너지 저장 장치의 전극은 매우 큰 비표면적을 가질 수 있고, 이에 따라 전기 에너지를 저장하기 위한 매우 큰 용량을 또한 가질 수 있으며, 이는 기존 슈퍼커패시터 및 리튬 배터리의 전형적인 전극 재료의 것보다 유의하게 더 크다. 또한, 미세-배열 다공성 전극 재료의 주기적인 구조(103 및 104)는 전해질이 전극 둘레에 균등하게 흡수되고 평활하게 전달되는 것을 허용하며, 이러한 특징으로 인하여 전해질 용액의 농도 및 또한 내부 저항은 보다 안정되고, 수명 및 충전/방전 사이클은 연장될 수 있다.
도 2는 일부 구현예에 따른, 기공 내부에 추가의 보다 작은 규모의 전극 재료를 함유하는 미세-배열 다공성 전극 재료를 예시한다. 일 구현예에서, 미세-배열 다공성 재료(210)은 보다 작은 규모의 메조카본 미소구(212)를 함유하는 기공(211)을 갖는다. 또 다른 구현예에서, 미세-배열 다공성 재료(220)은 보다 작은 규모의 그래핀(222)를 함유하는 기공(221)을 갖는다.
도 3은 일부 구현예에 따른, 이의 2개의 전극(301 및 302)에 미세-배열 다공성 재료를 포함하는 슈퍼커패시터(300)을 예시한다. 양극(301) 및 음극(302) 각각은 미세-배열 다공성 재료(303 및 304) 및 전도성 집전체(305 및 306)을 포함한다. 슈퍼커패시터(300)은 세퍼레이터(307)을 추가로 포함할 수 있다. 상기 논의된 바와 같이, 일부 구현예에 따르면, 전용 세퍼레이터는 필요하지 않을 수 있으며, 대신에 미세-배열 다공성 재료의 일체 부분으로서의 산화물일 수 있다. 전해질(308)은 슈퍼커패시터에 배치되어 집전체(305 및 306) 및 세퍼레이터(307) 사이의 접촉을 일으킬 수 있다. 슈퍼커패시터(300)은 부하 저항(310) 및 전원(312)와 함께 작동할 수 있다.
미세-배열 다공성 재료를 포함하는 슈퍼커패시터는 그에 함유된 이중-층 커패시터 내 전극의 매우 큰 비표면적으로 인하여 전통적인 커패시터보다 훨씬 더 높은 이중-층 정전용량을 가질 수 있다. 슈퍼커패시터가 미세-배열 다공성 전극 재료에 금속 산화물, 예컨대 MnO2, NiO, RuO2를 포함하는 일부 구현예에서, 전극에서의 금속 산화물의 사용은 슈퍼커패시터의 패러데이 유사 정전용량을 추가로 크게 증가시킬 수 있다. 이러한 특징들은 둘 모두 슈퍼커패시터에 저장된 전기 에너지의 용량을 극적으로 상승시킬 수 있다. 일부 구현예에서, 상기 슈퍼커패시터는 제1 금속 산화물 미세-배열 다공성 층 및 제2 금속 산화물 미세-배열 다공성 층을 포함하고, 상기 제1 금속 산화물 미세-배열 다공성 층은 상기 제2 금속 산화물 미세-배열 다공성 층보다 더 높은 전도성을 갖는다. 상기 제1 금속 산화물 미세-배열 다공성 층은 ITO 또는 IZO, 전도성 중합체 중 적어도 하나를 포함하고, 상기 제2 금속 산화물 미세-배열 다공성 층은 금속 산화물 또는 중합체를 포함할 수 있다.
전자 저장 능력에서의 개선은 하기의 비표면적 식에 기초하여 작업 표면적으로부터 추정될 수 있다:
Figure 112017094188912-pct00001
