KR20160012134A - Method for producing indium hydroxide powder, method for producing indium oxide powder, and sputtering target - Google Patents

Method for producing indium hydroxide powder, method for producing indium oxide powder, and sputtering target Download PDF

Info

Publication number
KR20160012134A
KR20160012134A KR1020157032587A KR20157032587A KR20160012134A KR 20160012134 A KR20160012134 A KR 20160012134A KR 1020157032587 A KR1020157032587 A KR 1020157032587A KR 20157032587 A KR20157032587 A KR 20157032587A KR 20160012134 A KR20160012134 A KR 20160012134A
Authority
KR
South Korea
Prior art keywords
indium
indium oxide
hydroxide powder
powder
particle size
Prior art date
Application number
KR1020157032587A
Other languages
Korean (ko)
Other versions
KR102129451B1 (en
Inventor
노리아키 스가모토
다츠오 기베
데츠로 가모
츠요시 이와사
데츠지 가와카미
고우 다카다
쇼헤이 미즈누마
Original Assignee
스미토모 긴조쿠 고잔 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 스미토모 긴조쿠 고잔 가부시키가이샤 filed Critical 스미토모 긴조쿠 고잔 가부시키가이샤
Publication of KR20160012134A publication Critical patent/KR20160012134A/en
Application granted granted Critical
Publication of KR102129451B1 publication Critical patent/KR102129451B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/18Alkaline earth metal compounds or magnesium compounds
    • C25B1/20Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5481Monomodal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

입경이 균일하고 입도 분포폭이 좁은 수산화인듐 가루를 제조한다. 양극에 금속 인듐을 이용한 전해에 의해 수산화인듐 가루를 제조하는 방법에 있어서, 전해액의 전해질 농도를 0.1∼2.0 mol/L로 하고, pH를 2.5∼5.0, 액온을 20∼60℃로 하며, 전극 전류 밀도를 4∼20 A/dm2로 하고, 석출한 수산화인듐 가루를 포함하는 전해 슬러리의 농도가 2∼15%의 범위 내가 되도록 전해를 행한다.Thereby producing an indium hydroxide powder having a uniform particle diameter and a narrow particle size distribution width. A method for producing an indium hydroxide powder by electrolysis using metal indium in an anode, characterized in that the electrolytic solution has an electrolyte concentration of 0.1 to 2.0 mol / L, a pH of 2.5 to 5.0 and a liquid temperature of 20 to 60 캜, The electrolysis is performed so that the density is 4 to 20 A / dm 2 and the concentration of the electrolytic slurry containing precipitated indium hydroxide powder is in the range of 2 to 15%.

Description

수산화인듐 가루의 제조 방법 및 산화인듐 가루의 제조 방법, 및 스퍼터링 타겟{METHOD FOR PRODUCING INDIUM HYDROXIDE POWDER, METHOD FOR PRODUCING INDIUM OXIDE POWDER, AND SPUTTERING TARGET}FIELD OF THE INVENTION [0001] The present invention relates to a method for producing indium hydroxide, a method for producing indium oxide powder, a method for producing indium oxide powder, and a sputtering target,

본 발명은, 입경의 균일성이 우수하고, 입도 분포폭이 좁은 수산화인듐 가루를 얻을 수 있는 수산화인듐 가루의 제조 방법 및 산화인듐 가루의 제조 방법, 및 얻어진 산화인듐 가루를 이용한 스퍼터링 타겟에 관한 것이다. 본 출원은, 일본에서 2013년 5월 27일에 출원된 일본 특허 출원 번호 특원 제2013-111289를 기초로 하여 우선권을 주장하는 것으로, 이 출원은 참조됨으로써 본 출원에 원용된다. The present invention relates to a process for producing an indium hydroxide powder which can obtain an indium hydroxide powder having a uniform particle size and a narrow particle size distribution width, a process for producing an indium oxide powder, and a sputtering target using the obtained indium oxide powder . The present application claims priority based on Japanese Patent Application No. 2013-111289 filed on May 27, 2013, the entirety of which is incorporated herein by reference.

최근, 태양 전지 용도나 터치 패널 용도로서 투명 도전막의 이용이 늘어나고 있고, 그것에 수반하여 스퍼터링 타겟 등 투명 도전막 형성용 재료의 수요가 증가하고 있다. 이러한 투명 도전막 형성용 재료에는 산화인듐계 소결 재료가 주로 사용되고 있다. 투명 도전막 형성용 재료의 주원료로서 산화인듐 가루가 사용된다. 스퍼터링 타겟에 이용되는 산화인듐 가루는 고밀도 타겟을 얻기 위해서 될 수 있는한 입도 분포의 폭이 작은 것이 바람직하다. 2. Description of the Related Art In recent years, use of a transparent conductive film as a solar cell application or a touch panel application has been increasing, and a demand for a material for forming a transparent conductive film such as a sputtering target has increased. An indium oxide-based sintered material is mainly used as a material for forming a transparent conductive film. Indium oxide powder is used as the main material of the transparent conductive film forming material. It is preferable that the particle size distribution of the indium oxide powder used for the sputtering target is as small as possible in order to obtain a high density target.

산화인듐 가루의 제조 방법으로서는, 주로, 질산인듐 수용액이나 염화인듐 수용액 등의 산성 수용액을 암모니아수 등의 알칼리성 수용액으로 중화하여 생기는 수산화인듐의 침전을 건조하여 가소하는, 소위 중화법에 의해서 제조된다. As a production method of the indium oxide powder, it is mainly produced by a so-called neutralization method in which the precipitation of indium hydroxide which is generated by neutralizing an acid aqueous solution such as an aqueous solution of indium nitrate or an aqueous solution of indium chloride with an aqueous alkaline solution such as ammonia water is dried and calcined.

중화법에서는, 얻어지는 산화인듐 가루의 응집을 억제하기 위해서, 70∼95℃의 고온의 질산인듐 수용액에 알칼리 첨가함으로써 침상의 수산화인듐을 얻는 방법이 제안되어 있다(예컨대, 특허문헌 1 참조). 침상의 수산화인듐을 가소함으로써 응집이 적은 산화인듐 가루를 얻을 수 있다고 개시되어 있다. In the neutralization method, a method of obtaining needle-shaped indium hydroxide by adding alkali to an aqueous solution of indium nitrate at a high temperature of 70 to 95 DEG C in order to suppress aggregation of the obtained indium oxide powder has been proposed (for example, see Patent Document 1). It is disclosed that indium hydroxide powder with less aggregation can be obtained by calcining indium hydroxide in the needle bed.

그러나, 중화법으로 제조한 산화인듐 가루는, 입경이나 입도 분포가 불균해지기 쉽고, 비교적 큰 사이즈의 입자가 공존한다는 문제가 있다. 이 때문에, 이러한 산화인듐을 사용하여 스퍼터링 타겟을 제작하면, 대입자에 의한 입자간의 공극이 생겨, 밀도가 향상되기 어렵게 되는 등의 문제가 생긴다. However, the indium oxide powder produced by the neutralization method tends to be uneven in particle diameter and particle size distribution, and there is a problem that particles of relatively large size coexist. For this reason, when such a sputtering target is produced by using such indium oxide, there arises a problem that voids between particles due to large particles are generated, making it difficult to improve the density.

이밖에, 중화법에서는, 산화인듐 가루 제조 후에 대량의 질소 배수가 발생하기 때문에 배수 처리 비용이 커진다는 문제가 있다. In addition, in the neutralization method, since a large amount of nitrogen wastewater is generated after the production of the indium oxide powder, there is a problem that the wastewater treatment cost becomes large.

이것을 개선하는 방법으로서는, 금속 인듐을 전해 처리함으로써 수산화인듐 가루의 침전을 생기게 하고, 이것을 가소하여 산화인듐 가루를 제조하는 방법, 소위 전해법이 제안되어 있다(예컨대, 특허문헌 2 참조). 이 방법에서는, 중화법에 비해서, 산화인듐 가루 제조 후의 질소 배수량을 현격히 적게 할 수 있는 것 외에, 얻어지는 산화인듐 가루의 입경을 균일화할 수 있다. As a method for improving this, there has been proposed a method of producing indium oxide powder by causing precipitation of indium hydroxide powder by electrolytic treatment of metal indium, and calcining the indium hydroxide powder, so-called electrolytic solution (for example, see Patent Document 2). In this method, the amount of nitrogen discharged after the production of the indium oxide powder can be remarkably reduced as compared with the neutralization method, and the particle size of the obtained indium oxide powder can be made uniform.

그러나, 전해법에 의해서 얻어지는 수산화인듐 가루는, 전해액의 pH가 중성에 가까운 것으로부터 매우 미세하고 응집하기 쉽다는 문제가 있다. 이것을 가소하여 얻어지는 산화인듐 가루는, 일차 입자경은 비교적 균일하지만, 이들 입자가 강하게 응집한 응집 가루가 얻어지기 쉬워진다. 응집에 의해서, 입도 분포의 폭이 넓어지기 때문에, 타겟의 고밀도화가 저해된다는 문제가 있다. However, since the pH of the electrolytic solution is close to neutrality, the indium hydroxide powder obtained by the electrolytic method has a problem that it is very fine and easily aggregated. The indium oxide powder obtained by calcining this is relatively uniform in primary particle size, but agglomerated powder in which these particles are agglomerated strongly is likely to be obtained. There is a problem that the increase in the particle size distribution due to agglomeration leads to a reduction in the density of the target.

따라서, 수산화인듐 가루의 제조 방법에 있어서, 제조 후의 질소 배수량이 적은 전해법을 이용하여, 입경이 균일하고 입도 분포의 폭이 좁은 수산화인듐 가루를 얻는 방법이 요구된다. Accordingly, there is a need for a method for producing an indium hydroxide powder having a uniform particle size and a narrow particle size distribution, by using an electrolysis method with a small amount of nitrogen discharge after production, in a method for producing indium hydroxide powder.

특허문헌 1: 일본 특허 제3314388호 공보Patent Document 1: Japanese Patent No. 3314388 특허문헌 2: 일본 특허 제2829556호 공보Patent Document 2: Japanese Patent No. 2829556

그래서, 본 발명은, 이러한 실정을 감안하여 제안된 것으로, 응집하기 어렵고, 입경이 균일하며, 입도 분포폭이 좁은 수산화인듐 가루를 얻을 수 있는 수산화인듐 가루의 제조 방법 및 얻어진 수산화인듐 가루를 가소하여 산화인듐 가루를 얻는 산화인듐 가루의 제조 방법, 및 얻어진 산화인듐 가루를 이용하여 제작한 스퍼터링 타겟을 제공하는 것을 목적으로 한다. DISCLOSURE OF THE INVENTION It is therefore an object of the present invention to provide a process for producing an indium hydroxide powder which has been proposed in view of the above circumstances and which is difficult to agglomerate and has a uniform particle size and a narrow particle size distribution width can be obtained, An object of the present invention is to provide a method for producing an indium oxide powder to obtain an indium oxide powder and a sputtering target produced using the obtained indium oxide powder.

전술한 목적을 달성하는 본 발명에 따른 수산화인듐 가루의 제조 방법은, 양극에 금속 인듐을 이용한 전해에 의해 수산화인듐 가루를 제조하는 수산화인듐 가루의 제조 방법으로서, 전해액의 농도가 0.1∼2.0 mol/L이며, pH가 2.5∼5.0, 액온이 20∼60℃이고, 전극 전류 밀도가 4∼20 A/dm2이며, 석출한 수산화인듐 가루를 포함하는 전해 슬러리의 농도가 2∼15%의 범위가 되도록 전해를 행하는 것을 특징으로 한다. According to the present invention, there is provided a process for producing an indium hydroxide powder by electrolytic electrolysis using metal indium on an anode, wherein the concentration of the electrolytic solution is 0.1 to 2.0 mol / L, the pH is 2.5 to 5.0, the liquid temperature is 20 to 60 ° C, the electrode current density is 4 to 20 A / dm 2 , the concentration of the electrolytic slurry containing precipitated indium hydroxide powder is in the range of 2 to 15% So that electrolysis is performed.

전술한 목적을 달성하는 본 발명에 따른 산화인듐 가루의 제조 방법은, 전술의 수산화인듐 가루를 가소하여 얻어지는 것을 특징으로 한다. The method for producing an indium oxide powder according to the present invention for achieving the above-mentioned object is characterized by being obtained by calcining the above-mentioned indium hydroxide powder.

전술한 목적을 달성하는 본 발명에 따른 스퍼터링 타겟은, 상기 산화인듐의 제조 방법으로 얻어진 산화인듐 가루를 이용하여 제작된 것을 특징으로 한다. The sputtering target according to the present invention for achieving the above-mentioned object is characterized by being manufactured using the indium oxide powder obtained by the above-mentioned production method of indium oxide.

본 발명에서는 전해액의 농도, pH, 액온, 전극 전류 밀도를 제어하고, 석출한 수산화인듐 가루를 포함하는 전해 슬러리의 농도가 특정한 범위 내가 되도록 전해를 행함으로써, 생성한 수산화인듐 가루는 응집하기 어렵고, 입경이 균일하며, 입도 분포폭이 좁은 수산화인듐 가루를 제조할 수 있다. 이에 따라, 본 발명에서는, 얻어진 수산화인듐 가루를 이용함으로써, 동일하게 입경이 균일하고, 입도 분포폭이 좁은 산화인듐 가루가 얻어지고, 고밀도의 스퍼터링 타겟을 얻을 수 있다. In the present invention, by controlling the concentration, the pH, the liquid temperature and the electrode current density of the electrolytic solution and electrolyzing the electrolytic slurry so that the concentration of the electrolytic slurry containing the precipitated indium hydroxide powder is within a specific range, the produced indium hydroxide powder is difficult to aggregate, It is possible to produce an indium hydroxide powder having a uniform particle diameter and a narrow particle size distribution width. Accordingly, in the present invention, by using the obtained indium hydroxide powder, indium oxide powder having a uniform particle size and narrow particle size distribution width can be obtained, and a high-density sputtering target can be obtained.

도 1은 실시예 및 비교예에서 이용한 전해 장치의 개략도이다.
도 2는 동 전해 장치에서의 음극과 양극의 배치를 나타내는 개략도이다.
1 is a schematic view of an electrolytic apparatus used in Examples and Comparative Examples.
2 is a schematic view showing the arrangement of a cathode and an anode in the electrolytic apparatus.

이하에, 본 발명을 적용한 산화인듐 가루의 제조 방법 및 그 제조 방법에 의해 얻어진 산화인듐 가루를 이용한 스퍼터링 타겟에 관해서 설명한다. 또, 본 발명은, 특별히 한정이 없는 한, 이하의 상세한 설명에 한정되는 것은 아니다. 본 발명을 적용한 산화인듐 가루의 제조 방법 및 스퍼터링 타겟의 실시의 형태에 관해서, 이하의 순서로 상세히 설명한다. Hereinafter, a method for producing indium oxide powder to which the present invention is applied and a sputtering target using indium oxide powder obtained by the manufacturing method will be described. Further, the present invention is not limited to the following detailed description unless otherwise specified. The method for producing the indium oxide powder to which the present invention is applied and the embodiment of the sputtering target will be described in detail in the following procedure.

1. 산화인듐 가루의 제조 방법1. Manufacturing method of indium oxide powder

1-1. 수산화인듐 가루의 제조 공정1-1. Manufacturing process of indium hydroxide powder

1-2. 수산화인듐 가루의 회수 공정1-2. Recovery process of indium hydroxide powder

1-3. 수산화인듐 가루의 건조 공정1-3. Drying process of indium hydroxide powder

1-4. 산화인듐 가루의 생성 공정1-4. Production process of indium oxide powder

2. 스퍼터링 타겟2. Sputtering target

1. 산화인듐 가루의 제조 방법1. Manufacturing method of indium oxide powder

(1-1. 수산화인듐 가루의 제조 공정)(1-1. Production process of indium hydroxide powder)

수산화인듐 가루의 제조 방법은, 전해 반응을 이용하여 수산화인듐 가루를 제조한다. The production method of the indium hydroxide powder uses an electrolytic reaction to produce an indium hydroxide powder.

수산화인듐 가루의 제조 방법은 인듐을 애노드(양극)로 하고, 대극의 캐소드(음극)에 도전성의 금속이나 카본 전극을 사용하며, 양극 및 음극을 전해액에 침지하여 양극간에 전위차를 발생시켜 전류를 생기게 함으로써 양극 금속을 용해한다. 전해에 있어서, 전해액의 pH를 수산화인듐의 용해도보다 낮은 상태가 되는 영역으로 제어함으로써, 수산화인듐 가루의 침전을 생기게 하여, 수산화인듐 가루를 얻는다. A method of producing indium hydroxide powder is a method in which indium is used as an anode (anode), a conductive metal or a carbon electrode is used for a cathode (cathode) of a counter electrode, a positive potential is generated between the anode and the cathode by immersing the anode and the cathode in an electrolytic solution, Thereby dissolving the anode metal. In the electrolysis, the pH of the electrolytic solution is controlled to be lower than the solubility of the indium hydroxide, whereby indium hydroxide powder is precipitated to obtain indium hydroxide powder.

양극에는, 예컨대 금속 인듐 등을 이용한다. 사용하는 금속 인듐은 특별히 한정되지 않지만, 산화인듐 가루로의 불순물의 혼입을 억제하기 위해서 고순도의 것이 바람직하다. 적절한 금속 인듐으로서는 순도 99.9999%(통칭 6N품)가 적합품으로서 사용된다. As the anode, for example, metal indium or the like is used. The metal indium to be used is not particularly limited, but it is preferable that the metal indium is of high purity in order to suppress the incorporation of impurities into the indium oxide powder. As a suitable metal indium, a purity of 99.9999% (commonly referred to as 6N) is used as a suitable product.

음극에는, 도전성의 금속이나 카본 전극 등이 이용되고, 예컨대 불용성의 티탄 등을 이용할 수 있다. For the cathode, a conductive metal or a carbon electrode is used, and for example, insoluble titanium or the like can be used.

전해액으로서는 수용성의 질산염, 황산염, 염화물염 등의 일반적인 전해질염의 수용액을 이용할 수 있다. 그중에서도 수산화인듐 가루를 침전한 후의 건조, 가소 후에 불순물이 남지 않는 질산암모늄을 사용한 질산암모늄 수용액이 바람직하다. As the electrolytic solution, an aqueous solution of a common electrolytic salt such as a water-soluble nitrate salt, a sulfate salt, and a chloride salt can be used. Among them, an aqueous solution of ammonium nitrate using ammonium nitrate in which no impurities remain after drying and calcining after precipitation of indium hydroxide powder is preferable.

전해액의 농도는 0.1∼2.0 mol/L로 한다. 전해액의 농도가 낮을수록 저렴해지지만, 농도가 0.1 mol/L보다도 낮은 경우에는, 전해액의 전기 전도율이 지나치게 낮아 전류가 생기지 않거나, 또는 필요 전압이 실용 범위를 넘기 때문에 바람직하지 않다. 한편, 전해액의 농도가 2.0 mol/L이면 충분한 전기 전도율이 확보되기 때문에, 2.0 mol/L보다도 높게 하면 경제적이지 않게 되기 때문에 이 이상 높게 할 필요는 없다. The concentration of the electrolytic solution is 0.1 to 2.0 mol / L. When the concentration is lower than 0.1 mol / L, the electric conductivity of the electrolytic solution is too low to cause no current, or the required voltage exceeds the practical range, which is not preferable. On the other hand, when the concentration of the electrolytic solution is 2.0 mol / L, a sufficient electric conductivity is secured. Therefore, if it is higher than 2.0 mol / L, it is not economical.

전해액의 pH는, 2.5∼5.0의 범위로 한다. pH가 2.5보다 작은 경우에는, 수산화물의 침전이 생기지 않고, 5.0보다 큰 경우에는 수산화물의 석출 속도가 지나치게 빨라 농도 불균일인 채로 침전이 형성되기 때문에 입도 분포폭이 넓어져 바람직하지 않다. 또, 수산화물이 침전을 일으키는 pH는, 공존 이온에 의해서도 영향을 받기 때문에, 2.5∼5.0의 범위 내에 있어서 각각에 있던 pH의 범위로 조정하는 것이 필요하다. 또, 시트르산이나 타르타르산, 글리콜산 등의 산소 함유 킬레이트 화합물이나 에틸렌디아민사아세트산(EDTA) 등의 질소 함유 킬레이트의 공존에 의해서도 수산화물의 용해 안정성이 향상되기 때문에, 이들의 존재도 고려하여 적정히 수산화물이 침전하는 pH로 조정할 필요가 있다.The pH of the electrolytic solution is set in the range of 2.5 to 5.0. When the pH is less than 2.5, precipitation of hydroxide does not occur. When the pH is more than 5.0, precipitation rate of hydroxide is excessively high and precipitation is formed with concentration unevenness, which is not preferable because the particle size distribution width widens. The pH at which the hydroxide precipitates is also influenced by the coexisting ions, so it is necessary to adjust the pH within the range of 2.5 to 5.0 within the respective pH ranges. Also, since the dissolution stability of hydroxides is improved by the coexistence of oxygen-containing chelate compounds such as citric acid, tartaric acid and glycolic acid, and nitrogen-containing chelates such as ethylenediamine acetic acid (EDTA), the hydroxides It is necessary to adjust the pH to be settled.

전해액의 액온은 20∼60℃로 한다. 20℃보다 낮은 경우에는, 수산화물의 석출 속도가 지나치게 늦어지고, 또한 60℃보다 높은 경우에는 석출 속도가 지나치게 빨라져 농도 불균일인 채로 침전이 형성되기 때문에 입도 분포폭이 넓어지고, 입도 분포폭을 작게 제어할 수 없기 때문에 바람직하지 않다. The liquid temperature of the electrolytic solution is 20 to 60 캜. When the temperature is lower than 20 ° C, the precipitation rate of hydroxide is excessively slow. When the temperature is higher than 60 ° C, the precipitation rate becomes excessively high and the precipitate is formed with unevenness of concentration. It is not preferable.

전류 밀도는 4∼20 A/dm2의 범위로 한다. 전류 밀도가 4 A/dm2보다 낮은 경우에는, 수산화인듐 가루의 생성 속도가 저하된다. 또한 전류 밀도가 지나치게 오르면, 수산화물 침전 발생보다도 인듐이 음극 상에서 석출하는 반응이 우선하기 시작하기 때문에, 그 결과 석출한 인듐 금속이 수산화인듐 금속에 혼합하여 입도를 거칠게 해 버리기 때문에 바람직하지 않다. 20 A/dm2보다 높은 경우에는 그 경향이 현저해지기 때문에 바람직하지 않다. 또한 전해 전압이 상승함으로써 액온 상승이 생기기 쉬운 것, 양극의 금속 인듐의 표면이 부동태화하여 전해하기 어렵게 되는 등의 문제도 생기기 때문에 바람직하지 않다. The current density is in the range of 4 to 20 A / dm 2 . When the current density is lower than 4 A / dm 2 , the generation rate of the indium hydroxide powder is lowered. If the current density becomes too high, the reaction in which indium precipitates on the negative electrode starts to take precedence over the occurrence of hydroxide precipitation. As a result, the precipitated indium metal is mixed with the indium hydroxide and the particle size becomes rough. When it is higher than 20 A / dm 2 , the tendency becomes remarkable, which is not preferable. Further, since the rise of the electrolytic voltage is liable to cause rise of the liquid temperature, the surface of the metal indium of the anode becomes passivated and becomes difficult to be electrolyzed, and so on.

양극과 음극의 사이의 전극간 거리는 1 cm∼4 cm의 범위 내로 하는 것이 바람직하다. 1 cm보다 좁은 경우에는, 용이하게 물리적인 접촉이 일어나기 쉽고 단락 등이 일어나기 쉬워지기 때문에 바람직하지 않다. 4 cm보다 넓은 경우에는, 전류가 생기지 않거나, 또는 필요 전압이 실용 범위를 넘기 때문에 바람직하지 않다. The interelectrode distance between the anode and the cathode is preferably within a range of 1 cm to 4 cm. If it is narrower than 1 cm, it is not preferable because physical contact easily occurs and a short circuit easily occurs. If it is wider than 4 cm, no current is generated, or the required voltage exceeds the practical range.

전해는, 수산화인듐 가루가 석출한 전해액(이하, 전해 슬러리라고도 함)의 농도가 2∼15%의 범위 내에서 행한다. 수산화인듐 가루의 침전량은 전해의 진행과 함께 증가하지만, 농도가 2%보다 낮은 경우에는 농도가 지나치게 낮기 때문에 고액 분리의 효율이 낮아져 바람직하지 않다. 또한, 15%보다 높은 경우에는, 전해액의 점성이 지나치게 올라가, 전해액 중에서 균일하게 확산하는 것이 저해되기 때문에 농도 불균일인 채로 침전이 형성되어, 입도 분포폭이 작아지지 않아 바람직하지 않다. The electrolysis is carried out at a concentration of 2 to 15% of the electrolytic solution in which the hydroxide hydroxide precipitates (hereinafter also referred to as electrolytic slurry). The precipitation amount of the indium hydroxide powder increases with the progress of the electrolysis, but when the concentration is lower than 2%, the concentration is too low and the efficiency of the solid-liquid separation lowers, which is not preferable. If it is higher than 15%, the viscosity of the electrolytic solution becomes excessively high, and uniform diffusion in the electrolyte is inhibited. Therefore, precipitation occurs with unevenness in concentration and the particle size distribution width is not reduced.

(1-2. 수산화인듐 가루의 회수 공정)(1-2. Recovery process of indium hydroxide powder)

전해에 의해 얻어진 수산화인듐 가루를 전해액으로부터 고액 분리하고, 분리한 수산화인듐 가루를 순수로 세정하여 다시 고액 분리하여 회수한다. The indium hydroxide powder obtained by electrolysis is subjected to solid-liquid separation from the electrolytic solution, and the separated indium hydroxide powder is washed with pure water and separated again by solid-liquid separation.

고액 분리 방법으로서는, 특별히 한정되지 않지만, 예컨대 로터리 필터, 원심 분리, 필터 프레스, 가압 여과, 감압 여과 등을 예로 들 수 있다. The solid-liquid separation method is not particularly limited, and examples thereof include a rotary filter, a centrifuge, a filter press, a pressure filtration, a vacuum filtration and the like.

(1-3. 수산화인듐 가루의 건조 공정)(1-3. Drying process of indium hydroxide powder)

다음으로, 회수한 수산화인듐 가루의 건조를 행한다. Next, the recovered indium hydroxide powder is dried.

건조 방법은 스프레이 드라이어, 공기 대류형 건조로, 적외선 건조로 등의 건조기로 행한다. The drying method is performed by a dryer such as a spray dryer, an air convection type drying furnace, or an infrared drying furnace.

건조 조건은 수산화인듐 가루의 수분을 제거할 수 있으면 특별히 한정되지 않지만, 예컨대 건조 온도는 80℃∼150℃의 범위가 바람직하다. 건조 온도가 80℃보다도 낮은 경우에는, 건조가 불충분해지고, 150℃보다도 높은 경우에는 수산화인듐으로부터 산화인듐으로 변화되어 버린다. 건조 시간은 온도에 따라 상이하지만, 약 10시간∼24시간이다. The drying condition is not particularly limited as long as it can remove the moisture of the indium hydroxide powder. For example, the drying temperature is preferably in the range of 80 to 150 캜. When the drying temperature is lower than 80 캜, drying becomes insufficient, and when the drying temperature is higher than 150 캜, indium hydroxide is changed to indium oxide. The drying time varies depending on the temperature, but is about 10 hours to 24 hours.

이상과 같은 수산화인듐 가루의 제조 방법에서는, 전해에 있어서 전해액의 농도를 0.1∼2.0 mol/L, pH를 2.5∼5.0, 액온을 20∼60℃의 범위로 하고, 이러한 전해액에 양극과 음극을 침지시켜 전극 전류 밀도가 4 A/dm2∼20 A/dm2의 범위이고, 전해 슬러리의 농도가 2∼15%가 되는 범위 내에서 전해를 행함으로써, 응집하기 어렵고 입경이 균일하며 입도 분포폭이 좁은 수산화인듐 가루를 얻을 수 있다. In the process for producing the indium hydroxide powder as described above, the electrolytic solution has a concentration of 0.1 to 2.0 mol / L, a pH of 2.5 to 5.0, and a liquid temperature of 20 to 60 캜 in electrolysis, and the positive electrode and the negative electrode are immersed The electrolytic solution is carried out within a range in which the electrode current density is in the range of 4 A / dm 2 to 20 A / dm 2 and the concentration of the electrolytic slurry is in the range of 2 to 15%, whereby the aggregation is difficult, A narrow indium hydroxide powder can be obtained.

또한, 얻어지는 수산화인듐 가루의 일차 입자의 형상은 주상이 된다. 수산화인듐 가루의 일차 입자가 주상인 것에 따라, 응집이 적절하게 억제되고, 입경이 서브 마이크론 또는 수마이크론의 입도 분포가 좁은 구상의 이차 입자가 얻어진다. In addition, the shape of primary particles of the obtained indium hydroxide powder becomes a main phase. As the primary particles of the indium hydroxide powder are the main phase, aggregation is appropriately suppressed, and spherical secondary particles having a particle size of submicron or a narrow particle size distribution of several microns are obtained.

(1-4. 산화인듐 가루의 생성 공정)(1-4. Production process of indium oxide powder)

산화인듐 가루의 생성 공정에서는, 건조 후의 수산화인듐 가루를 가소하여 산화인듐 가루를 생성한다. 가소 조건은, 예컨대 가소 온도 600℃∼800℃, 가소 시간 1시간∼10시간으로 행하는 것이 바람직하다. 또, 산화인듐 가루의 생성 공정에서는, 수산화인듐 가루를 보다 원하는 입경으로 하기 위해서 필요에 따라서 해쇄 또는 분쇄를 행해도 좋다. 또한, 산화인듐 가루의 생성 공정에서는, 전해액에 질산암모늄을 이용한 경우, 가소에 의해 질산암모늄의 분해가 생겨 산화인듐 가루로의 혼입을 방지할 수 있다. In the production process of the indium oxide powder, the dried indium hydroxide powder is calcined to produce indium oxide powder. The firing conditions are preferably, for example, a firing temperature of 600 ° C to 800 ° C and a firing time of 1 hour to 10 hours. In the production process of the indium oxide powder, it is also possible to carry out the crushing or crushing as necessary in order to make the indium hydroxide powder have a desired particle diameter. In addition, in the step of producing the indium oxide powder, when ammonium nitrate is used for the electrolytic solution, the ammonium nitrate is decomposed by the preliminary firing, so that the incorporation into the indium oxide powder can be prevented.

이상과 같은 산화인듐 가루의 제조 방법에서는, 수산화인듐 가루를 전해법으로 생성할 때에, 전술한 바와 같이 전해액의 농도, pH, 액온, 전극 전류 밀도를 제어하고, 석출한 수산화인듐 가루를 포함하는 전해 슬러리의 농도가 특정한 범위 내가 되도록 전해를 행함에 따라, 생성한 수산화인듐 가루는 입경이 균일하며, 입도 분포폭이 좁은 수산화인듐 가루를 제조할 수 있다. 이에 따라, 산화인듐 가루의 제조 방법에서는 입경이 균일하고 입도 분포폭이 좁은 수산화인듐 가루를 가소함으로써, 입경이 균일하며 입도 분포폭이 좁은 산화인듐 가루를 얻을 수 있다. In the above-mentioned production method of the indium oxide powder, when the indium hydroxide powder is produced by the electrolytic method, the concentration, the pH, the liquid temperature and the electrode current density of the electrolytic solution are controlled as described above and the electrolytic solution containing the precipitated indium hydroxide powder By conducting electrolysis so that the concentration of the slurry is within a specific range, the produced indium hydroxide powder can produce an indium hydroxide powder having a uniform particle size and a narrow particle size distribution width. Thus, in the method for producing indium oxide powder, indium hydroxide powder having a uniform particle size and a narrow particle size distribution can be obtained by preheating indium hydroxide powder having a uniform particle size and narrow particle size distribution width.

또한, 산화인듐 가루의 제조 방법에서는, 중화법에 비해서 산화인듐 가루의 제조 후의 질소 배수량을 억제할 수 있다. Further, in the production method of the indium oxide powder, the amount of nitrogen discharge after the production of the indium oxide powder can be suppressed as compared with the neutralization method.

2. 스퍼터링 타겟2. Sputtering target

전술의 수산화인듐 가루의 제조 방법에 의해 얻어진 수산화인듐 가루를 가소하여 얻어진 산화인듐 가루는, 예컨대 투명 도전막의 형성에 이용되는 스퍼터링 타겟의 원료에 이용된다. The indium oxide powder obtained by calcining the indium hydroxide powder obtained by the above-mentioned production method of the indium hydroxide powder is used for a raw material of a sputtering target used for forming a transparent conductive film, for example.

전술의 산화인듐 가루를 산화주석 가루 등의 타겟의 다른 원료와 소정의 비율로 혼합한 조립(造粒) 가루를 제작한다. 다음으로, 조립 가루를 이용하여 예컨대 콜드프레스법에 의해 성형체를 제작한다. 다음으로, 성형체를 대기압 하에서 예컨대 1300℃∼1600℃의 온도 범위 내에서 소결을 행한다. 다음으로, 필요에 따라서, 소결체의 평면이나 측면을 연마하는 등의 가공을 행한다. 그리고, 소결체를 Cu제의 백킹 플레이트에 본딩함으로써, 산화인듐주석 스퍼터링 타겟(ITO 스퍼터링 타겟)을 얻을 수 있다. The granulated powder obtained by mixing the above-mentioned indium oxide powder with other raw materials of the target such as tin oxide powder at a predetermined ratio is produced. Next, a molded body is manufactured by, for example, a cold press method using a granulated powder. Next, sintering is performed in a temperature range of, for example, 1300 DEG C to 1600 DEG C at atmospheric pressure. Next, as necessary, the sintered body is subjected to processing such as grinding the plane or the side face. Then, the indium tin oxide sputtering target (ITO sputtering target) can be obtained by bonding the sintered body to a backing plate made of Cu.

스퍼터링 타겟의 제조 방법에서는, 원료가 되는 산화인듐 가루의 입경이 균일하며, 입도 분포폭이 좁은 것이기 때문에, 고밀도의 소결체를 얻을 수 있고, 타겟의 밀도를 높일 수 있다. 이에 따라, 타겟의 가공 중에 균열이 생기지 않고, 스퍼터 시에 이상 방전이 발생하는 것을 억제할 수 있다. In the method for producing a sputtering target, since the particle size of the indium oxide powder as a raw material is uniform and the particle size distribution width is narrow, a high-density sintered body can be obtained and the density of the target can be increased. As a result, it is possible to suppress occurrence of an anomalous discharge during sputtering without causing cracks during processing of the target.

또한, 산화인듐 가루는, 스퍼터링 타겟의 원료뿐만이 아니라, 도전성 페이스트나 투명 도전막 도료에 첨가된다. 산화인듐 가루는, 입경이 균일하기 때문에, 도전성 페이스트나 투명 도전막 도료 등에 첨가한 경우에는 고분산을 발현한다. Further, the indium oxide powder is added not only to the raw material of the sputtering target but also to the conductive paste or the transparent conductive film paint. The indium oxide powder exhibits high dispersion when added to a conductive paste, a transparent conductive film coating or the like because the particle diameter is uniform.

실시예Example

이하, 본 발명을 적용한 구체적인 실시예에 관해서 설명하지만, 본 발명은, 이들 실시예에 한정되는 것은 아니다. Hereinafter, specific examples to which the present invention is applied will be described, but the present invention is not limited to these examples.

이하의 실시예 및 비교예에서는, 도 1에 나타내는 전해 장치(1)를 이용하여 수산화인듐 가루의 생성을 행했다. 전해 장치의 구체적인 구성에 관해서는 실시예 1에 있어서 설명한다. In the following Examples and Comparative Examples, indium hydroxide powder was produced by using the electrolytic apparatus 1 shown in Fig. The specific configuration of the electrolytic apparatus will be described in the first embodiment.

(실시예 1)(Example 1)

전해 장치(1)는, 세로 30 cm, 가로 40 cm, 깊이 30 cm의 36 L 전해조(2)와, 세로 40 cm, 가로 40 cm, 깊이 50 cm의 80 L 조정조(3)를 구비하고, 전해조(2)와 조정조(3)는 인접하고 있다. 전해조(2)와 조정조(3)는 순환 펌프(4)에 의해 접속되어 있다. The electrolytic apparatus 1 is provided with a 36 L electrolytic cell 2 having a length of 30 cm, a width of 40 cm and a depth of 30 cm and an 80 L adjusting tank 3 having a length of 40 cm, a width of 40 cm and a depth of 50 cm, (2) and the adjustment tank (3) are adjacent to each other. The electrolytic bath 2 and the conditioning tank 3 are connected by a circulation pump 4.

전해조(2)에는, 바닥부로부터 2 cm의 높이에서 바닥과 평행하게 전해액(5)의 액류를 분산시키기 위해서 펀치 플레이트(6)가 설치되어 있다. 즉, 펀치 플레이트(6)는, 10 cm 사방당 세로 5열, 가로 5열, 계 25개의 직경 3 mm의 구멍이 바둑판 형상으로 등간격으로 개방되어 있다. 이에 따라, 전해조(2)에서는, 순환 펌프(4)에 의해 전해조(2)의 하부에 주입된 전해액(5)이 펀치 플레이트(6)를 통과하고, 각 액류는 편류가 없는 거의 균일한 액류를 확보할 수 있다. The electrolytic cell 2 is provided with a punch plate 6 for dispersing the liquid flow of the electrolytic solution 5 in parallel with the bottom at a height of 2 cm from the bottom. That is, the punch plate 6 has 5 rows, 5 rows, and 25 holes each having a diameter of 3 mm per 10 cm square, which are arranged at regular intervals in a checkered pattern. Thus, in the electrolytic cell 2, the electrolytic solution 5 injected into the lower part of the electrolytic cell 2 by the circulation pump 4 passes through the punch plate 6, and each liquid flows in a substantially homogeneous liquid flow .

또한, 전해조(2)에는 도 2에 나타낸 바와 같이 음극(7)과 양극(8)을 배치했다. 음극(캐소드)(7)에는, 두께 1 mm, 폭 30 cm, 높이 25 cm의 티탄 금속판을 5장 준비했다. 양극(애노드)(8)에는 순도 99.9999%의 인듐금속을 폭 30 cm, 높이 25 cm, 두께 5 mm의 판 형상으로 성형한 것을 4장 준비했다. 이러한 5장의 음극(7)과 4장의 양극(8)을 도 2에 나타낸 바와 같이, 전해조(2) 내의 펀치 플레이트(6) 상에 수직으로 하여 양극이 서로 평행해지도록 교대로 배치했다. 음극(7)과 양극(8)과 사이의 거리를 3.0 cm로 조절하여 배치했다. 5장의 음극(7)은 도선(9)으로 전기적으로 접속되어 있다. Further, in the electrolytic cell 2, the cathode 7 and the anode 8 were arranged as shown in Fig. The cathode (cathode) 7 was provided with five titanium metal plates each having a thickness of 1 mm, a width of 30 cm and a height of 25 cm. Four pieces of indium metal having a purity of 99.9999% and having a plate shape of 30 cm in width, 25 cm in height, and 5 mm in thickness were prepared as the anode (anode) 8. The five cathodes 7 and the four cathodes 8 were arranged vertically on the punch plate 6 in the electrolytic bath 2 as shown in Fig. 2 so that the anodes were parallel to each other. And the distance between the cathode 7 and the anode 8 was adjusted to 3.0 cm. The five cathodes (7) are electrically connected to the lead wire (9).

조정조(3)는 전해액의 온도를 제어 및 유지하기 위한 온도 조절 히터(11) 및 냉각기(12)를 구비한다. 또한, 조정조(3)는 조 내의 전해액(5)을 교반하는 교반 막대(13)를 구비한다. The adjusting tank 3 is provided with a temperature adjusting heater 11 and a cooler 12 for controlling and maintaining the temperature of the electrolytic solution. Further, the adjustment tank 3 is provided with a stirring rod 13 for stirring the electrolyte solution 5 in the tank.

전해 장치(1)에서는, 조정조(3)에 60 L의 2.0 mol/L 질산암모늄 수용액이 들어가 있다. 조정조(3)에 있어서, 전해액(5)의 질산암모늄 수용액에 대하여 1N 질산을 첨가하고, 수소 이온 농도 지수 pH를 4.0으로 조정했다. pH의 측정은, 조정조(3)에 부착한 pH 전극(10)을 이용하여 행했다. 이 상태를 유지하면서, 또한 온도 조절 히터(11) 및 냉각기(12)를 사용하여 전해액(5)의 온도를 25℃로 유지했다. 조정조(3)에서는, 교반 막대(13)에서 조 내의 전해액(5)을 교반하여 전해액(5)의 조정을 행했다. In the electrolytic apparatus 1, 60 L of a 2.0 mol / L ammonium nitrate aqueous solution is contained in the adjustment tank 3. In the adjusting tank 3, 1N nitric acid was added to the ammonium nitrate aqueous solution of the electrolytic solution 5, and the hydrogen ion concentration index pH was adjusted to 4.0. The pH was measured using the pH electrode 10 attached to the adjustment tank 3. While keeping this state, the temperature of the electrolyte solution 5 was maintained at 25 캜 by using the temperature control heater 11 and the cooler 12. In the adjusting tank 3, the electrolytic solution 5 in the bath was stirred by stirring the stirring rod 13.

전해 중에는, 순환 펌프(4)에 의해 20 L/분의 속도로 조정조(3) 내의 전해액(5)을 전해조(2)로 보냈다. 전해조(2)의 전해액(5)은 오버 플로우에 의해 조정조(3)에 되돌아가게 되어 있다. During the electrolysis, the electrolytic solution 5 in the adjustment tank 3 was sent to the electrolytic bath 2 at a rate of 20 L / min by the circulation pump 4. The electrolytic solution 5 of the electrolytic bath 2 is returned to the adjustment tank 3 by overflow.

전극 전류 밀도는 15 A/dm2로 조절하여 6시간 전해를 계속했다. 전해에 의해 석출한 수산화인듐 가루를 누체(Nutsche) 여과병으로 감압 여과를 행하여 회수했다. The electrode current density was adjusted to 15 A / dm 2 and the electrolysis continued for 6 hours. The indium hydroxide powder precipitated by electrolysis was collected by filtration under reduced pressure through a Nutsche filtration bottle.

회수한 수산화인듐 가루의 입도 분포를 레이저광 도플러법에 의해 측정한 결과를 표 1에 나타낸다. 수산화인듐 가루의 입도 분포는 최소 직경 0.3 μm, 최대 직경 1.2 μm이며, 잘 한정된 범위의 입도 분포를 갖고 있었다. Table 1 shows the results of measurement of the particle size distribution of the recovered indium hydroxide powder by the laser light Doppler method. The particle size distribution of the indium hydroxide powder has a minimum diameter of 0.3 μm and a maximum diameter of 1.2 μm and a well-defined range of particle size distribution.

다음으로, 얻어진 수산화인듐 가루를 120℃, 12시간에서의 대기 중 정치 조건에서 건조하고, 대기 중 700℃에서 소성했다. 얻어진 산화인듐의 입도 분포는, 최소 직경 0.5 μm, 최대 직경 1.2 μm이며, 동일하게 잘 한정된 범위의 입도 분포를 갖고 있었다. 고형물량의 중량을 조사한 결과로부터, 전해에서의 전해 슬러리의 농도는 3.2 wt%였다. Next, the obtained indium hydroxide powder was dried under atmospheric conditions at 120 DEG C for 12 hours, and then calcined at 700 DEG C in the atmosphere. The obtained indium oxide particle size distribution had a minimum diameter of 0.5 占 퐉 and a maximum diameter of 1.2 占 퐉 and had a particle size distribution in the same well-defined range. From the results of the investigation of the weight of solid content, the concentration of the electrolytic slurry in the electrolytic solution was 3.2 wt%.

이후, 콜드 프레스 대기압 소결법에 의해서 산화인듐 단독으로의 소결체를 제작했다. 이 결과, 소결체의 밀도는 산화인듐의 진비중 7.18 g/cm3에 대하여 99.5%의 고밀도였다. Thereafter, a sintered body of indium oxide alone was produced by a cold press atmospheric pressure sintering method. As a result, the density of the sintered body was 99.5% of a high density relative to a true specific gravity of 7.18 g / cm 3 of indium oxide.

(실시예 2)(Example 2)

실시예 2에서는, 실시예 1의 조건에서, 전해액의 질산암모늄 수용액을 0.5 mol/L로 한 것 외에는 실시예 1과 동일한 방법으로 전해를 실시했다. 그리고, 얻어진 수산화인듐 가루로부터 실시예 1과 동일한 방법으로 산화인듐 소결체를 제작했다. In Example 2, electrolysis was carried out in the same manner as in Example 1, except that the aqueous ammonium nitrate solution of the electrolytic solution was changed to 0.5 mol / L under the conditions of Example 1. An indium oxide sintered body was produced from the obtained indium hydroxide powder in the same manner as in Example 1.

실시예 2에서는, 전해액의 수산화인듐 가루의 농도는 3.2 wt%였다. 또한 실시예 1와 동일하게 측정한 수산화인듐 가루의 입도 분포는, 최소 직경 0.3 μm, 최대 직경 1.0 μm이며, 잘 한정된 범위의 입도 분포를 갖고 있었다. 동일하게 산화인듐 가루의 입도 분포는 최소 직경 0.5 μm, 최대 직경 1.2 μm이며, 동일하게 한정된 범위의 입도 분포였다. 산화인듐 소결체의 밀도는 진비중에 대하여 99.6%의 고밀도였다. In Example 2, the concentration of the indium hydroxide powder in the electrolytic solution was 3.2 wt%. The particle size distribution of the indium hydroxide powder measured in the same manner as in Example 1 had a minimum diameter of 0.3 mu m and a maximum diameter of 1.0 mu m and a particle size distribution in a finite range. In the same manner, the particle size distribution of the indium oxide powder has a minimum diameter of 0.5 μm and a maximum diameter of 1.2 μm and a particle size distribution in the same limited range. The density of the indium oxide sintered body was 99.6% of the true specific gravity.

(실시예 3)(Example 3)

실시예 3에서는, 실시예 1의 조건에서, 전해 온도를 50℃로 한 것 외에는 실시예 1과 동일한 방법으로 전해를 실시했다. 그리고, 얻어진 수산화인듐 가루로부터 실시예 1과 동일한 방법으로 산화인듐 소결체를 제작했다. In Example 3, electrolysis was carried out in the same manner as in Example 1, except that the electrolytic temperature was changed to 50 캜 under the conditions of Example 1. An indium oxide sintered body was produced from the obtained indium hydroxide powder in the same manner as in Example 1.

실시예 3에서는, 전해액의 수산화인듐 가루의 농도는 3.2 wt%였다. 또한 실시예 1과 동일하게 측정한 수산화인듐 가루의 입도 분포는 최소 직경 0.3 μm, 최대 직경 1.2 μm이며, 잘 한정된 범위의 입도 분포를 갖고 있었다. 동일하게 산화인듐 가루의 입도 분포는 최소 직경 0.5 μm, 최대 직경 1.2 μm이며, 동일하게 한정된 범위의 입도 분포였다. 산화인듐 소결체의 밀도는 진비중에 대하여 99.5%의 고밀도였다. In Example 3, the concentration of the indium hydroxide powder in the electrolytic solution was 3.2 wt%. The particle size distribution of the indium hydroxide powder measured in the same manner as in Example 1 had a minimum diameter of 0.3 mu m and a maximum diameter of 1.2 mu m and a particle size distribution in a finite range. In the same manner, the particle size distribution of the indium oxide powder has a minimum diameter of 0.5 μm and a maximum diameter of 1.2 μm and a particle size distribution in the same limited range. The density of the indium oxide sintered body was as high as 99.5% of the true specific gravity.

(실시예 4)(Example 4)

실시예 4에서는, 실시예 1의 조건에서, 전극 전류 밀도를 8 A/dm2로 한 것 외에는 실시예 1과 동일한 방법으로 전해를 실시했다. 그리고, 얻어진 수산화인듐 가루로부터 실시예 1과 동일한 방법으로 산화인듐 소결체를 제작했다. In Example 4, electrolysis was carried out in the same manner as in Example 1, except that the electrode current density was 8 A / dm 2 under the conditions of Example 1. An indium oxide sintered body was produced from the obtained indium hydroxide powder in the same manner as in Example 1.

실시예 4에서는, 전해액의 수산화인듐 가루의 농도는 2.0 wt%였다. 또한 실시예 1과 동일하게 측정한 수산화인듐 가루의 입도 분포는 최소 직경 0.3 μm, 최대 직경 1.2 μm이며, 잘 한정된 범위의 입도 분포를 갖고 있었다. 동일하게 산화인듐 가루의 입도 분포는 최소 직경 0.5 μm, 최대 직경 1.2 μm이며, 동일하게 한정된 범위의 입도 분포였다. 산화인듐 소결체의 밀도는, 진비중에 대하여 99.5%의 고밀도였다. In Example 4, the concentration of the indium hydroxide powder in the electrolytic solution was 2.0 wt%. The particle size distribution of the indium hydroxide powder measured in the same manner as in Example 1 had a minimum diameter of 0.3 mu m and a maximum diameter of 1.2 mu m and a particle size distribution in a finite range. In the same manner, the particle size distribution of the indium oxide powder has a minimum diameter of 0.5 μm and a maximum diameter of 1.2 μm and a particle size distribution in the same limited range. The density of the indium oxide sintered body was as high as 99.5% of the true specific gravity.

(실시예 5)(Example 5)

실시예 5는, 실시예 1의 조건에서, 전극 전류 밀도를 17 A/dm2로 한 것 외에는 실시예 1과 동일한 방법으로 전해를 실시했다. 그리고, 얻어진 수산화인듐 가루로부터 실시예 1과 동일한 방법으로 산화인듐 소결체를 제작했다. Example 5 was electrolytic in the same manner as in Example 1 except that the electrode current density was 17 A / dm 2 under the conditions of Example 1. An indium oxide sintered body was produced from the obtained indium hydroxide powder in the same manner as in Example 1.

실시예 5에서는 전해 슬러리의 농도는 3.2 wt%였다. 또한 실시예 1과 동일하게 측정한 수산화인듐 가루의 입도 분포는 최소 직경 0.3 μm, 최대 직경 1.2 μm이며, 한정된 범위의 입도 분포를 갖고 있었다. 동일하게 산화인듐 가루의 입도 분포는 최소 직경 0.5 μm, 최대 직경 1.2 μm이며, 동일하게 한정된 범위의 입도 분포였다. 또한 산화인듐 소결체의 밀도는 진비중에 대하여 99.3%의 고밀도였다. In Example 5, the concentration of the electrolytic slurry was 3.2 wt%. The particle size distribution of the indium hydroxide powder measured in the same manner as in Example 1 had a minimum diameter of 0.3 mu m and a maximum diameter of 1.2 mu m and had a limited particle size distribution. In the same manner, the particle size distribution of the indium oxide powder has a minimum diameter of 0.5 μm and a maximum diameter of 1.2 μm and a particle size distribution in the same limited range. The density of the indium oxide sintered body was 99.3% of the true specific gravity.

(실시예 6)(Example 6)

실시예 6에서는, 실시예 1의 조건에서, 전류 밀도를 19 A/dm2, 그리고 전해 시간을 15시간으로 한 것 외에는 실시예 1과 동일한 방법으로 전해를 실시했다. 그리고, 얻어진 수산화인듐 가루로부터 실시예 1과 동일한 방법으로 산화인듐 소결체를 제작했다. In Example 6, electrolysis was carried out in the same manner as in Example 1 except that the current density was 19 A / dm 2 and the electrolysis time was 15 hours under the conditions of Example 1. An indium oxide sintered body was produced from the obtained indium hydroxide powder in the same manner as in Example 1.

실시예 6에서는, 전해 슬러리의 농도는 12.0 wt%였다. 또한 실시예 1과 동일하게 측정한 수산화인듐의 입도 분포에서는 최소 직경 0.2 μm, 최대 직경 1.4 μm이며, 한정된 범위의 입도 분포를 갖고 있었다. 동일하게 산화인듐의 입도 분포는 최소 직경 0.6 μm, 최대 직경 1.4 μm이며, 동일하게 한정된 범위의 입도 분포였다. 또한 산화인듐 소결체의 밀도는 진비중에 대하여 99.2%인 고밀도였다. In Example 6, the concentration of the electrolytic slurry was 12.0 wt%. In addition, the particle size distribution of indium hydroxide measured in the same manner as in Example 1 had a minimum diameter of 0.2 탆 and a maximum diameter of 1.4 탆, and had a limited particle size distribution. In the same manner, the particle size distribution of indium oxide was a minimum diameter of 0.6 μm and a maximum diameter of 1.4 μm. The density of the indium oxide sintered body was 99.2% of the true specific gravity.

(실시예 7)(Example 7)

실시예 7에서는, 실시예 1의 조건에서, 전해액 농도를 1.0 mol/L로 하고, 전극간 거리를 1.5 cm으로 한 것 외에는 실시예 1과 동일한 방법으로 전해를 실시했다. 그리고, 얻어진 수산화인듐 가루로부터 실시예 1과 동일한 방법으로 산화인듐 소결체를 제작했다. In Example 7, electrolysis was carried out in the same manner as in Example 1 except that the electrolytic solution concentration was 1.0 mol / L and the inter-electrode distance was 1.5 cm under the conditions of Example 1. An indium oxide sintered body was produced from the obtained indium hydroxide powder in the same manner as in Example 1.

실시예 7에서는, 전해 슬러리의 농도는 3.2 wt%였다. 또한 실시예 1과 동일하게 측정한 수산화인듐 가루의 입도 분포는, 최소 직경 0.3 μm, 최대 직경 1.2 μm이며, 동일하게 한정된 범위의 입도 분포를 갖고 있었다. 동일하게 산화인듐 가루의 입도 분포는 최소 직경 0.5 μm, 최대 직경 1.2 μm이며 동일하게 잘 한정된 범위의 입도 분포였다. 또한 산화인듐 소결체의 밀도는 진비중에 대하여 99.5%인 고밀도였다. In Example 7, the concentration of the electrolytic slurry was 3.2 wt%. The particle size distribution of the indium hydroxide powder measured in the same manner as in Example 1 had a minimum diameter of 0.3 mu m and a maximum diameter of 1.2 mu m and a particle size distribution in the same limited range. In the same manner, the particle size distribution of the indium oxide powder was a minimum diameter of 0.5 μm, a maximum diameter of 1.2 μm and a uniformly limited particle size distribution. The density of the indium oxide sintered body was 99.5% of the true specific gravity.

(비교예 1)(Comparative Example 1)

비교예 1에서는, 실시예 1의 조건에서, 전해액 농도를 0.04 mol/L, 전극 전류 밀도를 6 A/dm2로 한 것 외에는 실시예 1과 동일한 방법으로 전해를 행했다. In Comparative Example 1, electrolysis was carried out in the same manner as in Example 1, except that the concentration of the electrolytic solution was 0.04 mol / L and the electrode current density was 6 A / dm 2 under the conditions of Example 1.

이 결과, 소정 전류 밀도에 맞추기 위해서 인가하는 전압이 상용 범위를 크게 일탈하고 그리고 안정된 전압값을 유지할 수 없었다. As a result, the voltage applied to meet the predetermined current density largely deviates from the commercial range and the stable voltage value could not be maintained.

(비교예 2)(Comparative Example 2)

비교예 2에서는, 실시예 1의 조건에서, 전해액 농도를 3.0 mol/L로 한 것 외에는 실시예 1과 동일한 방법으로 전해를 실시했다. In Comparative Example 2, electrolysis was carried out in the same manner as in Example 1, except that the concentration of the electrolytic solution was 3.0 mol / L under the conditions of Example 1.

비교예 2에서는, 전해 슬러리의 농도는 3.2 wt%였다. 또한 실시예 1과 동일하게 측정한 수산화인듐 가루의 입도 분포는, 최소 직경 0.3 μm, 최대 직경 3.0 μm이며, 동일하게 산화인듐 가루의 입도 분포는 최소 직경 0.3 μm, 최대 직경 3.0 μm이며, 모두 실시예 1∼7에서의 결과에 비해서 넓은 분포였다. 또한 산화인듐 소결체의 상대 밀도는 89.7%이며, 실시예 1∼7에 비해서 명백히 낮은 값이었다. In Comparative Example 2, the concentration of the electrolytic slurry was 3.2 wt%. The particle size distribution of the indium hydroxide powder measured in the same manner as in Example 1 was a minimum diameter of 0.3 mu m and a maximum diameter of 3.0 mu m. The particle size distribution of the indium oxide powder was 0.3 mu m minimum and 3.0 mu m maximum, Compared to the results in Examples 1 to 7, it was broad distribution. The relative density of the indium oxide-sintered body was 89.7%, which was clearly lower than those of Examples 1 to 7.

(비교예 3)(Comparative Example 3)

비교예 3에서는, 실시예 1의 조건에서, 전해의 pH를 2.3, 전해 온도를 30℃, 전해 시간을 4시간으로 한 것 외에는 실시예 1과 동일한 방법으로 전해를 실시했다. In Comparative Example 3, electrolysis was carried out in the same manner as in Example 1 except that the electrolytic pH was 2.3, the electrolytic temperature was 30 ° C, and the electrolytic time was 4 hours under the conditions of Example 1.

이 결과, 양극 인듐의 전해는 진행하지 않고, 수산화인듐의 침전도 전혀 진행하지 않았다. As a result, the electrolysis of the anode indium did not proceed and the precipitation of the indium hydroxide did not proceed at all.

(비교예 4)(Comparative Example 4)

비교예 4에서는, 실시예 1의 조건에서, 전해의 pH를 6.5로 한 것 외에는 실시예 1과 동일한 방법으로 전해를 실시했다. 그리고, 얻어진 수산화인듐 가루로부터 실시예 1과 동일한 방법으로 산화인듐 소결체를 제작했다. In Comparative Example 4, electrolysis was carried out in the same manner as in Example 1, except that the electrolytic pH was changed to 6.5 under the conditions of Example 1. An indium oxide sintered body was produced from the obtained indium hydroxide powder in the same manner as in Example 1.

이 결과, 전해 슬러리의 농도는 3.2 wt%였다. 또한 실시예 1과 동일하게 측정한 수산화인듐 가루의 입도 분포는 최소 직경 0.1 μm, 최대 직경 9.0 μm이며, 동일하게 산화인듐 가루의 입도 분포는 최소 직경 0.2 μm, 최대 직경 8.8 μm이며, 모두 실시예 1∼7에서의 결과에 비해서 넓은 분포였다. 또한 산화인듐 소결체의 상대 밀도는 87.0%이며, 실시예 1∼7에 비해서 명백히 낮은 값이었다. As a result, the concentration of the electrolytic slurry was 3.2 wt%. The particle size distribution of the indium hydroxide powder measured in the same manner as in Example 1 was a minimum diameter of 0.1 탆 and a maximum diameter of 9.0 탆, and the particle size distribution of the indium oxide powder was 0.2 탆 minimum and 8.8 탆 maximum, Compared to the results from 1 to 7, the distribution was wide. The relative density of the indium oxide-sintered body was 87.0%, which was obviously lower than those of Examples 1 to 7.

(비교예 5)(Comparative Example 5)

비교예 5에서는, 실시예 1의 조건에서, 전해 온도를 18℃로 한 것 외에는 실시예 1과 동일한 방법으로 전해를 실시했다. 그리고, 얻어진 수산화인듐 가루로부터 실시예 1과 동일한 방법으로 산화인듐 소결체를 제작했다. In Comparative Example 5, electrolysis was carried out in the same manner as in Example 1, except that the electrolytic temperature was 18 ° C under the conditions of Example 1. An indium oxide sintered body was produced from the obtained indium hydroxide powder in the same manner as in Example 1.

비교예 5에서는, 전해 슬러리의 농도는 3.2 wt%였다. 또한 실시예 1과 동일하게 측정한 수산화인듐 가루의 입도 분포는 최소 직경 0.8 μm, 최대 직경 2.8 μm이며, 동일하게 산화인듐 가루의 입도 분포는 최소 직경 0.9 μm, 최대 직경 3.0 μm이며, 모두 실시예 1∼7에서의 결과에 비해서 넓은 분포였다. 또한 산화인듐 소결체의 상대 밀도는 91.0%이며, 실시예 1∼7에 비해서 명백히 낮은 값이었다. In Comparative Example 5, the concentration of the electrolytic slurry was 3.2 wt%. In addition, the particle size distribution of the indium hydroxide powder measured in the same manner as in Example 1 had a minimum diameter of 0.8 탆 and a maximum diameter of 2.8 탆, and the particle size distribution of the indium oxide powder was 0.9 탆 minimum and 3.0 탆 maximum, Compared to the results from 1 to 7, the distribution was wide. The relative density of the indium oxide-sintered body was 91.0%, which was clearly lower than those of Examples 1 to 7.

(비교예 6)(Comparative Example 6)

비교예 6에서는, 실시예 1의 조건에서, 전해 온도를 65℃로 한 것 외에는 실시예 1과 동일한 방법으로 전해를 실시했다. 그리고, 얻어진 수산화인듐 가루로부터 실시예 1과 동일한 방법으로 산화인듐 소결체를 제작했다. In Comparative Example 6, electrolysis was carried out in the same manner as in Example 1, except that the electrolytic temperature was changed to 65 캜 under the conditions of Example 1. An indium oxide sintered body was produced from the obtained indium hydroxide powder in the same manner as in Example 1.

비교예 6에서는, 전해 슬러리의 농도는 3.2 wt%였다. 또한 실시예 1과 동일하게 측정한 수산화인듐 가루의 입도 분포는, 최소 직경 0.2 μm, 최대 직경 8.0 μm이며, 동일하게 산화인듐 가루의 입도 분포는 최소 직경 0.2 μm, 최대 직경 8.2 μm이며, 모두 실시예 1∼7에서의 결과에 비해서 넓은 분포였다. 또한 산화인듐 소결체의 상대 밀도는 88.0%이며, 실시예 1∼7에 비해서 명백히 낮은 값이었다. In Comparative Example 6, the concentration of the electrolytic slurry was 3.2 wt%. The particle size distribution of the indium hydroxide powder measured in the same manner as in Example 1 was a minimum diameter of 0.2 탆 and a maximum diameter of 8.0 탆, and the particle size distribution of the indium oxide powder was 0.2 탆 minimum and 8.2 탆 maximum in the same manner Compared to the results in Examples 1 to 7, it was broad distribution. The relative density of the indium oxide-sintered body was 88.0%, which was clearly lower than that of Examples 1 to 7.

(비교예 7)(Comparative Example 7)

비교예 7에서는, 실시예 1의 조건에서, 전극 전류 밀도를 2 A/dm2로 하고, 전해 시간을 12시간으로 한 것 외에는 실시예 1과 동일한 방법으로 전해를 실시했다. 그리고, 얻어진 수산화인듐 가루로부터 실시예 1과 동일한 방법으로 산화인듐 소결체를 제작했다. In Comparative Example 7, electrolysis was carried out in the same manner as in Example 1 except that the electrode current density was 2 A / dm 2 and the electrolysis time was 12 hours under the conditions of Example 1. An indium oxide sintered body was produced from the obtained indium hydroxide powder in the same manner as in Example 1.

비교예 7에서는, 전해 슬러리의 농도는 적어 1.0 wt%을 만족하지 못했다. 또한 실시예 1과 동일하게 측정한 수산화인듐 가루의 입도 분포는, 최소 직경 0.2 μm, 최대 직경 2.8 μm이며, 동일하게 산화인듐 가루의 입도 분포는 최소 직경 0.8 μm, 최대 직경 3.1 μm이며, 모두 실시예 1∼7에서의 결과에 비해서 넓은 분포였다. 또한 산화인듐 소결체의 상대 밀도는 90.0%이며, 실시예 1∼7에 비해서 명백히 낮은 값이었다. In Comparative Example 7, the concentration of the electrolytic slurry was too small to satisfy 1.0 wt%. The particle size distribution of the indium hydroxide powder measured in the same manner as in Example 1 was a minimum diameter of 0.2 탆 and a maximum diameter of 2.8 탆 and the particle size distribution of the indium oxide powder was 0.8 탆 minimum and 3.1 탆 maximum diameter in the same manner Compared to the results in Examples 1 to 7, it was broad distribution. The relative density of the indium oxide-sintered body was 90.0%, which was clearly lower than those of Examples 1 to 7.

(비교예 8)(Comparative Example 8)

비교예 8에서는, 실시예 1의 조건에서, 전해액의 온도를 28℃로 하고, 전극 전류 밀도를 28 A/dm2로 한 것 외에는 실시예 1과 동일한 방법으로 전해를 실시했다. 그리고, 얻어진 수산화인듐 가루로부터 실시예 1과 동일한 방법으로 산화인듐 소결체를 제작했다. In Comparative Example 8, electrolysis was carried out in the same manner as in Example 1 except that the temperature of the electrolytic solution was 28 ° C and the electrode current density was 28 A / dm 2 under the conditions of Example 1. An indium oxide sintered body was produced from the obtained indium hydroxide powder in the same manner as in Example 1.

비교예 8에서는, 전해 슬러리의 농도는 6.0 wt%였다. 또한 실시예 1과 동일하게 측정한 수산화인듐 가루의 입도 분포는, 최소 직경 0.2 μm, 최대 직경 8.1 μm이며, 동일하게 산화인듐 가루의 입도 분포는 최소 직경 0.3 μm, 최대 직경 8.3 μm이며, 모두 실시예 1∼7에서의 결과에 비해서 넓은 분포였다. 또한 산화인듐 소결체의 상대 밀도는 89.0%이며, 실시예 1∼7에 비해서 명백히 낮은 값이었다. In Comparative Example 8, the concentration of the electrolytic slurry was 6.0 wt%. The particle size distribution of the indium hydroxide powder measured in the same manner as in Example 1 had a minimum diameter of 0.2 탆 and a maximum diameter of 8.1 탆, and the particle size distribution of the indium oxide powder was 0.3 탆 minimum and 8.3 탆 maximum diameters in the same manner Compared to the results in Examples 1 to 7, it was broad distribution. The relative density of the indium oxide-sintered body was 89.0%, which was clearly lower than those of Examples 1 to 7.

(비교예 9)(Comparative Example 9)

비교예 9에서는, 실시예 1의 조건에서, 전해 시간을 34시간으로 한 것 외에는 실시예 1과 동일한 방법으로 전해를 실시했다. 그리고, 얻어진 수산화인듐 가루로부터 실시예 1과 동일한 방법으로 산화인듐 소결체를 제작했다. In Comparative Example 9, electrolysis was carried out in the same manner as in Example 1, except that the electrolysis time was changed to 34 hours under the conditions of Example 1. An indium oxide sintered body was produced from the obtained indium hydroxide powder in the same manner as in Example 1.

비교예 9에서는, 전해 슬러리의 농도는 18.0 wt%였다. 또한 실시예 1과 동일하게 측정한 수산화인듐 가루의 입도 분포는, 최소 직경 0.3 μm, 최대 직경 2.0 μm이며, 동일하게 산화인듐 가루의 입도 분포는 최소 직경 0.5 μm, 최대 직경 2.0 μm이며, 모두 실시예 1∼7에서의 결과에 비해서 넓은 분포였다. 또한 산화인듐 소결체의 상대 밀도는 96.2%이며, 실시예 1∼7에 비해서 명백히 낮은 값이었다. In Comparative Example 9, the concentration of the electrolytic slurry was 18.0 wt%. The particle size distribution of the indium hydroxide powder measured in the same manner as in Example 1 was a minimum diameter of 0.3 탆 and a maximum diameter of 2.0 탆 and the particle size distribution of the indium oxide powder was 0.5 탆 minimum and 2.0 탆 maximum in the same manner Compared to the results in Examples 1 to 7, it was broad distribution. The relative density of the indium oxide-sintered body was 96.2%, which was clearly lower than those of Examples 1 to 7.

(비교예 10)(Comparative Example 10)

비교예 10에서는, 실시예 1의 조건에서, 전해 시간을 42시간으로 한 것 외에는 실시예 1과 동일한 방법으로 전해를 실시했다. 그리고, 얻어진 수산화인듐 가루로부터 실시예 1과 동일한 방법으로 산화인듐 소결체를 제작했다. In Comparative Example 10, electrolysis was carried out in the same manner as in Example 1, except that the electrolysis time was changed to 42 hours under the conditions of Example 1. An indium oxide sintered body was produced from the obtained indium hydroxide powder in the same manner as in Example 1.

비교예 10에서는, 전해 슬러리의 농도는 22.0 wt%였다. 또한 실시예 1과 동일하게 측정한 수산화인듐 가루의 입도 분포는, 최소 직경 0.7 μm, 최대 직경 2.8 μm이며, 동일하게 산화인듐 가루의 입도 분포는 최소 직경 0.8 μm, 최대 직경 3.0 μm이며, 모두 실시예 1∼7에서의 결과에 비해서 넓은 분포였다. 또한 산화인듐 소결체의 상대 밀도는 91.0%이며, 실시예 1∼7에 비해서 명백히 낮은 값이었다. In Comparative Example 10, the concentration of the electrolytic slurry was 22.0 wt%. The particle size distribution of the indium hydroxide powder measured in the same manner as in Example 1 was a minimum diameter of 0.7 μm and a maximum diameter of 2.8 μm, and the particle size distribution of the indium oxide powder was 0.8 μm minimum and 3.0 μm maximum, Compared to the results in Examples 1 to 7, it was broad distribution. The relative density of the indium oxide-sintered body was 91.0%, which was clearly lower than those of Examples 1 to 7.

(비교예 11)(Comparative Example 11)

비교예 11에서는, 실시예 1의 조건에서, 전극간 거리를 0.5 cm으로 한 것 외에는 실시예 1과 동일한 방법으로 전해를 실시했다. In Comparative Example 11, electrolysis was carried out in the same manner as in Example 1, except that the distance between electrodes was set to 0.5 cm under the conditions of Example 1.

이 결과, 전극끼리의 접촉에 의한 단락이 발생하고, 전류값이 안정되지 않아 안정된 전해를 할 수 없었다. As a result, a short circuit occurred due to the contact between the electrodes, and the current value was not stabilized and stable electrolysis could not be performed.

(비교예 12)(Comparative Example 12)

비교예 12에서는, 실시예 1의 조건에서, 전극간 거리를 5.0 cm로 한 것 외에는 실시예 1과 동일한 방법으로 전해를 실시했다. 다만, 전극간 거리를 5.0 cm로 하면, 실시예 1과 동수의 전극판을 전해조 내에 배치할 수 없기 때문에, 음극을 3장, 양극을 2장 준비하여 전해조 내에 교대로 배치했다. 그리고, 얻어진 수산화인듐 가루로부터 실시예 1과 동일한 방법으로 산화인듐 소결체를 제작했다. In Comparative Example 12, electrolysis was carried out in the same manner as in Example 1, except that the distance between the electrodes was 5.0 cm under the conditions of Example 1. However, when the distance between the electrodes was set to 5.0 cm, since the same number of electrode plates as in Example 1 could not be arranged in the electrolytic cell, three cathodes and two cathodes were prepared and placed alternately in the electrolytic cell. An indium oxide sintered body was produced from the obtained indium hydroxide powder in the same manner as in Example 1.

비교예 12에서는, 전해 슬러리의 농도는 3.2 wt%였다. 이 수산화인듐의 입도 분포는, 실시예 1과 동일한 방법으로 측정하여 최소 직경 0.6 μm, 최대 직경 3.0 μm이며, 동일하게 산화인듐 가루의 입도 분포는 최소 직경 0.8 μm, 최대 직경 3.0 μm이며, 모두 실시예 1∼7에서의 결과에 비해서 넓은 분포였다. 또한 산화인듐 소결체의 상대 밀도는 93.0%이며, 실시예 1∼7에 비해서 명백히 낮은 값이었다. In Comparative Example 12, the concentration of the electrolytic slurry was 3.2 wt%. The particle size distribution of the indium hydroxide was measured by the same method as in Example 1, and the minimum diameter was 0.6 μm and the maximum diameter was 3.0 μm. The particle size distribution of the indium oxide powder was 0.8 μm minimum and 3.0 μm maximum, Compared to the results in Examples 1 to 7, it was broad distribution. The relative density of the indium oxide-sintered body was 93.0%, which was clearly lower than those of Examples 1 to 7.

(비교예 13)(Comparative Example 13)

비교예 13은, 실시예 1의 조건에서, 전해액 농도를 0.5 mol/L로 하고, 전해액의 pH를 8.0으로 하며, 전해 온도를 10℃로 하고, 전극 전류 밀도를 12 A/dm2로 한 것 외에는 실시예 1과 동일한 방법으로 전해를 실시했다. 그리고, 얻어진 수산화인듐 가루로부터 실시예 1과 동일한 방법으로 산화인듐 소결체를 제작했다. Comparative Example 13 was prepared in the same manner as in Example 1 except that the electrolyte concentration was 0.5 mol / L, the pH of the electrolytic solution was 8.0, the electrolytic temperature was 10 ° C, and the electrode current density was 12 A / dm 2 , Electrolysis was carried out in the same manner as in Example 1. An indium oxide sintered body was produced from the obtained indium hydroxide powder in the same manner as in Example 1.

비교예 13에서는, 전해 슬러리의 농도는 2.6 wt%였다. 또한 실시예 1과 동일하게 측정한 수산화인듐 가루의 입도 분포는, 최소 직경 0.1 μm, 최대 직경 8.5 μm이며, 동일하게 산화인듐의 입도 분포는 최소 직경 0.2 μm, 최대 직경 8.8 μm이며, 모두 실시예 1∼7에서의 결과에 비해서 넓은 분포였다. 또한 산화인듐 소결체의 상대 밀도는 87.0%이며, 실시예 1∼7에 비해서 명백히 낮은 값이었다. In Comparative Example 13, the concentration of the electrolytic slurry was 2.6 wt%. The particle size distribution of the indium hydroxide powder measured in the same manner as in Example 1 was a minimum diameter of 0.1 mu m and a maximum diameter of 8.5 mu m and a particle size distribution of indium oxide was 0.2 mu m and a maximum diameter of 8.8 mu m, Compared to the results from 1 to 7, the distribution was wide. The relative density of the indium oxide-sintered body was 87.0%, which was obviously lower than those of Examples 1 to 7.

(비교예 14)(Comparative Example 14)

비교예 14는, 실시예 1의 조건에서 전해액 농도를 1.0 mol/L로 하고, 전해액의 pH를 6.0으로 하며, 전해 온도를 50℃로 하고, 전극 전류 밀도를 12 A/dm2로 한 것 외에는 실시예 1과 동일한 방법으로 전해를 실시했다. 그리고, 얻어진 수산화인듐 가루로부터 실시예 1과 동일한 방법으로 산화인듐 소결체를 제작했다. In Comparative Example 14, except that the electrolytic solution concentration was set to 1.0 mol / L, the pH of the electrolytic solution was set to 6.0, the electrolytic temperature was set to 50 ° C, and the electrode current density was set to 12 A / dm 2 under the conditions of Example 1 Electrolysis was carried out in the same manner as in Example 1. An indium oxide sintered body was produced from the obtained indium hydroxide powder in the same manner as in Example 1.

비교예 14에서는, 전해 슬러리의 농도는 2.6 wt%였다. 이 수산화인듐 가루의 입도 분포는, 실시예 1과 동일한 방법으로 측정하여 최소 직경 0.1 μm, 최대 직경 8.0 μm이며, 동일하게 산화인듐 가루의 입도 분포는 최소 직경 0.1 μm, 최대 직경 8.0 μm이며, 모두 실시예 1∼7에서의 결과에 비해서 넓은 분포였다. 또한 산화인듐 소결체의 상대 밀도는 87.0%이며, 실시예 1∼7에 비해서 명백히 낮은 값이었다. In Comparative Example 14, the concentration of the electrolytic slurry was 2.6 wt%. The particle size distribution of the indium hydroxide powder was measured in the same manner as in Example 1, and the minimum diameter was 0.1 탆 and the maximum diameter was 8.0 탆. The particle size distribution of the indium oxide powder was 0.1 탆 minimum and 8.0 탆 maximum, Which was broader than the results in Examples 1 to 7. The relative density of the indium oxide-sintered body was 87.0%, which was obviously lower than those of Examples 1 to 7.

Figure pct00001
Figure pct00001

이상과 같이 실시예 및 비교예의 결과로부터, 실시예 1∼7과 같이, 전해액의 농도가 0.1∼2.0 mol/L, pH가 2.5∼5.0, 액온이 20∼60℃, 전극 전류 밀도가 4 A/dm2∼20 A/dm2, 전해액 중의 수산화인듐 가루의 농도가 2∼15%를 만족하도록 전해를 행함으로써, 수산화인듐 가루 및 산화인듐 가루의 입도 분포폭이 좁고, 입경이 균일하며, 산화인듐 소결체의 밀도가 높은 것을 알 수 있다. From the results of Examples and Comparative Examples as described above, it was found that the concentration of the electrolytic solution was 0.1 to 2.0 mol / L, the pH was 2.5 to 5.0, the liquid temperature was 20 to 60 캜, the electrode current density was 4 A / dm 2 to 20 A / dm 2 , and the concentration of the indium hydroxide powder in the electrolytic solution is 2 to 15%, the particle size distribution of the indium hydroxide powder and the indium oxide powder is narrow and the particle diameter is uniform, The density of the sintered body is high.

Claims (7)

양극에 금속 인듐을 이용한 전해에 의해 수산화인듐 가루를 제조하는 수산화인듐 가루의 제조 방법에 있어서,
전해액의 농도가 0.1∼2.0 mol/L이며, pH가 2.5∼5.0, 액온이 20∼60℃이고,
전극 전류 밀도가 4∼20 A/dm2이며,
석출한 상기 수산화인듐 가루를 포함하는 전해 슬러리의 농도가 2∼15%의 범위가 되도록 전해를 행하는 것을 특징으로 하는 수산화인듐 가루의 제조 방법.
A process for producing indium hydroxide powder by electrolytic precipitation using metal indium in an anode,
The concentration of the electrolytic solution is 0.1 to 2.0 mol / L, the pH is 2.5 to 5.0, the liquid temperature is 20 to 60 캜,
The electrode current density is 4 to 20 A / dm 2 ,
And electrolysis is conducted so that the concentration of the electrolytic slurry containing the precipitated indium hydroxide powder is in the range of 2 to 15%.
제1항에 있어서, 상기 전해액은 질산암모늄인 것을 특징으로 하는 수산화인듐 가루의 제조 방법. The method for producing an indium hydroxide powder according to claim 1, wherein the electrolytic solution is ammonium nitrate. 제1항 또는 제2항에 있어서, 상기 수산화인듐 가루의 일차 입자는 주상(柱狀) 형상인 것을 특징으로 하는 수산화인듐 가루의 제조 방법. The method for producing an indium hydroxide powder according to claim 1 or 2, wherein the primary particles of the indium hydroxide powder have a columnar shape. 양극에 금속 인듐을 이용한 전해에 의해 얻어진 수산화인듐 가루를 가소(假燒)하여 산화인듐 가루를 얻는 산화인듐 가루의 제조 방법에 있어서,
전해액의 농도가 0.1∼2.0 mol/L이고, pH가 2.5∼5.0, 액온이 20∼60℃이며,
전극 전류 밀도가 4∼20 A/dm2이고,
석출한 상기 수산화인듐 가루를 포함하는 전해 슬러리의 농도가 2∼15%의 범위가 되도록 전해를 행하는 것을 특징으로 하는 산화인듐 가루의 제조 방법.
A process for producing indium oxide powder which is obtained by calcining an indium hydroxide powder obtained by electrolysis using metal indium on an anode to obtain indium oxide powder,
The concentration of the electrolytic solution is 0.1 to 2.0 mol / L, the pH is 2.5 to 5.0, the liquid temperature is 20 to 60 캜,
The electrode current density is 4 to 20 A / dm 2 ,
And electrolysis is performed so that the concentration of the electrolytic slurry containing the precipitated indium hydroxide powder is in the range of 2 to 15%.
제4항에 있어서, 상기 전해액은 질산암모늄인 것을 특징으로 하는 산화인듐 가루의 제조 방법. The method for producing an indium oxide powder according to claim 4, wherein the electrolytic solution is ammonium nitrate. 제4항 또는 제5항에 있어서, 상기 수산화인듐 가루의 일차 입자는, 주상 형상인 것을 특징으로 하는 산화인듐 가루의 제조 방법. The method for producing an indium oxide powder according to claim 4 or 5, wherein the primary particles of the indium hydroxide powder have a columnar shape. 제4항 내지 제6항 중 어느 한 항에 기재된 산화인듐 가루의 제조 방법으로 얻어진 산화인듐 가루를 이용하여 제작된 것을 특징으로 하는 스퍼터링 타겟. A sputtering target produced using the indium oxide powder obtained by the method for producing an indium oxide powder according to any one of claims 4 to 6.
KR1020157032587A 2013-05-27 2014-05-23 Method for producing indium hydroxide powder, method for producing indium oxide powder, and sputtering target KR102129451B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2013-111289 2013-05-27
JP2013111289 2013-05-27
PCT/JP2014/063671 WO2014192650A1 (en) 2013-05-27 2014-05-23 Method for producing indium hydroxide powder, method for producing indium oxide powder, and sputtering target

Publications (2)

Publication Number Publication Date
KR20160012134A true KR20160012134A (en) 2016-02-02
KR102129451B1 KR102129451B1 (en) 2020-07-03

Family

ID=51988683

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020157032587A KR102129451B1 (en) 2013-05-27 2014-05-23 Method for producing indium hydroxide powder, method for producing indium oxide powder, and sputtering target

Country Status (5)

Country Link
JP (1) JP6090442B2 (en)
KR (1) KR102129451B1 (en)
CN (1) CN105264119B (en)
TW (1) TWI601854B (en)
WO (1) WO2014192650A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6222071B2 (en) * 2014-12-19 2017-11-01 住友金属鉱山株式会社 Electrolytic apparatus for indium hydroxide powder, method for producing indium hydroxide powder, and method for producing sputtering target
JP6222072B2 (en) * 2014-12-19 2017-11-01 住友金属鉱山株式会社 Electrolytic apparatus for indium hydroxide powder or tin hydroxide powder, method for producing indium hydroxide powder or tin hydroxide powder, and method for producing sputtering target
JP6314904B2 (en) * 2015-05-14 2018-04-25 住友金属鉱山株式会社 Method for producing indium hydroxide powder, method for producing indium oxide powder, and method for producing sputtering target
CN107935026B (en) * 2017-11-24 2021-01-15 郑州大学 Method and device for preparing nano indium oxide by electrolysis
CN112323084A (en) * 2020-09-15 2021-02-05 先导薄膜材料(广东)有限公司 Preparation method of nano indium oxide
CN114540826B (en) * 2022-01-12 2023-09-19 株洲火炬安泰新材料有限公司 Method for preparing high-activity indium oxide by electrolytic method and method for preparing ITO target
CN115321585B (en) * 2022-08-09 2023-08-11 先导薄膜材料(安徽)有限公司 Indium hydroxide washing process
JP7394249B1 (en) * 2023-05-15 2023-12-07 株式会社アルバック Molybdenum target and its manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07145432A (en) * 1993-11-22 1995-06-06 Japan Energy Corp Recovering method of indium
JPH1095615A (en) * 1996-06-20 1998-04-14 Mitsubishi Materials Corp Indium oxide powder for high density sintered compact
JPH10204669A (en) * 1997-01-16 1998-08-04 Mitsubishi Materials Corp Production of indium oxide powder
JP2829556B2 (en) 1992-12-09 1998-11-25 株式会社ジャパンエナジー Method for producing indium oxide powder
JP2001348632A (en) * 2000-06-09 2001-12-18 Nikko Materials Co Ltd Method for recovering indium
JP3314388B2 (en) 1991-04-26 2002-08-12 東ソー株式会社 Method for producing indium hydroxide, indium oxide and ITO sintered body

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5417816A (en) * 1992-12-09 1995-05-23 Nikko Kyodo, Ltd. Process for preparation of indium oxide-tin oxide powder
JP2736492B2 (en) * 1992-12-28 1998-04-02 株式会社ジャパンエナジー Method for producing indium oxide-tin oxide powder
CN105926022B (en) * 2011-07-26 2018-03-23 吉坤日矿日石金属株式会社 The electrolysis manufacture device and manufacture method of indium hydroxide or compound containing indium hydroxide
JP5632340B2 (en) * 2011-08-05 2014-11-26 Jx日鉱日石金属株式会社 Electrolytic production apparatus and production method of indium hydroxide and compound containing indium hydroxide
JP5949663B2 (en) * 2012-09-13 2016-07-13 住友金属鉱山株式会社 Method for producing indium hydroxide powder, method for producing indium oxide powder, and sputtering target

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3314388B2 (en) 1991-04-26 2002-08-12 東ソー株式会社 Method for producing indium hydroxide, indium oxide and ITO sintered body
JP2829556B2 (en) 1992-12-09 1998-11-25 株式会社ジャパンエナジー Method for producing indium oxide powder
JPH07145432A (en) * 1993-11-22 1995-06-06 Japan Energy Corp Recovering method of indium
JPH1095615A (en) * 1996-06-20 1998-04-14 Mitsubishi Materials Corp Indium oxide powder for high density sintered compact
JPH10204669A (en) * 1997-01-16 1998-08-04 Mitsubishi Materials Corp Production of indium oxide powder
JP2001348632A (en) * 2000-06-09 2001-12-18 Nikko Materials Co Ltd Method for recovering indium

Also Published As

Publication number Publication date
KR102129451B1 (en) 2020-07-03
WO2014192650A1 (en) 2014-12-04
CN105264119A (en) 2016-01-20
TWI601854B (en) 2017-10-11
JPWO2014192650A1 (en) 2017-02-23
TW201504475A (en) 2015-02-01
JP6090442B2 (en) 2017-03-08
CN105264119B (en) 2017-07-04

Similar Documents

Publication Publication Date Title
KR102129451B1 (en) Method for producing indium hydroxide powder, method for producing indium oxide powder, and sputtering target
CN107935026B (en) Method and device for preparing nano indium oxide by electrolysis
JP5949663B2 (en) Method for producing indium hydroxide powder, method for producing indium oxide powder, and sputtering target
JP6036644B2 (en) Method for producing indium hydroxide powder
JP6201193B2 (en) Electrolytic apparatus for indium hydroxide powder or tin hydroxide powder, method for producing indium hydroxide powder or tin hydroxide powder, and method for producing sputtering target
JP6314904B2 (en) Method for producing indium hydroxide powder, method for producing indium oxide powder, and method for producing sputtering target
TWI634079B (en) Indium hydroxide powder and indium oxide powder
TWI579239B (en) A method for producing tin hydroxide powder, and a tin hydroxide powder
KR102300880B1 (en) Process for producing indium hydroxide powder, and cathode
JP6222071B2 (en) Electrolytic apparatus for indium hydroxide powder, method for producing indium hydroxide powder, and method for producing sputtering target
CN110512225B (en) Preparation method of zinc oxide powder
JP5994524B2 (en) Method for producing metal hydroxide powder
JP2014088599A (en) Manufacturing installation of metalhydroxide, manufacturing method of metalhydroxide, and sputtering target
JP2016113690A (en) Electrolytic device, method for producing indium hydroxide powder and method for producing sputtering target
JP2016113684A (en) Electrolytic device and method for producing indium hydroxide powder
JP6201195B2 (en) Electrolytic apparatus for indium hydroxide powder or tin hydroxide powder, method for producing indium hydroxide powder or tin hydroxide powder, and method for producing sputtering target
JP6222072B2 (en) Electrolytic apparatus for indium hydroxide powder or tin hydroxide powder, method for producing indium hydroxide powder or tin hydroxide powder, and method for producing sputtering target
JP6350311B2 (en) Method for producing indium oxide powder
JP2015059229A (en) Method of producing metal hydroxide

Legal Events

Date Code Title Description
AMND Amendment
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)