JPH1095615A - Indium oxide powder for high density sintered compact - Google Patents

Indium oxide powder for high density sintered compact

Info

Publication number
JPH1095615A
JPH1095615A JP9164469A JP16446997A JPH1095615A JP H1095615 A JPH1095615 A JP H1095615A JP 9164469 A JP9164469 A JP 9164469A JP 16446997 A JP16446997 A JP 16446997A JP H1095615 A JPH1095615 A JP H1095615A
Authority
JP
Japan
Prior art keywords
indium oxide
oxide powder
particle size
density
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9164469A
Other languages
Japanese (ja)
Inventor
Hiromi Mochida
裕美 持田
Michihiro Tanaka
道広 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP9164469A priority Critical patent/JPH1095615A/en
Publication of JPH1095615A publication Critical patent/JPH1095615A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain an indium oxide powder capable of forming a high density sintered compact having a density close to a theoretical value on burning at a high temperature after forming the powder by imparting specific characteristics such as a particle diameter, a particle diameter distribution, a specific surface area and a crystallite diameter to the powder. SOLUTION: This indium oxide powder for a high density sintered compact has characteristics having <=3.0μm mean particle diameter, <=3 fold ratio of the mean particle diameter (Da) to a peak diameter (Dp), (Da/Dp), <=10m<2> /g specific surface area (BET value) and >=900Å crystallite diameter. The indium oxide powder having these particle characteristics can be produced performing an electrolysis by keeping the liquid in a suspended state with an agitation and a liquid temperature of an electrolytic liquid at 50-80 deg.C based on an electrolytic method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の利用分野】本発明は、インジウム-スズ膜(ITO
膜)を製造するためのターゲット材等の高密度焼結体に
用いられる酸化インジウム粉末に関する。
The present invention relates to an indium-tin film (ITO).
The present invention relates to indium oxide powder used for a high-density sintered body such as a target material for producing a film.

【0002】近年、液晶ディスプレレーを中心としたフ
ラットディスプレーの使用が急速に拡大しており、現
在、この透明導電膜としてITO膜が最も多量に用いら
れている。ITO膜の製造方法としては、スプレー法や
塗布法などの化学的製法、真空蒸着法やスパッタ法など
の物理的製法が知られており、実用上は主にマグネトロ
ンスパッタ法によって製造されている。この方法は、I
TOターゲットに高電圧を与えてターゲット材料粒子を
高エネルギーで基板表面に衝突させることにより成膜を
得る方法であり、ターゲット材として酸化インジウムと
酸化スズとを混合焼結した酸化物焼結体が主に用いられ
ている。
In recent years, the use of flat displays, mainly liquid crystal displays, has been rapidly expanding, and at present, ITO films are most widely used as the transparent conductive films. As a method of manufacturing an ITO film, a chemical manufacturing method such as a spray method or a coating method, and a physical manufacturing method such as a vacuum evaporation method or a sputtering method are known. In practice, the ITO film is mainly manufactured by a magnetron sputtering method. This method uses I
This is a method of obtaining a film by applying a high voltage to a TO target and causing target material particles to collide with a substrate surface with high energy. An oxide sintered body obtained by mixing and sintering indium oxide and tin oxide as a target material is used. Mainly used.

【0003】[0003]

【従来技術とその問題点】上記ITO膜ターゲット材の原
料として使用されている酸化インジウム粉末は、硝酸イ
ンジウム溶液を中和して生じた水酸化インジウムの沈澱
を回収乾燥し、焙焼して得たものが従来用いられていた
が、このような中和沈澱法によって得た従来の酸化イン
ジウム粉末は、平均粒径や見掛比重などが不均一である
ため、高密度なターゲット材が得られないと云う問題が
ある。
2. Description of the Related Art The indium oxide powder used as a raw material of the above-mentioned ITO film target material is obtained by recovering a precipitate of indium hydroxide produced by neutralizing an indium nitrate solution, drying and roasting. However, conventional indium oxide powder obtained by such a neutralization precipitation method has a non-uniform average particle size and apparent specific gravity, so that a high-density target material can be obtained. There is a problem that there is no.

【0004】このような沈澱法に代えて電解法によって
得た酸化インジウム粉末を用いる方法が知られている
(特開平6-171937号)。この電解法では電解条件を調整
することにより酸化インジウム粉末の平均粒径や見掛密
度などを制御できるので、品質のバラツキが少ないIT
O膜を製造できると述べられており、具体的には、平均
粒径0.47〜2.8μm、見掛密度0.84〜1.99g/c
m3の酸化インジウム粉末が例示されている。しかし、例
示されている範囲の製法によって得られる酸化インジウ
ム粉末は粒径等のバラツキが大きく、高密度なターゲッ
ト材を製造するのは難しい。
A method using an indium oxide powder obtained by an electrolytic method in place of such a precipitation method is known (Japanese Patent Application Laid-Open No. Hei 6-191937). In this electrolysis method, the average particle size and apparent density of the indium oxide powder can be controlled by adjusting the electrolysis conditions.
It is stated that an O film can be produced. Specifically, the average particle size is 0.47 to 2.8 μm, and the apparent density is 0.84 to 1.99 g / c.
An m 3 indium oxide powder is illustrated. However, the indium oxide powder obtained by the manufacturing method in the exemplified range has a large variation in particle size and the like, and it is difficult to manufacture a high-density target material.

【0005】一方、異なった粒径の粉末を混在して用い
ることにより高密度のターゲット材を得る方法も提案さ
れている(特開平6-183732号)。この方法では、比表面
積(BET値)3m2/g未満の酸化錫粉末と、比表面積(BET値)
15〜30m3/gであって平均粒径0.03〜0.1μ以
下、結晶子径200〜600Åの酸化インジウム粉末と
を混合して用いることにより高密度のITO焼結体を製
造している。しかしながら、ここで例示されている焼結
体の密度は理論密度の95〜97%であり、未だ十分で
はない。用いられている酸化インジウムの平均粒径およ
び結晶子径は小さ過ぎ、また単に平均粒径による粒度制
御では不十分であることが窺われる。
On the other hand, a method of obtaining a high-density target material by mixing powders having different particle sizes has been proposed (Japanese Patent Laid-Open No. 6-183732). In this method, tin oxide powder having a specific surface area (BET value) of less than 3 m 2 / g and a specific surface area (BET value)
A high-density ITO sintered body is manufactured by mixing and using indium oxide powder having an average particle diameter of 15 to 30 m 3 / g, an average particle diameter of 0.03 to 0.1 μ or less, and a crystallite diameter of 200 to 600 °. I have. However, the density of the sintered body exemplified here is 95 to 97% of the theoretical density, which is not yet sufficient. The average particle size and the crystallite size of the indium oxide used are too small, and it is suggested that the particle size control simply based on the average particle size is insufficient.

【0006】以上のように、従来の中和沈澱法および電
解法によって得た酸化インジウム粉末を用い、板状に加
圧成形(1.5t/cm2)した後に、更に熱間プレス(500kg/c
m2)を加えながら、1600℃で2時間焼結して得たタ
ーゲットについてみると、その密度は理論密度に対して
94〜96%台であり、高密度焼結体のターゲットを得
る目的からは十分とは云えない。
As described above, after the indium oxide powder obtained by the conventional neutralization precipitation method and the electrolytic method is pressed into a plate (1.5 t / cm 2 ), it is further hot-pressed (500 kg / cm 2 ).
Looking at the target obtained by sintering at 1600 ° C. for 2 hours while adding m 2 ), its density is in the order of 94 to 96% of the theoretical density. Is not enough.

【0007】[0007]

【発明の解決課題】本発明は、ターゲット材の原料粉末
として用いられる従来の酸化インジム粉末における上記
問題を解決したものであり、成形後、高温焼成した場合
に理論密度に近い高密度の焼結体が得られる酸化インジ
ウム粉末を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problem in the conventional indium oxide powder used as a raw material powder for a target material. An object is to provide an indium oxide powder from which a body can be obtained.

【0008】[0008]

【課題の解決手段】すなわち、本発明は、(1)平均粒径
が3.0μm以下であって平均粒径とピーク粒径の比が3
倍以下であり、比表面積(BET値)10m2/g以下、結晶子
径900Å以上であることを特徴とする高密度焼結体用
酸化インジウム粉末に関する。本発明の酸化インジウム
粉末は、好ましくは、(2)平均粒径1.0〜3.0μmで
あって比表面積(BET値)9m2/g以下のものである。
That is, the present invention provides (1) a method in which the average particle size is 3.0 μm or less and the ratio of the average particle size to the peak particle size is 3 μm;
And a specific surface area (BET value) of 10 m 2 / g or less and a crystallite diameter of 900 ° or more. The indium oxide powder of the present invention preferably has (2) an average particle size of 1.0 to 3.0 μm and a specific surface area (BET value) of 9 m 2 / g or less.

【0009】[0009]

【具体的な説明】以下、本発明を実施例と共に詳細に説
明する。本発明に係る酸化インジウム粉末は、比表面積
(BET値)10m2/g以下、好ましくは9m2/g以下の粉末で
ある。ITO焼結体に用いられている従来の酸化インジ
ウム粉末の大部分は比表面積(BET値)が10m2/gを上回
るものであり、このような比表面積の酸化インジウム粉
末では高密度の焼結体は得られない。比表面積が10m2
/gを上回ると、平均粒径が小さくなり過ぎ、嵩密度も低
下する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to embodiments. The indium oxide powder according to the present invention has a specific surface area.
It is a powder having a (BET value) of 10 m 2 / g or less, preferably 9 m 2 / g or less. Most of the conventional indium oxide powder used for the ITO sintered body has a specific surface area (BET value) of more than 10 m 2 / g. I can't get my body. Specific surface area is 10m 2
If it exceeds / g, the average particle size becomes too small and the bulk density also decreases.

【0010】このように本発明の酸化インジウム粉末
は、従来最適とされていた酸化インジウム粉末より比表
面積が小さく、従って粒径がやや大きいが、後述するよ
うに粒径分布が所定範囲内にあり、粒径が均一であって
個々の粒子が凝集せずに分散性に優れるものである。従
来は、比表面積(BET値)15m2/g未満の粉末は粒子が凝
集しているか又は一次粒径が大きく焼結不活性な粉末で
あるので好ましくないとされているが、本発明の酸化イ
ンジウム粉末は比表面積と共に平均粒径と粒度分布およ
び結晶子径の大きさを特定することにより高密度焼結体
に適した粉末を得たものである。
As described above, the indium oxide powder of the present invention has a smaller specific surface area than the conventionally optimized indium oxide powder, and therefore has a slightly larger particle size, but has a particle size distribution within a predetermined range as described later. In addition, the particles have a uniform particle size and are excellent in dispersibility without individual particles being aggregated. Conventionally, powders having a specific surface area (BET value) of less than 15 m 2 / g are considered to be undesirable because the particles are agglomerated or have a large primary particle size and are sintering inactive powders. The indium powder is a powder that is suitable for a high-density sintered body by specifying the average particle size, the particle size distribution, and the crystallite size along with the specific surface area.

【0011】さらに本発明の酸化インジウム粉末は、一
次粒子の結晶子径が900Å以上のものである。結晶子
径はX線回析法によって求めた値である。後述の試験例
に示すように、この結晶子径が600〜900Å未満の
ものは、焼結体の密度が理論密度の94〜96%台に留
まる。一方、結晶子径が900Å以上の酸化インジウム
粉末は本発明の定める比表面積、平均粒径およびピーク
粒径の条件と相俟って実質的に理論密度範囲の高密度焼
結体が得られる。
Further, the indium oxide powder of the present invention has a primary particle having a crystallite diameter of 900 ° or more. The crystallite diameter is a value determined by the X-ray diffraction method. As shown in the test examples described below, in the case where the crystallite diameter is less than 600 to 900 °, the density of the sintered body remains at 94 to 96% of the theoretical density. On the other hand, indium oxide powder having a crystallite diameter of 900 ° or more can provide a high-density sintered body having a theoretical density range substantially in combination with the specific surface area, average particle size and peak particle size conditions specified in the present invention.

【0012】本発明の酸化インジウム粉末は、平均粒径
が3.0μm以下、好ましくは1.0〜3.0μmであって
平均粒径とピーク粒径の比が3倍以下のものである。平
均粒径が3.0μmを超えると粒径が大き過ぎて高密度の
焼結体が得られない。また、平均粒径が1.0μmを大き
く下回ると嵩密度が著しく低下してやはり高密度の焼結
体が得られない。
The indium oxide powder of the present invention has an average particle size of 3.0 μm or less, preferably 1.0 to 3.0 μm, and has a ratio of the average particle size to the peak particle size of 3 times or less. If the average particle size exceeds 3.0 μm, the particle size is too large to obtain a high density sintered body. On the other hand, if the average particle size is much smaller than 1.0 μm, the bulk density is remarkably reduced, so that a high-density sintered body cannot be obtained.

【0013】さらに、平均粒径とピーク粒径の比が3倍
を超えると粒度の均一性が悪く、高密度焼結体の原料と
して適当ではない。ここで、ピーク粒径とは、粒度分布
上、最も分布量の多い粒径を云う。ピーク粒径は、数μ
(例えば1μ)ごとに段階的に分けた粒度区分の分布量を
測定し、最も分布量の多い粒径に基づいて定めることが
できる。平均粒径は粒子全体についての単純な算術平均
であり、粒度分布の状態を必ずしも示していない。従っ
て、平均粒径が同一でも粒度の均一性は同じではない。
一方、上記ピーク粒径は最も分布量の多い粒径であり、
ピーク粒径が平均粒径に近似するほど粒径の均一性が高
い。本発明は平均粒径とピーク粒径の2つの指標を用
い、これらの一定範囲内に含まれる粒子を用いることに
より格段に密度の高い焼結体が得られるようにしたもの
である。即ち、ピーク粒径(Dp)と平均粒径(Da)の比
(Dp/DaまたはDa/Dp)が3倍以下であることが必
要であり、これを超えると粒度の均一性が低く、理論密
度相当の高密度焼結体を得ることができない。
Further, when the ratio of the average particle size to the peak particle size exceeds 3 times, the uniformity of the particle size is poor, and it is not suitable as a raw material for a high-density sintered body. Here, the peak particle size means the particle size having the largest distribution amount in the particle size distribution. The peak particle size is several μ
The distribution amount of the particle size distribution divided step by step (for example, 1 μm) can be measured and determined based on the particle size having the largest distribution amount. The average particle size is a simple arithmetic average of the whole particles, and does not necessarily indicate the state of the particle size distribution. Therefore, even if the average particle size is the same, the uniformity of the particle size is not the same.
On the other hand, the peak particle size is the particle size with the largest distribution amount,
The closer the peak particle size is to the average particle size, the higher the particle size uniformity. The present invention uses two indices of an average particle size and a peak particle size, and obtains a sintered body having a much higher density by using particles included in a certain range thereof. That is, the ratio (Dp / Da or Da / Dp) of the peak particle diameter (Dp) to the average particle diameter (Da) needs to be 3 times or less. A high-density sintered body equivalent to the density cannot be obtained.

【0014】上記粒子特性を有する酸化インジウム粉末
は、電解法に基づき、電解液の液温を50〜80℃に保
ち、液を懸濁状態に攪拌して電解することにより製造す
ることができる。酸化インジウム粉末の製造方法とし
て、金属インジウムを陽極とし、硝酸アンモニウムや硫
酸アンモニウム、あるいは塩化アンモニウムなどを電解
液とし、液温を10〜50℃に保ち、pH4〜9で電解
し、生じた水酸化インジウムを回収後、焙焼することに
より製造する電解法が従来知られている(特開平06-1719
37号)。ただし、この条件だけでは本発明の上記酸化イ
ンジウムを得ることができない。本発明の酸化インジウ
ム粉末は、従来の電解法における液温よりも高く、かつ
電解液を懸濁状態に攪拌しながら電解することによって
得られる。或いは、中和沈澱法によって得た酸化インジ
ウム粉末から上記条件に適するものを選別しても良い。
The indium oxide powder having the above-mentioned particle properties can be produced by electrolysis while maintaining the temperature of the electrolytic solution at 50 to 80 ° C. and stirring the solution in a suspended state, based on the electrolysis method. As a method for producing indium oxide powder, metal indium is used as an anode, ammonium nitrate, ammonium sulfate, or ammonium chloride is used as an electrolytic solution, the temperature of the solution is kept at 10 to 50 ° C., electrolysis is performed at pH 4 to 9, and the resulting indium hydroxide is removed. After recovery, an electrolysis method of producing by roasting is conventionally known (JP-A-06-1719).
No. 37). However, the indium oxide of the present invention cannot be obtained only under these conditions. The indium oxide powder of the present invention is obtained by performing electrolysis while stirring the electrolyte in a suspended state at a temperature higher than the liquid temperature in the conventional electrolysis method. Alternatively, those suitable for the above conditions may be selected from the indium oxide powder obtained by the neutralization precipitation method.

【0015】[0015]

【発明の実施形態】本発明の実施例および比較例(試験
例)を以下に示す。実施例および比較例 金属インジウム(純度99.99%)を陽極とし、硝酸アン
モニウムまたは塩化アンモニウムを電解液として用い、
pH3〜9、電流密度700A/m2、電解液濃度1〜2mo
l/l、および表1に示す液温と攪拌条件で電解を行い、
電解槽底から水酸化インジウム沈澱を回収し、乾燥後に
700〜900℃に焙焼して酸化インジウム粉末を得
た。この酸化インジウム粉末の比表面積(BET値)、結晶
子径、平均粒径およびピーク粒径、嵩密度を表1に示し
た。上記酸化インジウム粉末90gを用い、これに平均
粒径10μmの酸化スズ粉末10gを混合して均一に撹拌
したものを型に入れ、1.5t/cm2の加圧下で板状に成形
し、更に、1600℃の温度下で2時間、500kg/cm2
の静水圧を加えた熱間プレス焼成(ホットフ゜レス焼成)を行
ってターゲット材を得た。このターゲット材の密度と焼
成前の成形体の密度を、酸化インジウム粉末のBET比
表面積などの値と共に表1に示した。
Examples of the present invention and comparative examples (test examples) are shown below. Examples and Comparative Examples Using metal indium (purity 99.99%) as an anode, ammonium nitrate or ammonium chloride as an electrolyte,
pH 3-9, current density 700A / m 2 , electrolyte concentration 1-2mo
l / l, and electrolysis at the liquid temperature and stirring conditions shown in Table 1,
The indium hydroxide precipitate was collected from the bottom of the electrolytic cell, dried and then roasted at 700 to 900 ° C. to obtain an indium oxide powder. Table 1 shows the specific surface area (BET value), crystallite size, average particle size, peak particle size, and bulk density of this indium oxide powder. Using 90 g of the above-mentioned indium oxide powder, 10 g of tin oxide powder having an average particle diameter of 10 μm mixed with the mixture and uniformly stirred, put into a mold, and molded into a plate under a pressure of 1.5 t / cm 2 , 500 kg / cm 2 at 1600 ° C. for 2 hours
The target material was obtained by performing hot press sintering (hot press sintering) with the application of hydrostatic pressure. Table 1 shows the density of the target material and the density of the green body before firing together with values such as the BET specific surface area of the indium oxide powder.

【0016】また、比較試料として、中和沈澱法によっ
て得た酸化インジウム粉末を用い、同様にしてターゲッ
ト材を製造した。このターゲット材の密度と焼成前の成
形体の密度を酸化インジウム粉末のBET比表面積等の
値と共に表1に示した。
As a comparative sample, a target material was manufactured in the same manner using indium oxide powder obtained by a neutralization precipitation method. Table 1 shows the density of the target material and the density of the green body before firing together with values such as the BET specific surface area of the indium oxide powder.

【0017】表1に示すように、本発明の条件に適する
酸化インジウム粉末を用いたターゲット材の焼結体密度
は測定誤差の範囲内で理論密度(7.2g/cm3)を達成してお
り、極めて高密度の焼結体である。この高密度ターゲッ
ト材を用いてITO膜を形成させたところ、ショートの
原因となるノジュールが発生せず、長時間に亘って安定
な導電性薄膜が得られた。一方、本発明の範囲を外れる
酸化インジウム粉末を用いたものは、焼結体の密度が理
論密度の94%台〜96%台であり、本発明の酸化イン
ジウム粉末を用いた場合に得られる高密度の焼結体を製
造することができない。
As shown in Table 1, the sintered body density of the target material using the indium oxide powder suitable for the conditions of the present invention has reached the theoretical density (7.2 g / cm 3 ) within the range of the measurement error. , A very high density sintered body. When an ITO film was formed using this high-density target material, a nodule causing short-circuit was not generated, and a conductive thin film stable over a long period of time was obtained. On the other hand, in the case of using indium oxide powder outside the scope of the present invention, the density of the sintered body is in the range of 94% to 96% of the theoretical density, and the high density obtained when the indium oxide powder of the present invention is used. It is not possible to produce a sintered body having a high density.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【発明の効果】本発明の酸化インジウム粉末は、ITO
膜の製造に用いるターゲット材原料として最適であり、
この粉末を用いることにより実質的に理論密度範囲の高
密度焼結体を得ることができる。
The indium oxide powder of the present invention is made of ITO
Ideal as a target material raw material used in film production,
By using this powder, a high-density sintered body having a theoretical density range can be obtained.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年6月30日[Submission date] June 30, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0018[Correction target item name] 0018

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0018】[0018]

【表1】 [Table 1]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径が3.0μm以下であって平均粒
径とピーク粒径の比が3倍以下であり、比表面積(BET
値)10m2/g以下、結晶子径900Å以上であることを
特徴とする高密度焼結体用酸化インジウム粉末。
The average particle size is 3.0 μm or less, the ratio of the average particle size to the peak particle size is 3 times or less, and the specific surface area (BET
Value) Indium oxide powder for a high-density sintered body, having an average particle diameter of 10 m 2 / g or less and a crystallite diameter of 900 ° or more.
【請求項2】 平均粒径1.0〜3.0μmであって比表
面積(BET値)9m2/g以下である請求項1に記載の酸化イ
ンジウム粉末。
2. The indium oxide powder according to claim 1, having an average particle size of 1.0 to 3.0 μm and a specific surface area (BET value) of 9 m 2 / g or less.
JP9164469A 1996-06-20 1997-06-20 Indium oxide powder for high density sintered compact Pending JPH1095615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9164469A JPH1095615A (en) 1996-06-20 1997-06-20 Indium oxide powder for high density sintered compact

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP15958196 1996-06-20
JP8-159581 1996-06-20
JP9164469A JPH1095615A (en) 1996-06-20 1997-06-20 Indium oxide powder for high density sintered compact

Publications (1)

Publication Number Publication Date
JPH1095615A true JPH1095615A (en) 1998-04-14

Family

ID=26486328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9164469A Pending JPH1095615A (en) 1996-06-20 1997-06-20 Indium oxide powder for high density sintered compact

Country Status (1)

Country Link
JP (1) JPH1095615A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006037208A (en) * 2004-07-30 2006-02-09 Mitsubishi Materials Corp Indium oxide powder and production method therefor
US7799312B2 (en) 2002-03-22 2010-09-21 Samsung Corning Precision Glass Co., Ltd. Method for manufacturing high-density indium tin oxide target, methods for preparing tin oxide powder and indium oxide powder used therefor
JP2014074224A (en) * 2012-09-13 2014-04-24 Sumitomo Metal Mining Co Ltd Method for producing indium hydroxide powder, method for producing indium oxide powder, and spattering target
WO2014192650A1 (en) * 2013-05-27 2014-12-04 住友金属鉱山株式会社 Method for producing indium hydroxide powder, method for producing indium oxide powder, and sputtering target
JP2015140282A (en) * 2014-01-29 2015-08-03 住友金属鉱山株式会社 Production method of indium hydroxide powder and cathode
WO2015136816A1 (en) * 2014-03-11 2015-09-17 住友金属鉱山株式会社 Indium hydroxide powder and indium oxide powder
JP2016138026A (en) * 2015-01-29 2016-08-04 住友金属鉱山株式会社 Indium oxide powder and method for producing the same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7799312B2 (en) 2002-03-22 2010-09-21 Samsung Corning Precision Glass Co., Ltd. Method for manufacturing high-density indium tin oxide target, methods for preparing tin oxide powder and indium oxide powder used therefor
JP4496875B2 (en) * 2004-07-30 2010-07-07 三菱マテリアル株式会社 Indium oxide powder and method for producing the same
JP2006037208A (en) * 2004-07-30 2006-02-09 Mitsubishi Materials Corp Indium oxide powder and production method therefor
JP2014074224A (en) * 2012-09-13 2014-04-24 Sumitomo Metal Mining Co Ltd Method for producing indium hydroxide powder, method for producing indium oxide powder, and spattering target
CN105264119A (en) * 2013-05-27 2016-01-20 住友金属矿山株式会社 Method for producing indium hydroxide powder, method for producing indium oxide powder, and sputtering target
WO2014192650A1 (en) * 2013-05-27 2014-12-04 住友金属鉱山株式会社 Method for producing indium hydroxide powder, method for producing indium oxide powder, and sputtering target
CN105264119B (en) * 2013-05-27 2017-07-04 住友金属矿山株式会社 The manufacture method of indium hydroxide powder and the manufacture method of indium oxide powder and sputtering target material
JPWO2014192650A1 (en) * 2013-05-27 2017-02-23 住友金属鉱山株式会社 Method for producing indium hydroxide powder and method for producing indium oxide powder
KR20160012134A (en) * 2013-05-27 2016-02-02 스미토모 긴조쿠 고잔 가부시키가이샤 Method for producing indium hydroxide powder, method for producing indium oxide powder, and sputtering target
CN105683416A (en) * 2014-01-29 2016-06-15 住友金属矿山株式会社 Process for producing indium hydroxide powder, and cathode
KR20160114034A (en) * 2014-01-29 2016-10-04 스미토모 긴조쿠 고잔 가부시키가이샤 Process for producing indium hydroxide powder, and cathode
WO2015114886A1 (en) * 2014-01-29 2015-08-06 住友金属鉱山株式会社 Process for producing indium hydroxide powder, and cathode
JP2015140282A (en) * 2014-01-29 2015-08-03 住友金属鉱山株式会社 Production method of indium hydroxide powder and cathode
JP2015171960A (en) * 2014-03-11 2015-10-01 住友金属鉱山株式会社 indium hydroxide powder and indium oxide powder
CN105683089A (en) * 2014-03-11 2016-06-15 住友金属矿山株式会社 Indium hydroxide powder and indium oxide powder
WO2015136816A1 (en) * 2014-03-11 2015-09-17 住友金属鉱山株式会社 Indium hydroxide powder and indium oxide powder
KR20160131996A (en) * 2014-03-11 2016-11-16 스미토모 긴조쿠 고잔 가부시키가이샤 Indium hydroxide powder and indium oxide powder
TWI634079B (en) * 2014-03-11 2018-09-01 住友金屬鑛山股份有限公司 Indium hydroxide powder and indium oxide powder
JP2016138026A (en) * 2015-01-29 2016-08-04 住友金属鉱山株式会社 Indium oxide powder and method for producing the same

Similar Documents

Publication Publication Date Title
JP2695605B2 (en) Target and manufacturing method thereof
CA2221825C (en) Spheroidally agglomerated basic cobalt (ii) carbonate and spheroidally agglomerated cobalt (ii) hydroxide, process for their production and their use
JP2006264989A (en) Indium oxide powder and method for producing the same
JP2829556B2 (en) Method for producing indium oxide powder
WO2010004912A1 (en) Process for producing ito particles, ito powder, coating material for transparent electroconductive material, and transparent electroconductive film
US6051166A (en) Indium oxide-tin oxide powders and method for producing the same
JP4060187B2 (en) Method for producing ITO powder in which tin is dissolved in indium oxide and method for producing ITO target
US20030178752A1 (en) Indium oxide powder, method for preparing the same, and method for manufacturing high-density indium tin oxide target
KR100444142B1 (en) ITO fine powder and method for producing the same
JPH1095615A (en) Indium oxide powder for high density sintered compact
CN112323084A (en) Preparation method of nano indium oxide
JP5233007B2 (en) Paint for transparent conductive material and method for producing transparent conductive film
CN105836792A (en) Production method for nanometer indium oxide
TW201837214A (en) Sputtering target, sputtering target production method, amorphous film, amorphous film production method, crystalline film, and crystalline film production method
US5866493A (en) Method of manufacturing a sintered body of indium tin oxide
JP4841029B2 (en) Tin oxide-added indium oxide powder and method for producing the same
JP3289335B2 (en) Method for producing indium oxide powder and ITO sintered body
CN107665972A (en) A kind of Sn@C-material preparation methods of high-performance kalium ion battery negative material
JP5486751B2 (en) Rod-shaped indium tin oxide powder and method for producing the same
JP3173440B2 (en) Method for producing tin oxide powder
KR100455280B1 (en) Method of preparing indium tin oxide(ITO)
JPH1179745A (en) Production of indium oxide powder for ito target
JPH11322336A (en) Production of tin oxide powder
JP2007238337A (en) Ito powder and its manufacturing method, ito coating material and ito electrically conductive film
JP3371701B2 (en) Manufacturing method of ITO powder

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030722