상기 식에서, Sv는 비표면적이고, d는 mm 단위의 평균 기공 직경이고, θ는 기공률 또는 공극률이다. 예를 들어, d = 0.01 mm, 90%의 기공률의 경우, 비표면적은 2425/mm이다. 리튬 배터리 탄소 전극 또는 슈퍼커패시터 탄소 전극의 경우, 작업 공극률은 예를 들어 0.9 내지 0.95의 범위 내일 수 있다. 본원에 개시된 다공성 재료 (예를 들어, 역 오팔(inverse opal) 구조)의 경우, 공극률은 약 0.74일 수 있다. 상응하게, 계산된 파라미터는 하기의 비교를 가질 수 있다:
<표 1>
Figure 112017094188912-pct00002
상기 식 및 표 1로부터 알 수 있는 바와 같이, 작은 기공 크기 및 보다 작은 공극률로 인하여, 본원에 개시된 구현예에 따른 다공성 재료는 전극으로서 사용되는 경우, 탄소 전극보다 실질적으로 더 큰 작업 표면적을 가질 수 있다. 일부 구현예에서, 미세-배열 다공성 재료는 탄소 슈퍼커패시터 전극의 약 2.8배 이상으로 비면적(specific area)을 증가시킬 수 있다. 일부 다른 구현예에서, 비면적은 100배 더 클 수 있다. 슈퍼커패시터 배터리에 적용되는 경우, 매우 우수한 작업 전극 표면적은 또한 슈퍼커패시터의 성능을 유의하게 개선한다.
미세-배열 다공성 구조는 금속 전도체로 제조될 수 있고, 재료 표면에서 산화되어 금속 산화물, 예컨대 Ni/NiO, Al/Al2O3, Ti/TiO2, Sn/SnO2, Mn/MnO2를 형성할 수 있다. 다르게는, 금속 전도체는 Al/RuO2, Ti/TaO 등과 같이 귀금속 산화물의 1개 이상의 층으로 코팅될 수 있다. 일부 구현에서, 미세-배열 다공성 구조는 RuO2, TiO2, MnO2 등과 일체로 제조될 수 있다.
본원에 개시된 미세-배열 다공성 구조를 사용하여 슈퍼커패시터의 애노드 또는 캐소드를 형성함으로써, 비면적을 증가시킴으로써 이중-층 커패시터 면적을 유의하게 증가시키는 것에 더하여, 패러데이 정전용량 특성과 함께 산화물 (RuO2, NiO, MnO2 등)과 같은 재료 선택의 결과로서, 슈퍼커패시터의 전기 저장 용량은 극적으로 개선될 수 있다.
슈퍼커패시터에 사용되는 재료는, 예를 들어 Ni/NiO, Al/Al2O3, Cu/CuO, Ti/TiO2, RuO2, Mn2O3, MnO, TaO2 등으로부터 선택될 수 있다. 적합한 미세 배열 다공성 재료를 제조하기 위해 소정의 제조 시스템이 이용될 수 있다. 상기 시스템은 콜로이드 입자 템플레이트를 제조하도록 구성된 콜로이드 입자 템플레이트 형성 부분; 상기 콜로이드 입자 템플레이트를 침윤제 물질로 침윤시키도록 구성된 침윤 부분; 및 콜로이드 결정 템플레이트를 제거하고, 침윤제 물질이 실질적으로 무손상인 상태로 유지되도록 구성된 템플레이트 제거 부분을 포함할 수 있다. 제조 공정은 하기 단계를 포함할 수 있다.
도 4는 일부 구현예에 따른, 이의 전극에 미세-배열 다공성 재료를 포함하는 리튬 이온 배터리(400)을 예시한다. 리튬 이온 배터리(400)은 캐소드(410) 및 애노드(420)을 포함하며, 이는 Li+ 이온이 횡단하여 이동하는 것을 허용하는 세퍼레이터(430)에 의해 분리되어 있다. 캐소드(410)은 양극 집전체(411) 및 미세-배열 다공성 캐소드 재료(412)를 포함한다. 애노드(420)은 음극 집전체(421) 및 미세-배열 다공성 애노드 재료(422)를 포함한다. Li+를 함유하는 전해질(440)은 리튬 배터리(400) 내에 배치된다.
