KR102068832B1 - Indium hydroxide powder and indium oxide powder - Google Patents

Indium hydroxide powder and indium oxide powder Download PDF

Info

Publication number
KR102068832B1
KR102068832B1 KR1020167007070A KR20167007070A KR102068832B1 KR 102068832 B1 KR102068832 B1 KR 102068832B1 KR 1020167007070 A KR1020167007070 A KR 1020167007070A KR 20167007070 A KR20167007070 A KR 20167007070A KR 102068832 B1 KR102068832 B1 KR 102068832B1
Authority
KR
South Korea
Prior art keywords
indium
plane
powder
oxide powder
indium oxide
Prior art date
Application number
KR1020167007070A
Other languages
Korean (ko)
Other versions
KR20160131996A (en
Inventor
노리아키 스가모토
다츠오 기베
데츠지 가와카미
츠요시 이와사
데츠로 가모
쇼헤이 미즈누마
Original Assignee
스미토모 긴조쿠 고잔 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 스미토모 긴조쿠 고잔 가부시키가이샤 filed Critical 스미토모 긴조쿠 고잔 가부시키가이샤
Publication of KR20160131996A publication Critical patent/KR20160131996A/en
Application granted granted Critical
Publication of KR102068832B1 publication Critical patent/KR102068832B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • C01P2006/13Surface area thermal stability thereof at high temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Abstract

고밀도의 소결체를 얻는다. Wilson식으로부터 구한 (200)면 및 (400)면의 배향 지수가 각각 2.0 이상, (442)면의 배향 지수가 0.5 이하이고, 또한 (200)면의 배향 지수에 대한 (400)면의 배향 지수의 비가 1.5 이상이며, (220)면 및 (420)면의 회절 피크가 나타나고 있지 않은 수산화인듐 분말을 하소하여 얻어진 산화인듐 분말을 이용한다. A high density sintered compact is obtained. The orientation index of the (200) plane and the (400) plane obtained from the Wilson equation is 2.0 or more, and the orientation index of the (442) plane is 0.5 or less, respectively, and the (400) plane's orientation index with respect to the (200) plane's orientation index. The indium oxide powder obtained by calcining the indium hydroxide powder whose ratio is 1.5 or more and the diffraction peaks of the (220) plane and the (420) plane is not shown is used.

Description

수산화인듐 분말 및 산화인듐 분말{INDIUM HYDROXIDE POWDER AND INDIUM OXIDE POWDER}Indium hydroxide powder and indium oxide powder {INDIUM HYDROXIDE POWDER AND INDIUM OXIDE POWDER}

본 발명은 고밀도의 산화인듐주석 스퍼터링 타겟(ITO 스퍼터링 타겟)을 제작할 수 있는 수산화인듐 분말 및 산화인듐 분말에 관한 것이다. 또한, 본 출원은 일본국에서 2014년 3월 11일에 출원된 일본 특허 출원 번호 특원 제2014-47507을 기초로 하여 우선권을 주장하는 것이며, 이 출원은 참조됨으로써, 본 출원에 원용된다. The present invention relates to an indium hydroxide powder and an indium oxide powder capable of producing a high density indium tin oxide sputtering target (ITO sputtering target). In addition, this application claims the priority based on Japanese Patent Application No. 2014-47507 for which it applied on March 11, 2014 in Japan, This application is referred to, and it uses for this application.

최근, 태양 전지 용도와 터치 패널 용도로서 투명 도전막의 이용이 증가하고 있고, 그에 따라 스퍼터링 타겟 등, 투명 도전막 형성용 재료의 수요가 증가하고 있다. 이들 투명 도전막 형성용 재료에는, 산화인듐계 소결 재료가 주로 사용되고 있고, 그 주원료로서 산화인듐 분말이 사용되고 있다. 스퍼터링 타겟에 사용되는 산화인듐 분말은, 고밀도 타겟을 얻기 위해서 가능한 한 비표면적이 제어되고, 분산성이 좋은 것이 바람직하다.In recent years, the use of a transparent conductive film is increasing as a solar cell use and a touch panel use, and the demand of transparent conductive film formation materials, such as a sputtering target, has increased accordingly. Indium oxide type sintered materials are mainly used for these transparent conductive film formation materials, and indium oxide powder is used as the main raw material. It is preferable that the indium oxide powder used for the sputtering target has a specific surface area controlled as much as possible in order to obtain a high density target and have good dispersibility.

산화인듐 분말의 제조 방법으로서는, 주로, 질산인듐 수용액이나 염화인듐 수용액 등의 산성 수용액을 암모니아수 등의 알칼리성 수용액으로 중화하여 발생하는 수산화인듐의 침전을 건조하여 하소하는, 이른바 중화법에 의해 제조된다. As a manufacturing method of an indium oxide powder, it manufactures mainly by the so-called neutralization method which dries and calcines the precipitate of indium hydroxide produced by neutralizing acidic aqueous solutions, such as aqueous solution of indium nitrate and aqueous solution of indium chloride, with alkaline aqueous solutions, such as aqueous ammonia.

중화법에서는, 산화인듐 분말의 응집을 억제하기 위해서, 70∼95℃의 고온의 질산인듐 수용액에 알칼리를 첨가함으로써, 침상(針狀)의 수산화인듐 분말을 얻는 방법이 제안되어 있다(예컨대, 특허문헌 1 참조). 이 방법에서는, 침상의 수산화인듐 분말을 하소함으로써 응집이 적은 산화인듐 분말을 얻을 수 있다. In the neutralization method, in order to suppress aggregation of indium oxide powder, a method of obtaining acicular indium hydroxide powder by adding alkali to a high temperature indium nitrate aqueous solution at 70 to 95 ° C (for example, a patent) is proposed. See Document 1). In this method, the indium oxide powder with little aggregation can be obtained by calcining the acicular indium hydroxide powder.

그러나, 중화법으로 제조한 산화인듐 분말은, 입자 직경이나 입도 분포가 불균일해지기 쉽고, 스퍼터링 타겟을 제조하면 타겟의 밀도가 높아지지 않으며, 밀도에 불균일함이 발생한다고 하는 문제나 스퍼터링시에 이상 방전이 발생하기 쉽다고 하는 문제가 생긴다. 또한, 중화법에서는, 산화인듐 분말 제조 후에 대량의 질소 배수가 발생하기 때문에 배수 처리 비용이 커진다고 하는 문제가 있다.However, the indium oxide powder produced by the neutralization method tends to be uneven in particle diameter and particle size distribution, and when the sputtering target is produced, the density of the target does not increase, and the problem of unevenness in density or abnormality during sputtering The problem that discharge is easy to occur arises. Moreover, in the neutralization method, since a large amount of nitrogen drainage occurs after the production of indium oxide powder, there is a problem that the drainage treatment cost increases.

이러한 문제를 개선하는 방법으로서는, 금속 인듐을 전해 처리함으로써 수산화인듐의 침전을 발생시키고, 이것을 하소하여 산화인듐 분말을 제조하는 방법, 이른바 전해법이 제안되어 있다(예컨대, 특허문헌 2 참조). 전해법에서는, 중화법에 비해, 산화인듐 분말 제조 후의 질소 배수량을 현격히 적게 할 수 있는 것 외에, 얻어지는 산화인듐 분말의 입자 직경을 균일화할 수 있다.As a method of improving such a problem, a method of producing a precipitate of indium hydroxide by electrolytically treating metal indium and calcining it to produce an indium oxide powder, a so-called electrolytic method, has been proposed (see Patent Document 2, for example). In the electrolytic method, compared with the neutralization method, the amount of nitrogen drainage after the production of the indium oxide powder can be significantly reduced, and the particle diameter of the indium oxide powder obtained can be made uniform.

