KR102097172B1 - 도전 입자, 절연 피복 도전 입자 및 이방 도전성 접착제 - Google Patents

도전 입자, 절연 피복 도전 입자 및 이방 도전성 접착제 Download PDF

Info

Publication number
KR102097172B1
KR102097172B1 KR1020130003305A KR20130003305A KR102097172B1 KR 102097172 B1 KR102097172 B1 KR 102097172B1 KR 1020130003305 A KR1020130003305 A KR 1020130003305A KR 20130003305 A KR20130003305 A KR 20130003305A KR 102097172 B1 KR102097172 B1 KR 102097172B1
Authority
KR
South Korea
Prior art keywords
circuit
layer
nickel
conductive particles
copper
Prior art date
Application number
KR1020130003305A
Other languages
English (en)
Other versions
KR20130082470A (ko
Inventor
요시노리 에지리
마사시 나카가와
겐지 다카이
구니히코 아카이
야스시 와타나베
나나 에노모토
미츠하루 마츠자와
다이조우 야마무라
Original Assignee
히타치가세이가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 히타치가세이가부시끼가이샤 filed Critical 히타치가세이가부시끼가이샤
Publication of KR20130082470A publication Critical patent/KR20130082470A/ko
Application granted granted Critical
Publication of KR102097172B1 publication Critical patent/KR102097172B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1651Two or more layers only obtained by electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1675Process conditions
    • C23C18/1683Control of electrolyte composition, e.g. measurement, adjustment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/48Coating with alloys
    • C23C18/50Coating with alloys with alloys based on iron, cobalt or nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/04Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation using electrically conductive adhesives

Abstract

본 발명의 도전 입자는, 수지 입자와, 상기 수지 입자의 표면에 설치된 금속층을 구비한다. 상기 금속층은, 니켈 및 구리를 포함하고, 또한, 수지 입자의 표면으로부터 멀어짐에 따라서 니켈에 대한 구리의 원소 비율이 높아지는 부분을 갖는다.