일부 구현예에서, 리튬 이온 배터리의 애노드는 금속 미세-배열 다공성 재료를 포함하며, 상기 금속 미세-배열 다공성 재료의 표면은 Li-MnO2 및 LiFePO4와 같은 리튬화 삼원 전이 금속 산화물의 조성을 갖는다. 일부 구현예에서, 리튬 이온 배터리의 캐소드 또한 미세-배열 다공성 재료를 포함하며, 이의 조성의 예는 Cu, Ni 또는 Mn을 포함한다.
도 5는 일부 구현예에 따른 슈퍼커패시터 또는 배터리(500)의 횡단면도이다. 상기 구조는 집전체(502, 504), 세퍼레이터(506), 및 이들 사이에 샌드위칭된 높은 표면적의 다공성 재료(508)을 포함할 수 있다. 상기 재료(508)은 입자 및/또는 섬유(510)을 포함할 수 있다. 전해질(512)는 상기 입자 또는 섬유들 사이에 배치될 수 있다. 상기 입자 또는 섬유(510)은 그 내부에 복수의 기공(514)를 가질 수 있다. 상기 입자 또는 섬유(510) 둘레에 전기적 이중-층 구조(516)이 형성될 수 있다. 에너지 저장은 상기 이중-층 구조(516)에서의 전하 분리에 의해 실현될 수 있다.
도 6은 일부 구현예에 따른 리튬 배터리(600)의 모식도이다. 배터리(600)은 전극, 예컨대 캐소드(602)를 포함할 수 있으며, 이는 미세-배열 다공성 재료, 뿐만 아니라 특정한 에너지에서 Li-O 및 O-O 결합을 생성하고 파괴하기 위한 촉매를 포함할 수 있다. 배터리(600)은 전해질(604)를 또한 포함할 수 있으며, 이는 일부 구현예에 따르면 전해질(604) 및 캐소드(602) 사이의 계면을 안정화하도록 구성된 고체 전해질일 수 있다. 안정한 전해질은 양호한 이온 전도성을 또한 제공한다. 상용가능한 계면 막이 분리를 위해 포함될 수 있다. 이온성 물질(606)은 전달 및 전도성을 위해 나노다공성 탄소 재료(608)을 통해 배터리(600)으로 공급될 수 있다.
도 7은 일부 다른 구현예에 따른 슈퍼커패시터 또는 배터리(700)의 횡단면도이다. 상기 구조(700)은 집전체(702, 704), 다공성 음극(706), 다공성 양극(708), 세퍼레이터(710) 및 이의 연관된 계면 세라믹 층(712)를 포함할 수 있다. 다공성 음극(706)은 전해질(716)에 배치되는 흑연 재료(714)를 포함할 수 있다. 다공성 양극(708)은 중합체 결합제(720)을 사용하여 함께 결합된 금속 재료(718)을 포함할 수 있다.
일부 구현예에서, 상술된 전극에 사용되는 다공성 재료는 3D 프린팅 기술을 사용하여 제조될 수 있다. 3D 프린팅에서, 입계와 같은 파라미터는 제어 프로그램으로 설계될 수 있다. 일부 구현예에서, 3D 프린팅에 의해 제조된 다공성 재료는 입계를 거의 함유하지 않거나 전혀 함유하지 않는다. 예를 들어 FCC, HCP, BCC, SC, DC 또는 다른 주기적인 구조를 포함하는 주기적인 구조는 3D 프린터를 사용하여 프린팅될 수 있다.
상기 미세-배열 다공성 재료는 PPV, PPY, PAC, PANI, PT, PEDOT 또는 PPS로부터 선택된 전도성 중합체를 포함하고, 상기 전도성 중합체가 유사 커패시터로서 작용하는 거대 분자를 포함할 수 있다.
일부 다른 구현예에서, 다공성 재료는 하기 기재된 방법을 사용하여 제조될 수 있다.
(1) 실질적으로 균일-크기의 콜로이드 나노구 현탁액을 함유하는 전기영동 용액이 전기영동 탱크에 배치될 수 있다. 작업 전극은 이동가능한 연속 전도성 테이프를 포함할 수 있으며, 이는 전기영동 탱크 내로 공급되고, 전기영동 탱크에서 콜로이드 입자 템플레이트의 형성을 위한 표면을 제공하고, 콜로이드 입자 템플레이트의 전기영동 자기-조립이 완료되면 전기영동 탱크 밖으로 이동하도록 구성된다. 작업 전극은 0.1 μm/sec 내지 5 mm/sec와 같이 속도가 변화되며 공급될 수 있거나, 또는 고정된 속도에서 또는 속도 변화 없이 (0 μm/sec) 공급될 수 있다. 일부 구현예에서, 작업 전극은 고체, 예컨대 금속판, 실리콘 웨이퍼, ITO 유리 등일 수 있다. 자기-조립된 콜로이드 입자 템플레이트는 도 8에 도시되어 있다.
(2) 상기 콜로이드 입자 템플레이트는, 예를 들어 전도성 테이프 또는 다른 기판을 사용하여 건조를 위해 오븐을 통해 운송될 수 있다. 건조 공정은 상기 템플레이트가 이동하면서 (즉, 동적) 또는 상기 템플레이트가 오븐 내부에 고정된 상태로 수행될 수 있다.
(3) 건조된 콜로이드 입자 템플레이트를 보유하며 상기 전기영동 부분으로부터 나온 작업 전극 (예를 들어, 테이프)은 도금 (예컨대 전기도금, 졸-겔, CVD, PVD 등)을 위한 증착 탱크 내로 공급될 수 있다. 균일하게 적층된 입자의 미세 배열을 템플레이트로서 사용하여, 금속, 중합체, 세라믹 또는 다른 물질이 템플레이트 위에 도금되어 입자들 사이의 공간을 채워, 상기 콜로이드 입자 템플레이트 위에 미세-배열 다공성 필름을 형성할 수 있다.
(4) 상기 콜로이드 입자 템플레이트의 제거를 위해 에칭 용액이 이용될 수 있고, 이에 따라 미세-배열 다공성 필름이 얻어질 수 있다. 높은 비표면적을 갖는 미세-배열 다공성 필름의 일례가 도 9에 예시되어 있다.
(5) 조밀하게 적층된 기공을 포함하는 미세-배열 다공성 필름으로부터 기판이 제거될 수 있고, 생성된 필름은 도 10에 예시된 바와 같이 큰 면적을 가질 수 있다. 생성된 필름은 도 11에 도시된 바와 같이 또한 가요성일 수 있다.
(6) 미세-배열 다공성 필름은 절단되어 다양한 적용을 위한 필름 또는 특정화된 형상 및 크기를 얻을 수 있다.
가요성 미세-배열 다공성 재료는 비통상적인 형상을 갖는 전극으로서 사용될 수 있다. 예를 들어, 일부 구현예에 따르면, 원통형 전극이 제공될 수 있다. 일부 구현예에 따르면, 가요성 전극 및 이에 따라 가요성 슈퍼커패시터 및 배터리가, 예를 들어 착용가능한 전자장치의 부분으로서 제공될 수 있다.
본원에 개시된 하나 이상의 구현예의 하나 이상의 이점은, 예를 들어 감소된 전극 저항, 개선된 전해질 농도 및 보다 높은 비면적 이용을 포함할 수 있다.
구체적인 구현예가 상기에 상세히 설명되었지만, 이러한 설명은 단지 예시의 목적을 위한 것이다. 따라서, 상술된 다수의 측면은 명시적으로 달리 언급되지 않는 한 요구되거나 또는 필수적인 요소로서 의도되지 않는다는 것을 알아야 한다. 예시적인 구현예의 개시된 측면의 다양한 변형 및 이에 상응하는 등가의 작용이 상술된 것에 더하여 당업자에 의해 이루어질 수 있으며, 이는 하기 청구범위에 한정된 개시내용의 취지 및 범주를 벗어나지 않으면서 본 개시내용의 이점을 갖고, 이의 범주는 이러한 변형 및 등가의 구조를 포함하도록 하는 가장 넓은 해석으로 간주되어야 한다.

Claims (24)

  1. 미세-배열 다공성 재료를 포함하는, 전기 에너지 저장 장치에 사용하기 위한 전극 재료로서,
    상기 미세-배열 다공성 재료는 1000 μm 미만의 크기를 갖는 복수의 기공을 포함하고;
    상기 복수의 기공의 크기는 20% 미만의 분산도(variation)로 실질적으로 균일하고;
    상기 미세-배열 다공성 재료는 40 내지 85%의 공극률을 갖고;
    상기 미세-배열 다공성 재료가 PPV, PPY, PAC, PANI, PT, PEDOT 또는 PPS로부터 선택된 전도성 중합체를 포함하고, 상기 전도성 중합체가 유사 커패시터로서 작용하는 거대 분자를 포함하는 것인 전극 재료.
  2. 제1항에 있어서, 상기 전기 에너지 저장 장치가 슈퍼커패시터이고, 상기 미세-배열 다공성 재료가 Ni, Al, Ti, Sn, Mn, Zr, V, Nb, Ta, W, Cr, Fe, Co, Rh, Ir, Pt, Pd, Cu, Ag, Au 또는 Ru 중 적어도 하나를 포함하는 것인 전극 재료.
  3. 제2항에 있어서, 상기 미세-배열 다공성 재료가 상기 미세-배열 다공성 재료의 표면 상에 금속 산화물을 추가로 포함하고, 상기 금속 산화물이 상기 미세-배열 다공성 재료에 사용된 바와 같은 금속으로부터 유래된 것인 전극 재료.
  4. 제2항에 있어서, 상기 미세-배열 다공성 재료가 상기 미세-배열 다공성 재료의 표면 상에 금속 산화물을 추가로 포함하고, 상기 금속 산화물이 NiO, Al2O3, MnO2, Mn2O3, RuO, RuO2, TaO, BaTiO3, SrTiO3, PZT, Cu2O, ZnO, Fe2O3, Co3O4, SnO2, V2O5, Ni(OH)2, Co(OH)2 또는 PLZT 중 적어도 하나를 포함하는 것인 전극 재료.
  5. 제1항에 있어서, 상기 전기 에너지 저장 장치가 슈퍼커패시터이고, 상기 미세-배열 다공성 재료가 RuO2, TiO2, Co3O4, SnO2, V2O5, Mn2O3, Fe2O3 또는 MnO2 중 적어도 하나를 포함하는 것인 전극 재료.
  6. 제2항에 있어서, 상기 미세-배열 다공성 재료가 상기 복수의 기공의 공극 공간 내에 제2 재료를 추가로 포함하는 것인 전극 재료.
  7. 제6항에 있어서, 상기 제2 재료가 그래핀, 메조카본 미소구, 석유 코크, 탄소 섬유, 열분해 탄소 수지 또는 LiCoO2 중 적어도 하나를 포함하는 것인 전극 재료.
  8. 제2항에 있어서, 상기 미세-배열 다공성 재료의 표면에 입자-형상의 유전체 재료 층을 추가로 포함하는 전극 재료.
  9. 제8항에 있어서, 상기 유전체 재료가 Al2O3, BaTiO3, SrTiO3, BaxSr1-xTiO3, PZT, TaO, Cu2O, ZnO, Fe2O3, SnO2, Co3O4, V2O5, PLZT 또는 TiO2 중 적어도 하나를 포함하는 것인 전극 재료.
  10. 제1항에 있어서, 상기 전기 에너지 저장 장치가 리튬 배터리이고, 상기 미세-배열 다공성 재료가 Li-MnO2, LiFePO4로부터 선택된 리튬화 삼원 전이 금속 산화물의 조성을 갖는 것인 전극 재료.
  11. 미세-배열 다공성 재료를 포함하는 전극을 포함하는 에너지 저장 장치로서,
    상기 미세-배열 다공성 재료는 1000 μm 미만의 크기를 갖는 복수의 기공을 포함하고;
    상기 복수의 기공의 크기는 20% 미만의 분산도로 실질적으로 균일하고;
    상기 미세-배열 다공성 재료는 40 내지 85%의 공극률을 갖고;
    상기 미세-배열 다공성 재료가 PPV, PPY, PAC, PANI, PT, PEDOT 또는 PPS로부터 선택된 전도성 중합체를 포함하고, 상기 전도성 중합체가 유사 커패시터로서 작용하는 거대 분자를 포함하는 것인 에너지 저장 장치.
  12. 제11항에 있어서, 상기 미세-배열 다공성 재료가 Ni, Al, Ti, Sn, Zr, V, Nb, Ta, W, Cr, Fe, Co, Rh, Ir, Pt, Pd, Cu, Ag, Au 또는 Mn 중 적어도 하나로부터 선택된 금속을 포함하는 것인 에너지 저장 장치.
  13. 제12항에 있어서, 상기 미세-배열 다공성 재료가 상기 미세-배열 다공성 재료의 표면 상에 금속 산화물을 추가로 포함하는 것인 에너지 저장 장치.
  14. 제11항에 있어서, 상기 미세-배열 다공성 재료가 NiO, Ni(OH)2, Mn2O3, RuO, RuO2, TiO2, MnO2, Al2O3, BaTiO3, SrTiO3, BaxSr1-xTiO3, TaO, Cu2O, ZnO, Fe2O3, SnO2, Co3O4, V2O5, PZT 또는 PLZT 중 적어도 하나를 포함하는 것인 에너지 저장 장치.
  15. 제11항에 있어서, 상기 미세-배열 다공성 재료가 상기 복수의 기공의 공극 공간 내에 그래핀을 추가로 포함하는 것인 에너지 저장 장치.
  16. 제11항에 있어서, 상기 미세-배열 다공성 재료가 상기 미세-배열 다공성 재료의 표면 상에 입자-형상의 유전체 재료 층을 추가로 포함하는 것인 에너지 저장 장치.
  17. 제11항에 있어서, 상기 에너지 저장 장치가 애노드를 갖는 리튬 배터리를 포함하며, 상기 애노드의 미세-배열 다공성 재료가 Li-MnO2 또는 LiFePO4로부터 선택된 리튬화 삼원 전이 금속 산화물의 조성을 갖는 것인 에너지 저장 장치.
  18. 제17항에 있어서, 캐소드의 미세-배열 다공성 재료가 Ni, Al, Ti, Sn, Zr, V, Nb, Ta, W, Cr, Fe, Co, Rh, Ir, Pt, Pd, Cu, Ag, Au 또는 Mn 중 적어도 하나로부터 선택된 조성을 갖는 것인 에너지 저장 장치.
  19. 제11항에 있어서, 상기 에너지 저장 장치가 제1 금속 산화물 미세-배열 다공성 층 및 제2 금속 산화물 미세-배열 다공성 층을 포함하는 슈퍼커패시터를 포함하며, 상기 제1 금속 산화물 미세-배열 다공성 층은 상기 제2 금속 산화물 미세-배열 다공성 층보다 더 높은 전도성을 갖는 것인 에너지 저장 장치.
  20. 제19항에 있어서, 상기 제1 금속 산화물 미세-배열 다공성 층이 ITO 또는 IZO, 전도성 중합체 중 적어도 하나를 포함하고, 상기 제2 금속 산화물 미세-배열 다공성 층이 금속 산화물 또는 중합체를 포함하는 것인 에너지 저장 장치.
  21. 제11항에 있어서, 반대 전극으로서 작용하는 전극을 추가로 포함하는 에너지 저장 장치.
  22. 에너지 저장 장치를 위한 전극 재료의 제조 방법으로서,
    복수의 기공을 포함하는 미세-배열 다공성 재료를 3-D 프린팅하는 단계
    를 포함하며;
    상기 복수의 기공은 1000 μm 미만의 크기를 갖고;
    상기 복수의 기공의 크기는 20% 미만의 분산도로 실질적으로 균일하고;
    상기 미세-배열 다공성 재료는 40 내지 85%의 공극률을 갖고;
    상기 미세-배열 다공성 재료가 PPV, PPY, PAC, PANI, PT, PEDOT 또는 PPS로부터 선택된 전도성 중합체를 포함하고, 상기 전도성 중합체가 유사 커패시터로서 작용하는 거대 분자를 포함하는 것인, 에너지 저장 장치를 위한 전극 재료의 제조 방법.
  23. 제11항에 있어서, 또 다른 전극으로서 작용하는 전해질을 추가로 포함하는 에너지 저장 장치.
  24. 삭제
KR1020177027328A 2015-04-09 2015-04-09 전극 재료 및 에너지 저장 장치 KR102112746B1 (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/076135 WO2016161587A1 (en) 2015-04-09 2015-04-09 Electrode material and energy storage apparatus

Publications (2)

Publication Number Publication Date
KR20180006882A KR20180006882A (ko) 2018-01-19
KR102112746B1 true KR102112746B1 (ko) 2020-06-04

Family

ID=57071759

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020177027328A KR102112746B1 (ko) 2015-04-09 2015-04-09 전극 재료 및 에너지 저장 장치

Country Status (6)

Country Link
US (1) US10644324B2 (ko)
JP (1) JP2018517285A (ko)
KR (1) KR102112746B1 (ko)
CN (1) CN107615427A (ko)
TW (1) TWI601330B (ko)
WO (1) WO2016161587A1 (ko)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108140801B (zh) * 2015-07-20 2021-09-24 赛莫必乐公司 涂覆有活性氧化物材料的金属泡沫阳极
CN107275568B (zh) * 2017-07-04 2019-08-09 福州大学 一种石墨烯掺杂的二氧化钌基多孔电极及其制备方法
JP6958804B2 (ja) * 2017-07-19 2021-11-02 日産自動車株式会社 電極、その電極を用いた電池およびその電池の製造方法
CN109301203B (zh) * 2018-09-21 2020-01-10 四川大学 三维海胆/多孔复合结构锂离子电池铜/氧化铜/二氧化锡/碳负极及其制备方法
WO2020097474A1 (en) * 2018-11-09 2020-05-14 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Carbon nanofoams with graded/gradient pore structure
CN109553162B (zh) * 2018-11-27 2021-08-20 昆明理工大学 一种以有序多孔ZnO为模板的不锈钢基纳米阵列β-PbO2电极的制备方法
FR3098003B1 (fr) * 2019-06-26 2022-07-15 Solvionic Procédé et dispositif de fabrication d'électrodes pour un supercondensateur à base de liquide ionique et procédé de fabrication d'un tel supercondensateur
CN112366322B (zh) * 2020-01-03 2022-01-07 万向一二三股份公司 一种提升硅碳负极结构稳定性以及循环性能的集流体及其制备方法和包含该集流体的电池
JP7465121B2 (ja) 2020-03-10 2024-04-10 本田技研工業株式会社 多孔質誘電性粒子、リチウムイオン二次電池用電極、およびリチウムイオン二次電池
CN112185715B (zh) * 2020-10-12 2021-10-26 广西大学 一种锌-钴双金属氧化物三明治结构柔性薄膜电极及其制备方法
CN115417477B (zh) * 2022-09-19 2023-11-03 东莞理工学院 一种3D打印Nb2O5-TiO2多孔电极的制备方法和应用
TWI827297B (zh) * 2022-10-05 2023-12-21 國立臺灣科技大學 電極材料、電極的製備方法及其在超級電容器的應用

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5031193B2 (ja) * 2005-03-16 2012-09-19 独立行政法人科学技術振興機構 金属製の多孔質負極及びそれを用いたリチウム二次電池
JP2008016446A (ja) * 2006-06-09 2008-01-24 Canon Inc 粉末材料、粉末材料を用いた電極構造体及び該電極構造体を有する蓄電デバイス、並びに粉末材料の製造方法
US8237538B2 (en) * 2007-04-09 2012-08-07 The Board Of Trustees Of The University Of Illinois Porous battery electrode for a rechargeable battery and method of making the electrode
US20110076560A1 (en) * 2009-08-28 2011-03-31 Sion Power Corporation Electrochemical cells comprising porous structures comprising sulfur
WO2009103029A2 (en) * 2008-02-13 2009-08-20 Seeo, Inc Electrodes with solid polymer electrolytes
KR101123078B1 (ko) * 2008-04-11 2012-03-19 주식회사 아모그린텍 초고용량 커패시터의 전극 및 이의 제조방법
US20090303660A1 (en) * 2008-06-10 2009-12-10 Nair Vinod M P Nanoporous electrodes and related devices and methods
US20110206992A1 (en) * 2009-08-28 2011-08-25 Sion Power Corporation Porous structures for energy storage devices
JP5787307B2 (ja) * 2010-07-23 2015-09-30 東京応化工業株式会社 二次電池用多孔質電極
US20120154983A1 (en) * 2010-10-08 2012-06-21 The Regents Of The University Of California Method of Fabrication of Carbon Nanofibers on Nickel Foam
JP6019533B2 (ja) * 2010-12-21 2016-11-02 国立大学法人東北大学 ナノポ−ラス金属コア・セラミックス堆積層型コンポジット及びその製造法並びにスーパーキャパシタ装置及びリチウムイオン電池
CN102324318A (zh) * 2011-07-05 2012-01-18 林洪 一种石墨烯/多孔MnO2复合超级电容器电极材料及其制备方法
JP6050073B2 (ja) * 2011-09-30 2016-12-21 株式会社半導体エネルギー研究所 蓄電装置
JP2014007220A (ja) * 2012-06-22 2014-01-16 Samsung R&D Institute Japan Co Ltd 電気二重層キャパシタ、及び多孔質電極
KR101447023B1 (ko) * 2012-11-02 2014-10-07 한국과학기술연구원 다공성 복합체 박막의 제조방법 및 전극용 다공성 복합체 박막
KR101973050B1 (ko) * 2012-12-12 2019-04-26 삼성에스디아이 주식회사 다공화된 구조의 티타늄 산화물과 탄소계 물질이 병합된 슈퍼 캐패시터 전극재료 및 그 제조방법
WO2014138242A1 (en) * 2013-03-05 2014-09-12 Sion Power Corporation Electrochemical cells comprising fibril materials, such as fibril cellulose materials
DE102013005761A1 (de) * 2013-04-05 2014-10-09 ELE ENERGY ELEMENTS GmbH Energiespeicher - eins
JP2016524276A (ja) * 2013-05-10 2016-08-12 ザ ボード オブ トラスティーズ オブ ザ ユニヴァーシティー オブ イリノイ マイクロ電池用の三次元(3d)電極アーキテクチャ
JP6610851B2 (ja) * 2013-08-09 2019-11-27 国立研究開発法人産業技術総合研究所 カーボンを含有したペーストの製造方法
CN104409774B (zh) * 2014-05-31 2017-01-11 福州大学 一种锂电池的3d打印方法
CN104008889B (zh) * 2014-06-17 2017-03-15 西南大学 一种高性能超级电容器及其制备方法
CN104425134A (zh) * 2014-11-11 2015-03-18 超威电源有限公司 一种高孔隙率高电导率多孔电极、其批量制造工艺及采用该多孔电极的赝电式超级电容器
TWI609392B (zh) * 2015-02-17 2017-12-21 鈺邦科技股份有限公司 高儲能電容單元

Also Published As

Publication number Publication date
US10644324B2 (en) 2020-05-05
JP2018517285A (ja) 2018-06-28
TW201639220A (zh) 2016-11-01
KR20180006882A (ko) 2018-01-19
TWI601330B (zh) 2017-10-01
WO2016161587A1 (en) 2016-10-13
CN107615427A (zh) 2018-01-19
US20170263939A1 (en) 2017-09-14

Similar Documents

Publication Publication Date Title
KR102112746B1 (ko) 전극 재료 및 에너지 저장 장치
US9892870B2 (en) Charge storage devices containing carbon nanotube films as electrodes and charge collectors
JP6367390B2 (ja) 大容量プリズムリチウムイオン合金アノードの製造
JP5704726B2 (ja) 全て固体の電気化学二重層スーパーキャパシタ
US20130078510A1 (en) Core-shell nanoparticles in electronic battery applications
KR101031019B1 (ko) 전이금속산화물 코팅층을 가지는 금속 전극의 제조 방법 및그에 의해 제조된 금속 전극
US9728812B2 (en) Electrostatic energy storage device and preparation method thereof
KR101286935B1 (ko) 축전 디바이스용 복합 전극, 그의 제조 방법 및 축전 디바이스
EP2662337A1 (en) Core-shell nanoparticles in electronic capacitor applications
EP3193394B1 (en) Electrode, method for manufacturing same, electrode manufactured by same, and secondary battery comprising same
Jung et al. Kim
JP6827657B2 (ja) 電気化学デバイス及びその作製方法
CN108604681B (zh) 能量储存电极及装置
TWI475583B (zh) 一種奈米金屬線固態電容器結構與製造方法
US10446332B2 (en) Ultrathin asymmetric nanoporous-nickel graphene-copper based supercapacitor
CN110247004B (zh) 电池及其制造方法
JP6523658B2 (ja) キャパシタ空気電池用の中間層原料組成物、該原料組成物を含有する中間層を有する電極、および該電極を備えたキャパシタ空気電池
JP2017228458A (ja) 蓄電素子とその製造方法
JP2017228457A (ja) 蓄電素子とその製造方法
Swider-Lyons et al. Direct write microbatteries for next-generation microelectronic devices

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant