JP2017228458A - 蓄電素子とその製造方法 - Google Patents

蓄電素子とその製造方法 Download PDF

Info

Publication number
JP2017228458A
JP2017228458A JP2016124655A JP2016124655A JP2017228458A JP 2017228458 A JP2017228458 A JP 2017228458A JP 2016124655 A JP2016124655 A JP 2016124655A JP 2016124655 A JP2016124655 A JP 2016124655A JP 2017228458 A JP2017228458 A JP 2017228458A
Authority
JP
Japan
Prior art keywords
layer
electrode layer
storage element
solid electrolyte
porous nanocomposite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016124655A
Other languages
English (en)
Inventor
晴比古 土生田
Haruhiko Habuta
晴比古 土生田
紀仁 藤ノ木
Norihito Fujinoki
紀仁 藤ノ木
暁彦 相良
Akihiko Sagara
暁彦 相良
吉井 重雄
Shigeo Yoshii
重雄 吉井
ベレッケン フィリペ
Berekken Philippe
ベレッケン フィリペ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Interuniversitair Microelektronica Centrum vzw IMEC
Panasonic Corp
Original Assignee
Interuniversitair Microelektronica Centrum vzw IMEC
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Interuniversitair Microelektronica Centrum vzw IMEC, Panasonic Corp filed Critical Interuniversitair Microelektronica Centrum vzw IMEC
Priority to JP2016124655A priority Critical patent/JP2017228458A/ja
Publication of JP2017228458A publication Critical patent/JP2017228458A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】自己放電が抑制され、例えば長期間にわたって開放電圧および蓄積電荷量を保持できる蓄電素子を提供する。【解決手段】本開示の一形態に係る蓄電素子11は、導電性の第1電極層2と、絶縁性物質とチタン酸化物との混合物を含む多孔性ナノコンポジット層3と、固体電解質層4と、多孔性ナノコンポジット層3と対の極性を有する対極層5と、導電性の第2電極層6とを有し、多孔性ナノコンポジット層3、固体電解質層4、および対極層5から選ばれる少なくとも1つの層がリチウムを含有する。第1電極層2、多孔性ナノコンポジット層3、固体電解質層4、対極層5、および第2電極層6はこの順に積層されている。【選択図】図1

Description

本開示は、蓄電素子とその製造方法とに関する。
近年、情報、通信機器の普及および高機能化に伴い、これら電子機器の電源となる蓄電素子の性能向上が求められている。また、車両分野においても、電気自動車およびハイブリッド自動車の電源の性能向上が求められている。従来、これらの電源として、エネルギー密度および作動電圧が高いリチウム二次電池の研究および開発が進められてきた。現在普及しているリチウムイオン二次電池は、可燃性の有機溶媒を含む電解液を電解質として含むため、短絡時および電解質の漏液時の安全性確保が課題となる。
これに対して、全固体型リチウム二次電池が提案されている(例えば、非特許文献1を参照)。この電池は、電解液の代わりに、リチウムイオン伝導性を有する固体電解質を含む。この電池では、上記課題を回避できる。しかし、固体電解質のリチウムイオン伝導性は電解液よりも低い。また、固体電解質とこれに接する電極材料との界面抵抗は大きい。現状、全固体型リチウム二次電池の性能は、電解液を含む電池よりも劣っている。
こうした背景の下、特許文献1に、TiOx−SiOx材料から構成される多孔膜を電極または固体電解質として有する非リチウム伝導型固体二次電池が提案されている。特許文献1には、この構成により、負極容量を増加できること、および電池内の内部抵抗を低減できることが記載されている。
特開2015-82445号公報
J. B. Bates et al, "Characterization of Thin‐Film Rechargeable Lithium Batteries with Lithium Cobalt Oxide Cathodes", J. Electrochem. Soc., 1996, vol. 143, issue 10, pp.3203-3213
本開示は、自己放電が抑制され、例えば長期間にわたって開放電圧および蓄積電荷量を保持できる蓄電素子を提供する。
本開示の蓄電素子は、導電性の第1電極層と、絶縁性物質とチタン酸化物との混合物を含む多孔性ナノコンポジット層と、固体電解質層と、前記多孔性ナノコンポジット層と対の極性を有する対極層と、導電性の第2電極層と、を有する。前記多孔性ナノコンポジット層、前記固体電解質層、および前記対極層から選ばれる少なくとも1つの層がリチウムを含有する。前記第1電極層、前記多孔性ナノコンポジット層、前記固体電解質層、前記対極層、および前記第2電極層が、この順に積層されている。
本開示の蓄電素子は、自己放電が抑制され、例えば長期間にわたって開放電圧および蓄積電荷量を保持できる素子である。
図1は、本開示の蓄電素子の一例を模式的に示す断面図である。 図2は、本開示の蓄電素子が有する多孔性ナノコンポジット層の一例を模式的に示す断面図である。 図3は、本開示の蓄電素子の製造方法の一例を示す図である。
本明細書における「蓄電素子」は、充電により電荷を蓄積でき、放電により蓄積された電荷を放出できる素子を意味する。素子の充放電特性は問わない。充放電特性は、例えば、充放電の時間に対する素子の正負極間の電圧の変化の特性である。より具体的に、蓄電素子は、二次電池、キャパシタ、およびこれらの中間的な充放電特性を示す素子を含む。
(本開示の一態様に到った経緯)
本発明者らによる特許文献1の二次電池の検討によれば、当該電池の自己放電量が多いことが判明した。より具体的に特許文献1の二次電池では、充電後の時間経過とともに開放電圧が低下し、蓄積された電荷量が低下した。後者は、放電容量の低下を意味する。特許文献1の二次電池では、TiOx−SiOx多孔膜の細孔表面に吸着したOH基を介してプロトンが伝導する。このプロトンの伝導は、充放電時の電圧による、多孔膜の表面に吸着した水の電気分解を誘発し、この電気分解が、電池の自己放電につながると考えられる。
本発明者らは、第1電極層と、絶縁性物質とチタン酸化物との混合物を含む多孔性ナノコンポジット層と、固体電解質層と、多孔性ナノコンポジット層と対の極性を有する対極層と、第2電極層とを有し、これらの層がこの順に積層され、多孔性ナノコンポジット層、固体電解質層および対極層から選ばれる少なくとも1つの層がリチウムを含有することにより、自己放電の抑制された蓄電素子が達成されることを見出した。
(開示の態様)
本開示の第1態様の蓄電素子は、導電性の第1電極層と、絶縁性物質とチタン酸化物との混合物を含む多孔性ナノコンポジット層と、固体電解質層と、多孔性ナノコンポジット層と対の極性を有する対極層と、導電性の第2電極層とを有する。前記多孔性ナノコンポジット層、前記固体電解質層、および前記対極層から選ばれる少なくとも1つの層がリチウムを含有する。前記第1電極層、前記多孔性ナノコンポジット層、前記固体電解質層、前記対極層、および前記第2電極層は、この順に積層されている。
第1態様によれば、自己放電が抑制された蓄電素子が達成される。この蓄電素子は、例えば、充電後の開放電圧および蓄積電荷量を長期間にわたって保持でき、安定して動作する。また、素子の構成によって、以下のようなさらなる効果が期待される。
・ナノコンポジット層は多孔性である。このため、当該層の単位体積あたりのイオン活物質との反応量は大きく、蓄電素子の充放電容量を向上できる。
・多孔性であることから、ナノコンポジット層は多くのイオン伝導パスを有する。このため、蓄電素子の充放電速度を向上できる。
・無機材料のみにより構成することが可能であり、安全性に優れる蓄電素子を達成できる。全固体型の蓄電素子でありうるし、非水の蓄電素子でありうる。
・比較的簡単なプロセスにより、レアメタルを使用することなく製造できる。このため、低コストの蓄電素子を達成できる。
本開示の第2態様では、第1態様の蓄電素子において、前記多孔性ナノコンポジット層が、前記チタン酸化物の微粒子が前記絶縁性物質に分散した構造を有する。第2態様によれば、上述した各効果がより確実となる。
本開示の第3態様では、第1または第2態様の蓄電素子において、前記絶縁性物質がシリコンおよび酸素を含有する。第3態様によれば、上述した各効果がより確実となる。
本開示の第4態様では、第1から第3のいずれかの態様の蓄電素子が基板をさらに有し、前記基板上に、前記第1電極層、前記多孔性ナノコンポジット層、前記固体電解質層、前記対極層、および前記第2電極層が配置されている。
本開示の第5態様では、第4態様の蓄電素子において、前記基板が可撓性を有する絶縁性のシートである。
本開示の第6態様の蓄電素子の製造方法は、導電性の第1電極層と、絶縁性物質とチタン酸化物との混合物を含む多孔性ナノコンポジット層と、固体電解質層と、前記多孔性ナノコンポジット層と対の極性を有する対極層と、導電性の第2電極層と、を有し、前記第1電極層、前記多孔性ナノコンポジット層、前記固体電解質層、前記対極層、および前記第2電極層が、この順に積層されている、リチウム伝導型である蓄電素子の製造方法であって、チタン脂肪族酸塩と、焼成を経て前記絶縁性物質に変化する前駆物質とを含む溶液の塗布膜を、前記第1電極層上、前記固体電解質層上、または前記第1電極層上もしくは前記固体電解質層上に形成された中間層上に形成し、前記塗布膜を焼成して前記多孔性ナノコンポジット層を形成する方法である。
第6態様によれば、上述した各効果がより確実に達成される多孔性ナノコンポジット層、および当該層を有する本開示の蓄電素子を製造できる。また、低コストでの素子の製造が可能である。
本開示の第7態様では、第6態様の製造方法において、前記第1電極層上に前記多孔性ナノコンポジット層を形成し、前記形成した多孔性ナノコンポジット層上に、前記固体電解質層、前記対極層、および前記第2電極層を形成する。この態様は、第1電極層から順に各層を形成する実施形態に対応する。第2電極層から順に各層を形成する場合、前記固体電解質層上に前記多孔性ナノコンポジット層を形成する。各層の形成の間に、任意の中間層を形成、配置してもよい。
本開示の第8態様では、第6または第7態様の製造方法において、前記前駆物質がシリコーンオイルである。第8態様によれば、第2または第3態様の蓄電素子を製造できる。
本開示の第9態様では、第6から第8のいずれかの態様の製造方法において、前記蓄電素子が基板をさらに備え、前記基板上に当該蓄電素子を形成する。第9態様によれば、第4態様の蓄電素子を製造できる。
本開示の第10態様では、第6から第9のいずれかの態様の製造方法において、前記蓄電素子の前記多孔性ナノコンポジット層、前記固体電解質層、および前記対極層から選ばれる少なくとも1つの層がリチウムを含有する。
本開示の第11態様では、第6から第10のいずれかの態様の製造方法が、前記多孔性ナノコンポジット層にリチウムを含有させる工程(リチウムのドープ工程)をさらに含む。第11態様によれば、蓄電素子の構成によってはその性能を向上できる。
[蓄電素子]
以下、本開示の蓄電素子について、図面を参照しながら説明する。
図1は、本開示の蓄電素子の一例を模式的に示す断面図である。図1に示す蓄電素子11は、導電性の第1電極層2、多孔性ナノコンポジット層3、固体電解質層4、対極層5、および導電性の第2電極層6を有する。第1電極層2、多孔性ナノコンポジット層3、固体電解質層4、対極層5、および第2電極層6は、この順に積層されている。各層の積層体は、基板1上に配置されている。図1に示す例では、第1電極層2が基板1に面するように積層体が配置されている。これとは異なり、第2電極層6が基板1に面するように積層体が配置されてもよい。この場合、基板1側から、第2電極層6、対極層5、固体電解質層4、多孔性ナノコンポジット層3、および第1電極層2が順に配置される。基板1は省略できる。素子11の望む性能が確保される限り、各層の間に任意の中間層を配置してもよい。
基板1は、絶縁性であっても導電性であってもよい。絶縁性の基板1は、例えば、絶縁性材料から構成される。導電性の基板1は、例えば、導電性材料から構成される。基板1は、絶縁性材料および導電性材料の複合体である絶縁性または導電性の基板であってもよい。基板1を構成する材料の例は、ガラス、半導体、プラスチック、セラミックスおよび金属である。基板1の形状の例は、シート、フィルム、箔、およびこれらの積層体である。より具体的な基板1の例は、ガラス基板、高分子フィルム、金属板、金属箔、およびセラミックス基板である。基板1における上記各層の積層体が配置される表面は平坦でなくてもよく、例えば凹凸を有する面でありうる。この場合、基板1の単位面積あたりの素子11の容量を向上できる。
基板1は、可撓性を有するシートでありうる。より具体的に、基板1は可撓性を有する絶縁性のシートでありうる。
第1電極層2および第2電極層6は、蓄電素子11の集電体の機能を有する。導電性材料から構成される第1電極層2および第2電極層6でありうる。また、リチウムと反応し難い材料から構成される第1電極層2および第2電極層6でありうる。
電極層2,6を構成する材料は、例えば、金属、導電性化合物、および導電性樹脂である。金属は、例えば、金、白金、パラジウム、チタン、アルミニウム、銅、銀、マグネシウム、タングステン、コバルト、亜鉛、ニッケル、鉄、スズ、クロム、鉛、モリブデン、およびこれらの合金である。合金は、例えば、ステンレス、および黄銅である。
導電性化合物は、例えば、導電性の酸化物、窒化物、炭化物、および硼化物である。導電性酸化物の具体例は、酸化インジウム、酸化スズ、酸化亜鉛、酸化アンチモン、およびこれらの混合物である。導電性窒化物の具体例は、窒化チタン、窒化ジルコニウム、窒化タンタル、窒化バナジウム、窒化クロム、窒化モリブデン、窒化タングステン、およびこれらの混合物である。導電性炭化物の具体例は、炭化チタン、炭化ジルコニウム、炭化ニオブ、炭化タンタル、炭化バナジウム、炭化クロム、炭化モリブデン、炭化タングステン、およびこれらの混合物である。導電性硼化物の具体例は、硼化チタン、硼化ジルコニウム、硼化ニオブ、硼化タンタル、硼化バナジウム、硼化クロム、硼化モリブデン、硼化タングステン、硼化ランタン、およびこれらの混合物である。導電性である限り、各化合物の組成比は限定されない。
導電性樹脂は、例えば、ポリアセチレン、ポリチオフェン、ポリアニリン、ポリピロール、ポリパラフェニレン、ポリパラフェニレンビニレン、ポリフルオレン、ポリチエニレンビニレン、ポリエチレンジオキシチオフェン、ポリアセン、およびこれらの混合物である。
光学的に透明な電極層2,6を採用してもよい。このような電極層2,6は、例えば、スズドープ酸化インジウム(ITO: Indium Tin Oxide)層である。酸化スズまたは酸化亜鉛によっても、光学的に透明な電極層2,6を構成できる。
蓄電素子11の望む性能が確保される限り、複数の膜の積層膜である電極層2,6を採用できる。各膜を構成する材料は、同一であっても、互いに異なっていてもよい。
基板1が導電性である場合、基板1を第1電極層2として使用できる。
電極層2,6の形成に公知の薄膜形成手法を採用できる。薄膜形成手法は、例えば、化学堆積法および物理堆積法である。具体例は、スパッタリング法、電子ビーム蒸着法、真空蒸着法、パルスレーザー堆積(PLD)法、化学気相蒸着(CVD)法、原子層堆積(ALD)法、サーマルスプレー法、コールドスプレー法、エアロゾルデポジション法、電解メッキ法、無電解メッキ法、ゾルゲル法、イオンプレーティング法である。スピンコート法、ディップコート法、バーコート法、レベルコート法、スプレーコート法、ローラーコート法、ワイヤーバーコート法、ダイコート法、インクジェット法といった塗布法を採用してもよい。電極層2,6の形成方法は、これらの例に限定されない。
電極層2,6の厚さは、これらの層が集電体として機能できる範囲から選択できる。
多孔性ナノコンポジット層3は、絶縁性物質とチタン酸化物との混合物を含む。ナノコンポジット層3は、蓄電素子11の正極または負極として機能する。ナノコンポジット層3は、絶縁性物質およびチタン酸化物から選ばれる少なくとも1つがナノメートルのオーダーで分散した構造を有する。ナノメートルのオーダーでの分散とは、物質の分散領域のサイズが1ミクロン以下であることを意味する。このような分散領域が存在する限り、ナノコンポジット層3は、より大きなサイズの分散領域を含みうる。ナノコンポジット層3は多孔質である。その空孔率は、例えば、5〜85%である。その比表面積は、例えば、70〜1250m2/gである。
チタン酸化物がナノコンポジット層3の主成分であってもよい。主成分とは、当該層において最も含有率(体積基準)が大きい成分を指す。
図2に、ナノコンポジット層3の一例を示す。図2に示すナノコンポジット層3は、チタン酸化物の微粒子31が絶縁性物質32に分散した構造を有する。図2に示すナノコンポジット層3では、ナノメートルオーダーの粒径を有する微粒子31が、絶縁性物質32中に無数に分散している。微粒子31の粒径は、均一であっても、不均一であってもよい。隣り合う微粒子31間の距離、すなわち、隣り合う微粒子31間に位置する絶縁性物質32の領域のサイズも、ナノメートルオーダーでありうる。
チタン酸化物は、少なくとも、チタンおよび酸素を含有する。
絶縁性物質は、例えば、無機絶縁物、および絶縁性樹脂である。無機絶縁物は、例えば、酸化物、窒化物、酸窒化物、鉱油、およびこれらの混合物である。酸化物の具体例は、酸化珪素、酸化マグネシウム、酸化アルミニウム、酸化チタン、酸化ガリウム、酸化タンタル、酸化ジルコニウム、酸化ハフニウム、酸化クロムである。窒化物の具体例は、窒化ゲルマニウム、窒化クロム、窒化珪素、窒化アルミニウム、窒化ニオブ、窒化モリブデン、窒化チタン、窒化ジルコニウム、窒化タンタルである。酸窒化物の具体例は、酸窒化ゲルマニウム、酸窒化クロム、酸窒化珪素、酸窒化アルミニウム、酸窒化ニオブ、酸窒化モリブデン、酸窒化チタン、酸窒化ジルコニウム、酸窒化タンタルである。絶縁性である限り、各化合物の組成比は限定されない。
絶縁性樹脂は、例えば、シリコーン、ポリエチレン、ポリプロピレン、ポリスチレン、ポリブタジエン、ポリ塩化ビニル、ポリエステル、ポリメチルメタクリレート、ポリアミド、ポリカーボネート、ポリアセタール、ポリイミド、エチルセルロース、酢酸セルロース、フェノール樹脂、アミノ樹脂、不飽和酸ポリエステル樹脂、アクリル樹脂、アリル樹脂、アルキド樹脂、エポキシ樹脂、メラミン樹脂、ユリア樹脂、塩化ビニリデン樹脂、ABS樹脂、ポリウレタン、ネオプレン、セルロイド、ポリビニルホルマール、融解フッ素樹脂、パラフィン、およびこれらの混合物である。
絶縁性物質は、耐熱性を有していてもよい。
ナノコンポジット層3の一形態では、絶縁性物質がシリコン(珪素)および酸素を含有する。このような絶縁性物質の例は、酸化珪素(シリコン酸化物)である。酸化珪素の具体例は、二酸化珪素(SiO2)である。ナノコンポジット層3の一形態では、チタン酸化物31の微粒子が、酸化珪素の絶縁性物質32中に分散している。これらの形態では、蓄電素子11の自己放電がより抑制される。
ナノコンポジット層3は、導電助剤を含みうる。導電助剤は、例えば、黒鉛、カーボンブラック、アセチレンブラック、カーボンナノチューブ、カーボンナノファイバー、銀、銅、ニッケル、酸化亜鉛、酸化スズ、酸化インジウム、ポリアニリン、ポリチオフェン、およびポリピロールである。
ナノコンポジット層3の厚さは、例えば、10nm以上100μm以下である。
ナノコンポジット層3の形成方法は限定されない。ナノコンポジット層3の形成に、上述した公知の薄膜形成手法を採用できる。以下の方法を採用してもよい。
チタン酸化物は、例えば、チタン脂肪族酸塩の分解により形成できる。この方法では、チタン酸化物の微粒子も形成可能である。分解は、例えば、焼成、または酸化性雰囲気下での紫外線照射により進行する。
脂肪族酸は、例えば、脂肪族モノカルボン酸、脂肪族ジカルボン酸、脂肪族トリカルボン酸、および脂肪族テトラカルボン酸などの脂肪族ポリカルボン酸である。飽和脂肪族モノカルボン酸の具体例は、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、ヘプタン酸、カプリル酸、ペラルゴン酸、カプリン酸、ラウリン酸、ミリスチン酸、バルチミン酸、マルガリン酸、ステアリン酸、アクリル酸、ブテン酸、クロトン酸、イソクロトン酸、リノレン酸、オレイン酸、リノール酸、酒石酸、アラキドン酸、ドコサヘキサエン酸、エイコサペンタエン酸、乳酸、リンゴ酸、クエン酸、安息香酸、フタル酸、イソフタル酸、テレフタル酸、サリチル酸、没食子酸、メリト酸、ケイ皮酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、フマル酸、マレイン酸、ピルビン酸、およびサリチル酸である。2種以上のチタン脂肪族酸塩を使用してもよい。
例えば、これらチタン脂肪族酸塩の溶液の塗布膜を形成し、形成した塗布膜に含まれるチタン脂肪族酸塩を分解してチタン酸化物を形成できる。この方法では、チタン酸化物の微粒子も形成可能である。溶液の溶媒として、使用する脂肪族酸塩の溶解性に優れる溶媒を選択できる。溶媒の一例は有機溶媒である。このとき、塗布する溶液は有機溶液である。有機溶媒の例は、炭化水素類、アルコール類、エステル類、エーテル類、およびケトン類である。より具体的な溶媒の例は、エタノール、キシレン、ブタノール、アセチルアセトン、アセト酢酸エチル、およびアセト酢酸メチルである。
このようなチタン脂肪族酸塩の分解を経て、ナノコンポジット層3を形成できる。この方法の一例では、形成したチタン酸化物の微粒子と、焼成を経て絶縁性物質に変化する前駆物質とを含む溶液の塗布膜を形成し、形成した塗布膜を焼成する。この方法の別の一例では、チタン脂肪族酸塩と前駆物質とを含む溶液の塗布膜を形成し、形成した塗布膜を焼成する。これらの方法により、例えば、図2に示すナノコンポジット層3を形成できる。溶液に使用する溶媒の例は、上述のとおりである。前駆物質は、例えば、珪素を含む物質である。前駆物質の具体例は、シリコーンオイルである。前駆物質がシリコーンオイルである場合、シリコーンオイルの溶解性に優れる溶媒を選択できる。シリコーンオイルからは、焼成により酸化珪素を形成できる。
本実施形態においては、固体電解質層4をナノコンポジット層3と対極層5との間に配置する。これにより、ナノコンポジット層3と対極層5との直接的な接触が回避される。固体電解質層4に望まれる基本特性は、(1)高いイオン伝導率、(2)低い電子伝導度(高い絶縁性)、(3)酸化還元に対して安定なこと、すなわち耐電圧が高いこと、である。固体電解質層4には、リチウム(Li)を含む材料を採用してもよい。固体電解質層4を構成する材料は、例えば、Li−N、無機酸化物、無機硫化物、および固体ポリマー電解質である。
無機酸化物の具体例は、LiPON、LiAlTi(PO43、LiAlGeTi(PO43、LiLaTiO、LiLaZrO、Li3PO4、Li2SiO2、Li3SiO4、Li3VO4、Li4SiO4−Zn2SiO4、Li4GeO4−Li2GeZnO4、Li2GeZnO4−Zn2GeO4、およびLi4GeO4−Li3VO4である。
無機硫化物の具体例は、Li2S−P25、Li2S−P25−LiI、Li2S−P25−Li2O−LiI、Li2SSiS2、Li2S−SiS2−LiI、Li2S−SiS2−LiBr、Li2S−SiS2−LiCl、Li2S−SiS2−B23−LiI、Li2S−SiS2−P25−LiI、Li2S−B23、Li2S−P25−GeS、Li2S−P25−ZnS、Li2S−P25−GaS、Li2S−GeS2、Li2S−SiS2−Li3PO4、Li2S−SiS2−LiPO、Li2S−SiS2−LiSiO、Li2S−SiS2−LiGeO、Li2S−SiS2−LiBO、Li2S−SiS2−LiAlO、Li2S−SiS2−LiGaO、Li2S−SiS2−LiInO、Li4GeS4−Li3PS3、Li4SiS4−Li3PS4、Li3PS4−Li2Sである。
固体ポリマー電解質の具体例は、フッ素樹脂、ポリエチレンオキサイド、ポリアクリルニトリル、ポリアクリレート、ならびにこれらの誘導体および共重合体であって、ポリマー電解質として使用可能な材料である。
固体電解質層4の厚さは、例えば、10nm〜100μmである。
固体電解質層4の形成に、上述した公知の薄膜形成手法を採用できる。
対極層5は、蓄電素子11の負極または正極として機能する。対極層5は、ナノコンポジット層3とは対の極性を有する。ナノコンポジット層3が正極の場合、対極層5は負極である。ナノコンポジット層3が負極の場合、対極層5は正極である。
正極である対極層5には、リチウムイオンの挿入および脱離が可能である、電気化学分野において公知の正極活物質を使用できる。正極活物質の具体例は、V25、LiCoO2、LiNiO2、LiMnO2、LiMn24、LiNiCoMnO2、LiNiCoO2、LiCoMnO2、LiNiMnO2、LiNiCoMnO4、LiMnNiO4、LiMnCoO4、LiNiCoAlO2、LiNiPO4、LiCoPO4、LiMnPO4、LiFePO4、Li2NiSiO4、Li2CoSiO4、Li2MnSiO4、Li2FeSiO4、LiNiBO3、LiCoBO3、LiMnBO3、およびLiFeBO3である。
負極である対極層5には、リチウムイオンの挿入および脱離が可能である、電気化学分野において公知の負極活物質を使用できる。負極活物質の例は、金属、半金属、酸化物、窒化物、酸窒化物、および炭素である。金属および半金属の具体例は、リチウム、シリコン、アモルファスシリコン、アルミニウム、銀、スズ、アンチモン、およびこれらの合金である。
酸化物の具体例は、Li4Ti512、LiSiO、TiO2、Nb25、SnO2、Ta25、WO、WO2、Fe23、CoO、MoO2、SiO、SnBPO6、Li2SrTi614、およびこれらの混合物である。
窒化物の具体例は、LiCoN、Li3FeN2、Li7MnN4、およびこれらの混合物である。
対極層5の厚さは、例えば、10nm〜100μmである。
対極層5の形成に、上述した公知の薄膜形成手法を採用できる。
蓄電素子11の望む性能が確保される限り、素子11は、上述した以外の任意の層および部材を有することができる。
蓄電素子11では、多孔性ナノコンポジット層3、固体電解質層4、および対極層5から選ばれる少なくとも1つの層がリチウムを含有する。素子11は、リチウム伝導型蓄電素子である。上記3つの層におけるリチウムの分布は、素子11におけるナノコンポジット層3および対極層5の極性、ならびに素子11の充放電の状態に応じて変化する。
蓄電素子11の第1電極層2と第2電極層6との間に電圧を印加する、または電流を流すと、固体電解質層4を介して、ナノコンポジット層3と対極層5との間でリチウムが移動する。このとき、ナノコンポジット層3および対極層5から選ばれる一方の層においてリチウムが吸蔵され、他方の層においてリチウムが脱離する。素子11では、このようなリチウムの移動に対応する電子の蓄積および放出が可能となる。これが蓄電素子11における基本的な蓄電および放電の原理である。電子の蓄積および放出は繰り返し行うことができる。したがって蓄電素子11は、二次電池、キャパシタ、あるいはこれらの中間的な充放電特性を示す素子として使用できる。
後述の実施例では、上面から見て短形である蓄電素子11を作製する。しかし、本開示の蓄電素子11の形状は、これに限定されない。例えば、上面から見た素子の形状が、円形、楕円形、六角形といった他の形状でありうる。本開示の蓄電素子11は、上述した各層の積層体である基本構成を有していれば、任意の構成をとりうる。例えば、2以上の蓄電素子11をその厚さ方向に積み重ねることができ、これにより、出力電圧の制御および高容量化が可能となる。また、折り畳み式あるいは巻き取り式の素子とすることにより、使用する形状および用途に応じた様々な形状を選定できる。蓄電素子11の外観として、円筒型、角型、ボタン型、コイン型、扁平型などの所望の形状を採用しうる。なお、これら例示の態様に本開示の蓄電素子11は限定されない。
[蓄電素子の製造方法]
図3を参照して、本開示の蓄電素子11の製造方法の一例を説明する。図3は、蓄電素子11の製造工程の一例を説明する工程図である。
<工程(a)>
基板1上に、第1電極層2を形成する。金属から構成される第1電極層2は、例えば、スパッタリング法、電子ビーム蒸着法、真空蒸着法、CVD法、電解メッキ法、無電解メッキ法、ゾルゲル法、イオンプレーティング法、塗布法により形成できる。導電性の基板1を第1電極層2としても使用する場合、工程(a)は省略できる。
<工程(b)>
工程(b)〜(e)は、ナノコンポジット層3の形成工程である。
チタン脂肪族酸塩、前駆物質、および溶媒を混合して塗布溶液を作製する。必要に応じて、混合には撹拌を併用できる。チタン脂肪族酸塩および溶媒の例は、上述のとおりである。前駆物質は、例えば、シリコーンオイルである。
<工程(c)>
工程(b)で作製した塗布溶液を、ナノコンポジット層3の下地層となる第1電極層2上に塗布して塗布膜を形成する。溶液の塗布には、例えば、各種の塗布法を採用できる。塗布の一例では、基板1を回転させながらスピナーにより塗布溶液を第1電極層2上にスピンコートする。これにより、厚さ0.3〜3μm程度の塗布膜が形成される。
<工程(d)>
工程(c)で形成した塗布膜を乾燥する。乾燥条件の一例は、乾燥温度50℃および乾燥時間10分である。塗布膜に含まれる溶媒の揮発性が高い場合などには、工程(d)を省略できる。
<工程(e)>
工程(c)で形成した塗布膜、または工程(d)をさらに経た塗布膜を焼成する。焼成条件の一例は、焼成温度300〜500℃および焼成時間10分〜1時間である。工程(e)において、塗布膜に含まれるチタン脂肪族酸塩が分解するとともに前駆物質が絶縁性物質に変化して、ナノコンポジット層3が形成される。前駆物質がシリコーンオイルである場合、珪素(シリコン)および酸素を含有する絶縁性物質が形成される。
<工程(f)>
形成したナノコンポジット層3にリチウムを含有させる(リチウムをプレドープする)。このドープ工程に、公知のリチウムドープ法を採用できる。具体的な例は、電界印加法、リチウム含有塩を含む溶液に含浸する含浸法、原子層堆積法、および分子層堆積法である。リチウム含有塩の具体例は、LiPO3、Li3PO4、LiH2PO4、LiH2PO4、Li2CO3、LiHCO3、Li2O、LiOH、LiI、およびLiClO4である。これらの塩の溶媒には、例えば、水、イソプロピルアルコール、アセトニトリルといった当該塩の溶解性に優れる溶媒を選択できる。
工程(f)は省略できる。工程(f)によれば、製造する素子11の構成によっては、その性能が向上する。
<工程(g)>
ナノコンポジット層3上に固体電解質層4を形成する。
<工程(h)>
固体電解質層4上に対極層5を形成する。
<工程(i)>
対極層5上に第2電極層6を形成する。
このようにして、本開示の蓄電素子11を製造できる。
図3に示す例では、基板1上に、第1電極層2、ナノコンポジット層3、固体電解質層4、対極層5、および第2電極層6を、この順に形成している。これとは異なり、基板1上に、第2電極層6、対極層5、固体電解質層4、ナノコンポジット層3、および第1電極層2を、この順に形成してもよい。この場合にも、工程(c)におけるナノコンポジット層3の下地層が固体電解質層4となる以外、各層を同様に形成できる。
各層の間には、中間層を形成してもよい。中間層を形成する場合、第1電極層2上に形成された中間層上、または固体電解質層4上に形成された中間層上にナノコンポジット層3を形成してもよい。
本開示の製造方法により製造する蓄電素子は、導電性の第1電極層2と、絶縁性物質とチタン酸化物との混合物を含む多孔性ナノコンポジット層3と、固体電解質層4と、多孔性ナノコンポジット層3と対の極性を有する対極層5と、導電性の第2電極層6とを有し、第1電極層2、ナノコンポジット層3、固体電解質層4、対極層5、および第2電極層6がこの順に積層されており、リチウム伝導型である限り、多孔性ナノコンポジット層3、固体電解質層4、および対極層5から選ばれる少なくとも1つの層がリチウムを含有してもよい。
実施例に基づき、本開示の蓄電素子およびその製造方法をより具体的に説明する。本開示の蓄電素子およびその製造方法は、以下の実施例に限定されない。
(実施例1)
実施例1では、図1に示す蓄電素子11を作製した。作製した素子11が備えるナノコンポジット層3は、絶縁性物質としてSiO2を含み、当該物質にチタン酸化物の微粒子が分散した構造を有していた。
基板1として、主面サイズ3cm角のシリコン基板を準備した。次に、基板1上に、第1電極層2として、チタン(厚さ15nm)および窒化チタン(厚さ150nm)の積層膜をスパッタリング法により形成した。
これとは別に、ヘプタン酸チタン、シリコーンオイル、および溶媒としてキシレンを撹拌により混合して、塗布溶液を調製した。塗布溶液におけるヘプタン酸チタンおよびシリコーンオイルの重量比は、ヘプタン酸チタン:シリコーンオイル=0.72:0.33とした。シリコーンオイルにはモメンティブジャパン製TSF433を用いた。用いたシリコーンオイルは、比較例1においても同じである。
次に、基板1を回転させながら、調製した塗布溶液を第1電極層2上にスピンコート法により塗布することで、第1電極層2に上記溶液の塗布膜を形成した。基板1の回転速度は800rpmであった。次に、全体を温度50℃の雰囲気に10分間放置し、塗布膜を乾燥させた。次に、全体を500℃の雰囲気で60分間焼成した。この焼成により、ヘプタン酸チタンおよびシリコーンオイルが熱分解し、SiO2の絶縁膜にチタン酸化物の微粒子が分散したナノコンポジット層3(厚さ800nm)が形成された。
次に、ナノコンポジット層3上に、固体電解質層4としてLiPON層(厚さ1500nm)をスパッタリング法により形成した。次に、固体電解質層4上に、対極層5としてリチウム層(厚さ3000nm)をスパッタリング法により形成した。次に、対極層5上に、第2電極層6として金からなる層(厚さ300nm)をスパッタリング法により形成した。
このようにして作製した蓄電素子11の充放電特性を評価した。充放電試験は、ソーラトロン社製の1470E型マルチチャンネル電気化学測定システムを使用して、以下のように実施した。なお、作製した素子11のナノコンポジット層3は正極として、対極層5は負極として機能する。
最初に、第2電極層6を基準として第1電極層2にマイナス60μA/cm2の電流を流し、素子11の初期放電を実施した。第2電極層6と第1電極層2との間の電位差が0.5Vになった時点で、素子11に加える電流の極性を反転させて素子11の充電を開始した。具体的に、第2電極層6を基準として第1電極層2にプラス12μA/cm2の電流を流した。その後、第2電極層6と第1電極層2との間の電位差が3Vに達した時点で、素子11に加える電流の極性を再度反転させて素子11の放電を開始した。具体的に、第2電極層6を基準として第1電極層2にマイナス12μA/cm2の電流を流した。放電は、第2電極層6と第1電極層2との間の電位差が0.5Vになるまで実施した。この充放電サイクルより求めた素子11の放電容量は174μWhであった。
次に、作製した蓄電素子11の自己放電特性を以下のように評価した。上記充電によって第2電極層6と第1電極層2との間の電位差が3Vに達した時点で、素子11に接続した回路を開放した。そして、開放より100秒が経過したときの素子11の初期開放電圧V0と、1時間が経過したときの素子11の開放電圧V1とを測定した。素子11の電位保持率(V1/V0)は92%であった。
(比較例1)
比較例1では、実施例1で作製したナノコンポジット層を負極とする、プロトン伝導型蓄電素子を作製した。第1電極層、ナノコンポジット層、固体電解質層、対極層、および第2電極層が順に積層および配置されている点は、実施例1の蓄電素子11と同じである。
基板として、主面サイズ3cm角のステンレス基板を準備した。ステンレス基板は導電性を有することから、準備した基板上への第1電極層の形成を省略した。比較例1の素子において、ステンレス基板は第1電極層としても機能する。
次に、実施例1と同様にして、ステンレス基板上にナノコンポジット層3を形成した。
次に、ナノコンポジット層上3に、固体電解質層としてポーラス(多孔質)なSiO2層(厚さ50nm)をスピンコート法および焼成により形成した。具体的な形成方法は以下のとおりである。ナノコンポジット層3が形成された基板1を回転させながら、ナノコンポジット層3上に塗布溶液の膜を形成した。塗布溶液は、シリコーンオイル、および溶媒としてキシレンを撹拌により混合して調製した。塗布溶液においては、キシレン4.56gに対して、シリコーンオイル0.25gとした。基板1の回転速度は2000rpmであった。次に、全体を50℃の雰囲気に10分間放置し、塗布膜を乾燥させた。次に、全体を500℃の雰囲気で60分間焼成した。この焼成によりシリコーンオイルが熱分解し、多孔質構造を有するSiO2層が形成された。
次に、固体電解質層上に、対極層としてNiO層(厚さ300nm)をスパッタリング法により形成した。次に、対極層上に、第2電極層としてタングステン層(厚さ150nm)をスパッタリング法により形成した。
このようにして作製した比較例1の蓄電素子の充放電特性を評価した。充放電特性の評価は、実施例1と同じ測定システムを使用して、以下のように実施した。
最初に、第1電極層(基板)を基準として第2電極層にプラス2Vの電圧を5分間印加して、素子を充電した。第2電極層と第1電極層との間の電位差が2Vに達した時点で、素子に加える電流の極性を反転させて素子の放電を開始した。放電は、第2電極層と第1電極層との間の電位差が0.3Vになるまで実施した。
この充放電サイクルより求めた素子の放電容量は8μWhであった。
次に、作製した蓄電素子の自己放電特性を以下のように評価した。上記充電によって第1電極層と第2電極層との間の電位差が2Vに達した時点で、素子に接続した回路を開放した。そして、開放より100秒が経過したときの素子の初期開放電圧V0と、1時間が経過したときの素子の開放電圧V1とを測定した。素子の電位保持率(V1/V0)は52%であった。
実施例1および比較例1の結果を、以下の表1にまとめる。
Figure 2017228458
表1に示すように、比較例1に比べて実施例1の蓄電素子の放電容量は大きく、電位保持率が高かった。実施例1の蓄電素子は、高容量かつ自己放電が抑制されたリチウム伝導型素子であった。実施例1の蓄電素子によれば、充電後の開放電圧および蓄積電荷量を安定して保持できる。また、実施例1の蓄電素子は全固体型素子であり、安全性が高い。
本開示の蓄電素子は、上述した各実施形態に限定されることなく、特許請求の範囲に記載した発明の範囲内で種々の変形、変更が可能である。例えば、発明を実施するための形態に記載した実施形態に示された技術的特徴は、上述の課題の一部または全部を解決するため、あるいは、上述の効果の一部または全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。
本開示の蓄電素子は、従来の蓄電素子と同様の用途に使用できる。具体的な用途は限定されない。用途の例は、ウェアラブル機器、ノートPC、携帯電話、タブレット、およびスマートフォンといったデジタル情報機器の電源、ならびにハイブリッド自動車、および電気自動車といった車両の電源である。
1 基板
2 第1電極層
3 ナノコンポジット層
4 固体電解質層
5 対極層
6 第2電極層
11 蓄電素子

Claims (11)

  1. 導電性の第1電極層と、
    絶縁性物質とチタン酸化物との混合物を含む多孔性ナノコンポジット層と、
    固体電解質層と、
    前記多孔性ナノコンポジット層と対の極性を有する対極層と、
    導電性の第2電極層と、を有し、
    前記多孔性ナノコンポジット層、前記固体電解質層、および前記対極層から選ばれる少なくとも1つの層がリチウムを含有し、
    前記第1電極層、前記多孔性ナノコンポジット層、前記固体電解質層、前記対極層、および前記第2電極層が、この順に積層されている蓄電素子。
  2. 前記多孔性ナノコンポジット層は、前記チタン酸化物の微粒子が前記絶縁性物質に分散した構造を有する請求項1に記載の蓄電素子。
  3. 前記絶縁性物質が、シリコンおよび酸素を含有する請求項1または2に記載の蓄電素子。
  4. 基板をさらに有し、
    前記基板上に、前記第1電極層、前記多孔性ナノコンポジット層、前記固体電解質層、前記対極層、および前記第2電極層が配置されている請求項1から3のいずれかに記載の蓄電素子。
  5. 前記基板が、可撓性を有する絶縁性のシートである請求項4に記載の蓄電素子。
  6. 導電性の第1電極層と、絶縁性物質とチタン酸化物との混合物を含む多孔性ナノコンポジット層と、固体電解質層と、前記多孔性ナノコンポジット層と対の極性を有する対極層と、導電性の第2電極層と、を有し、
    前記第1電極層、前記多孔性ナノコンポジット層、前記固体電解質層、前記対極層、および前記第2電極層が、この順に積層されている、リチウム伝導型である蓄電素子の製造方法であって、
    チタン脂肪族酸塩と、焼成を経て前記絶縁性物質に変化する前駆物質とを含む溶液の塗布膜を、前記第1電極層上、前記固体電解質層上、または前記第1電極層上もしくは前記固体電解質層上に形成された中間層上に形成し、
    前記塗布膜を焼成して前記多孔性ナノコンポジット層を形成する、蓄電素子の製造方法。
  7. 前記第1電極層上に前記多孔性ナノコンポジット層を形成し、
    前記形成した多孔性ナノコンポジット層上に、前記固体電解質層、前記対極層、および前記第2電極層を形成する、請求項6に記載の蓄電素子の製造方法。
  8. 前記前駆物質がシリコーンオイルである請求項6または7に記載の蓄電素子の製造方法。
  9. 前記蓄電素子が基板をさらに備え、
    前記基板上に当該蓄電素子を形成する、請求項6から8のいずれかに記載の蓄電素子の製造方法。
  10. 前記蓄電素子の前記多孔性ナノコンポジット層、前記固体電解質層、および前記対極層から選ばれる少なくとも1つの層がリチウムを含有する、請求項6から9のいずれかに記載の蓄電素子の製造方法。
  11. 前記多孔性ナノコンポジット層にリチウムを含有させる工程をさらに含む請求項6から10のいずれかに記載の蓄電素子の製造方法。
JP2016124655A 2016-06-23 2016-06-23 蓄電素子とその製造方法 Pending JP2017228458A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016124655A JP2017228458A (ja) 2016-06-23 2016-06-23 蓄電素子とその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016124655A JP2017228458A (ja) 2016-06-23 2016-06-23 蓄電素子とその製造方法

Publications (1)

Publication Number Publication Date
JP2017228458A true JP2017228458A (ja) 2017-12-28

Family

ID=60891920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016124655A Pending JP2017228458A (ja) 2016-06-23 2016-06-23 蓄電素子とその製造方法

Country Status (1)

Country Link
JP (1) JP2017228458A (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010097754A (ja) * 2008-10-15 2010-04-30 Panasonic Corp 全固体型ポリマー電池用正極、その製造方法および全固体型ポリマー電池
WO2012046325A1 (ja) * 2010-10-07 2012-04-12 グエラテクノロジー株式会社 二次電池
JP2015082445A (ja) * 2013-10-23 2015-04-27 旭化成株式会社 二次電池
JP2016028408A (ja) * 2014-03-24 2016-02-25 パナソニックIpマネジメント株式会社 蓄電素子及び蓄電素子の製造方法
JP2017228519A (ja) * 2016-03-21 2017-12-28 アイメック・ヴェーゼットウェーImec Vzw Ni(OH)2電極を有する薄膜固体電池を製造する方法、電池セルおよび電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010097754A (ja) * 2008-10-15 2010-04-30 Panasonic Corp 全固体型ポリマー電池用正極、その製造方法および全固体型ポリマー電池
WO2012046325A1 (ja) * 2010-10-07 2012-04-12 グエラテクノロジー株式会社 二次電池
JP2015082445A (ja) * 2013-10-23 2015-04-27 旭化成株式会社 二次電池
JP2016028408A (ja) * 2014-03-24 2016-02-25 パナソニックIpマネジメント株式会社 蓄電素子及び蓄電素子の製造方法
JP2017228519A (ja) * 2016-03-21 2017-12-28 アイメック・ヴェーゼットウェーImec Vzw Ni(OH)2電極を有する薄膜固体電池を製造する方法、電池セルおよび電池

Similar Documents

Publication Publication Date Title
Zhang et al. Halide perovskite materials for energy storage applications
US9892870B2 (en) Charge storage devices containing carbon nanotube films as electrodes and charge collectors
US10714759B2 (en) Current collector-catalyst monolithic three-dimensional nanofiber network for Li-air batteries and manufacturing method thereof
JP5360159B2 (ja) 複合正極活物質、全固体電池、および複合正極活物質の製造方法
Lu et al. Lithium-ion batteries based on vertically-aligned carbon nanotube electrodes and ionic liquid electrolytes
KR102112746B1 (ko) 전극 재료 및 에너지 저장 장치
CN105765771A (zh) 锂基电池电极
KR101286935B1 (ko) 축전 디바이스용 복합 전극, 그의 제조 방법 및 축전 디바이스
CN108140883A (zh) 固体聚合物电解质及其制备方法
KR20180001518A (ko) 리튬이차전지 음극용 조성물, 이를 이용한 리튬이차전지 음극 제조 방법, 이로부터 제조된 리튬이차전지 음극 및 리튬이차전지
JPWO2013150937A1 (ja) リチウムイオン二次電池
US11894547B2 (en) Multifunctional engineered particle for a secondary battery and method of manufacturing the same
KR20140111952A (ko) 이차 전지, 이차 전지의 제조 방법, 이차 전지용 정극, 이차 전지용 정극의 제조 방법, 전지 팩, 전자 기기 및 전동 차량
CN113594468B (zh) 一种集流体及其制备方法和应用
Sreelakshmi et al. Hybrid composites of LiMn2O4–Graphene as rechargeable electrodes in energy storage devices
JP2014032777A (ja) 非水電解質二次電池の製造方法
JPWO2015015883A1 (ja) リチウム二次電池及びリチウム二次電池用電解液
Kozarenko et al. Effect of potential range on electrochemical performance of polyaniline as a component of lithium battery electrodes
Collins et al. Modern applications of green chemistry: renewable energy
US20140315084A1 (en) Method and apparatus for energy storage
CN113793976A (zh) 半固态锂离子电池及其制备方法
JP2017059516A (ja) 蓄電素子およびその製造方法
TW202115951A (zh) 負極活性物質、負極、及負極活性物質的製造方法
JP2017059455A (ja) 蓄電素子およびその製造方法
JP2017228458A (ja) 蓄電素子とその製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160801

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190613

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200811