그러나, 전해법에 의해 얻어지는 수산화인듐 분말은, 전해액의 pH가 중성에 가깝기 때문에 매우 미세하며 응집되기 쉽다고 하는 문제가 있다. 이것을 하소하여 얻어지는 산화인듐 분말은, 일차 입자 직경은 비교적 균일하지만, 이들 입자가 강하게 응집된 응집 분말이 되기 쉽다. 이러한 산화인듐 분말은, 응집에 의해, 입도 분포의 폭이 넓어지기 때문에, 타겟의 고밀도화가 저해된다고 하는 문제가 있다.However, the indium hydroxide powder obtained by the electrolytic method has a problem that the pH of the electrolytic solution is close to neutral and very fine and easily aggregated. The indium oxide powder obtained by calcining this has a relatively uniform primary particle diameter, but tends to be a cohesive powder in which these particles are strongly aggregated. Such indium oxide powder has a problem that the density of the target is inhibited because the width of the particle size distribution becomes wider by aggregation.

특허문헌 1: 일본 특허 제3314388호 공보Patent Document 1: Japanese Patent No. 3314388 특허문헌 2: 일본 특허 제2829556호 공보Patent Document 2: Japanese Patent No. 2829556

그래서, 본 발명은, 이러한 실정을 감안하여 제안된 것으로, 고밀도의 소결체를 얻을 수 있는 수산화인듐 분말 및 그것을 하소하여 얻어지는 산화인듐 분말을 제공하는 것을 목적으로 한다. Then, this invention is proposed in view of such a situation, and an object of this invention is to provide the indium hydroxide powder which can obtain a high density sintered compact, and the indium oxide powder obtained by calcining it.

전술한 목적을 달성하는 본 발명에 따른 수산화인듐 분말은, Wilson식으로부터 구한 (200)면 및 (400)면의 배향 지수가 각각 2.0 이상, (442)면의 배향 지수가 0.5 이하이고, 또한 (200)면의 배향 지수에 대한 (400)면의 배향 지수의 비가 1.5 이상이며, (220)면 및 (420)면의 회절 피크를 갖고 있지 않은 것을 특징으로 한다. The indium hydroxide powder according to the present invention which achieves the above-mentioned object has an orientation index of (200) plane and (400) plane of 2.0 or more, and an orientation index of (442) plane of 0.5 or less, respectively, obtained from the Wilson equation. The ratio of the orientation index of the (400) plane to the orientation index of the (200) plane is 1.5 or more, and has no diffraction peaks of the (220) plane and the (420) plane.

전술한 목적을 달성하는 본 발명에 따른 산화인듐 분말은, BET값이 10∼15 ㎡/g이고, 입도 분포의 누적 입도 10% 직경(D10)이 0.2 ㎛ 이상, 누적 입도 90% 직경(D90)이 2.7 ㎛ 이하인 것을 특징으로 한다. Indium oxide powder according to the present invention for achieving the above object has a BET value of 10 to 15 m 2 / g, the cumulative particle size 10% diameter (D10) of the particle size distribution is 0.2 ㎛ or more, the cumulative particle size 90% diameter (D90) It is characterized by being 2.7 micrometers or less.

본 발명에서는, 어떤 특정한 결정면, 즉 (200)면, (400)면 및 (442)면에 배향하며, 특정한 배향 지수를 갖는 결정성이 높은 수산화인듐 분말을 하소하여 얻어지고, 비표면적이 제어된 분산성이 좋은 산화인듐 분말이다. 이에 의해, 본 발명에서는, 그 산화인듐 분말을 이용함으로써, 상대 밀도가 높은 소결체를 얻을 수 있다. In the present invention, it is obtained by calcining certain specific crystal planes, i.e., (200) planes, (400) planes and (442) planes, and calcining the highly crystalline indium hydroxide powder having a specific orientation index, and the specific surface area is controlled. It is an indium oxide powder with good dispersibility. Thereby, in this invention, the sintered compact with a high relative density can be obtained by using this indium oxide powder.

도 1은 본 발명을 적용한 산화인듐 분말의 제조 방법을 도시한 흐름도이다.1 is a flowchart showing a method for producing an indium oxide powder to which the present invention is applied.

이하에, 본 발명을 적용한 수산화인듐 분말 및 산화인듐 분말에 대해 설명한다. 또한, 본 발명은, 특별히 한정이 없는 한, 이하의 상세한 설명에 한정되는 것이 아니다. 본 발명을 적용한 수산화인듐 분말 및 산화인듐 분말의 실시형태에 대해, 이하의 순서로 상세히 설명한다. Below, the indium hydroxide powder and indium oxide powder to which this invention is applied are demonstrated. In addition, this invention is not limited to the following detailed description unless there is particular limitation. Embodiments of the indium hydroxide powder and the indium oxide powder to which the present invention is applied will be described in detail in the following order.

1. 산화인듐 분말의 제조 방법1. Manufacturing method of indium oxide powder

1-1. 수산화인듐 분말의 생성 공정 1-1. Production Process of Indium Hydroxide Powder

1-2. 수산화인듐 분말의 회수 공정 1-2. Recovery Process of Indium Hydroxide Powder

1-3. 수산화인듐 분말의 건조 공정 1-3. Drying Process of Indium Hydroxide Powder

1-4. 수산화인듐 분말 1-4. Indium hydroxide powder

1-5. 산화인듐 분말의 생성 공정 1-5. Production Process of Indium Oxide Powder

1-6. 산화인듐 분말 1-6. Indium oxide powder

2. 스퍼터링 타겟의 제조 방법2. Manufacturing method of sputtering target

1. 산화인듐 분말의 제조 방법1. Manufacturing method of indium oxide powder

산화인듐 분말의 제조 방법은, 도 1에 도시된 바와 같이, 전해법에 의해 수산화인듐 분말을 생성하는 수산화인듐 분말의 생성 공정 S1과, 생성된 수산화인듐 분말을 회수하는 회수 공정 S2와, 회수한 수산화인듐 분말을 건조하는 건조 공정 S3과, 건조한 수산화인듐 분말을 하소하여 산화인듐 분말을 얻는 산화인듐 분말의 생성 공정 S4를 갖는다. As shown in FIG. 1, the production method of the indium oxide powder includes the production step S1 of the indium hydroxide powder which produces the indium hydroxide powder by the electrolytic method, the recovery step S2 of recovering the generated indium hydroxide powder, and the recovered It has drying process S3 which dries an indium hydroxide powder, and production process S4 of the indium oxide powder which calcinates dry indium hydroxide powder and obtains an indium oxide powder.

수산화인듐 분말은, 후술하는 바와 같이 인듐을 포함하는 양극, 질산암모늄 수용액을 전해액에 이용하고, 전해액의 pH를 2.5∼4.0, 액온을 20∼60℃의 범위가 되도록 제어하여 생성되며, X선 회절에 의해 얻어지는 결정면 방위가 (200)면, (400)면 및 (442)면에 배향하고 있는 결정성이 높은 것이다. 수산화인듐 분말은, Wilson식으로부터 구한 (200)면 및 (400)면의 배향 지수가 각각 2.0 이상이고, (400)면에 우선 배향하고 있으며, (200)면의 배향 지수에 대한 (400)면의 배향 지수의 비가 1.5 이상이고, (442)면의 배향 지수가 0.5 이하이며, (220)면 및 (420)면의 회절 피크를 갖고 있지 않은 것이 특징이다. 이러한 수산화인듐 분말을 하소하여 얻어진 산화인듐 분말은, 비표면적이 제어되어 있고, 분산성이 좋은 것이다. Indium hydroxide powder is produced by using an anode containing indium and an aqueous solution of ammonium nitrate in an electrolyte solution as described later, controlling the pH of the electrolyte solution to 2.5 to 4.0 and the liquid temperature so as to be in a range of 20 to 60 ° C. The crystal plane orientation obtained by the crystal is high in crystallinity oriented on the (200) plane, the (400) plane, and the (442) plane. The indium hydroxide powder has an orientation index of the (200) plane and the (400) plane, respectively, obtained from the Wilson formula being at least 2.0, orientated to the (400) plane first, and the (400) plane with respect to the orientation index of the (200) plane. The ratio of the orientation index of is 1.5 or more, the orientation index of the (442) plane is 0.5 or less, and it does not have the diffraction peaks of the (220) plane and the (420) plane. The indium oxide powder obtained by calcining such indium hydroxide powder has a specific surface area controlled and has good dispersibility.

(1-1) 수산화인듐 분말의 생성 공정(1-1) Formation Process of Indium Hydroxide Powder

수산화인듐 분말의 생성 공정 S1에서는, 인듐을 포함하는 양극과, 음극을 전해액에 침지시키고, 전해 반응에 의해 수산화인듐 분말을 생성한다. In the production step S1 of the indium hydroxide powder, the positive electrode and the negative electrode containing indium are immersed in the electrolytic solution, and the indium hydroxide powder is produced by electrolytic reaction.

양극에는, 예컨대 금속 인듐 등을 이용할 수 있으며, 산화인듐 분말에의 불순물의 혼입을 억제하기 위해서 가능한 한 고순도인 것이 바람직하다. 음극에는, 도전성의 금속이나 카본 전극 등이 이용되며, 예컨대 불용성의 티탄을 백금으로 코팅한 것 등을 이용할 수 있다. For example, metal indium or the like can be used for the anode, and in order to suppress the incorporation of impurities into the indium oxide powder, it is preferable that the purity is as high as possible. As the cathode, a conductive metal, a carbon electrode, or the like is used. For example, a coating of insoluble titanium with platinum can be used.

전해액에는, 수용성의 질산염, 황산염, 염화물염 등의 일반적인 전해질염의 수용액을 이용할 수 있다. 그 중에서도 질산암모늄 수용액을 이용한 경우에는, 질산 이온, 암모늄 이온이 산화인듐 분말의 생성 공정 S4에 있어서의 하소에 의해 질소 화합물로서 제거되기 때문에, 불순물 성분의 혼입을 방지할 수 있다. 한편, 전해액에 염화암모늄이나 황산암모늄을 이용한 경우에는, 염화물 이온이나 황산 이온 등의 불순물 성분이 혼입되어 버린다. 따라서, 전해액에는, 질산암모늄 수용액을 이용하는 것이 바람직하다. As electrolyte solution, the aqueous solution of general electrolyte salts, such as water-soluble nitrate, sulfate, chloride salt, can be used. Especially, when an ammonium nitrate aqueous solution is used, since nitrate ion and ammonium ion are removed as a nitrogen compound by calcination in the production process S4 of an indium oxide powder, mixing of an impurity component can be prevented. On the other hand, when ammonium chloride or ammonium sulfate is used as the electrolyte, impurity components such as chloride ions and sulfate ions are mixed. Therefore, it is preferable to use an ammonium nitrate aqueous solution for electrolyte solution.

전해액의 농도는, 0.1∼2.0 ㏖/L의 범위로 하는 것이 바람직하다. 전해액의 농도가 0.1 ㏖/L보다 낮으면, 전해액의 전기 전도도가 저하되고, 전해 전압이 상승하기 때문에, 통전부가 발열하거나, 전력 비용이 높아지는 등의 문제가 발생하기 때문에 바람직하지 않다. 한편, 전해액의 농도가 2.0 ㏖/L보다 높으면, 전해에 의해 생성되는 수산화인듐 분말이 조대화(粗大化)되는 데다가, 입자 직경의 변동이 커지기 때문에 바람직하지 않다. 따라서, 전해액의 농도는, 0.1∼2.0 ㏖/L의 범위로 하는 것이 바람직하다. It is preferable to make concentration of electrolyte solution into the range of 0.1-2.0 mol / L. If the concentration of the electrolyte solution is lower than 0.1 mol / L, the electrical conductivity of the electrolyte solution is lowered and the electrolytic voltage is increased, which is not preferable because problems such as heat generation of the current-carrying part and power cost increase. On the other hand, when the concentration of the electrolyte solution is higher than 2.0 mol / L, it is not preferable because the indium hydroxide powder produced by electrolysis becomes coarsened and the variation in the particle diameter becomes large. Therefore, it is preferable to make concentration of electrolyte solution into the range of 0.1-2.0 mol / L.

전해액의 pH는, pH2.5∼4.0의 범위로 하는 것이 바람직하다. 전해액이 pH4.0보다 높아지면, 생성되는 수산화인듐 분말은, 원하는 (200)면, (400)면 및 (442)면 이외의 (220)면, (420)면의 회절 피크가 출현해 버린다. 이러한 수산화인듐 분말은, 결정성에 흐트러짐이 발생하고, 일차 입자 직경이 미세화되며, 응집성을 갖는 분말이 되고, 결과로서 입도 분포의 폭이 넓어져 버린다. 또한, 전해액이 pH2.5보다 낮으면, 음극에 메탈의 인듐이 석출해 버려, 수산화인듐 분말의 생산 효율이 저하된다. 따라서, 전해액의 pH는, pH2.5∼4.0의 범위로 하는 것이 바람직하다. It is preferable to make pH of electrolyte solution into the range of pH2.5-4.0. When the electrolyte solution is higher than pH 4.0, the resulting indium hydroxide powder causes diffraction peaks on the (220) plane and the (420) plane other than the desired (200) plane, (400) plane and (442) plane. Such indium hydroxide powder is disturbed in crystallinity, the primary particle diameter becomes fine, becomes a powder having cohesiveness, and as a result, the width of the particle size distribution becomes wider. Moreover, when electrolyte solution is lower than pH2.5, indium of a metal will precipitate on a negative electrode, and the production efficiency of an indium hydroxide powder will fall. Therefore, it is preferable to make pH of electrolyte solution into the range of pH2.5-4.0.

전해액의 액온은, 20∼60℃의 범위가 바람직하다. 전해액의 온도가 20℃보다 낮거나, 또는 60℃보다 높으면, 원하는 (200)면, (400)면 및 (442)면 이외의 (220)면, (420)면의 회절 피크가 출현해 버린다. 또한, 전해액의 온도가 20℃보다 낮은 경우에는, 수산화인듐 분말의 결정성에 흐트러짐이 발생하고, 일차 입자 직경이 미세화되며, 응집성을 갖는 분말이 되고, 결과로서 입도 분포의 폭이 넓어져 버린다. 또는, 전해액의 온도가 60℃보다 높은 경우에는, 입자 성장이 촉진되기 때문에, 일차 입자 직경이 커진다. 입자 직경의 차이는, 응집의 정도에 영향을 주기 때문에, 결과로서, 상이한 입자 직경의 수산화인듐 분말을 포함하는 경우에는, 입도 분포의 폭이 넓어져 버린다. 따라서, 전해액의 액온은, 20∼60℃의 범위로 하는 것이 바람직하다. As for the liquid temperature of electrolyte solution, the range of 20-60 degreeC is preferable. When the temperature of the electrolyte solution is lower than 20 ° C or higher than 60 ° C, diffraction peaks on the (220) plane and the (420) plane other than the desired (200) plane, (400) plane and (442) plane will appear. In addition, when the temperature of the electrolyte solution is lower than 20 ° C, the crystallinity of the indium hydroxide powder is disturbed, the primary particle diameter becomes fine, and the powder becomes cohesive, and as a result, the width of the particle size distribution becomes wider. Or when the temperature of electrolyte solution is higher than 60 degreeC, since particle growth is promoted, a primary particle diameter becomes large. Since the difference in particle diameter affects the degree of aggregation, as a result, the width of the particle size distribution becomes wider when indium hydroxide powders having different particle diameters are included. Therefore, it is preferable to make the liquid temperature of electrolyte solution into the range of 20-60 degreeC.

전해 조건은, 특별히 한정되지 않으나, 전류 밀도를 3∼15 A/dm2로 행하는 것이 바람직하다. 전류 밀도가 3 A/dm2보다 낮으면, 수산화인듐 분말의 생산 효율이 저하되어 버린다. 전류 밀도가 15 A/dm2보다 높으면, 전해 전압이 상승함으로써 액온 상승이 발생하기 쉬워지는 것, 금속 인듐의 표면이 부동태화되어 전해되기 어려워지는 등의 문제가 발생해 버린다. 따라서, 전류 밀도를 3∼15 A/dm2로 하는 것이 바람직하다. Although electrolytic conditions are not specifically limited, It is preferable to carry out current density at 3-15 A / dm <2> . When the current density is lower than 3 A / dm 2 , the production efficiency of the indium hydroxide powder is reduced. If the current density is higher than 15 A / dm 2 , problems such as increase in liquid temperature tend to occur due to an increase in the electrolytic voltage, passivation of the surface of the metal indium, and difficulty in electrolysis occur. Therefore, it is preferable to make current density into 3-15 A / dm <2> .

(1-2) 수산화인듐 분말의 회수 공정(1-2) Recovery Process of Indium Hydroxide Powder

수산화인듐 분말의 회수 공정 S2는, 수산화인듐 분말의 생성 공정 S1에서 생성된 수산화인듐 분말을 전해액으로부터 고액(固液) 분리하고, 분리한 수산화인듐 분말을 순수로 세정하여 다시 고액 분리하여 회수한다. 고액 분리 방법은, 예컨대 로터리 필터, 원심 분리, 필터 프레스, 가압 여과, 감압 여과 등에 의한 여과를 들 수 있다. 한편, 세정 횟수는 특별히 한정되지 않고, 필요에 따라 복수 회 행한다.The recovery step S2 of the indium hydroxide powder is solid-liquid separated from the indium hydroxide powder produced in the production step S1 of the indium hydroxide powder from the electrolytic solution, and the separated indium hydroxide powder is washed with pure water, and then solid-liquid separated and recovered. Examples of the solid-liquid separation method include filtration by rotary filters, centrifugal separation, filter presses, pressure filtration, reduced pressure filtration, and the like. In addition, the frequency | count of washing | cleaning is not specifically limited, It carries out in multiple times as needed.

(1-3) 수산화인듐 분말의 건조 공정(1-3) Drying Process of Indium Hydroxide Powder

수산화인듐 분말의 건조 공정 S3에서는, 회수한 수산화인듐 분말의 건조를 행한다. 건조 방법은, 특별히 한정되지 않으나, 예컨대 스프레이 드라이어, 공기 대류형 건조로, 적외선 건조로 등의 건조기로 행한다. 건조 조건은, 수산화인듐 분말의 수분을 제거할 수 있으면 특별히 한정되지 않으나, 예컨대 건조 온도는 80∼150℃의 범위가 바람직하다. 건조 온도가 80℃보다 낮으면, 건조가 불충분해진다. 건조 온도가 150℃보다 높으면, 수산화인듐에서 산화인듐으로 변화해 버려, 다음 공정에서의 산화인듐 분말의 입도 분포의 조정에 있어서 부적합해진다. 또한, 건조 시간은, 온도에 따라 상이하지만, 약 10∼24시간이다.In the drying step S3 of the indium hydroxide powder, the recovered indium hydroxide powder is dried. Although a drying method is not specifically limited, For example, it performs with dryers, such as a spray dryer, an air convection drying furnace, and an infrared drying furnace. The drying conditions are not particularly limited as long as the moisture of the indium hydroxide powder can be removed, but the drying temperature is preferably in the range of 80 to 150 ° C. If the drying temperature is lower than 80 ° C., drying becomes insufficient. When drying temperature is higher than 150 degreeC, it will change from indium hydroxide to indium oxide, and it becomes unsuitable in adjustment of the particle size distribution of the indium oxide powder in a next process. Moreover, although drying time changes with temperature, it is about 10 to 24 hours.

(1-4) 수산화인듐 분말(1-4) Indium Hydroxide Powder

수산화인듐 분말은, 전술한 전해 조건에 의해 생성되며, 결정면 방위가 (200)면, (400)면 및 (442)면에 배향하고 있는 결정성이 높은 것이다. 수산화인듐 분말은, Wilson식으로부터 구한 (200)면 및 (400)면의 배향 지수가 각각 2.0 이상이고, (442)면의 배향 지수가 0.5 이하이며, (200)면의 배향 지수에 대한 (400)면의 배향 지수의 비가 1.5 이상이다. 얻어진 수산화인듐 분말은, (220)면 및 (420)면의 회절 피크를 갖고 있지 않다. 이러한 수산화인듐 분말은, 응집이 억제되어 있고, 입도 분포가 좁은 것이다. 결정상의 측정은, X선 회절 장치를 이용하여 측정하였다. 배향 지수는, X선 회절로부터 구한 각각의 면 지수의 회절 강도를 이용하여, Wilson식에 의해 산출하였다.Indium hydroxide powder is produced by the electrolytic conditions mentioned above, and is high in crystallinity whose crystal surface orientation is oriented to the (200) plane, the (400) plane, and the (442) plane. The indium hydroxide powder has an orientation index of (200) plane and a (400) plane of 2.0 or more, and an orientation index of (442) plane of 0.5 or less, respectively, obtained from the Wilson equation, and (400) to an orientation index of (200) plane. The ratio of the index of orientation of the plane) is 1.5 or more. The obtained indium hydroxide powder does not have diffraction peaks on the (220) plane and the (420) plane. Such indium hydroxide powder has suppressed aggregation and has a narrow particle size distribution. The crystal phase was measured using an X-ray diffraction apparatus. The orientation index was computed by Wilson formula using the diffraction intensity of each surface index calculated | required from the X-ray diffraction.

(1-5) 산화인듐 분말의 생성 공정(1-5) Formation Process of Indium Oxide Powder

산화인듐 분말의 생성 공정 S4에서는, 수산화인듐 분말의 건조 공정 S3에 의한 건조 후의 수산화인듐 분말을 하소하여 산화인듐 분말을 생성한다. 하소 조건은, 적절하게 결정하지만, 예컨대 하소 온도 600∼800℃, 하소 시간 1∼10시간으로 행하는 것이 바람직하다. In the production step S4 of the indium oxide powder, the indium hydroxide powder after drying in the drying step S3 of the indium hydroxide powder is calcined to produce an indium oxide powder. Although calcination conditions are determined suitably, it is preferable to carry out by calcination temperature of 600-800 degreeC and calcination time 1 to 10 hours, for example.

하소 온도가 600℃보다 낮으면, 산화인듐 분말의 BET값이 15 ㎡/g을 넘어 버려, 일차 입자가 지나치게 작기 때문에, 응집성을 갖는 분말이 된다. 이에 의해, 얻어진 산화인듐 분말에서는, 고밀도의 소결 재료, 예컨대 산화인듐주석(ITO) 소결 재료를 얻을 수 없다. 하소 온도가 800℃보다 높으면, 산화인듐 분말의 BET값이 10 ㎡/g 미만이 되어, 일차 입자 직경이 커지고, 입자 사이에 생기는 빈 구멍도 커지기 때문에, 소결성이 저하된다. 이에 의해, 얻어진 산화인듐 분말에서는, 고밀도의 소결 재료를 얻을 수 없다. 따라서, 고밀도의 소결 재료를 얻기 위해서는, 하소 온도를 600℃∼800℃의 범위로 하는 것이 바람직하다. If the calcination temperature is lower than 600 ° C., the BET value of the indium oxide powder will exceed 15 m 2 / g, and the primary particles are too small, resulting in a powder having cohesiveness. As a result, in the obtained indium oxide powder, a high-density sintered material such as indium tin oxide (ITO) sintered material cannot be obtained. If the calcination temperature is higher than 800 ° C., the BET value of the indium oxide powder is less than 10 m 2 / g, the primary particle diameter becomes large, and the voids generated between the particles also become large, so that the sinterability is lowered. Thereby, in the obtained indium oxide powder, a high density sintered material cannot be obtained. Therefore, in order to obtain a high-density sintered material, it is preferable to make the calcination temperature into the range of 600 to 800 degreeC.

(1-6) 산화인듐 분말(1-6) indium oxide powder

얻어진 산화인듐 분말은, 비표면적의 BET값이 10∼15 ㎡/g의 범위 내로 제어되어 있고, 입도 분포의 누적 입도 10% 직경(D10)이 0.2 ㎛ 이상, 누적 입도 90% 직경(D90)이 2.7 ㎛ 이하이다. 이러한 산화인듐 분말은, 비표면적이 제어되어 있고, 분산성이 좋으며, 응집이 적기 때문에, 고밀도의 소결 재료를 생성할 수 있다.The obtained indium oxide powder was controlled in the range of 10-15 m <2> / g of BET of a specific surface area, the cumulative particle size 10% diameter (D10) of a particle size distribution is 0.2 micrometer or more, and the cumulative particle size 90% diameter (D90) is 2.7 micrometers or less. Such indium oxide powder can produce a high density sintered material because the specific surface area is controlled, the dispersibility is good, and there is little aggregation.

또한, 산화인듐 분말의 생성 공정 S4에서는, 수산화인듐 분말을 보다 원하는 입자 직경으로 하기 위해서 필요에 따라 해쇄(解碎) 또는 분쇄를 행해도 좋다. 또한, 이 산화인듐 분말의 생성 공정 S4에서는, 수산화인듐 분말의 전해시에 전해액에 질산암모늄을 이용한 경우, 질산암모늄의 분해가 발생하여, 산화인듐 분말에의 혼입을 방지할 수 있다.In addition, in the production step S4 of the indium oxide powder, in order to make the indium hydroxide powder into a more desired particle diameter, you may disintegrate or grind as needed. In addition, in the production step S4 of the indium oxide powder, when ammonium nitrate is used as the electrolyte during the electrolysis of the indium hydroxide powder, decomposition of ammonium nitrate occurs, and it is possible to prevent mixing into the indium oxide powder.

이상과 같이, 산화인듐 분말의 제조 방법에서는, 인듐을 포함하는 양극을 이용한 전해 반응에 의해 수산화인듐 분말을 얻을 때에, 전해액으로서 예컨대 질산암모늄 수용액을 이용하고, 전해액의 pH를 2.5∼4.0, 액온을 20∼60℃의 범위가 되도록 제어함으로써, (200)면, (400)면 및 (442)면에 배향하고 있는 결정성이 높은 수산화인듐 분말을 얻을 수 있다. 얻어진 수산화인듐 분말은, 응집이 억제되고, 입도 분포가 좁은 것이다. 산화인듐 분말의 제조 방법에서는, 얻어진 수산화인듐 분말을 하소함으로써, 비표면적이 10∼15 ㎡/g의 범위 내이며, 분산성이 좋고, D10이 0.2 ㎛ 이상, D90이 2.7 ㎛ 이하인 입도 분포가 좁은 산화인듐 분말을 제조할 수 있다. 따라서, 얻어진 산화인듐 분말을 이용하여 스퍼터링 타겟을 제조한 경우에는, 고밀도의 소결체를 얻을 수 있다. As mentioned above, in the manufacturing method of an indium oxide powder, when obtaining an indium hydroxide powder by the electrolytic reaction using the anode containing indium, aqueous solution of ammonium nitrate is used as electrolyte solution, for example, pH of electrolyte solution is 2.5-4.0, and liquid temperature is used. By controlling it to the range of 20-60 degreeC, the indium hydroxide powder with high crystallinity which orientates to the (200) plane, the (400) plane, and the (442) plane can be obtained. The obtained indium hydroxide powder has suppressed aggregation and has a narrow particle size distribution. In the method for producing the indium oxide powder, by calcining the obtained indium hydroxide powder, the specific surface area is in the range of 10 to 15 m 2 / g, and the dispersibility is good, the particle size distribution having a D10 of 0.2 µm or more and D90 of 2.7 µm or less is narrow Indium oxide powder can be prepared. Therefore, when a sputtering target is manufactured using the obtained indium oxide powder, a high density sintered compact can be obtained.

또한, 이 산화인듐 분말의 제조 방법에서는, 중화법에 비해 산화인듐 분말의 제조 후의 질소 배수량을 억제할 수 있다. Moreover, in the manufacturing method of this indium oxide powder, the nitrogen drainage amount after manufacture of an indium oxide powder can be suppressed compared with the neutralization method.

2. 스퍼터링 타겟의 제조 방법2. Manufacturing method of sputtering target

스퍼터링 타겟의 제조 방법은, 먼저, 전술한 산화인듐 분말의 제조 방법에 의해 얻어진 산화인듐 분말을 산화주석 분말 등의 타겟의 다른 원료와 소정의 비율로 혼합하여 조립(造粒) 분말을 제작한다. 다음으로, 조립 분말을 이용하여 예컨대 콜드 프레스법에 의해 성형체를 제작한다. 다음으로, 성형체를 대기압하에서 예컨대 1300∼1600℃의 온도 범위 내에서 소결을 행한다. 다음으로, 필요에 따라, 소결체의 평면이나 측면을 연마하는 등의 가공을 행한다. 그리고, 소결체를 Cu제의 배킹 플레이트에 본딩함으로써, 산화인듐주석 스퍼터링 타겟(ITO 스퍼터링 타겟)을 얻을 수 있다.The manufacturing method of a sputtering target first mixes the indium oxide powder obtained by the manufacturing method of the above-mentioned indium oxide powder with other raw materials, such as a tin oxide powder, in a predetermined ratio, and produces granulated powder. Next, a molded article is produced by, for example, a cold press method using the granulated powder. Next, the molded body is sintered at atmospheric pressure, for example, in a temperature range of 1300 to 1600 ° C. Next, if necessary, processing such as polishing the plane or side surface of the sintered compact is performed. And an indium tin oxide sputtering target (ITO sputtering target) can be obtained by bonding a sintered compact to the backing plate made from Cu.

스퍼터링 타겟의 제조 방법에서는, 원료가 되는 산화인듐 분말의 비표면적이 제어되어 있고, 분산성이 좋은 것이기 때문에, 고밀도의 소결체를 얻을 수 있고, 스퍼터링 타겟의 밀도를 높게 할 수 있다. 이에 의해, 스퍼터링 타겟은, 가공 중에 깨짐 이지러짐이 발생하지 않고, 스퍼터시에 이상 방전이 발생하는 것도 억제할 수 있다. In the manufacturing method of a sputtering target, since the specific surface area of the indium oxide powder used as a raw material is controlled and dispersibility is good, a high density sintered compact can be obtained and the density of a sputtering target can be made high. Thereby, a sputtering target does not generate | occur | produce crushing during processing, and can also suppress that abnormal discharge generate | occur | produces at the time of sputtering.

실시예Example

이하, 본 발명을 적용한 구체적인 실시예에 대해 설명하지만, 본 발명은 이들 실시예에 한정되는 것이 아니다.Hereinafter, although the specific Example which applied this invention is described, this invention is not limited to these Examples.

<실시예 1> <Example 1>

실시예 1에서는, 먼저, 전해액으로서 이용하는 질산암모늄 수용액의 농도를 0.5 ㏖/L, pH를 3.5, 액온을 40℃로 조정하였다. pH는 전해액에 첨가하는 질산량에 의해 조정하였다. 전해액의 액량은 100 L로 하였다. In Example 1, first, the concentration of the aqueous ammonium nitrate solution used as the electrolyte solution was adjusted to 0.5 mol / L, pH to 3.5, and liquid temperature to 40 ° C. pH was adjusted by the amount of nitric acid added to electrolyte solution. The liquid amount of the electrolyte solution was 100L.

다음으로, 조정한 전해액을 이용하여, 수산화인듐의 전해를 행하였다. 양극에는, 순도 99.99%의 금속 인듐판을 사용하고, 음극에는 불용성 Ti/Pt 전극을 사용하였다. 전류 밀도는, 10 A/dm2로 하였다. 다음으로, 얻어진 수산화인듐 슬러리에 대해 여과와 세정을 반복한 후, 100℃, 15시간으로 건조를 행하여, 3.6 ㎏의 수산화인듐 분말을 얻었다. 전해에 의한 수산화인듐 분말의 정석(晶析) 효율은 100%였다. Next, indium hydroxide was electrolyzed using the adjusted electrolyte solution. A 99.9% purity metal indium plate was used for the positive electrode, and an insoluble Ti / Pt electrode was used for the negative electrode. The current density was 10 A / dm 2 . Next, after repeating filtration and washing | cleaning about the obtained indium hydroxide slurry, it dried at 100 degreeC and 15 hours, and obtained 3.6 kg of indium hydroxide powders. The crystallization efficiency of the indium hydroxide powder by electrolysis was 100%.

다음으로, 얻어진 수산화인듐 분말에 대해 X선 회절 측정(PANalytical사 제조, X'Pert-PRO)을 행하여, 각 결정면의 회절 피크 강도로부터 배향 지수를 평가하였다. 배향 지수는 Wilson식으로부터 구하였다.Next, X-ray diffraction measurement (X'Pert-PRO, manufactured by PANalytical) was performed on the obtained indium hydroxide powder, and the orientation index was evaluated from the diffraction peak intensity of each crystal plane. The orientation index was calculated from the Wilson equation.

다음으로, 얻어진 수산화인듐 분말을 700℃에서 5시간 하소를 행하여, 산화인듐 분말을 얻었다. Next, the obtained indium hydroxide powder was calcined at 700 ° C. for 5 hours to obtain an indium oxide powder.

산화인듐 분말의 비표면적을 비표면적 측정 장치(macsorb1210: 가부시키가이샤 마운텍 제조)를 이용하여 BET값(기체 흡착법)으로서 측정하였다.The specific surface area of the indium oxide powder was measured as a BET value (gas adsorption method) using a specific surface area measuring device (macsorb1210 manufactured by Mountain Tech, Inc.).

그 후, 얻어진 산화인듐 분말 967 g에 산화주석 분말 33 g을 혼합한 후, 콜드 프레스법에 의해 성형체를 얻고 대기압하, 1400℃, 30시간으로, 소결하여, 산화인듐주석의 소결체를 제작하였다. 소결체의 상대 밀도는 아르키메데스법에 의해 측정하였다. Thereafter, 33 g of tin oxide powder was mixed with 967 g of the obtained indium oxide powder. Then, a molded product was obtained by a cold press method and sintered at 1400 ° C. for 30 hours under atmospheric pressure to produce a sintered body of indium tin oxide. The relative density of the sintered compact was measured by the Archimedes method.

<실시예 2∼7 및 비교예 1∼9><Examples 2-7 and Comparative Examples 1-9>

실시예 2, 3 및 비교예 5, 6은, 실시예 1과 동일하게 하여 수산화인듐 분말을 제작하고, 수산화인듐 분말의 하소 온도를 표 2에 나타낸 바와 같이 조정하여 산화인듐 분말 및 소결체를 제작하였다. In Examples 2 and 3 and Comparative Examples 5 and 6, an indium hydroxide powder was produced in the same manner as in Example 1, and the calcination temperature of the indium hydroxide powder was adjusted as shown in Table 2 to produce an indium oxide powder and a sintered body. .

실시예 4∼7 및 비교예 1∼4, 7∼9는, 전해액의 질산암모늄 농도, pH, 액온을 표 1에 나타낸 바와 같이, 수산화인듐 분말의 하소 온도를 표 2에 나타낸 바와 같이 조정한 것 이외에는 실시예 1과 동일하게 하여 수산화인듐 분말, 산화인듐 분말 및 소결체를 제작하였다. In Examples 4 to 7 and Comparative Examples 1 to 4 and 7 to 9, the calcination temperature of the indium hydroxide powder was adjusted as shown in Table 2 as shown in Table 1 for the ammonium nitrate concentration, pH, and liquid temperature of the electrolyte solution. In the same manner as in Example 1 except for the indium hydroxide powder, the indium oxide powder, and the sintered compact.

이하의 표 1에, 수산화인듐 분말의 배향 지수 및 정석 효율을 나타내고, 표 2에 산화인듐 분말의 BET값, 소결체의 상대 밀도를 나타낸다. In Table 1 below, the orientation index and crystallization efficiency of the indium hydroxide powder are shown, and in Table 2, the BET value of the indium oxide powder and the relative density of the sintered compact are shown.

Figure 112016025708238-pct00001
Figure 112016025708238-pct00001

Figure 112016025708238-pct00002
Figure 112016025708238-pct00002

표 1, 2에 나타낸 결과로부터, 실시예 1∼7에서는, Wilson식으로부터 구한 (200)면 및 (400)면의 배향 지수가 각각 2.0 이상, (442)면의 배향 지수가 0.5 이하이고, 또한 (200)면의 배향 지수에 대한 (400)면의 배향 지수의 비가 1.5 이상인 결정성이 높은 수산화인듐 분말이 얻어졌다. 또한, 실시예 1∼7에서는, (220)면 및 (420)면의 회절 피크는 나타나지 않았다. From the results shown in Tables 1 and 2, in Examples 1 to 7, the orientation indexes of the (200) plane and the (400) plane obtained from the Wilson equation are 2.0 or more, and the orientation index of the (442) plane is 0.5 or less, respectively. Indium hydroxide powder having a high crystallinity having a ratio of the orientation index of the (400) plane to the orientation index of the (200) plane of 1.5 or more was obtained. In addition, in Examples 1-7, the diffraction peak of the (220) plane and the (420) plane did not appear.

또한, 실시예 1∼7에서는, 생성된 수산화인듐 분말을 사용하여, 600℃∼800℃의 온도 범위에서 하소함으로써, BET값이 10∼15 ㎡/g의 범위이고, D10이 0.2 ㎛ 이상, D90이 2.7 ㎛ 이하인 입도 분포가 좁은 산화인듐 분말이 얻어졌다. 실시예 1∼7은, 비교예와 비교하여 소결체의 상대 밀도가 매우 고밀도가 되었다.Moreover, in Examples 1-7, BET value is the range of 10-15 m <2> / g by calcining in the temperature range of 600 degreeC-800 degreeC using the produced indium hydroxide powder, D10 is 0.2 micrometer or more, D90 An indium oxide powder having a narrow particle size distribution of 2.7 µm or less was obtained. In Examples 1-7, the relative density of the sintered compact became very high compared with the comparative example.

한편, 비교예 1에서는, 전해액의 pH를 2.0으로 한 것 이외에는, 실시예 1과 동일하게 하여 수산화인듐 분말을 제작하였다. 그 결과, 비교예 1에서는, 전해 공정에서 애노드에 메탈·인듐이 석출되고, 수산화인듐 분말을 얻을 수 없으며, 정석 효율이 0%였다.On the other hand, in Comparative Example 1, an indium hydroxide powder was produced in the same manner as in Example 1 except that the pH of the electrolyte solution was set to 2.0. As a result, in Comparative Example 1, metal indium precipitated on the anode in the electrolytic step, and indium hydroxide powder could not be obtained, and crystallization efficiency was 0%.

한편, 비교예 2∼4에서는, 수산화인듐 분말에 있어서, 원하는 (200)면, (400)면 및 (442)면 이외의 (420)면의 회절 피크가 출현하고, 결정성에 흐트러짐이 발생하며, 응집성을 갖는 분말이 되었다. 비교예 2∼4에서는, 하소 온도 700℃에서 제작한 산화인듐 분말의 BET값이 10∼15 ㎡/g의 범위 내였으나, D10이 0.4 ㎛ 이상이고, D90이 4.2 ㎛ 이상이며, 입도 분포가 넓어졌다. 따라서, 비교예 2∼4에서는, 소결성이 저하되어, 소결체의 상대 밀도가 낮아졌다.On the other hand, in Comparative Examples 2 to 4, in the indium hydroxide powder, diffraction peaks on the (420) planes other than the desired (200) plane, (400) plane and (442) plane appear, resulting in disturbance in crystallinity, It became the powder which has cohesion. In Comparative Examples 2-4, the BET value of the indium oxide powder produced at the calcination temperature of 700 degreeC was in the range of 10-15 m <2> / g, but D10 is 0.4 micrometer or more, D90 is 4.2 micrometer or more, and particle size distribution is wide lost. Therefore, in Comparative Examples 2-4, sinterability fell and the relative density of the sintered compact became low.

또한, 비교예 5에 나타낸 바와 같이, 수산화인듐 분말의 하소 온도 500℃의 경우에는, 산화인듐 분말의 BET값이 증가하고, 응집성을 갖는 분말이 되었다. 또한, 비교예 5에서도, D10이 0.4 ㎛이고, D90이 6.7 ㎛이며, 입도 분포가 넓어졌다. 비교예 6에서는, 하소 온도 930℃에서 제작한 산화인듐 분말의 BET값이 지나치게 낮아지고, D10이 0.5 ㎛이며, D90이 9.8 ㎛가 되어, 입도 분포가 넓어졌다. 이러한 비교예 5, 6에서는, 소결성이 저하되어, 소결체의 상대 밀도가 낮아졌다.Moreover, as shown in the comparative example 5, in the case of the calcination temperature of 500 degreeC of indium hydroxide powder, the BET value of the indium oxide powder increased and it became the powder which has cohesiveness. Also in Comparative Example 5, D10 was 0.4 µm, D90 was 6.7 µm, and the particle size distribution was widened. In Comparative Example 6, the BET value of the indium oxide powder produced at the calcination temperature of 930 ° C. was too low, D10 was 0.5 μm, D90 was 9.8 μm, and the particle size distribution was widened. In these comparative examples 5 and 6, sinterability fell and the relative density of the sintered compact fell.

또한, 비교예 7, 8에서는, 수산화인듐 분말에 있어서, 원하는 (200)면, (400)면 및 (442)면 이외의 면의 회절 피크가 출현하고, 결정성에 흐트러짐이 발생하며, 응집성을 갖는 분말이 되었다. 아울러, 비교예 7, 8에서는, 하소 온도 1100℃에서 제작한 산화인듐 분말의 BET값이 지나치게 낮아지고, D10이 0.5 ㎛, 0.3 ㎛이며, D90이 14.8 ㎛, 10.2 ㎛가 되어, 입도 분포가 넓어졌다. 이러한 비교예 7, 8에서는, 소결성이 저하되어, 소결체의 상대 밀도가 매우 낮아졌다.In Comparative Examples 7, 8, in the indium hydroxide powder, diffraction peaks on surfaces other than the desired (200) plane, (400) plane, and (442) plane appear, disturbing crystallinity, and having cohesiveness. It became a powder. In Comparative Examples 7, 8, the BET value of the indium oxide powder produced at the calcination temperature of 1100 ° C was too low, D10 was 0.5 µm and 0.3 µm, D90 was 14.8 µm and 10.2 µm, and the particle size distribution was wide. lost. In these comparative examples 7, 8, sinterability fell and the relative density of the sintered compact became very low.

또한, 비교예 9에서는, (200)면에 배향하지만, (400)면 및 (442)면에 배향하고 있지 않은 수산화인듐 분말이 얻어지고, 응집성을 갖는 분말이 되었다. 비교예 9에서는, 하소 온도 700℃에서 제작한 산화인듐 분말의 BET값은, 10∼15 ㎡/g의 범위 내였으나, D10이 0.4 ㎛이고, D90이 12.6 ㎛이며, 입도 분포가 넓고, 응집성을 갖는 분말이 되었다. 이러한 비교예 9에서는, 소결성이 저하되어, 소결체의 상대 밀도가 낮아졌다. Moreover, in the comparative example 9, the indium hydroxide powder which was orientated to the (200) plane but not to the (400) plane and (442) plane was obtained, and it became the powder which has cohesiveness. In Comparative Example 9, the BET value of the indium oxide powder produced at the calcination temperature of 700 ° C. was in the range of 10 to 15 m 2 / g, but D10 was 0.4 μm, D90 was 12.6 μm, and the particle size distribution was wide, and the cohesiveness was high. It became the powder which has. In this comparative example 9, sinterability fell and the relative density of the sintered compact became low.

이상의 결과로부터, 인듐을 포함하는 양극을 이용하고, 전해액으로서 질산암모늄 수용액을 이용하며, 전해액의 pH를 2.5∼4.0, 액온을 20∼60℃의 범위가 되도록 제어하여 행한 전해 반응에 의해 수산화인듐 분말을 생성함으로써, (200)면, (400)면 및 (442)면에 배향하고, 결정성이 높으며, 입도 분포가 좁은 수산화인듐 분말이 얻어지는 것을 알 수 있다. 그리고, 그 수산화인듐 분말을 이용함으로써, 비표면적이 제어된 분산성이 좋은 산화인듐 분말을 얻을 수 있고, 그 산화인듐 분말을 이용함으로써 고밀도의 소결체가 얻어지는 것을 알 수 있다.Indium hydroxide powder by the electrolytic reaction which carried out by using the positive electrode containing indium from the above result, using ammonium nitrate aqueous solution as electrolyte solution, controlling pH of electrolyte solution to 2.5-4.0, and liquid temperature so that it might be in the range of 20-60 degreeC. It can be seen that indium hydroxide powder obtained by aligning to the (200) plane, the (400) plane, and the (442) plane, having high crystallinity and narrow particle size distribution is obtained. By using the indium hydroxide powder, an indium oxide powder having good dispersibility in which the specific surface area is controlled can be obtained, and a high density sintered compact can be obtained by using the indium oxide powder.