Description

도전 입자, 절연 피복 도전 입자 및 이방 도전성 접착제 {CONDUCTIVE PARTICLE, INSULATING COATED CONDUCTIVE PARTICLE, AND ANISOTROPIC CONDUCTIVE ADHESIVE}
본 발명은, 도전 입자, 절연 피복 도전 입자 및 이방 도전성 접착제, 및 회로 부재의 접속 구조체 및 그의 제조 방법에 관한 것이다.
액정 표시용 유리 패널에 액정 구동용 IC를 실장하는 방식은, COG(Chip-on-Glass) 실장과 COF(Chip-on-Flex) 실장으로 대별할 수 있다. COG 실장에서는, 이방 도전성 접착제를 사용해서 액정용 IC를 직접 유리 패널 위에 접합한다. 한편, COF 실장에서는, 금속 배선을 갖는 플렉시블 테이프에 액정 구동용 IC를 접합하고, 이방 도전성 접착제를 사용해서 그것들을 유리 패널에 접합한다. 여기에서 말하는 이방성이란, 가압 방향으로는 도통하고, 비가압 방향에서는 절연성을 유지한다는 의미이다.
종래, 이방 도전성 접착제로서, 표면에 금층이 형성된 도전 입자를 포함하는 접착제가 주류이다. 이러한 도전 입자는 전기 저항값이 낮다. 또한, 금은 산화될 우려가 없으므로, 장기간 보존해도 전기 저항값이 높아지는 경우가 없다. 그러나, 최근의 에너지 절약화에 대응해서 소비 전력을 억제할 목적으로, 집적 회로를 흐르는 전류량을 작게 하는 것이 시도되고 있다. 따라서, 종래보다 더 전기 저항값이 낮은 도전 입자가 요구되고 있다.
특허문헌 1 내지 3에는, 플라스틱 입자의 표면에 구리 도금이 형성된 도전 입자가 개시되어 있다. 구리는 금보다 전기 저항이 작은 금속이기 때문에, 구리 도금에 의하면, 도금된 도전 입자보다 전기 저항이 작은 도전 입자를 얻을 수 있다. 그러나, 플라스틱 입자의 표면에 구리 도금이 형성된 도전 입자의 제조 과정에서는, 무전해 구리 도금 중에 입자끼리 응집하기 쉬운 것으로 알려져 있다.
이 응집성을 개선하기 위해서, 특허문헌 4에는, 수지 표면에 대해 무전해 도금법에 의해 니켈, 구리 및 인을 함유하는 합금 도금 피막을 형성하는 방법이 기재되어 있다. 구체적으로는, 코어재 입자를 포함하는 현탁액에, 니켈염, 인계 환원제 및 pH 조정제를 포함하는 도금액을 첨가하고, 초기 무전해 도금 반응에 의해, 인을 포함한 무전해 니켈 도금 피막을 형성한다. 그 후, 니켈염, 구리염, 인계 환원제 및 pH 조정제를 포함하는 도금액을 첨가해서 행하는 후기 무전해 도금 반응에 의해, 니켈, 구리 및 인을 함유하는 후기의 합금 도금 피막을 형성한다.
일본 특허 제3581618호 공보 일본 특허 출원 공개 제2009-48991호 공보 일본 특허 제4352097호 공보 일본 특허 출원 공개 제2006-52460호 공보
특허문헌 4에 기재된 방법에서는, 후기의 합금 도금 피막이 구리를 함유하기 때문에, 단순히 니켈 및 인으로 이루어지는 합금 도금 피막과 비교해서 전기 저항은 작아진다. 그러나, 초기의 합금 도금 피막이 니켈 및 인으로 이루어지는 합금 도금 피막이기 때문에, 구리와 비교해서 연성이 현저하게 낮다. 뿐만 아니라, 후기의 합금 도금 피막에도 인이 포함됨으로써, 구리와 비교하면 연성이 낮다. 이들 도금 피막의 구성으로 이루어지는 도전 입자를 압축했을 때에 전기 저항값이 상승하는 것을 알았다. 구체적으로는, 도전 입자를 상면과 이것에 평행한 하면과의 사이에 끼워, 그 크기가 원래의 입경의 20%가 될 때까지 압축(압축률 80%)했을 때에, 수지 입자와 도금 피막의 사이에서 박리가 발생하기 쉬워져, 전기 저항값이 상승하는 것을 본 발명자들은 알아내었다. 또한, 도금 피막 형성시에 입자끼리 응집하면, 도전 입자의 금속층에 핀 홀이 발생해버린다. 핀 홀이 형성된 도전 입자를 압축했을 경우, 핀 홀의 형성부를 기점으로 해서 도금 피막의 균열이 발생하기 쉬워져, 이것이 전기 저항값이 상승하는 원인이 되는 것으로 생각된다.
따라서 본 발명은, 압축되었을 경우라도 낮은 전기 저항값을 유지할 수 있으며, 핀 홀이 적은 도전 입자를 제공하는 것을 목적으로 한다. 또한, 이것을 사용한 절연 피복 도전 입자 및 이방 도전성 접착제를 제공하는 것을 목적으로 한다.
상기 과제를 해결하기 위해서, 본 발명은, 수지 입자와, 상기 수지 입자의 표면에 설치된 금속층을 구비하고, 상기 금속층은 니켈 및 구리를 포함하며, 수지 입자의 표면으로부터 멀어짐에 따라서 니켈에 대한 구리의 원소 비율이 높아지는 부분을 갖는 도전 입자를 제공한다. 이러한 부분을 금속층이 가짐으로써, 상기 도전 입자는 압축되었을 경우라도 낮은 전기 저항값을 유지할 수 있으며, 핀 홀이 적다.
금속층은, 니켈 및 구리를 주성분으로 하는 Ni-Cu층을 적어도 갖고, 이 Ni-Cu층이, 상기 부분(수지 입자의 표면으로부터 멀어짐에 따라서 니켈에 대한 구리의 원소 비율이 높아지는 부분)을 가질 수 있다. 여기서, Ni-Cu층은, 수지 입자에 가까운 순서대로, 97중량% 이상의 니켈을 함유하는 제1층(제1 부분), 상기 부분을 이루는 제2층(제2 부분), 및 구리를 주성분으로 하는 제3층(제3 부분)이 배치된 구조를 갖는 것이 바람직하다. 이것에 따르면, 상기 효과가 한층 발휘된다.
제2층에서의 니켈의 함유율과 구리의 함유율의 합계가, 97중량% 이상인 것이 바람직하다. 또한, 제3층에서의 구리의 함유율이, 97중량% 이상인 것이 바람직하다. 이것들에 따르면, 도전 입자를 고압축해서 압착 접속할 경우에, 압축 후의 금속의 균열을 억제하는 것이 한층 가능하다.
제1층, 제2층 및 제3층이, 니켈, 구리 및 포름알데히드를 포함하는 무전해 도금액에 의해 형성된 것이 바람직하다. 특히, 제1층 및 제2층이, 하나의 건욕조(建浴槽)에서의 무전해 도금액 중에서 순차 형성된 것인 것이 바람직하다. 하나의 건욕조에서 복수의 층을 순차 형성함으로써, 제1층, 제2층 및 제3층의 각각의 층간의 밀착성을 양호하게 유지할 수 있다.
금속층은, Ni-Cu층의 외측에, 니켈을 함유하고 구리를 함유하지 않는 제4층을 더 가질 수 있다. 또한, 금속층은, Ni-Cu층의 외측에, 팔라듐을 함유하는 제5층을 더 가질 수 있다. 이들 층은, 구리의 마이그레이션 스톱층으로서 기능한다.
제4층에서의 니켈의 함유율이 85 내지 99중량%인 것이 바람직하다. 제4층에서의 니켈의 함유율이 이 범위에 있으면, 제3층상에 대한 니켈 도금 피막의 석출성이 향상되어, 부분적으로 석출되지 않는 장소가 생기는 것을 억제할 수 있다.
금속층은, Ni-Cu층의 외측에 금을 함유하는 제6층을 더 가질 수 있다. 이 층에 따르면, 도전 입자의 표면에서의 전기 저항값이 내려가, 특성을 향상시킬 수 있다. 또한, 구리의 마이그레이션 스톱층으로서도 기대할 수 있다.
본 발명의 도전 입자는, 평균 입경이 1 내지 10㎛인 것이 바람직하고, 2 내지 5㎛인 것이 보다 바람직하다.
또한, 본 발명은, 상기 도전 입자와, 이 도전 입자의 금속층의 표면에 설치되고, 당해 표면의 적어도 일부를 피복하는 절연성 자입자를 구비하는 절연 피복 도전 입자를 제공한다.
또한, 본 발명은, 상기 도전 입자 또는 상기 절연 피복 도전 입자를 접착제에 함유해서 이루어지는 이방 도전성 접착제를 제공한다.
또한, 본 발명은, 회로 부재의 접속 구조체 및 그의 제조 방법을 제공한다. 본 발명에 관한 회로 부재의 접속 구조체는, 제1 회로 기판의 주면 위에 복수의 제1 회로 전극이 형성된 제1 회로 부재와, 제2 회로 기판의 주면 위에 복수의 제2 회로 전극이 형성된 제2 회로 부재와, 제1 회로 기판의 주면과 제2 회로 기판의 주면의 사이에 설치되고, 제1 및 제2 회로 전극이 서로 대향하는 상태에서 제1 및 제2 회로 부재끼리를 접속하는 회로 접속 부재를 구비하고, 회로 접속 부재는, 상기 이방 도전성 접착제의 경화물로 이루어지고, 제1 회로 전극과 제2 회로 전극이, 상기 도전 입자 또는 절연 피복 도전 입자를 통해서 전기적으로 접속되어 있다. 본 발명에 관한 회로 부재의 접속 구조체의 제조 방법은, 제1 회로 기판의 주면 위에 복수의 제1 회로 전극이 형성된 제1 회로 부재와, 제2 회로 기판의 주면 위에 복수의 제2 회로 전극이 형성된 제2 회로 부재의 사이에, 제1 회로 전극과 제2 회로 전극을 대향시킨 상태에서, 상기 이방 도전성 접착제를 개재시키는 공정과, 당해 이방 도전성 접착제를 가열 및 가압에 의해 경화시키는 공정을 구비한다.
본 발명에 따르면, 압축되었을 경우라도 낮은 전기 저항값을 유지할 수 있으며, 핀 홀이 적은 도전 입자 및 이것을 사용한 절연 피복 도전 입자가 제공된다. 또한, 본 발명에 따르면, 당해 도전 입자 또는 절연 피복 도전 입자를 포함하는 이방 도전성 접착제가 제공된다. 또한, 본 발명에 따르면, 당해 이방 도전성 접착제를 사용해서 접속 구조체를 제조하는 방법 및 이것에 의해 제조되는 접속 구조체가 제공된다.
도 1의 (a)는 본 발명에 관한 도전 입자의 일 실시 형태를 모식적으로 도시하는 단면도이며, (b)는 금속층의 니켈 및 구리의 함유율의 일례를 나타내는 그래프이다.
도 2의 (a) 내지 (c)는 본 발명에 관한 도전 입자의 다른 실시 형태를 모식적으로 도시하는 단면도이다.
도 3은 회로 전극끼리 접속된 접속 구조체의 일례를 모식적으로 도시하는 단면도이다.
도 4는 접속 구조체의 제조 방법의 일례를 모식적으로 도시하는 단면도이다.
도 5는 실시예 1에서 제조한 도전 입자의 도금 피막의 단면을 EDX에 의해 해석한 결과이다.
이하, 본 발명의 적합한 실시 형태에 대해서 상세하게 설명한다.
<도전 입자>
도 1의 (a)에 도시하는 도전 입자(2)는, 도전 입자(2)의 코어를 구성하는 수지 입자(2a)와, 수지 입자(2a)의 표면에 설치된 금속층(3)을 구비한다. 금속층(3)은, 니켈 및 구리를 포함하며, 수지 입자(2a)의 표면으로부터 멀어짐에 따라서 니켈에 대한 구리의 원소 비율이 높아지는 부분을 갖는다. 이 부분은 금속층(3)의 두께 방향의 일부이며 수지 입자(2a)의 대략 전체 혹은 전체를 커버하도록 설치된 층일 수 있다. 바꾸어 말하면, 금속층(3)은, 상기 부분으로서, 니켈 및 구리를 주성분으로 하는 층(이하, "Ni-Cu층"이라고도 함)(3a)을 적어도 갖고, Ni-Cu층(3a)은 니켈에 대한 구리의 원소 비율이 수지 입자의 표면으로부터 멀어지는 방향으로 높아지는 농도 구배를 가질 수 있다.
Ni-Cu층(3a)에서의 니켈의 함유율과 구리의 함유율의 합계는 97중량% 이상인 것이 바람직하고, 98.5중량% 이상인 것이 보다 바람직하고, 99.5중량% 이상인 것이 더욱 바람직하다. Ni-Cu층(3a)에서의 니켈의 함유율과 구리의 함유율의 합계의 상한은 100중량%이다. 또한, Ni-Cu층(3a)에서의 니켈에 대한 구리의 원소 비율은 수지 입자(2a)의 표면으로부터 멀어지는 방향으로 높아지는 농도 구배를 갖고, 이 농도 구배는 연속적인 것이 바람직하다. 또한, 본 발명에서의 원소 비율은, 예를 들어, 도전 입자의 단면을 수렴 이온 빔으로 잘라내어, 40만배의 투과형 전자 현미경으로 관찰해서, 투과형 전자 현미경에 부속되는 EDX(에너지 분산형 X선 분광기, 일본전자 데이텀 주식회사제)에 의한 성분 분석에 의해, 금속층(예를 들어 후술하는 제1층, 제2층 및 제3층)에서의 원소 비율을 측정할 수 있다.
도전 입자(2)의 평균 입경은, 1 내지 10㎛의 범위가 바람직하고, 2 내지 5㎛의 범위가 보다 바람직하다. 도전 입자(2)의 평균 입경을 1 내지 10㎛의 범위로 함으로써, 이방 도전성 접착제를 사용해서 접속 구조체를 제조했을 경우에 전극의 높이 편차의 영향을 받기 어려워진다. 도전 입자(2)의 평균 입경은, 임의의 도전 입자 300개를 전자 현미경으로 관찰 및 측정하고, 그것들의 평균값을 취함으로써 얻을 수 있다.
[수지 입자]
수지 입자(2a)의 재질로는, 특별히 한정되지 않지만, 폴리메틸메타크릴레이트, 폴리메틸아크릴레이트 등의 아크릴 수지, 폴리에틸렌, 폴리프로필렌, 폴리이소부틸렌, 폴리부타디엔 등의 폴리올레핀 수지 등을 들 수 있다. 또한, 수지 입자(2a)로서, 예를 들어 가교 아크릴 입자, 가교 폴리스티렌 입자 등도 사용 가능하다.
[금속층]
금속층(3)은, Ni-Cu층(3a)을 적어도 갖는다. Ni-Cu층(3a)은, 수지 입자(2a)에 가까운 순서대로, 97중량% 이상의 니켈을 함유하는 제1층(제1 부분)(3a1)과, 니켈 및 구리를 주성분으로 하는 합금을 함유하는 제2층(제2 부분)(3a2)과, 구리를 주성분으로 하는 제3층(제3 부분)(3a3)이 적층된 구조로 이루어지는 것이 바람직하다(도 1의 (b) 참조).
(제1층, 제2층, 제3층)
제1층(3a1)은, 97중량% 이상의 니켈을 함유한다. 제1층(3a1)의 니켈의 함유율은, 98.5중량% 이상인 것이 보다 바람직하고, 99.5중량% 이상인 것이 더욱 바람직하다. 니켈이 97중량% 이상임으로써, 도전 입자(2)를 고압축해서 압착 접속할 경우에, 압축 후의 금속의 균열을 보다 억제할 수 있다. 이 니켈의 함유율의 상한은 100중량%이다.
제1층(3a1)의 두께는, 20 내지 200Å(2 내지 20nm)의 범위가 바람직하고, 20 내지 150Å(2 내지 15nm)의 범위가 보다 바람직하고, 60 내지 100Å(6 내지 10nm)의 범위가 더욱 바람직하다. 제1층의 두께가 20Å(2nm) 미만이면, 도금시에 응집하기 쉬운 경향이 있고, 200Å(20nm)을 초과하면, 도전 입자를 고압축해서 압착 접속할 경우에, 니켈의 부분에서 금속의 균열이 발생하기 쉬워지는 경향이 있다.
제2층(3a2)은, 니켈 및 구리를 주성분으로 하는 합금을 함유한다. 제2층(3a2)에서의 니켈의 함유율과 구리의 함유율의 합계는, 97중량% 이상인 것이 바람직하고, 98.5중량% 이상인 것이 보다 바람직하고, 99.5중량% 이상인 것이 더욱 바람직하다. 97중량% 이상이면 도전 입자(2)를 고압축해서 압착 접속할 경우에, 압축 후의 금속의 균열을 보다 억제할 수 있다. 이 니켈의 함유율과 구리의 함유율의 합계의 상한은 100중량%이다.
제2층(3a2)의 두께는, 20 내지 500Å(2 내지 50nm)의 범위가 바람직하고, 20 내지 400Å(2 내지 40nm)의 범위가 보다 바람직하고, 20 내지 200Å(2 내지 20nm)의 범위가 더욱 바람직하다. 제2층(3a2)의 두께가 20Å(2nm) 미만이면 도금시에 응집하기 쉬운 경향이 있고, 500Å(50nm)을 초과하면, 도전 입자(2)를 고압축해서 압착 접속할 경우에, 니켈의 부분에서 금속 균열이 발생하기 쉬워지는 경향이 있다.
제3층(3a3)은, 구리를 주성분으로 한다. 제3층(3a3)에서의 구리의 함유율은, 97중량% 이상인 것이 바람직하고, 98.5중량% 이상인 것이 바람직하고, 99.5중량% 이상인 것이 더욱 바람직하다. 97중량% 이상이면 도전 입자(2)를 고압축해서 압착 접속할 경우에, 압축 후의 금속의 균열을 보다 억제할 수 있다. 이 구리의 함유율의 상한은 100중량%이다.
제3층(3a3)의 두께는, 100 내지 2000Å(10 내지 200nm)의 범위가 바람직하고, 200 내지 1500Å(20 내지 150nm)의 범위가 보다 바람직하고, 300 내지 1000Å(30 내지 100nm)의 범위가 더욱 바람직하다. 제3층(3a3)의 두께가 100Å(10nm) 미만이면, 도전성이 저하되는 경향이 있고, 2000Å(200nm)을 초과하면, 도금시에 도전 입자가 응집하기 쉬워지는 경향이 있다.
도 1의 (a)에 도시하는 도전 입자(2)의 금속층(3)은, Ni-Cu층(3a)으로 이루어진다. 도 1의 (b)는, 금속층(3)(Ni-Cu층(3a))의 두께 방향의 니켈 함유율 및 구리 함유율을 나타내는 그래프다. 상기 그래프에서, 제1층(3a1)과 제2층(3a2)의 경계선은, Ni 함유율(실선)이 97중량%로까지 저하한 점을 통과하도록 그은 것이다. 한편, 제2층(3a2)과 제3층(3a3)의 경계선은, Cu 함유율(파선)이 97중량%로까지 상승한 점을 통과하도록 그은 것이다.
제1층(3a1), 제2층(3a2) 및 제3층(3a3)은, 모두 니켈, 구리 및 포름알데히드를 포함하는 무전해 도금에 의해 형성된 것이 바람직하고, 하나의 건욕조에서의 무전해 도금액 중에서 순차 형성된 것이 보다 바람직하다. 하나의 건욕조에서 복수의 층을 순차 형성함으로써, 각각의 층간의 밀착성을 양호하게 유지할 수 있다.
제1층(3a1), 제2층(3a2) 및 제3층(3a3)을 동일한 무전해 도금액에 의해 연속적으로 제조하기 위한 무전해 도금액의 조성으로는, 예를 들어, (a) 황산구리 등의 수용성 구리염, (b) 황산니켈 등의 수용성 니켈염, (c) 포름알데히드 등의 환원제, (d) 로셀염, EDTA 등의 착화제, 및 (e) 수산화 알칼리 등의 pH 조정제를 가한 것이 바람직하다.
무전해 도금에 의해 수지 입자(2a)의 표면에 금속층(3)을 형성하기 위해서는, 예를 들어, 수지 입자(2a)의 표면에 팔라듐 촉매를 부여하고, 그 후, 무전해 도금을 행함으로써 도금 피막을 형성하는 것이 좋다. 제1층(3a1), 제2층(3a2) 및 제3층(3a3)을 무전해 도금에 의해 형성하는 구체적인 방법으로는, 예를 들어, (a) 황산구리 등의 수용성 구리염, (b) 황산니켈 등의 수용성 니켈염, (c) 포름알데히드 등의 환원제, (d) 로셀염, EDTA 등의 착화제, 및 (e) 수산화 알칼리 등의 pH 조정제를 가한 건욕(建浴)액에, 팔라듐 촉매를 부여한 수지 입자를 가함으로써, 제1층(3a1) 및 제2층(3a2)을 형성하고, 그 후에 (a) 황산구리 등의 수용성 구리염, (c) 포름알데히드 등의 환원제, (d) 로셀염, EDTA 등의 착화제, 및 (e) 수산화 알칼리 등의 pH 조정제를 가한 보충액을 보충함으로써, 제3층(3a3)을 형성하는 것이 가능해진다.
(a) 황산구리 등의 수용성 구리염, (b) 황산니켈 등의 수용성 니켈염, (c) 포름알데히드 등의 환원제, (d) 로셀염, EDTA 등의 착화제, 및 (e) 수산화 알칼리 등의 pH 조정제를 가한 건욕액에서의, (b) 황산니켈 등의 수용성 니켈염의 농도로는, 0.0005 내지 0.05mol/L가 바람직하고, 0.001 내지 0.03mol/L가 보다 바람직하고, 0.005 내지 0.02mol/L가 더욱 바람직하다. (b) 황산니켈 등의 수용성 니켈염의 농도가 0.0005mol/L보다 낮을 경우, 수지 입자(2a)의 표면의 팔라듐 촉매상을 니켈 도금 피막에 의해 덮을 수 없어, 팔라듐 촉매 상에 구리가 석출되는 부위가 부분적으로 나오기 쉬워져, 입자끼리 응집하기 쉬워지는 동시에, 수지 입자(2a)의 표면의 일부에 금속이 미 석출된 부위가 발생하기 쉬워진다. (b) 황산니켈 등의 수용성 니켈염의 농도가 0.05mol/L보다 높을 경우, 니켈의 농도가 높아짐으로써 액의 활성이 높아져서 입자끼리의 응집이 발생하기 쉬워진다.
(a) 황산구리 등의 수용성 구리염, (b) 황산니켈 등의 수용성 니켈염, (c) 포름알데히드 등의 환원제, (d) 로셀염, EDTA 등의 착화제, 및 (e) 수산화 알칼리 등의 pH 조정제를 가한 건욕액에서의, (a) 황산구리 등의 수용성 구리염의 농도로는, 0.0005 내지 0.05mol/L가 바람직하고, 0.001 내지 0.03mol/L가 보다 바람직하고, 0.005 내지 0.02mol/L가 더욱 바람직하다. (a) 황산구리 등의 수용성 구리염의 농도가 0.0005mol/L보다 낮을 경우, 제2층(3a2) 또는 제3층(3a3)의 형성이 불균일해지는 경향이 있다. (a) 황산구리 등의 수용성 구리염의 농도가 0.05mol/L보다 높을 경우, 구리의 농도가 높아짐으로써 액의 활성이 높아져 입자끼리의 응집이 발생하기 쉬워진다.
무전해 도금액에 (a) 황산구리 등의 수용성 구리염, 및 (b) 황산니켈 등의 수용성 니켈염을 동시에 포함시킴으로써 제1층(3a1) 및 제2층(3a2)을 동일한 무전해 도금액에 의해 연속적으로 제조할 수 있다. 그 이유로는, 다음과 같이 생각된다. 즉, 포름알데히드를 환원제로서 사용함으로써, 수지 표면의 팔라듐 촉매상에서는 니켈이 구리보다 더 우선적으로 석출되기 때문에 제1층(3a1)이 형성되고, 그 후, 제1층(3a1)의 외측에 제2층(3a2)이 형성된다. 제2층(3a2)의, 니켈에 대한 구리의 농도의 비율은, 제2층(3a2)의 두께의 성장과 함께 높아지는 경향이 있다. 팔라듐 촉매상에서는 니켈이 우선적으로 석출되어, 팔라듐 촉매가 니켈에 의해 피복되면, 곧 구리의 석출도 일어나게 되기 때문에 니켈 및 구리를 주성분으로 하는 합금을 함유하는 층(제2층(3a2))이 형성되기 시작하는 것으로 생각된다. 그리고, 도금 피막(Ni-Cu층(3a))의 두께가 두꺼워짐에 따라서 팔라듐 촉매의 영향이 옅어져 가기 때문에, 구리의 석출이 니켈의 석출보다도 지배적으로 되어, 결과적으로, 수지 입자(2a)측으로부터 도금 피막 중의 두께 방향에 있어서, 구리의 비율이 높아지는 것으로 생각된다.
수지 입자(2a)의 표면에 제1층(3a1)을 형성했을 경우, 수지 입자(2a)의 표면에 직접 구리 도금층을 형성했을 경우와 비교하여, 수지 입자(2a)끼리의 응집을 억제할 수 있다. 그 이유로는, 이하와 같이 생각된다. 무전해 구리 도금의 구리 이온에서 구리로의 석출 과정은, 구리의 가수가 Cu(2가)→Cu(1가)→Cu(0가)로 변화되는 반응이며, 반응 중간체로서 불안정한 1가의 구리 이온이 생성된다. 이 1가의 구리 이온이 불균화 반응을 일으킴으로써, 예를 들어 도금액 중에 Cu(0가)가 발생하거나 해서, 액의 안정성이 매우 낮아지는 것으로 생각된다. 한편, 무전해 니켈 도금의 니켈 이온에서 니켈로의 석출 과정은, 니켈의 가수가 Ni(2가)→Ni(0가)로 변화되는 반응이며, 반응 중간체로서 불안정한 1가의 니켈 이온의 과정을 거치지 않는다. 따라서, 팔라듐 촉매 표면 상에서의 무전해 구리 도금과 무전해 니켈 도금을 비교하면, 무전해 구리 도금액이 안정성이 더 부족하고 반응이 격렬하기 때문에, 반응 개시와 동시에 입자끼리의 응집이 발생하기 쉬워진다. 한편, 무전해 니켈 도금은 상술한 바와 같이, 안정성이 높고, 입자끼리의 응집을 억제해서 도금 피막을 형성하는 것이 가능하게 되는 것으로 생각된다.
도전 입자(2)의 금속층(3)에 핀 홀이 발생하는 원인으로는, 도금 피막 형성시에 입자끼리 응집하기 때문인 것으로 생각된다. 이것에 대해서 본 발명자들은 다음과 같이 추측한다. 즉, 도금의 초기 단계에서 입자가 응집되고, 그 후에 입자끼리 이격되었을 경우, 응집되었던 부분은 초기 단계에서 도금이 되지 않았기 때문에, 그 후에 도금 피막을 성장시켜도 도금되지 않고 핀 홀이 형성되어버린다. 또한, 핀 홀이 형성된 도전 입자(2)를 압축했을 경우, 핀 홀의 형성부를 기점으로 해서 도금 피막의 균열이 발생하기 쉬워지기 때문에 전기 저항값이 상승하는 것으로 생각된다.
다음으로, 수지 입자(2a) 표면의 팔라듐 촉매 표면 상에서의 무전해 구리 도금의 반응과, 제1층(3a1) 위에서의 제2층(3a2)의 반응과, 제2층(3a2) 위에서의 제3층(3a3)의 반응과, 제3층(3a3)의 성장의 4가지를 비교해서 고찰한다.
수지 입자(2a)의 표면의 팔라듐 촉매 표면 상에서의 무전해 구리 도금의 반응에서는, 팔라듐 촉매 표면 상에서 포름알데히드 등의 환원제의 산화 반응이 진행되기 쉽기 때문에, 무전해 구리 도금의 반응이 진행하기 쉬워 불안정화되어, 입자끼리 응집하기 쉬워진다. 한편, 제1층(3a1) 위에서의 제2층(3a2)의 반응에서는, 제1층(3a1)이 자기 촉매의 표면이 되어 환원제가 산화된다. 또한, 제2층(3a2)의 표면에서의 제3층(3a3)의 반응에서는, 제2층(3a2)이 자기 촉매의 표면이 되어 환원제가 산화된다. 또한, 제3층(3a3)의 성장에서는, 구리 바로 그 자체가 자기 촉매의 표면이 되어 구리의 성장이 일어난다. 제1층(3a1), 제2층(3a2) 및 제3층(3a3)의 표면에서의 포름알데히드 등의 환원제의 산화 반응과, 팔라듐 촉매 표면 상에서의 포름알데히드 등의 환원제의 산화 반응을 비교하면, 제1층(3a1), 제2층(3a2) 및 제3층(3a3)의 표면에서의 포름알데히드 등의 환원제의 산화 반응이, 팔라듐 촉매 표면 상과 비교해서 더 진행하기 어렵다. 그로 인해, 팔라듐 촉매 표면 상에서의 무전해 구리 도금에서는 입자끼리 응집하기 쉽지만, 니켈과 구리의 합금 또는 구리 피막의 성장이 일어나도 입자끼리의 응집이 일어나기 어렵다.
본 실시 형태에서 사용하는 무전해 도금액의 환원제로서, 예를 들어, 차아인산나트륨, 수소화붕소나트륨, 디메틸아민보란, 히드라진 등의 환원제를 사용해도 되지만, 포름알데히드를 단독으로 사용하는 것이 가장 바람직하다. 차아인산나트륨, 수소화붕소나트륨, 디메틸아민보란 등을 가하는 경우에는, 인이나 붕소가 공석(共析)되기 쉽기 때문에, 제1층(3a1)에서의 니켈의 함유율을 97중량% 이상으로 하기 위해서는, 농도를 조정하는 것이 바람직하다. 환원제로서 포름알데히드를 사용함으로써, 제1층(3a1)에서의 니켈의 함유율이 99중량% 이상인 도금 피막을 형성하기 쉽다. 이 경우, 도전 입자(2)를 고압축해서 압착 접속할 경우에, 압축 후의 금속의 균열을 억제하는 것이 가능하다. 한편, 제1층(3a1)에서의 니켈의 함유율이 97중량%보다 낮을 경우, 압축 후의 금속의 균열이 발생하기 쉬워진다. 또한, 차아인산나트륨, 수소화붕소나트륨, 디메틸아민보란, 히드라진 등의 환원제를 사용하는 경우에는, 이것들의 적어도 1종을 포름알데히드와 병용하는 것이 바람직하다.
본 실시 형태에서 사용하는 무전해 도금액의 착화제로서, 예를 들어, 글리신 등의 아미노산, 에틸렌디아민, 알킬아민 등의 아민류, EDTA, 피로인산 등의 구리 착화제, 구연산, 주석산, 히드록시아세트산, 사과산, 락트산, 글루콘산 등을 사용해도 된다.
무전해 구리 도금 종료 후의 수세는, 단시간에 효율적으로 행하는 것이 바람직하다. 수세 시간이 짧을수록, 구리 표면에 산화 피막이 생기기 어렵기 때문에, 나중의 도금이 유리해지는 경향이 있다.
(제4층, 제5층, 제6층)
도 2의 (a)에 도시한 바와 같이 도전 입자(2)의 금속층(3)은, Ni-Cu층(3a)의 외측에, 니켈을 함유하고 구리를 함유하지 않는 제4층(4)을 더 가질 수 있다.
제4층(4)은, 니켈을 함유하고 구리를 함유하지 않는다. 제4층(4)은, 구리의 마이그레이션 스톱층으로서 기능한다. 따라서, 제4층(4)은, 제3층(3a3) 위에 설치하는 것이 바람직하다. 제4층(4)에서의 니켈의 함유율은, 85 내지 99중량%의 범위가 바람직하고, 88 내지 98중량%의 범위가 보다 바람직하고, 90 내지 97중량%의 범위가 더욱 바람직하다. 니켈의 함유율이 85중량%보다 낮을 경우, 제3층(3a3)의 표면에서의 니켈 도금 피막의 석출성이 저하되어, 부분적으로 석출되지 않는 장소가 발생하는 경우가 있다. 니켈의 함유율이 99중량%보다 높으면, 니켈의 자성이 높아지기 때문에, 도전 입자(2)의 응집이 일어나기 쉬워지는 경향이 있다.
제4층(4)의 두께는, 20 내지 1000Å(2 내지 100nm)의 범위가 바람직하고, 50 내지 500Å(5 내지 50nm)의 범위가 보다 바람직하고, 또한, 100 내지 300Å(10 내지 30nm)의 범위가 바람직하다. 제4층(4)의 두께가 20Å(2nm) 미만이면, 제3층(3a3)의 구리 표면을 피복하지 못한 장소가 발생하는 경우가 있어, 구리가 니켈 표면으로 확산해서 산화하여, 도전성이 저하되는 경향이 있다. 1000Å(100nm)을 초과하면, 도금시에 도전 입자(2)가 응집하기 쉬워지는 경향이 있다.
제4층(4)은, 예를 들어, 황산 니켈 등의 수용성 니켈염, 차아인산나트륨 등의 환원제, 로셀염 등의 착화제, 및 수산화 알칼리 등의 pH 조정제를 가한 용액에 의해 형성할 수 있다. 환원제로는, 예를 들어, 차아인산나트륨, 수소화붕소나트륨, 디메틸아민보란, 히드라진 등의 환원제를 사용해도 되지만, 도금액의 안정성 면에서, 차아인산나트륨을 단독으로 사용하는 것이 바람직하다. 착화제로는, 니켈과 착 형성할 수 있는 착화제일 수 있고, 예를 들어 로셀염, 구연산, 히드록시아세트산, 사과산, 락트산 등을 들 수 있다.
본 실시 형태의 도전 입자(2)에 있어서, 금속층(3)은, Ni-Cu층(3a)의 외측에, 팔라듐을 포함하는 제5층(이하, 간단히 "제5층"이라고도 함)(5)을 더 가질 수 있다. 제5층(5)은, 제3층(3a3) 위에 설치할 수 있고, 제4층(4) 위에 설치할 수 있다(도 2의 (b) 참조).
제5층은, 구리의 마이그레이션 스톱층으로서 기능한다. 따라서, 제5층(5)은, 제3층(3a3) 위에 설치하는 것이 바람직하다. 제5층(5)의 두께는 100 내지 1000Å(10 내지 100nm)이 바람직하고, 100 내지 300Å(10 내지 30nm)이 더욱 바람직하다. 제5층(5)의 두께가 100Å(10nm) 미만이면, 제5층(5)을 도금 등에 의해 형성했을 경우에 제5층(5)이 성기게 되어, 구리의 마이그레이션 스톱층으로서의 효과가 저하되는 경향이 있다. 제5층(5)의 두께가 1000Å(100nm)을 초과하면 제조 비용이 증대하는 경향이 있다.
제5층(5)은, 예를 들어, 팔라듐 도금 공정을 거쳐서 형성할 수 있고, 제5층(5)은 무전해 도금형의 팔라듐층인 것이 바람직하다. 무전해 팔라듐 도금은, 치환형(환원제가 들어 있지 않은 타입), 환원형(환원제가 들어간 타입) 중 어느 것을 사용해도 된다. 이러한 무전해 팔라듐 도금의 예로는, 환원형으로는 APP(이시하라 약폼공업 주식회사제, 상품명) 등이 있고, 치환형으로는 MCA(주식회사 월드 메탈제, 상품명) 등이 있다.
치환형과 환원형을 비교했을 경우, 환원형은 보이드가 적어지기 쉽기 때문에 특히 바람직하다. 치환형은 내측의 금속을 용해시키면서 석출되기 때문에, 환원형에 비해 피복 면적이 오르기 어렵다.
본 실시 형태의 도전 입자(2)에 있어서, 금속층(3)은, Ni-Cu층(3a)의 외측에, 금을 함유하는 제6층(이하, 간단히 "제6층"이라고도 함)(6)을 더 가질 수 있다. 제6층(6)은, 제3층(3a3) 위에 설치할 수 있고, 제4층(4) 위에 설치할 수 있으며, 제5층(5) 위에 설치할 수 있다(도 2의 (c) 참조).
제6층(6)은, 도전 입자의 표면에서의 전기 저항값을 내려 특성을 향상시킨다. 이러한 관점에서, 제6층(6)은, 금속층(3)의 최외층으로서 형성되는 것이 바람직하다. 이 경우의 제6층(6)의 두께는, 도전 입자(2)의 표면에서의 전기 저항값의 저감 효과와 제조 비용의 밸런스의 관점에서, 0Å(0nm)을 초과하고, 또한, 300Å(30nm) 이하가 바람직하지만, 300Å(30nm) 이상이어도 특성상에는 문제없다. 또한, 구리의 마이그레이션 스톱층으로서의 기능을 기대할 경우에는, 제6층(6)은, 제3층(3) 위에 설치하는 것이 바람직하다. 이 경우의 제6층(6)의 두께는 100 내지 1000Å(10 내지 100nm)이 바람직하다.
제6층(6)은, 예를 들어, 금 도금 공정을 거쳐서 형성할 수 있다. 금 도금은, 예를 들어, HGS-100(히타치화성공업 주식회사제, 상품명) 등의 치환형 금 도금, HGS-2000(히타치화성공업 주식회사제, 상품명) 등의 환원형 금 도금 등을 사용할 수 있다.
치환형과 환원형을 비교했을 경우, 환원형은 보이드가 적어지기 쉽기 때문에 특히 바람직하다. 치환 도금은 내측의 금속을 용해시키면서 석출되기 때문에, 환원형에 비해 피복 면적이 오르기 어렵다.
<절연 피복 도전 입자>
다음으로, 본 실시 형태의 절연 피복 도전 입자에 대해서 설명한다. 도 3에 도시하는 절연 피복 도전 입자(10)는, 도전 입자(2)의 금속층(3)의 표면의 적어도 일부가 절연성 자입자(1)에 의해 피복되어 이루어지는 것이다. COG 실장용의 이방 도전성 접착제는 최근 10㎛ 레벨의 좁은 피치에서의 절연 신뢰성이 요구되고 있기 때문에, 더욱 절연 신뢰성을 향상시키기 위해서는 도전 입자(2)에 절연 피복을 실시하는 것이 바람직하다. 절연 피복 도전 입자(10)에 의하면 이러한 요구 특성을 유효하게 실현할 수 있다.
도전 입자(2)를 피복하는 절연성 자입자(1)로는, 무기 산화물 미립자가 절연 신뢰성의 점에서 바람직하다. 또한, 유기 미립자를 사용하면, 절연 신뢰성은 무기 산화물 미립자를 사용했을 경우와 비교해서 향상되기 어렵지만, 절연 저항값을 내리기 쉽다.
무기 산화물 미립자로는, 예를 들어 규소, 알루미늄, 지르코늄, 티탄, 니오브, 아연, 주석, 세륨 및 마그네슘으로 이루어지는 군에서 선택되는 적어도 1종의 원소를 포함하는 산화물이 바람직하고, 이것들은 단독으로 또는 2종류 이상을 혼합해서 사용할 수 있다. 무기 산화물 미립자 중에서도 물 분산 콜로이드 실리카(SiO2)는 표면에 수산기를 갖기 때문에, 도전 입자와의 결합성이 우수하고, 입자 직경을 정렬시키기 쉬우며, 저렴하기 때문에 특히 적합하다. 이러한 무기 산화물 미립자의 시판품으로는, 예를 들어 스노 텍스, 스노 텍스 UP(닛산화학공업 주식회사제, 상품명), 쿼트론 PL 시리즈(후소화학공업 주식회사제, 상품명) 등을 들 수 있다.
무기 산화물 미립자의 크기로는, BET법에 의한 비표면적 환산법 또는 X선 소각 산란법으로 측정된 평균 입경이, 20 내지 500nm인 것이 바람직하다. 이 평균 입경이 20nm 미만이면, 도전 입자에 흡착된 무기 산화물 미립자가 절연막으로서 작용하지 않아, 일부에 쇼트가 발생하기 쉬워지는 경향이 있다. 이 평균 입경이 500nm를 초과하면, 접속의 가압 방향의 도전성이 저하되는 경향이 있다.
무기 산화물 미립자 표면의 수산기는 실란 커플링제 등으로 아미노기, 카르복실기, 에폭시기 등으로 변성하는 것이 가능하지만, 무기 산화물 미립자의 평균 입경이 500nm 이하인 경우, 곤란할 경우가 있다. 그 경우에는, 관능기에 의한 변성을 행하지 않고 도전 입자에 피복하는 것이 바람직하다.
일반적으로 수산기를 가짐으로써, 수산기, 카르복실기, 알콕실기, 알콕시카르보닐기 등과 결합하는 것이 가능하다. 결합 형태로는, 예를 들어 탈수 축합에 의한 공유 결합, 수소 결합, 배위 결합 등을 들 수 있다.
도전 입자(2)의 표면이 금 또는 팔라듐으로 이루어지는 경우, 이것들에 대해서 배위 결합을 형성하는 메르캅토기, 술피드기, 디술피드기 등을 분자 내에 갖는 화합물로 표면에 수산기, 카르복실기, 알콕실기, 알콕시카르보닐기 등의 관능기를 형성할 수 있다. 상기 화합물로는, 예를 들어 메르캅토아세트산, 2-메르캅토에탄올, 메르캅토아세트산메틸, 메르캅토호박산, 티오글리세린, 시스테인 등을 들 수 있다.
특히, 금, 팔라듐, 구리 등의 귀금속은 티올과 반응하기 쉽고, 니켈과 같은 비금속은 티올과 반응하기 어렵다. 즉, 도전 입자(2)의 최외층이 귀금속인 경우에는, 도전 입자(2)의 최외층이 비금속일 경우에 비해 티올과 반응하기 쉽다.
예를 들어, 금 표면에 상기 화합물을 처리하는 방법으로는 특별히 한정되지 않지만, 메탄올이나 에탄올 등의 유기 용매 중에 메르캅토아세트산 등의 화합물을 10 내지 100mmol/L 정도 분산시키고, 그 중에 최외층이 금인 도전 입자(2)를 분산시킨다.
다음으로, 상기 관능기를 갖는 도전 입자(2) 표면에 무기 산화물 미립자를 피복하는 방법으로는, 예를 들어, 고분자 전해질과 무기 산화물 미립자를 교대로 적층하는 방법이 바람직하다. 보다 구체적인 제조 방법으로는, (1) 관능기를 갖는 도전 입자(2)를 고분자 전해질 용액에 분산시켜, 도전 입자(2)의 표면에 고분자 전해질을 흡착시킨 후, 린스하는 공정, (2) 도전 입자(2)를 무기 산화물 미립자의 분산 용액에 분산시켜, 도전 입자(2)의 표면에 무기 미립자를 흡착시킨 후, 린스하는 공정을 행함으로써, 표면에 고분자 전해질과 무기 산화물 미립자가 피복된 절연 피복 도전 입자(10)를 제조할 수 있다. 이러한 방법은, 교대 적층법(Layer-by-Layer assembly)이라고 불린다. 교대 적층법은, 지. 데쳐(G. Decher) 외에 의해 1992년에 발표된 유기 박막을 형성하는 방법이다(Thin Solid Films, 210/211, p831(1992)). 이 방법에서는, 양전하를 갖는 폴리머 전해질(폴리 양이온)과 음전하를 갖는 폴리머 전해질(폴리 음이온)의 수용액에, 기재를 교대로 침지함으로써 기판 위에 정전적 인력에 의해 흡착된 폴리 양이온과 폴리 음이온의 쌍이 적층되어 복합막(교대 적층막)이 얻어지는 것이다.
교대 적층법에서는, 정전적인 인력에 의해, 기재 위에 형성된 재료의 전하와, 용액 중의 반대 전하를 갖는 재료가 서로 잡아당김으로써 막이 성장하기 때문에, 흡착이 진행되어 전하의 중화가 일어나면, 더 이상의 흡착은 일어나지 않게 된다. 따라서, 임의의 포화점까지 이르면, 더 이상 막 두께가 증가하지 않는다. 리보프(Lvov) 외는 교대 적층법을 미립자에 응용하여, 실리카, 티타니아, 산화세륨 등의 각 미립자 분산액을 사용해서, 미립자의 표면 전하와 반대 전하를 갖는 고분자 전해질을 교대 적층법으로 적층하는 방법을 보고하고 있다(Langmuir, Vol.13, (1997) p6195-6203). 이 방법을 사용하면, 음의 표면 전하를 갖는 실리카의 미립자와 그 반대 전하를 갖는 폴리 양이온인 폴리디알릴디메틸암모늄클로라이드(PDDA) 또는 폴리에틸렌이민(PEI) 등을 교대로 적층함으로써, 실리카 미립자와 고분자 전해질이 교대로 적층된 미립자 적층 박막을 형성하는 것이 가능하다.
고분자 전해질로는, 예를 들어, 수용액 중에서 전리되어, 하전을 갖는 관능기를 주쇄 또는 측쇄에 갖는 고분자를 사용할 수 있다. 이 경우에는 폴리 양이온을 사용하는 것이 좋다. 또한, 폴리 양이온으로는, 일반적으로 폴리아민류 등과 같이 양하전을 띨 수 있는 관능기를 갖는 것, 예를 들어, 폴리에틸렌이민(PEI), 폴리알릴아민 염산염(PAH), 폴리디알릴디메틸암모늄클로라이드(PDDA), 폴리비닐피리딘(PVP), 폴리리신, 폴리아크릴아미드, 이것들을 적어도 1종 이상을 포함하는 공중합체 등을 사용할 수 있다. 고분자 전해질 중에서도 폴리에틸렌이민은 전하 밀도가 높고, 결합력이 강하기 때문에 바람직하다.
도전 입자(2)의 표면을 절연성 자입자(1)가 덮는 비율(피복률)은, 20 내지 40%인 것이 바람직하다. 회로 접속체가 낮은 저항값의 유지 및 인접하는 회로 전극간의 우수한 절연성 모두를 달성하는 관점에서, 피복률은 25 내지 35%인 것이 보다 바람직하고, 28 내지 32%인 것이 더욱 바람직하다. 피복률이 20% 이상이면 인접하는 회로 전극간의 절연성을 충분히 확보할 수 있고, 40% 이하이면 접속 부분의 충분히 낮은 초기 저항값 및 저항값의 경시적인 상승의 억제 모두를 충분히 달성할 수 있다. 여기에서 말하는 피복률은, 시차 주사 전자 현미경(배율 8000배)에 의한 관찰에 의해 얻어지는, 하기의 측정값에 기초하는 것이다. 즉, 피복률은, 도전 입자(2) 및 절연성 자입자(1)의 각각의 입자 직경, 및 1개의 도전 입자(2)에 부착되어 있는 절연성 자입자(1)의 개수에 기초하여 산출되는 값이다.
도전 입자(2)의 입경은, 이하와 같이 해서 측정된다. 즉, 1개의 도전 입자를 임의로 선택하고, 이것을 시차 주사 전자 현미경으로 관찰해서 그 최대 직경 및 최소 직경을 측정한다. 이 최대 직경 및 최소 직경의 곱의 평방근을 그 입자의 입경이라고 한다. 임의로 선택한 핵 입자 300개에 대해서 상기와 같이 해서 입경을 측정하고, 그 평균값을 도전 입자(2)의 평균 입경(D1)이라고 한다. 절연성 자입자(1)의 입경에 대해서도, 이와 마찬가지로 해서 임의의 절연성 자입자 300개에 대해서 그 입경을 측정하고, 그 평균값을 절연성 자입자(1)의 평균 입경(D2)이라고 한다.
1개의 도전 입자(2)가 구비하는 절연성 자입자(1)의 개수는, 이하와 같이 해서 측정된다. 즉, 복수의 절연성 자입자로 표면의 일부가 피복된 도전 입자 1개를 임의로 선택한다. 그리고, 이것을 시차 주사 전자 현미경으로 촬상하여, 관찰할 수 있는 핵 입자 표면에 부착되어 있는 절연성 입자의 수를 카운트한다. 이에 의해 얻어진 카운트 수를 2배로 함으로써 1개의 도전 입자에 부착되어 있는 절연성 자입자의 수를 산출한다. 임의로 선택한 도전 입자 300개에 대해서 상기와 같이 해서 절연성 자입자의 수를 측정하고, 그 평균값을 1개의 도전 입자가 구비하는 절연성 자입자의 개수로 한다.
<이방 도전성 접착제>
이상과 같이 해서 제조되는 도전 입자(2) 또는 절연 피복 도전 입자(10)를 접착제에 함유시켜서, 이방 도전성 접착제(50)를 제조할 수 있다. 이방 도전성 접착제(50)는, 절연성을 갖는 접착제 성분(20)과, 접착제 성분(20) 중에 분산된 도전 입자(2) 또는 절연 피복 도전 입자(10)를 구비한다(도 4 참조). 이방 도전성 접착제(50)는 회로 접속 재료로서 사용할 수 있다.
본 실시 형태의 이방 도전성 접착제에 사용되는 접착제 성분(20)으로는, 예를 들어, 열반응성 수지와 경화제의 혼합물이 사용된다. 바람직하게 사용되는 접착제로는, 예를 들어, (a) 에폭시 수지와 (b) 잠재성 경화제의 혼합물, (c) 라디칼 중합성 화합물과 (d) 유기 과산화물의 혼합물 등을 들 수 있다.
(a) 에폭시 수지로는, 비스페놀 A형 에폭시 수지, 비스페놀 F형 에폭시 수지, 비스페놀 S형 에폭시 수지, 페놀 노볼락형 에폭시 수지, 크레졸 노볼락형 에폭시 수지, 비스페놀 A 노볼락형 에폭시 수지, 비스페놀 F 노볼락형 에폭시 수지, 지환식 에폭시 수지, 글리시딜 에스테르형 에폭시 수지, 글리시딜 아민형 에폭시 수지, 히단토인형 에폭시 수지, 이소시아누레이트형 에폭시 수지, 지방족 쇄 형상 에폭시 수지 등을 들 수 있다. 이들 에폭시 수지는, 할로겐화되어 있어도 되고, 수소 첨가되어 있어도 된다. 이들 에폭시 수지는, 1종을 단독으로, 또는 2종 이상을 조합해서 사용할 수 있다.
(b) 잠재성 경화제로는, 아민계, 페놀계, 산무수물계, 이미다졸계, 히드라지드계, 디시안디아미드, 3불화붕소-아민 착체, 술포늄염, 요오드늄염, 아민이미드 등을 들 수 있다. 이것들은, 단독 또는 2종 이상을 혼합해서 사용할 수 있고, 분해 촉진제, 억제제 등을 혼합해서 사용해도 된다. (b) 잠재성 경화제의 배합량은, 접착제 성분의 총 질량을 기준으로 해서, 0.1 내지 60.0질량% 정도이면 바람직하고, 1.0 내지 20.0질량%이면 보다 바람직하다. 경화제의 배합량이 0.1질량% 미만이면, 경화 반응의 진행이 불충분해져서, 양호한 접착 강도나 접속 저항값을 얻는 것이 곤란해지는 경향이 있다. 한편, 배합량이 60질량%를 초과하면, 접착제 성분의 유동성이 저하되거나, 포트 라이프가 짧아지는 경향이 있는 동시에, 접속 부분의 접속 저항값이 높아지는 경향이 있다.
(c) 라디칼 중합성 화합물은, 라디칼에 의해 중합하는 관능기를 갖는 화합물이며, 예를 들어, (메타)아크릴레이트, 말레이미드 화합물 등을 들 수 있다.
(d) 유기 과산화물로는, 예를 들어, 디아실퍼옥사이드, 퍼옥시디카보네이트, 퍼옥시에스테르, 퍼옥시케탈, 디알킬퍼옥사이드, 하이드로퍼옥사이드 등을 들 수 있다. (d) 유기 과산화물의 배합량은, 접착제 성분의 총 질량을 기준으로 해서, 0.05 내지 10질량%이면 바람직하고, 0.1 내지 5질량%이면 보다 바람직하다.
이방 도전성 접착제(50)는, 페이스트 형상이거나, 필름 형상으로 가공한 것일 수 있다. 필름 형상으로 하기 위해서는, 페녹시 수지, 폴리에스테르 수지, 폴리아미드 수지, 폴리에스테르 수지, 폴리우레탄 수지, 아크릴 수지, 폴리에스테르우레탄 수지 등의 열가소성 수지를 배합하는 것이 효과적이다. 이들 수지의 배합량은, 접착제 성분의 총 질량을 기준으로 해서, 2 내지 80질량%인 것이 바람직하고, 5 내지 70질량%인 것이 보다 바람직하고, 10 내지 60질량%인 것이 더욱 바람직하다.
이방 도전성 접착제(50)에 있어서 도전 입자(2) 또는 절연 피복 도전 입자(10)의 함유량은, 당해 접착제의 전체 체적을 100체적부라고 하면, 0.5 내지 60체적부인 것이 바람직하고, 그 함유량은 용도에 따라 구분지어 사용한다.
<접속 구조체의 제조 방법>
상기와 같이 제조한 이방 도전성 접착제를 사용해서 제조된 접속 구조체 및 당해 접속 구조체의 제조 방법에 대해서, 도 3 및 도 4를 참조하면서 설명한다.
[접속 구조체]
도 3에 도시하는 접속 구조체(100)는, 서로 대향하는 제1 회로 부재(30) 및 제2 회로 부재(40)를 구비하고 있고, 제1 회로 부재(30)와 제2 회로 부재(40)의 사이에는, 이것들을 접속하는 접속부(50a)가 설치되어 있다.
제1 회로 부재(30)는, 회로 기판(제1 회로 기판)(31)과, 회로 기판(31)의 주면(31a) 상에 형성되는 회로 전극(제1 회로 전극)(32)을 구비한다. 제2 회로 부재(40)는, 회로 기판(제2 회로 기판)(41)과, 회로 기판(41)의 주면(41a) 상에 형성되는 회로 전극(제2 회로 전극)(42)을 구비한다.
회로 부재의 구체예로는, IC 칩(반도체 칩), 저항체 칩, 콘덴서 칩, 드라이버 IC 등의 칩 부품이나 리지드형의 패키지 기판 등을 들 수 있다. 이들 회로 부재는, 회로 전극을 구비하고 있고, 다수의 회로 전극을 구비하고 있는 것이 일반적이다. 상기 회로 부재가 접속되는 또 한쪽의 회로 부재의 구체예로는, 금속 배선을 갖는 플렉시블 테이프 기판, 플렉시블 프린트 배선판, 인듐 주석 산화물(ITO)이 증착된 유리 기판 등의 배선 기판을 들 수 있다. 필름 형상의 이방 도전성 접착제(50)에 의하면, 이들 회로 부재끼리를 효율적이면서도 또한 높은 접속 신뢰성을 갖고 접속할 수 있다. 본 실시 형태의 이방 도전성 접착제는, 미세한 회로 전극을 다수 구비하는 칩 부품의 배선 기판상에 대한 COG 실장 혹은 COF 실장에 적합하다.
접속부(50a)는 이방 도전성 접착제에 포함되는 절연성의 접착제의 경화물(20a)과, 이것에 분산되어 있는 절연 피복 도전 입자(10)를 구비한다. 그리고, 접속 구조체(100)에 있어서는, 대향하는 회로 전극(32)과 회로 전극(42)이, 절연 피복 도전 입자(10)를 통해서 전기적으로 접속되어 있다. 보다 구체적으로는, 도 3에 도시하는 대로, 절연 피복 도전 입자(10)에서는, 도전 입자(2)가 압축에 의해 변형하여, 회로 전극(32, 42) 양쪽에 직접 접촉하고 있다. 한편, 도시한 횡방향은 도전 입자(2) 간에 절연성 자입자(1)가 개재함으로써 절연성이 유지된다. 따라서, 본 실시 형태의 이방 도전성 접착제를 사용하면, 10㎛ 레벨의 좁은 피치에서의 절연 신뢰성을 향상시키는 것이 가능해진다. 또한, 용도에 따라서는 절연 피복 도전 입자 대신에 절연 피복되지 않은 도전 입자를 사용하는 것도 가능하다.
[접속 구조체의 제조 방법]
도 4는, 이방 도전성 접착제를 사용해서 상기 접속 구조체를 제조하는 공정을 개략 단면도에 의해 도시하는 공정도이다. 본 실시 형태에서는, 이방 도전성 접착제를 열경화시켜서 접속 구조체를 제조한다.
우선, 상술한 제1 회로 부재(30)와, 필름 형상으로 성형한 이방 도전성 접착제(50)를 준비한다. 필름 형상의 이방 도전성 접착제(50)는, 상기와 같이 절연 피복 도전 입자(10)를 절연성의 접착제 성분(20)에 함유시켜 이루어지는 것이다.
다음으로, 필름 형상의 이방 도전성 접착제(50)를 제1 회로 부재(30)의 회로 전극(32)이 형성되어 있는 면 위에 싣는다. 그리고, 필름 형상의 이방 도전성 접착제(50)를, 도 4의 (a)의 화살표 A 및 B 방향으로 가압하여, 필름 형상의 이방 도전성 접착제(50)를 제1 회로 부재(30)에 적층한다(도 4의 (b)).
계속해서, 도 4의 (c)에 도시한 바와 같이, 제2 회로 부재(40)를, 제2 회로 전극(42)을 제1 회로 부재(30)의 측을 향하도록 해서 필름 형상의 이방 도전성 접착제(50) 위에 싣는다. 그리고, 필름 형상의 이방 도전성 접착제(50)를 가열하면서, 도 4의 (c)의 화살표 A 및 B 방향으로 전체를 가압한다. 필름 형상의 이방 도전성 접착제(50)의 경화에 의해 접속부(50a)가 형성되어, 도 3에 도시하는 바와 같은 접속 구조체(100)가 얻어진다.
이상, 본 발명의 적합한 실시 형태에 대해서 설명했지만, 본 발명은 상기 실시 형태에 전혀 한정되지 않는다.
실시예
이하, 실시예 및 비교예를 들어 본 발명의 내용을 보다 구체적으로 설명한다. 또한, 본 발명은 하기 실시예에 한정되지 않는다.
<실시예 1>
(공정 a) (전처리 공정)
평균 입경 3.8㎛의 가교 폴리스티렌 입자 2g을 팔라듐 촉매인 아토텍 네오간트 834(아토텍 재팬 주식회사제, 상품명)를 8중량% 함유하는 팔라듐 촉매화액 100mL에 첨가하고, 30℃에서 30분간 교반한 후, φ3㎛의 멤브레인 필터(밀리포어 주식회사제)로 여과하고, 수세를 행하였다. 그 후, 수지 입자를 pH6.0으로 조정된 0.5중량% 디메틸아민보란액에 첨가하여, 표면이 활성화된 수지 입자를 얻었다. 그 후, 20mL의 증류수에 표면이 활성화된 수지 입자를 침지하고, 초음파 분산시켰다.
(공정 b) (도금 공정)
그 후, 40℃로 가온한 표 1에 나타내는 조성을 갖는 1L의 건욕액에 수지 입자를 가하고, 표 2에 나타내는 값의 97중량% 이상의 니켈을 함유하는 제1층, 및 니켈 및 구리를 주성분으로 하는 합금을 함유하는 제2층을 형성하였다. 또한, 첨가법에 의해 하기 조성의 니켈을 함유하지 않는 보충액 A 및 보충액 B를 각각 930mL 준비하고, 20mL/min의 속도로 연속적으로 적하하여, 표 2에 나타내는 함유율 및 막 두께를 갖는 구리를 주성분으로 하는 제3층을 형성하였다.
(보충액 A)
CuSO4·5H2O: 0.8mol/L
HCHO: 1mol/L
NaCN: 0.001mol/L
(보충액 B)
EDTA·4Na: 1mol/L
NaOH: 1mol/L
수세와 여과를 행한 후, 치환 금 도금인 85℃의 HGS-100(히타치화성공업 주식회사제, 상품명)에 도전 입자를 침지하고, 표 2에 나타내는 막 두께의, 금을 함유하는 제6층을 형성하여, 도전 입자를 제조하였다.
(도전 입자의 막 두께 및 성분의 평가)
얻어진 도전 입자에 대해서, 단면을 수렴 이온 빔으로 잘라내어, 40만배의 투과형 전자 현미경으로 관찰하였다. 또한, 이때, EDX(에너지 분산형 X선 분광기, 일본전자 데이텀 주식회사제)에 의한 성분 분석에 의해, 제1층, 제2층 및 제3층의 성분을 분석함과 함께 막 두께를 계측하였다. 그 계측 결과를 도 5에 도시하였다. 금을 함유하는 제6층에 대해서도 막 두께를 계측하였다.
(도전 입자의 저항값 측정 방법)
미소 압축 시험기 MCTW-200(주식회사 시마츠 제작소제, 상품명)을 사용해서, 부하 속도 0.5mN/sec의 조건에서 도전 입자를 압축하여, 원래의 입경의 70%가 될 때까지 압축했을 경우(압축률 30%), 원래의 입경의 50%가 될 때까지 압축했을 경우(압축률 50%), 원래의 입경의 40%가 될 때까지 압축했을 경우(압축률 60%), 원래의 입경의 30%가 될 때까지 압축했을 경우(압축률 70%), 원래의 입경의 20%가 될 때까지 압축했을 경우(압축률 80%), 및 원래의 입경의 10%가 될 때까지 압축했을 경우(압축률 90%)의 전기 저항값(Ω)의 측정을 행하였다. 10개의 도전 입자의 측정을 행하여, 그 평균값을 표 5에 나타낸다.
(도전 입자의 도금에 의한 응집성의 평가)
얻어진 도전 입자를 해쇄(解碎)하여, 도전 입자 300개를 SEM으로 관찰하고, 도금 피막에 핀 홀이 발생했던 도전 입자수의 비율을 핀 홀 발생율로서 산출하여, 도금에 의한 응집성의 평가를 행하였다. 그 결과를 표 5에 나타낸다. 또한, 도전 입자의 해쇄는 다음과 같이 하였다. 즉, 100mL의 비이커에, 도전 입자 1g, 직경 1mm의 지르코니아 볼 40g 및 에탄올 20mL를 투입하였다. 비이커 내의 액을, 스테인리스제의 4장의 교반 날개를 사용해서 회전수 400rpm으로 2분간 교반한 후, 여과 건조를 행하였다. 이들 처리를 거친 도전 입자를 SEM으로 관찰하였다.
<실시예 2>
실시예 1의 (공정 b)의 도금 공정에서, 건욕액을 표 1에 나타내는 건욕액으로 변경한 것, 및 니켈을 함유하지 않는 보충액 A 및 B를 각각 830mL로 변경한 것 외에는 모두 실시예 1과 마찬가지로 하였다. 실시예 1과 마찬가지로, 막 두께의 측정 결과를 표 2에, 압축률에 대한 전기 저항값(Ω)의 측정 결과와 해쇄 후의 핀 홀 발생율(%)의 산출 결과를 표 5에 나타낸다.
<실시예 3>
실시예 1의 (공정 b)의 도금 공정에서, 건욕액을 표 1에 나타내는 건욕액으로 변경한 것, 및 니켈을 함유하지 않는 보충액 A 및 B를 각각 800mL로 변경한 것 외에는 모두 실시예 1과 마찬가지로 하였다. 실시예 1과 마찬가지로, 막 두께의 측정 결과를 표 2에, 압축률에 대한 전기 저항값(Ω)의 측정 결과와 해쇄 후의 핀 홀 발생율(%)의 산출 결과를 표 5에 나타낸다.
<실시예 4>
실시예 1의 (공정 b)의 도금 공정에서, 건욕액을 표 1에 나타내는 건욕액으로 변경한 것, 및 니켈을 함유하지 않는 보충액 A 및 B를 각각 730mL로 변경한 것 외에는 모두 실시예 1과 마찬가지로 하였다. 실시예 1과 마찬가지로, 막 두께의 측정 결과를 표 2에, 압축률에 대한 전기 저항값(Ω)의 측정 결과와 해쇄 후의 핀 홀 발생율(%)의 산출 결과를 표 5에 나타낸다.
<실시예 5>
실시예 1의 (공정 b)의 도금 공정에서, 건욕액을 표 1에 나타내는 건욕액으로 변경한 것, 및 니켈을 함유하지 않는 보충액 A 및 B를 각각 700mL로 변경한 것 외에는 모두 실시예 1과 마찬가지로 하였다. 실시예 1과 마찬가지로, 막 두께의 측정 결과를 표 2에, 압축률에 대한 전기 저항값(Ω)의 측정 결과와 해쇄 후의 핀 홀 발생율(%)의 산출 결과를 표 5에 나타낸다.
<실시예 6>
실시예 1의 (공정 b)의 도금 공정에서, 건욕액을 표 1에 나타내는 건욕액으로 변경한 것, 및 니켈을 함유하지 않는 보충액 A 및 B를 각각 670mL로 변경한 것 외에는 모두 실시예 1과 마찬가지로 하였다. 실시예 1과 마찬가지로, 막 두께의 측정 결과를 표 2에, 압축률에 대한 전기 저항값(Ω)의 측정 결과와 해쇄 후의 핀 홀 발생율(%)의 산출 결과를 표 5에 나타낸다.
<비교예 1>
실시예 1의 (공정 b)의 도금 공정에서, 건욕액을 표 1에 나타내는 건욕액으로 변경한 것 외에는 모두 실시예 1과 마찬가지로 하였다. 실시예 1과 마찬가지로, 압축률에 대한 전기 저항값(Ω)의 측정 결과와 해쇄 후의 핀 홀 발생율(%)의 산출 결과를 표 5에 나타낸다.
<비교예 2>
실시예 1의 (공정 b)의 도금 공정에서, 건욕액을 표 1에 나타내는 건욕액으로 변경한 것 외에는 모두 실시예 1과 마찬가지로 하였다. 실시예 1과 마찬가지로, 막 두께의 측정 결과를 표 2에, 압축률에 대한 전기 저항값(Ω)의 측정 결과와 해쇄 후의 핀 홀 발생율(%)의 산출 결과를 표 5에 나타낸다.
<비교예 3>
실시예 1의 (공정 b)의 도금 공정에서, 건욕액을 표 1에 나타내는 건욕액으로 변경한 것 외에는 모두 실시예 1과 마찬가지로 하였다. 실시예 1과 마찬가지로, 막 두께의 측정 결과를 표 2에, 압축률에 대한 전기 저항값(Ω)의 측정 결과와 해쇄 후의 핀 홀 발생율(%)의 산출 결과를 표 5에 나타낸다.
<비교예 4>
실시예 1의 (공정 b)의 도금 공정에서, 건욕액을 표 1에 나타내는 건욕액으로 변경한 것 외에는 모두 실시예 1과 마찬가지로 하였다. 실시예 1과 마찬가지로, 막 두께의 측정 결과를 표 2에, 압축률에 대한 전기 저항값(Ω)의 측정 결과와 해쇄 후의 핀 홀 발생율(%)의 산출 결과를 표 5에 나타낸다.
Figure 112013002951757-pat00001
Figure 112013002951757-pat00002
<비교예 5>
실시예 1의 (공정 a)의 전처리 공정을 행하였다. 그 후, 호박산을 0.084mol/L(1중량%) 포함한 용액을 조정하여, 전처리 공정을 거친 수지 입자를 가하고, 또한 황산을 첨가해서 pH5의 수지 입자 함유 용액 1L를 제조하였다.
니켈 및 인을 함유하는 제7층의 합금 도금 피막을 제조하기 위해서, 하기 조성의 도금액을 조정하였다.
(니켈 및 인을 함유하는 제7층 제조용 무전해 도금액)
NiSO4·6H2O: 0.76mol/L(20중량%)
NaPO2·H2O: 1.89mol/L(20중량%)
NaOH: 2mol/L(8중량%)
얻어진 수지 입자 함유 용액 1L를 80℃로 하고, 니켈 및 인을 함유하는 제7층 제조용 무전해 도금액 20mL를 20mL/min의 속도로 연속적으로 적하하여, 표 3에 나타내는 제7층을 얻었다.
다음으로, 니켈, 구리 및 인을 함유하는 제8층의 합금 도금 피막을 제조하기 위해서 하기 조성의 도금액을 조정하였다.
(니켈, 구리 및 인을 함유하는 제8층 제조용 무전해 도금액)
NiSO4·6H2O: 0.76mol/L(20중량%)
CuSO4·5H2O: 0.80mol/L(20중량%)
NaH2PO2·H2O: 1.89mol/L(20중량%)
NaOH: 2mol/L(8중량%)
그 후, 제7층의 제조를 종료한 용액에, 얻어진 제8층의 합금 도금을 제조하기 위한 도금액 980mL를 20mL/min의 속도로 연속적으로 적하하여, 표 3에 나타내는 제8층을 얻었다.
수세와 여과를 행한 후, 치환 금 도금인 85℃의 HGS-100(히타치화성공업 주식회사제, 상품명)에 도전 입자를 침지해서, 표 3에 나타내는 막 두께의, 금을 함유하는 제6층을 형성하여, 도전 입자를 제조하였다. 실시예 1과 마찬가지로, 막 두께의 측정 결과를 표 3에, 압축률에 대한 전기 저항값(Ω)의 측정 결과와 해쇄 후의 핀 홀 발생율(%)의 산출 결과를 표 5에 나타낸다.
<비교예 6>
비교예 5의, 제7층 제조용 무전해 도금액을 50mL, 제8층 제조용 무전해 도금액을 950mL로 각각 변경하고, 제7층 및 제8층의 두께를 변화시킨 것 외에는 비교예 5와 마찬가지로 하였다. 실시예 1과 마찬가지로, 막 두께의 측정 결과를 표 3에, 압축률에 대한 전기 저항값(Ω)의 측정 결과와 해쇄 후의 핀 홀 발생율(%)의 산출 결과를 표 5에 나타낸다.
<비교예 7>
비교예 5의, 제7층 제조용 무전해 도금액을 100mL, 제8층 제조용 무전해 도금액을 900mL로 각각 변경하고, 제7층 및 제8층의 두께를 변화시킨 것 외에는 비교예 5와 마찬가지로 하였다. 실시예 1과 마찬가지로, 막 두께의 측정 결과를 표 3에, 압축률에 대한 전기 저항값(Ω)의 측정 결과와 해쇄 후의 핀 홀 발생율(%)의 산출 결과를 표 5에 나타낸다.
<비교예 8>
비교예 5의 제7층 제조용 무전해 도금액을 200mL, 제8층 제조용 무전해 도금액을 800mL로 각각 변경하고, 제7층 및 제8층의 두께를 변화시킨 것 외에는 비교예 5와 마찬가지로 하였다. 실시예 1과 마찬가지로, 막 두께의 측정 결과를 표 3에, 압축률에 대한 전기 저항값(Ω)의 측정 결과와 해쇄 후의 핀 홀 발생율(%)의 산출 결과를 표 5에 나타낸다.
Figure 112013002951757-pat00003
<비교예 9>
비교예 5와 마찬가지의 조작을 행하여, 니켈 및 인을 함유하는 제7층을 형성한 후, 수세와 여과를 행하였다. 얻어진 도전 입자 함유 용액 1L를 40℃로 하고, 또한, 첨가법에 의해 하기 조성의 니켈을 함유하지 않는 보충액 A 및 B를 각각 980mL 준비하여, 20mL/min의 속도로 연속적으로 적하해서, 표 4에 나타낸 값의 제3층을 형성하였다.
(보충액 A)
CuSO4·5H2O: 0.8mol/L
HCHO: 1mol/L
NaCN: 0.001mol/L
(보충액 B)
EDTA·4Na: 1mol/L
NaOH: 1mol/L
수세와 여과를 행한 후, 치환 금 도금인 85℃의 HGS-100(히타치화성공업 주식회사제, 상품명)에 도전 입자를 침지해서, 금을 함유하는 제6층을 형성하여, 도전 입자를 제조하였다. 실시예 1과 마찬가지로, 막 두께의 측정 결과를 표 4에, 압축률에 대한 전기 저항값(Ω)의 측정 결과와 해쇄 후의 핀 홀 발생율(%)의 산출 결과를 표 5에 나타낸다.
(비교예 10)
비교예 6과 마찬가지의 조작을 행함으로써, 표 4에 나타낸 제7층을 형성하고, 또한 비교예 9와 마찬가지의 니켈을 함유하지 않는 보충액 A 및 B를 각각 950mL 준비하여, 20mL/min의 속도로 연속적으로 적하해서, 표 4에 나타내는 값의 제3층을 형성하였다. 또한 비교예 9와 마찬가지로 제6층을 형성하였다. 실시예 1과 마찬가지로, 막 두께의 측정 결과를 표 4에, 압축률에 대한 전기 저항값(Ω)의 측정 결과와 해쇄 후의 핀 홀 발생율(%)의 산출 결과를 표 5에 나타낸다.
(비교예 11)
비교예 7과 마찬가지의 조작을 행함으로써, 표 4에 나타낸 제7층을 형성하고, 또한 비교예 9와 마찬가지의 니켈을 함유하지 않는 보충액 A 및 B를 각각 900mL 준비하여, 20mL/min의 속도로 연속적으로 적하해서, 표 4에 나타내는 값의 제3층을 형성하였다. 또한 비교예 9와 마찬가지로 제6층을 형성하였다. 실시예 1과 마찬가지로, 막 두께의 측정 결과를 표 4에, 압축률에 대한 전기 저항값(Ω)의 측정 결과와 해쇄 후의 핀 홀 발생율(%)의 산출 결과를 표 5에 나타낸다.
(비교예 12)
비교예 8과 마찬가지의 조작을 행함으로써, 표 4에 나타낸 제7층을 형성하고, 또한 비교예 9와 마찬가지의 니켈을 함유하지 않는 보충액 A 및 B를 각각 800mL 준비하여, 20mL/min의 속도로 연속적으로 적하해서, 표 4에 나타내는 값의 제3층을 형성하였다. 또한 비교예 9와 마찬가지로 제6층을 형성하였다. 실시예 1과 마찬가지로, 막 두께의 측정 결과를 표 4에, 압축률에 대한 전기 저항값(Ω)의 측정 결과와 해쇄 후의 핀 홀 발생율(%)의 산출 결과를 표 5에 나타낸다.
Figure 112013002951757-pat00004
이상의 결과로부터, 실시예 1 내지 6에서 제조한 도전 입자는, 압축률이 90%인 경우라도(즉, 그 크기가 원래의 입경의 10%가 될 때까지 압축), 5Ω 이하의 저항값을 유지할 수 있음이 명확해졌다. 또한, 해쇄 후의 핀 홀 발생율을 보아도, 0%이며, 한창 도금중인 입자간의 응집을 억제할 수 있음을 알았다. 한편, 환원제에 포름알데히드를 사용해도, 도금 석출의 초기의 건욕액에 니켈을 포함하지 않는 비교예 1의 방법으로 제조한 도전 입자나, 환원제에 포름알데히드가 아니라 차아인산을 사용한 비교예 2 내지 4에서 제조한 도전 입자는, 압축을 행함으로써 전기 저항값이 상승하여, 압축률이 80%인 경우 5Ω을 초과하는 것을 알았다. 또한, 해쇄 후의 핀 홀 발생율을 보면, 10% 전후의 비율로 발생하고 있음을 알았다. 비교예 5 내지 12에서 제조한 도전 입자는, 해쇄 후에 핀 홀이 없는 점에서, 도금 석출의 초기에 니켈 및 인을 함유하는 도금 피막을 형성함으로써, 한창 도금중인 입자간의 응집을 억제할 수 있는데, 니켈 및 인을 함유하는 도금 피막의 두께가 두꺼울수록, 압축에 수반하는 전기 저항값이 상승하기 쉬운 경향이 있음을 알았다.
Figure 112013002951757-pat00005
※ 1 도전 입자 300개를 SEM으로 관찰했을 때의 도금 피막에 핀 홀이 발생한 비율
본 발명에 따르면, 압축되었을 경우에도 낮은 전기 저항값을 유지할 수 있고, 또한, 핀 홀이 적은 도전 입자 및 이것을 사용한 절연 피복 도전 입자가 제공된다. 또한, 본 발명에 따르면, 당해 도전 입자 또는 절연 피복 도전 입자를 포함하는 이방 도전성 접착제가 제공된다. 또한, 본 발명에 따르면, 당해 이방 도전성 접착제를 사용해서 접속 구조체를 제조하는 방법 및 이것에 의해 제조되는 접속 구조체가 제공된다.

Claims (19)

  1. 수지 입자와, 상기 수지 입자의 표면에 설치된 금속층을 구비하고,
    상기 금속층은 니켈 및 구리를 포함하는 Ni-Cu층을 적어도 갖고,
    상기 Ni-Cu층은, 상기 수지 입자에 가까운 순서대로, 97중량% 이상의 니켈을 함유하는 제1 부분, 상기 수지 입자의 표면으로부터 멀어짐에 따라서 니켈에 대한 구리의 원소 비율이 높아지는 제2 부분, 및 97중량% 이상의 구리를 포함하는 제3 부분이 배치된 구조로 이루어지는 것인 도전 입자.
  2. 제1항에 있어서, 상기 제2 부분에서의 니켈의 함유율과 구리의 함유율의 합계가 97중량% 이상인 도전 입자.
  3. 제1항에 있어서, 상기 제1 부분, 상기 제2 부분 및 상기 제3 부분이 니켈, 구리 및 포름알데히드를 포함하는 무전해 도금액에 의해 형성된 것인 도전 입자.
  4. 제3항에 있어서, 상기 제1 부분 및 상기 제2 부분이 하나의 건욕조에서의 무전해 도금액 중에서 순차 형성된 것인 도전 입자.
  5. 제1항에 있어서, 상기 금속층이 상기 Ni-Cu층의 외측에, 니켈을 함유하고 구리를 함유하지 않는 제4층을 더 갖는 것인 도전 입자.
  6. 제5항에 있어서, 상기 제4층에서의 니켈의 함유율이 85 내지 99중량%인 도전 입자.
  7. 제1항에 있어서, 상기 금속층이 상기 Ni-Cu층의 외측에, 팔라듐을 함유하는 제5층을 더 갖는 것인 도전 입자.
  8. 제1항에 있어서, 상기 금속층이 상기 Ni-Cu층의 외측에, 금을 함유하는 제6층을 더 갖는 것인 도전 입자.
  9. 제1항에 있어서, 평균 입경이 1 내지 10㎛인 도전 입자.
  10. 제1항에 있어서, 평균 입경이 2 내지 5㎛인 도전 입자.
  11. 제1항 내지 제10항 중 어느 한 항의 도전 입자와,
    상기 도전 입자의 상기 금속층의 표면에 설치되고, 당해 표면의 적어도 일부를 피복하는 절연성 자입자
    를 구비하는, 절연 피복 도전 입자.
  12. 제1항 내지 제10항 중 어느 한 항의 도전 입자를 접착제에 함유시켜 이루어지는, 이방 도전성 접착제.
  13. 제11항의 절연 피복 도전 입자를 접착제에 함유시켜 이루어지는, 이방 도전성 접착제.
  14. 제1 회로 기판의 주면 위에 복수의 제1 회로 전극이 형성된 제1 회로 부재와,
    제2 회로 기판의 주면 위에 복수의 제2 회로 전극이 형성된 제2 회로 부재와,
    상기 제1 회로 기판의 상기 주면과 상기 제2 회로 기판의 상기 주면의 사이에 설치되고, 상기 제1 및 제2 회로 전극이 서로 대향하는 상태에서 상기 제1 및 제2 회로 부재끼리 접속하는 회로 접속 부재
    를 구비한 회로 부재의 접속 구조체이며,
    상기 회로 접속 부재는, 제12항의 이방 도전성 접착제의 경화물로 이루어지고,
    상기 제1 회로 전극과 상기 제2 회로 전극이, 상기 도전 입자를 통해서 전기적으로 접속되어 있는 것인 회로 부재의 접속 구조체.
  15. 제1 회로 기판의 주면 위에 복수의 제1 회로 전극이 형성된 제1 회로 부재와,
    제2 회로 기판의 주면 위에 복수의 제2 회로 전극이 형성된 제2 회로 부재와,
    상기 제1 회로 기판의 상기 주면과 상기 제2 회로 기판의 상기 주면의 사이에 설치되고, 상기 제1 및 제2 회로 전극이 서로 대향하는 상태에서 상기 제1 및 제2 회로 부재끼리 접속하는 회로 접속 부재
    를 구비한 회로 부재의 접속 구조체이며,
    상기 회로 접속 부재는, 제13항의 이방 도전성 접착제의 경화물로 이루어지고,
    상기 제1 회로 전극과 상기 제2 회로 전극이, 상기 절연 피복 도전 입자를 통해서 전기적으로 접속되어 있는 것인 회로 부재의 접속 구조체.
  16. 제1 회로 기판의 주면 위에 복수의 제1 회로 전극이 형성된 제1 회로 부재와, 제2 회로 기판의 주면 위에 복수의 제2 회로 전극이 형성된 제2 회로 부재의 사이에, 상기 제1 회로 전극과 상기 제2 회로 전극을 대향시킨 상태에서, 제12항의 이방 도전성 접착제를 개재시키는 공정과,
    상기 이방 도전성 접착제를 가열 및 가압에 의해 경화시키는 공정을
    구비한, 회로 부재의 접속 구조체의 제조 방법.
  17. 제1 회로 기판의 주면 위에 복수의 제1 회로 전극이 형성된 제1 회로 부재와, 제2 회로 기판의 주면 위에 복수의 제2 회로 전극이 형성된 제2 회로 부재의 사이에, 상기 제1 회로 전극과 상기 제2 회로 전극을 대향시킨 상태에서, 제13항의 이방 도전성 접착제를 개재시키는 공정과,
    상기 이방 도전성 접착제를 가열 및 가압에 의해 경화시키는 공정을
    구비한, 회로 부재의 접속 구조체의 제조 방법.
  18. 삭제
  19. 삭제
KR1020130003305A 2012-01-11 2013-01-11 도전 입자, 절연 피복 도전 입자 및 이방 도전성 접착제 KR102097172B1 (ko)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JPJP-P-2012-003359 2012-01-11
JP2012003359 2012-01-11
JP2012113774 2012-05-17
JPJP-P-2012-113774 2012-05-17
JP2012267515 2012-12-06
JPJP-P-2012-267515 2012-12-06

Publications (2)

Publication Number Publication Date
KR20130082470A KR20130082470A (ko) 2013-07-19
KR102097172B1 true KR102097172B1 (ko) 2020-04-03

Family

ID=48752625

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130003305A KR102097172B1 (ko) 2012-01-11 2013-01-11 도전 입자, 절연 피복 도전 입자 및 이방 도전성 접착제

Country Status (4)

Country Link
JP (1) JP6155651B2 (ko)
KR (1) KR102097172B1 (ko)
CN (1) CN103205215B (ko)
TW (1) TWI602198B (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6478308B2 (ja) * 2012-11-28 2019-03-06 積水化学工業株式会社 導電性粒子、導電材料及び接続構造体
JP6324746B2 (ja) * 2014-02-03 2018-05-16 デクセリアルズ株式会社 接続体、接続体の製造方法、電子機器
JP5975054B2 (ja) * 2014-03-10 2016-08-23 日立化成株式会社 導電粒子、異方導電性接着剤、接続構造体及び導電粒子の製造方法
CN106605273A (zh) * 2014-10-22 2017-04-26 积水化学工业株式会社 导电性粒子、导电材料及连接结构体
KR20220146692A (ko) * 2016-09-09 2022-11-01 세키스이가가쿠 고교가부시키가이샤 도전 재료, 접속 구조체 및 접속 구조체의 제조 방법
JP6907490B2 (ja) * 2016-09-16 2021-07-21 昭和電工マテリアルズ株式会社 接続構造体及びその製造方法、端子付き電極の製造方法並びにこれに用いられる導電粒子、キット及び転写型
CN107142029B (zh) * 2017-06-01 2020-08-21 昆山市工业技术研究院有限责任公司 一种各向异性导电胶膜及其制备方法和应用
CN110603612B (zh) * 2017-06-22 2022-08-30 积水化学工业株式会社 导电性粒子、导电性粒子的制造方法、导电材料以及连接结构体
JP6474860B2 (ja) * 2017-06-28 2019-02-27 小島化学薬品株式会社 無電解ニッケルストライクめっき液及びニッケルめっき皮膜の成膜方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002339077A (ja) * 2001-05-16 2002-11-27 C Uyemura & Co Ltd 微粒子の無電解めっき方法
JP2006052460A (ja) * 2004-07-15 2006-02-23 Sekisui Chem Co Ltd 導電性微粒子、導電性微粒子の製造方法、及び異方性導電材料
JP2009135086A (ja) * 2007-11-01 2009-06-18 Hitachi Chem Co Ltd 導電粒子、絶縁被覆導電粒子及びその製造方法、異方導電性接着剤

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS581618B2 (ja) 1975-04-16 1983-01-12 株式会社東芝 ガスエンシンブンリソウチ
CN1205295C (zh) * 2002-07-24 2005-06-08 财团法人工业技术研究院 适用于制备各向异性导电胶组合物的微导电粉体
DE602004024672D1 (de) * 2003-06-25 2010-01-28 Hitachi Chemical Co Ltd Schaltglied-verbindungsstruktur und herstellungsverfahren dafür
KR101178745B1 (ko) * 2004-07-15 2012-09-07 세키스이가가쿠 고교가부시키가이샤 도전성 미립자, 도전성 미립자의 제조 방법, 및 이방성도전 재료
US20100065311A1 (en) * 2006-07-03 2010-03-18 Hitachi Chemical Company, Ltd. Conductive particle, adhesive composition, circuit-connecting material, circuit-connecting structure, and method for connection of circuit member
KR101063710B1 (ko) * 2006-09-26 2011-09-07 히다치 가세고교 가부시끼가이샤 이방 도전성 접착제 조성물, 이방 도전성 필름, 회로 부재의 접속 구조, 및 피복 입자의 제조 방법
JP5006081B2 (ja) * 2007-03-28 2012-08-22 株式会社日立製作所 半導体装置、その製造方法、複合金属体及びその製造方法
JP2009048991A (ja) 2007-07-20 2009-03-05 Sekisui Chem Co Ltd 導電性微粒子、異方性導電材料、及び、接続構造体
US8981226B2 (en) 2007-10-24 2015-03-17 Sekisui Chemical Co., Ltd. Electrically conductive microparticle, anisotropic electrically conductive material, connection structure, and method for production of electrically conductive microparticle
JP4957838B2 (ja) * 2009-08-06 2012-06-20 日立化成工業株式会社 導電性微粒子及び異方性導電材料

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002339077A (ja) * 2001-05-16 2002-11-27 C Uyemura & Co Ltd 微粒子の無電解めっき方法
JP2006052460A (ja) * 2004-07-15 2006-02-23 Sekisui Chem Co Ltd 導電性微粒子、導電性微粒子の製造方法、及び異方性導電材料
JP2009135086A (ja) * 2007-11-01 2009-06-18 Hitachi Chem Co Ltd 導電粒子、絶縁被覆導電粒子及びその製造方法、異方導電性接着剤

Also Published As

Publication number Publication date
JP6155651B2 (ja) 2017-07-05
JP2014132542A (ja) 2014-07-17
TW201335948A (zh) 2013-09-01
TWI602198B (zh) 2017-10-11
KR20130082470A (ko) 2013-07-19
CN103205215A (zh) 2013-07-17
CN103205215B (zh) 2018-02-06

Similar Documents

Publication Publication Date Title
KR102097172B1 (ko) 도전 입자, 절연 피복 도전 입자 및 이방 도전성 접착제
JP4957838B2 (ja) 導電性微粒子及び異方性導電材料
JP4235227B2 (ja) 導電性微粒子及び異方性導電材料
KR101261184B1 (ko) 피복 도전 입자 및 그의 제조 방법
TWI511166B (zh) Conductive particles, conductive materials and connecting structures
JP2007242307A (ja) 導電性微粒子及び異方性導電材料
KR101294946B1 (ko) 도전 입자의 제조 방법, 절연 피복 도전 입자의 제조 방법, 및 이방 도전성 접착제 필름
TW201115591A (en) Conductive particle, anisotropic conductive film, joined structure, and connecting method
KR102489993B1 (ko) 도전 입자, 이방 도전성 접착제, 접속 구조체 및 도전 입자의 제조 방법
KR102187948B1 (ko) 도전 입자, 절연 피복 도전 입자, 이방 도전성 접착제 및 도전 입자의 제조 방법
JP4718926B2 (ja) 導電性微粒子、及び、異方性導電材料
KR102411476B1 (ko) 도전 입자, 절연 피복 도전 입자, 이방 도전성 접착제, 접속 구조체 및 도전 입자의 제조 방법
KR101205041B1 (ko) 도전 입자
JP2013251099A (ja) 導電粒子及びその製造方法
JP5368611B1 (ja) 導電性微粒子
JP5323147B2 (ja) 導電性微粒子及び異方性導電材料
JP5549352B2 (ja) 導電粒子、接着剤組成物、回路接続材料及び接続構造体
KR101151072B1 (ko) 도전 입자, 절연 피복 도전 입자 및 그의 제조 방법, 및 이방 도전성 접착제
JP6507552B2 (ja) 導電粒子
JP2012160460A (ja) 導電性微粒子及び異方性導電材料
JP2013016495A (ja) 導電粒子、異方導電性接着剤、接続構造体、及び接続構造体の製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant