CN108604681B - 能量储存电极及装置 - Google Patents

能量储存电极及装置 Download PDF

Info

Publication number
CN108604681B
CN108604681B CN201680010307.7A CN201680010307A CN108604681B CN 108604681 B CN108604681 B CN 108604681B CN 201680010307 A CN201680010307 A CN 201680010307A CN 108604681 B CN108604681 B CN 108604681B
Authority
CN
China
Prior art keywords
electrolyte
thin layer
energy storage
electrode material
storage device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680010307.7A
Other languages
English (en)
Other versions
CN108604681A (zh
Inventor
陈图强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Lingdian Technology Co.,Ltd.
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN108604681A publication Critical patent/CN108604681A/zh
Application granted granted Critical
Publication of CN108604681B publication Critical patent/CN108604681B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

本发明公开了能量储存电极及装置,而该能量存储装置可以在超微金属网的基础上来制备。通过活性电极材料和电解质材料在超微金属网上的沉积,可制备出超微金属网电极。通过对多层交替排列的正负超微金属网电极进行层压,可制备出高性能超微金属网能量储存装置。由于多层超微金属网电极的三维结构,该能量储存装置具有更好的能量储存及功率特性。

Description

能量储存电极及装置
技术领域
本发明涉及能量储存电极和器件,主要包括非传统储能装置制备技术产生的超级电容器,锂离子电池和锂金属电池。更具体地,本发明涉及能量储存电极及装置,其结构将优化能量储存系统的性能。这些电极及装置包括超级电容器、锂离子电池、或锂金属电池的组件及装置。
背景技术
传统电池或超级电容器通常是二维(2-D)结构,其中阳极和阴极薄膜用隔膜/电解质层隔离,通过缠绕或折叠形成器件。传统超级电容器,锂金属或锂离子电池的电极形式、制备工艺或设备基本相同,都以粉末活性电极材料与导电粘合剂混合形成浆料,涂覆在导电金属箔上。干燥后的膜电极被切割或缠绕组成所谓的二维电池或电容器。为使功率密度最大化,减小离子或电子的传输距离,电极层、电解质层和导电金属膜需要尽可能的薄。然而,这些粉末电极材料颗粒通常大于10微米,用这些粉末制备比几十微米更薄的膜是不实际的。此外,为使这些装置具有足够的电化学和结构稳定性,非活性的金属导电薄膜和电解质隔离膜的厚度通常需要大于25微米,而活性电极层厚度通常不小于100微米以获得足够的能量密度。因此,希望通过降低电极、电解质、和金属导电膜的厚度,而进一步提高能量储存装置的综合性能是不可行的。
但近些年的研究表明,将目前在二维电池中使用的电极材料应用到三维(3-D)节构中,可以显著提高电池的性能。这种3-D结构通常由无数的微米或纳米尺寸的阴极、阳极和与固体电解质组成;阴极和阳极由隔膜隔离,或者这些电极分散在纳米隔膜介质中。Long等人在一篇综述文章(Chem.Rev.2004,404,446-4492)中描述了一个三维微电池的结构,无数纳米级圆柱形阴极和阳极整齐交替阵列,而阴阳极的端部分别连接在金属导电膜(板)上。在美国专利(US8,795,885B2)中给出了另一个3-D微电池的实例,无数的园柱型纳米级阳极表面覆盖一层聚合物电解质薄膜,而这些园柱型纳米阳极列阵进一步分散在阴极介质中。这种3-D结构特征能确保离子或电子在电池反应中保持最短的传输距离,并且可以使用较少量的非活性材料,包括电池隔膜和金属导电膜。因此,适当的3-D结构可使超级电容器或电池同时具有高功率和高能量密度特性,以及更长的循环及使用寿命和安全性等。
然而,3-D储能装置技术的发展目前受到了极大的限制,因为涉及各种电池和超级电容器材料的微处理技术还不成熟。因此,制造3D能量储存装置具有极高的挑战性,而工作良好的3-D能量装置目前还未见报道。此外,这些用于制造微型器件的微处理技术不适合制造常规尺寸、可用于移动和便携式电子设备的电池和超级电容器装置。
发明内容
本发明的目的是解决现有技术中存在的问题提供能量储存电极及装置。
本发明包括:1)一种基于超细金属网(UMM)的能量储存电极,该能量储存电极通过在UMM网上依次沉积活性电极材料膜和电解质膜,2)一种基于UMM电极的能量储存装置,主要包括超级电容器和锂离子或锂金属电池,该装置通过化学、物理或热学的方法将至少一个UMM阳极和一个UMM阴极紧密地结合在一起。
因此,本发明的目的之一是提供一种UMM储能电极及其制备方法。本发明的另一个目的是提供一种3-D储能装置及其制备方法,该3-D储能装置具有高功率密度、高能量密度、循环寿命更长、更安全、并且装置尺寸可大可小。
根据本发明,制造储能电极的方法包括以下步骤:在UMM的表面上沉积一层电极(阳极或阴极)薄膜,随后在电极薄膜表面上沉积一层固体电解质薄膜;根据本发明,将电极组装成能量存储装置(超级电容器,锂离子电池和锂金属电池)的方法包括将多个UMM阳极和UMM阴极交替堆叠进行层压,其中电解质在层压过程中起到粘合剂的作用。该储能装置也可以通过卷绕UMM阳极和UMM阴极来制备,其中电解质可用着粘合剂。这种UMM能量存储装置具有无数个涂敷在金属丝上的阴极和阳极电极,均匀分布在连续的固体电解质介质相中。
根据本发明,制造网状电极的另一种方法包括:将电极(阳极或阴极)材料的浆料浇铸到网上,其中所述浆料包含粉末活性材料,粉末导电添加剂,聚合物粘合剂及溶剂。
微米或亚微米尺寸厚度的UMM可以通过金属丝编织,电铸或光刻技术制备。这些UMM便于操作及处理。因此,本发明的实施可通过传统的溶液化学,气相沉积和电化学方法将各种电池或超级电容器电极和电解质材料的薄膜沉积到UMM的表面上,形成UMM阳极或阴极;对多层交替放置的UMM电极的层压可制备所需尺寸和容量的3-D储能装置(电池或超级电容器)。
本发明涉及一种能量存储电极和装置,主要包括超级电容器,锂离子电池或锂金属电池,以及用于制造这种能量存储电极及装置的方法。该装置的正极或负极,是沉积有电极材料和固体电解质的超细金属网;它们交替阵列,以固体电解质紧密连接,使无数微小电极以涂有电极材料的超微金属丝的形式交替排列连接。该能量存储装置的结构将减小电荷(离子或电子)在正负极之间的移动距离,改善能量存储装置的动力学特性,提高寿命、充放电速度、及能量密度。该发明所述装置的尺寸也可大可小。
本发明的具体实施,包括使用超细金属网(UMM)为导电基体,其尺寸(网丝直径和孔径)从纳米到微米,以及在UMM上依次沉积电极材料薄膜和固体电解质薄膜,而沉积方法包括化学溶液法、电化学沉积,以及化学或物理气相沉积。
作为能量存储装置,超级电容器或电化学双层电容器使用高表面积碳作为电极材料,例如活性炭、碳纳米管、石墨烯、以及包括RuO2,NiO和IrO2在内的赝电容金属氧化物。这些材料可以用多种方法沉积在超微金属网的表面上。下文将重点描述用溶胶-凝胶法结合旋涂工艺在金属网丝表面上制备石墨烯-金属氧化物纳米复合材料薄层。
同样,聚合物电解质薄层可用各种方法沉积在超级电容器电极涂层的表面上。这些聚合物电解质包括质子传导聚合物电解质和硼酸铵导电聚合物电解质,而其涂层制备方法包括下述结合旋涂工艺的溶液法。
作为储能装置,锂离子电池通常使用金属氧化物作为阴极材料,碳作为阳极材料。本发明允许使用任何合适的锂离子电池正极材料包括LiCoO2、LiNiO2、或金属磷酸盐。这些材料可用多种方法沉积在金属网丝的表面上。下文将重点描述用溶胶-凝胶法结合旋涂工艺在金属网丝表面上制备LiCoO2薄层。本发明允许使用任何合适的锂离子阳极材料,包括石墨和Si。这些材料同样可用多种方法沉积在金属网丝的表面上。下文将重点描述用溶胶-凝胶法结合旋涂工艺在金属网丝表面上制备石墨薄层。
同样,聚合物电解质薄层可用各种方法沉积在锂离子阴极或阳极电极涂层的表面上。这些聚合物电解质包括下述用溶液法结合旋涂工艺所制备的锂离子导电聚合物电解质涂层。
本方法的一个实施方案是使用旋涂技术,在固定并悬浮在旋涂机上的金属网上涂敷材料。其固定在旋涂机的方式可允许金属网沿其z轴(垂直于金属网平面)或x和y轴(金属网平面内)旋转,保证在金属网丝上进行均匀涂敷。此外,还需要适当的后续热处理以获得最佳的材料组成、结构、和形态。
本方法的另一实施方案是通过交替叠放多层正极和负极超微金属网,然后进行层压将网状电极组装成能量存储装置,而层压能保证电极之间通过电解质紧密连接。
本发明的技术效果是毋庸置疑的,本发明具有以下优点:
本发明公开了一种UMM储能电极及其制备方法和一种3-D储能装置及其制备方法;该3-D储能装置具有高功率密度、高能量密度、循环寿命更长、更安全、并且装置尺寸可大可小等优点。
附图说明
图1是超细金属网(UMM)的平面图;
图2是一对UMM电极的平面图;
图3是网状电极在金属丝上的电极材料膜和电解质膜的截面图;
图4是交替堆叠的UMM正极和负极然后层压而成的能量存储装置的平面侧视图。
图中:超细金属网基体10、一对金属网电极12、电极材料膜14、电解质膜16。
具体实施方式
下面结合实施例对本发明作进一步说明,但不应该理解为本发明上述主题范围仅限于下述实施例。在不脱离本发明上述技术思想的情况下,根据本领域普通技术知识和惯用手段,做出各种替换和变更,均应包括在本发明的保护范围内。
实施例1:
超级电容器电极制备
Ni金属网(3×6cm2,孔径2微米,线径2微米)通过浸泡在50%异丙醇(IPA)中进行超声波处理(16小时)来清洗,然后在120℃的烘箱中干燥1小时。该长方形金属网样品的两端被四根铝条(两对,0.5cm×0.5cm×5cm)夹紧,并用4个小螺丝将夹紧Ni金属网的4根(2对)铝条固定在一块铝板上(5×5cm2),使金属网悬在铝板上面。然后将悬浮金属网的Al板固定在旋涂机上。
超级电容器电极前体溶液是通过向氧化石墨烯水溶液(4%,Sigma-Aldrich)中缓慢加入5%的RuCl3的IPA溶液中来制备的。通过向溶液中加入IPA,使溶液最终IPA和水的比例约为1:1。RuCl3与石墨烯氧化物的比例可以在0%至10%之间变化。
将前体溶液滴加在上述固定在铝板和旋涂机上的金属网上。静置30秒,保证溶液在网的两侧完全润湿,然后以1200rpm的速度旋转20秒。将涂层在160℃的空气中干燥16小时,然后在N2中,200-400℃下加热6小时,形成RuO2-石墨烯纳米复合材料薄膜。扫描电子显微镜(SEM)证实形成了厚度为~1微米的均匀涂层。
聚合物电解质可在已涂敷电极材料的金属网上进一步涂覆,这些聚合物电解质包括质子传导聚合物和铵离子导电聚合物。聚合物膜的制备和处理如下:
A.TEABF4-PEO聚合物电解质膜:
TEABF4(四乙基四氟硼酸四乙酯)-PEO(聚环氧乙烷)在AN(乙腈)中的溶液是通过将0.5wt%的TEABF4(Aldrich)和5wt%的PEO(Aldrich)溶解在AN中来制备的。在干燥气氛下,将一少许聚合物溶液滴加在已涂有纳米复合材料涂层的Ni网表面上,并静置30秒,让溶液在网的两侧完全润湿,然后以1200rpm旋转20秒。将该涂层在N2中、120℃下干燥2小时。扫描电子显微镜(SEM)研究证实形成了厚度为~1微米的均匀涂层的。
B.H3PO4-PVA聚合物电解质膜:
H3PO4-PVA(聚乙烯醇)溶液是65℃下,通过剧烈搅拌,在去离子水(DI)中溶解5wt%的PVA(平均Mw为130,000,99+%水解)和5wt%的H3PO4制备的。将该溶液冷却至室温,随后进行涂布研究。将一少许聚合物溶液滴加在已涂有纳米复合材料涂层的Ni网表面上,并静置30秒,让溶液在网的两侧完全润湿,然后以1200rpm旋转20秒。将涂层在空气中、100℃下干燥1小时。扫描电子显微镜(SEM)研究证实形成了厚度为~1微米的均匀涂层。
实施例2:
锂离子阳极制备,包括以下步骤:
Cu金属网(3×6cm2,孔径2微米,线径2微米)通过浸泡在50%异丙醇(IPA)中进行超声波处理(16小时)来清洗,然后在120℃的烘箱中干燥1小时。该长方形金属网样品的两端被四根铝条(两对,0.5cm×0.5cm×5cm)夹紧,并用四个小螺丝将夹紧金属网的四根铝条固定在一块铝板(5×5cm2)上,使金属网悬在铝板上面。然后将悬浮金属网的铝板固定在旋涂机上。
本实例中的锂离子阳极前体溶液是实施例1中所描述的,当RuCl3浓度为0wt%的超级电容器电极前体溶液。同样,将前体溶液滴加到悬浮在旋涂机Al板上的金属网表面。前体溶液被静置30秒,让其在网的两侧完全润湿,然后以1200rpm旋转20秒。将涂层在氮气中、160℃下干燥16小时,然后在氮气中、500-850℃下加热6小时,形成碳石墨薄膜。扫描电子显微镜(SEM)研究证实形成了厚度为~1微米的均匀涂层。
聚合物电解质可在已涂敷电极材料的金属网上进一步涂覆,其制备和处理描述如下:
高分子电解质溶液是通过将0.5wt%的LiPF6和5wt%的PEO(Mn~2,000,000,Aldrich)溶解在AN中制备的。将少许聚合物溶液滴加到已涂有石墨涂层的Cu网上表面上,并静置30秒,让其在涂覆网的两侧完全润湿,然后以1200rpm旋转20秒。将涂层在氮气中、80℃下干燥1小时并在干燥气氛下储存。随后的扫描电子显微镜(SEM)研究证实形成了厚度为~1微米的均匀涂层。
实施例3:
锂离子阴极制备
如实施例1所述,Ni金属网被清洗后固定并悬浮在旋涂机上,以备后续旋涂;LiCoO2前体溶液的制备如下:将乙酸锂(Li(CH3COO)2·2H2O,5.10g,0.05mol,50mL 50%IPA)溶液、乙酸钴(Co(CH3COO)2·4H2O,12.55g,0.05mol,50mL 50%IPA)溶液和聚乙二醇(8.80g,0.2mol)在室温下、250mL烧瓶中混合。将所得的粉红色溶液加热回流6小时并冷却至室温,得到LiCoO2前体溶液,用于随后的旋涂。
前体溶液被滴加到悬浮在旋涂机铝板上的金属网表面。前体溶液被静置30秒,让前体溶液在金属网的两侧完全润湿,然后以1200rpm的速度旋转20秒。将涂层在氮气中、160℃下干燥16小时,然后在空气中、400℃下加热4小时,在氮气中、850℃下加热8小时,形成LiCoO2薄膜。X射线衍射(XRD)证实了晶体LiCoO2的形成,SEM研究揭示形成了厚度为~1微米的均匀涂层。
聚合物电解质可在已涂敷LiCoO2电极材料的金属网上进一步涂覆;其制备和处理描述如下:
高分子电解质溶液是通过将0.5wt%的LiPF6和5wt%的PEO(Mn~2,000,000,Aldrich)溶解在AN中制备的。将少许聚合物溶液滴加到已涂有LiCoO2涂层的Ni网上表面上,并静置30秒,让其在涂覆网的两侧完全润湿,然后以1200rpm旋转20秒。将涂层在氮气中、80℃下干燥1小时并在干燥气氛下储存。随后的SEM研究显示,在LiCoO2涂层上形成了约1微米厚均匀的PEO涂层。
实施例4:
储能装置组装,包括以下步骤:
将UMM(超细金属网)电极切成如图1所示的2cm×3cm的矩形片材;如图2所示,即为一对UMM电极的平面图;如图4所示,将UMM阳极和阴极交替堆叠,然后将该电极组件在干燥气氛中层压形成装置;将金属箔片连接在层压后的正负电极上,并将整个装置密封在密封袋中,其中金属箔片露在密封袋外;层压的条件取决于电解质的类型和厚度,以下是几个实例:A)对于具有TEABF4-PEO聚合物电解质的超级电容器:85℃,20psig、及80分钟;B)对于具有H3PO4-PVA的超级电容器聚合物电解质:120℃,25psig、及60分钟;C)对于具有LiPF 6-PEO电解质的Li离子电池:85℃,25psig、及80分钟。

Claims (8)

1.一种能量存储装置,其特征在于:由多个电极组成,交替堆叠并热压成型制成超级电容器;所述电极,其特征在于:包括:超细金属网、环绕沉积在所述金属网线上的活性电极材料薄层和沉积在所述活性电极材料薄层上的电解质薄层;所述超细金属网网线的直径为0.02微米至50微米;所述热压成型,所述电解质薄层作为粘合剂将使所有电解质层紧密结合,连接成一个连续的电解质相。
2.一种能量存储装置,其特征在于:由多个电极组成,交替堆叠并热压成型制成锂离子电池;所述电极,其特征在于:包括:超细金属网、沉积在所述金属网线上的活性电极材料薄层和沉积在所述活性电极材料薄层上的电解质薄层;所述热压成型,其特征在于:所述电解质层作为粘合剂将使所有电解质层紧密结合,连接成一个连续的电解质相。
3.根据权利要求1所述的一种能量存储装置,其特征在于:所述金属网由以下材料组成:Al、Cu、Ni、Sb、Cr、Fe或Si;所述金属网网丝的网孔为0.02微米至50微米。
4.根据权利要求1所述的一种能量存储装置,其特征在于:所述活性电极材料薄层含碳类超级电容电极材料,包括高表面积活性炭、石墨烯、或碳纳米管;所述活性电极材料薄层含赝电容氧化物,包括RuO2、NiO或IrO2;所述活性电极材料薄层含复合材料:包括石墨烯-RuO2、石墨烯–NiO或石墨烯–IrO2,所述活性电极材料薄层的厚度为0.02微米至50微米。
5.根据权利要求1或2所述的一种能量存储装置,其特征在于:所述电解质薄层由以下的材料组成:聚合物电解质、凝胶聚合物电解质、或陶瓷电解质,所述电解质薄层的厚度为0.02微米至50微米。
6.根据权利要求2所述的一种能量存储装置,其特征在于:所述金属网由以下材料组成:Al、Cu、Ni、Sb、Cr、Fe或Si;所述金属网网线的直径为0.02微米至50微米,网孔为0.02微米至50微米。
7.根据权利要求2所述的一种能量存储装置,其特征在于:所述活性电极材料薄层中的阴极电极材料薄层由以下材料组成:LiCoO2、LiNiO2、LiFePO4或V2O5;所述活性电极材料薄层中的阳极电极材料薄层由以下材料组成:石墨或Si,所述阳极电极材料薄层的厚度为0.02微米至50微米。
8.根据权利要求2所述的一种能量存储装置,其特征在于:所述电解质薄层由以下的材料组成:聚合物电解质、凝胶聚合物电解质、或陶瓷电解质;所述电解质材料薄层的厚度为0.02微米至50微米。
CN201680010307.7A 2015-03-05 2016-01-13 能量储存电极及装置 Active CN108604681B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/639,654 US9905370B2 (en) 2015-03-05 2015-03-05 Energy storage electrodes and devices
US14/639,654 2015-03-05
PCT/US2016/013160 WO2016140738A1 (en) 2015-03-05 2016-01-13 Energy storage elctrodes and devices

Publications (2)

Publication Number Publication Date
CN108604681A CN108604681A (zh) 2018-09-28
CN108604681B true CN108604681B (zh) 2021-07-27

Family

ID=56848418

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680010307.7A Active CN108604681B (zh) 2015-03-05 2016-01-13 能量储存电极及装置

Country Status (3)

Country Link
US (1) US9905370B2 (zh)
CN (1) CN108604681B (zh)
WO (1) WO2016140738A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11038179B2 (en) * 2019-04-03 2021-06-15 Tuqiang Chen Flexible energy storage devices
US20230042720A1 (en) * 2020-03-12 2023-02-09 Paul Lincoln Sinclair Flow-Through Electrochemical Cell Electrode with Permeable Membrane
US11923140B2 (en) * 2020-04-08 2024-03-05 The Board Of Trustees Of The University Of Illinois Carbon-metal oxide composite electrode for a supercapacitor and method of making a carbon-metal oxide composite electrode

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103440999A (zh) * 2013-08-29 2013-12-11 南昌航空大学 高导电性超级电容器用纳米MnO2复合电极的制备方法
CN103996859A (zh) * 2014-06-17 2014-08-20 威海东生能源科技有限公司 三维多孔聚合物锂离子电池电芯单元及其制法和电池

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3959113A (en) * 1975-02-19 1976-05-25 Kelly Donald A Square form permeable electrodes for pressure electrolysis process units
US6198623B1 (en) * 1999-01-29 2001-03-06 Telcordia Technologies, Inc. Carbon fabric supercapacitor structure
KR100359055B1 (ko) * 2000-04-25 2002-11-07 한국과학기술연구원 박막형 슈퍼 캐패시터 및 그 제조방법
JP2003332178A (ja) * 2002-05-15 2003-11-21 Rohm Co Ltd コンデンサ素子、これの製造方法およびコンデンサ
US7776478B2 (en) * 2005-07-15 2010-08-17 Cymbet Corporation Thin-film batteries with polymer and LiPON electrolyte layers and method
CN101584065B (zh) 2007-01-12 2013-07-10 易诺维公司 三维电池及其制造方法
EP3135490B1 (en) * 2008-01-18 2018-08-22 Rockwell Collins, Inc. Substrate lamination apparatus
WO2009105773A2 (en) 2008-02-22 2009-08-27 Colorado State University Research Foundation Lithium-ion battery
US20110038100A1 (en) * 2009-08-11 2011-02-17 Chun Lu Porous Carbon Oxide Nanocomposite Electrodes for High Energy Density Supercapacitors
US20110205688A1 (en) * 2010-02-19 2011-08-25 Nthdegree Technologies Worldwide Inc. Multilayer Carbon Nanotube Capacitor
US20130217289A1 (en) * 2011-09-13 2013-08-22 Nanosi Advanced Technologies, Inc. Super capacitor thread, materials and fabrication method
KR102029506B1 (ko) * 2011-09-30 2019-10-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 그래핀 및 축전 장치, 및 이들의 제작 방법
JP6150441B2 (ja) * 2011-11-10 2017-06-21 ザ リージェンツ オブ ザ ユニバーシティ オブ コロラド,ア ボディー コーポレイトTHE REGENTS OF THE UNIVERSITY OF COLORADO,a body corporate カーボン基板上に金属酸化物の擬似キャパシタ材料を堆積することによって形成される複合電極を有するスーパーキャパシタ装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103440999A (zh) * 2013-08-29 2013-12-11 南昌航空大学 高导电性超级电容器用纳米MnO2复合电极的制备方法
CN103996859A (zh) * 2014-06-17 2014-08-20 威海东生能源科技有限公司 三维多孔聚合物锂离子电池电芯单元及其制法和电池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Chenglong Shi等.Low cost and flexible mesh-based supercapacitors for promising large-area flexible/wearable energy storage.《Nano Energy》.2014,(第6期),第82-89页. *
Low cost and flexible mesh-based supercapacitors for promising large-area flexible/wearable energy storage;Chenglong Shi等;《Nano Energy》;20140401(第6期);第82-89页 *

Also Published As

Publication number Publication date
US20160260549A1 (en) 2016-09-08
WO2016140738A1 (en) 2016-09-09
US9905370B2 (en) 2018-02-27
CN108604681A (zh) 2018-09-28

Similar Documents

Publication Publication Date Title
JP6367390B2 (ja) 大容量プリズムリチウムイオン合金アノードの製造
Liu et al. Flexible and stretchable energy storage: recent advances and future perspectives
US9570736B2 (en) Electrodes with three dimensional current collectors and methods of making the same
TWI536649B (zh) 鋰離子電池
TWI616017B (zh) 用於製造較厚電極之多層電池電極設計
CN107710473B (zh) 制造高纵横比结构的装置和方法
TWI601330B (zh) 電極材料及能量儲存設備
US20130003261A1 (en) Lithium plate, method for lithiation of electrode and energy storage device
CN108417793B (zh) 碳基架负载二氧化锰纳米片的复合薄膜及其制备方法和应用
CN107112143B (zh) 电极结构及其制造方法
TW201242147A (en) Lithium ion cell design apparatus and method
Klankowski et al. Higher-power supercapacitor electrodes based on mesoporous manganese oxide coating on vertically aligned carbon nanofibers
WO2013062177A1 (ko) 그래핀 층과 자기조립된 전극활물질 응집체 층을 포함하는 전극 및 이를 이용한 이차전지, 및 그 제조방법
CN108604681B (zh) 能量储存电极及装置
US20160351347A1 (en) Supercapacitor configurations with graphene-based electrodes and/or peptide
JP2020047572A (ja) 亜鉛二次電池用電極活物質及びこれを含む二次電池
KR101883005B1 (ko) 전극, 이의 제조방법, 및 이를 이용한 슈퍼 캐패시터
CN113497217B (zh) 电极及其制备方法、电池
Lv et al. A free-standing Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2/MWCNT framework for high-energy lithium-ion batteries
EP3186847A1 (en) Carbon nanotube-based lithium ion battery
CN108806999B (zh) 电极材料、超级电容器、电子设备和制备电极材料的方法
KR20110000099A (ko) 수퍼커패시터 및 이의 제조방법
US20130194724A1 (en) Electrode, method for fabricating the same, and electrochemical capacitor including the same
Johnson et al. Three-dimensional lithium-ion batteries with interdigitated electrodes
US20220302532A1 (en) Flexible li-ion batteries

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230509

Address after: Room 208, South the Taihu Lake Youth Science and Technology Pioneer Park, Meishan Town, Changxing County, Huzhou City, Zhejiang Province 313100

Patentee after: Zhejiang Lingdian Technology Co.,Ltd.

Address before: 9631, northwest alley, Albuquerque, New Mexico, USA

Patentee before: Chen Tuqiang

TR01 Transfer of patent right