Claims (2)

Wilson식으로부터 구한 (200)면 및 (400)면의 배향 지수가 각각 2.0 이상, (442)면의 배향 지수가 0.5 이하이고, 또한 상기 (200)면의 배향 지수에 대한 상기 (400)면의 배향 지수의 비가 1.5 이상이며, (220)면 및 (420)면의 회절 피크를 갖고 있지 않은 것을 특징으로 하는 수산화인듐 분말. The orientation indexes of the (200) plane and the (400) plane obtained from the Wilson equation are 2.0 or more, and the orientation index of the (442) plane is 0.5 or less, respectively. An indium hydroxide powder having an orientation index ratio of 1.5 or more and no diffraction peaks on the (220) plane and the (420) plane. BET값이 10∼15 ㎡/g이고, 입도 분포의 누적 입도 10% 직경(D10)이 0.2 ㎛ 이상, 누적 입도 90% 직경(D90)이 2.7 ㎛ 이하인 것을 특징으로 하는 산화인듐 분말.

An indium oxide powder having a BET value of 10 to 15 m 2 / g, a cumulative particle size 10% diameter (D10) of a particle size distribution of 0.2 µm or more, and a cumulative particle size of 90% diameter (D90) of 2.7 µm or less.

KR1020167007070A 2014-03-11 2014-12-22 Indium hydroxide powder and indium oxide powder KR102068832B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014047507A JP5786994B1 (en) 2014-03-11 2014-03-11 Indium hydroxide powder and indium oxide powder
JPJP-P-2014-047507 2014-03-11
PCT/JP2014/083893 WO2015136816A1 (en) 2014-03-11 2014-12-22 Indium hydroxide powder and indium oxide powder

Publications (2)

Publication Number Publication Date
KR20160131996A KR20160131996A (en) 2016-11-16
KR102068832B1 true KR102068832B1 (en) 2020-01-22

Family

ID=54071280

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020167007070A KR102068832B1 (en) 2014-03-11 2014-12-22 Indium hydroxide powder and indium oxide powder

Country Status (5)

Country Link
JP (1) JP5786994B1 (en)
KR (1) KR102068832B1 (en)
CN (1) CN105683089B (en)
TW (1) TWI634079B (en)
WO (1) WO2015136816A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107935026B (en) * 2017-11-24 2021-01-15 郑州大学 Method and device for preparing nano indium oxide by electrolysis
CN108793229A (en) * 2018-08-22 2018-11-13 先导薄膜材料(广东)有限公司 The preparation method of indium hydroxide

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002316818A (en) * 2002-01-25 2002-10-31 Tosoh Corp Hydroxide and oxide of indium
JP2013036105A (en) 2011-08-10 2013-02-21 Jx Nippon Mining & Metals Corp Method of producing indium hydroxide and compound including indium hydroxide

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3314388B2 (en) * 1991-04-26 2002-08-12 東ソー株式会社 Method for producing indium hydroxide, indium oxide and ITO sintered body
JP3254697B2 (en) * 1991-09-02 2002-02-12 東ソー株式会社 Indium oxide powder and method for producing the same
JP2829556B2 (en) * 1992-12-09 1998-11-25 株式会社ジャパンエナジー Method for producing indium oxide powder
JP2736498B2 (en) * 1993-05-26 1998-04-02 株式会社ジャパンエナジー Method for producing indium oxide-tin oxide powder
JP3733599B2 (en) * 1993-08-11 2006-01-11 住友化学株式会社 Metal oxide powder and method for producing the same
JPH1095615A (en) * 1996-06-20 1998-04-14 Mitsubishi Materials Corp Indium oxide powder for high density sintered compact
JPH10204669A (en) * 1997-01-16 1998-08-04 Mitsubishi Materials Corp Production of indium oxide powder
US9045823B2 (en) * 2008-06-10 2015-06-02 Jx Nippon Mining & Metals Corporation Sintered oxide compact target for sputtering and process for producing the same
JP5632340B2 (en) * 2011-08-05 2014-11-26 Jx日鉱日石金属株式会社 Electrolytic production apparatus and production method of indium hydroxide and compound containing indium hydroxide
US20150200082A1 (en) * 2012-05-31 2015-07-16 Ulvac, Inc. Method of manufacturing metal hydroxides and method of manufacturing ito sputtering target

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002316818A (en) * 2002-01-25 2002-10-31 Tosoh Corp Hydroxide and oxide of indium
JP2013036105A (en) 2011-08-10 2013-02-21 Jx Nippon Mining & Metals Corp Method of producing indium hydroxide and compound including indium hydroxide

Also Published As

Publication number Publication date
JP5786994B1 (en) 2015-09-30
WO2015136816A1 (en) 2015-09-17
JP2015171960A (en) 2015-10-01
TWI634079B (en) 2018-09-01
CN105683089B (en) 2017-11-07
TW201534563A (en) 2015-09-16
KR20160131996A (en) 2016-11-16
CN105683089A (en) 2016-06-15

Similar Documents

Publication Publication Date Title
WO2014192650A1 (en) Method for producing indium hydroxide powder, method for producing indium oxide powder, and sputtering target
JP5949663B2 (en) Method for producing indium hydroxide powder, method for producing indium oxide powder, and sputtering target
CN107935026B (en) Method and device for preparing nano indium oxide by electrolysis
KR102068832B1 (en) Indium hydroxide powder and indium oxide powder
CN112323084A (en) Preparation method of nano indium oxide
JP6048329B2 (en) Method for producing indium hydroxide powder and method for producing indium oxide powder
JP2015199628A (en) Method for producing indium hydroxide powder
JP6112058B2 (en) Method for producing indium hydroxide powder and method for producing indium oxide powder
KR101305903B1 (en) Tin oxide powder and manufacturing method of producing the same
JP2016216268A (en) Method for producing indium hydroxide powder, method for producing indium oxide powder, and sputtering target
JP5994524B2 (en) Method for producing metal hydroxide powder
JP6119622B2 (en) Method for producing indium hydroxide powder and cathode
WO2016084510A1 (en) Method for manufacturing tin hydroxide powder, and tin hydroxide powder
CN112645379A (en) High-dispersity indium oxide and preparation method thereof
JP6350311B2 (en) Method for producing indium oxide powder
JP2014088599A (en) Manufacturing installation of metalhydroxide, manufacturing method of metalhydroxide, and sputtering target
JP2016102241A (en) Production method of indium hydroxide powder
JP2016037633A (en) Electrolytic device for indium hydroxide powder or tin hydroxide powder, method for producing indium hydroxide powder or tin hydroxide powder, and method for producing sputtering target
JP2016179910A (en) Production method of mixed powder of indium oxide powder and tin oxide powder, pulverization system of mixed powder of indium oxide powder and tin oxide powder, and production method of sputtering target
JP6040900B2 (en) Method for producing metal hydroxide
JP2014091649A (en) Tin oxide powder having high compressibility, and method for producing the powder
JP6201195B2 (en) Electrolytic apparatus for indium hydroxide powder or tin hydroxide powder, method for producing indium hydroxide powder or tin hydroxide powder, and method for producing sputtering target
JP2015021181A (en) Method for producing nickel hydroxide

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant