JP5994524B2 - Method for producing metal hydroxide powder - Google Patents

Method for producing metal hydroxide powder Download PDF

Info

Publication number
JP5994524B2
JP5994524B2 JP2012209646A JP2012209646A JP5994524B2 JP 5994524 B2 JP5994524 B2 JP 5994524B2 JP 2012209646 A JP2012209646 A JP 2012209646A JP 2012209646 A JP2012209646 A JP 2012209646A JP 5994524 B2 JP5994524 B2 JP 5994524B2
Authority
JP
Japan
Prior art keywords
anode
powder
metal compound
particle size
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012209646A
Other languages
Japanese (ja)
Other versions
JP2014062313A (en
Inventor
功 高田
功 高田
憲明 菅本
憲明 菅本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2012209646A priority Critical patent/JP5994524B2/en
Publication of JP2014062313A publication Critical patent/JP2014062313A/en
Application granted granted Critical
Publication of JP5994524B2 publication Critical patent/JP5994524B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ITO膜(Indium Tin Oxide膜)、IGO膜(Indium Garium Oxide)といった酸化インジウム系透明導電体材料や、IGZO(Indium Garium Zinc Oxide)を始めとした酸化インジウム系酸化物半導体材料の製造原料として利用されている金属水酸化物粉末の製造方に関するものである。 The present invention manufactures indium oxide-based transparent conductor materials such as ITO film (Indium Tin Oxide film) and IGO film (Indium Garium Oxide), and indium oxide-based oxide semiconductor materials such as IGZO (Indium Garium Zinc Oxide). a manufacturing how a metal hydroxide powder is used as a raw material.

ITO膜、IGZO膜の形成に用いられる酸化インジウム系透明導電体材料や酸化インジウム系酸化物半導体材料用のスパッタリングターゲットは、構成する各金属元素の酸化物粉末を混合、粉砕し、成形体を形成した後、焼結することで得られる(例えば、特許文献1、2参照。)。   Sputtering targets for indium oxide-based transparent conductor materials and indium oxide-based oxide semiconductor materials used to form ITO films and IGZO films mix and pulverize oxide powders of each constituent metal element to form compacts Then, it is obtained by sintering (see, for example, Patent Documents 1 and 2).

スパッタリングターゲットは、焼結密度が低いとスパッタ中に異常放電を生じたり、加工中にターゲットの割れなどが発生しやすいことが多数報告されている。このため、焼結を阻害するハロゲン元素の混入や粗大粒子の混入などに細心の注意を払う必要がある。   It has been reported that sputtering targets tend to cause abnormal discharge during sputtering or cracking of the target during processing when the sintered density is low. For this reason, it is necessary to pay close attention to the mixing of halogen elements that inhibit sintering and the mixing of coarse particles.

このような問題を解決するために、ハロゲン元素の混入や粒子の粗大化が生じない製造法でターゲットを製造することが一般的である。例えば、高純度金属を硝酸で溶解し、これをアンモニア水で中和して生成した水酸化物を沈殿させ、ろ過、洗浄、乾燥させた後、焙焼させることによりハロゲン元素と粗大粒子の混入がない酸化物粉末を得る方法が一般的である。また、複数の高純度金属を硝酸で溶解し、アンモニア水で中和し水酸化物として沈殿させることで、複合酸化物粉末を得る場合もある。   In order to solve such a problem, it is common to manufacture a target by a manufacturing method in which mixing of halogen elements and coarsening of particles do not occur. For example, a high-purity metal is dissolved in nitric acid, and this is neutralized with aqueous ammonia to precipitate the generated hydroxide, which is filtered, washed, dried, and then roasted to mix halogen elements and coarse particles. A method for obtaining an oxide powder free from slag is common. Moreover, a complex oxide powder may be obtained by dissolving a plurality of high-purity metals with nitric acid, neutralizing with ammonia water, and precipitating as a hydroxide.

しかしながら、このような手法では次のような問題がある。この方法では、排水に多量の窒素が含まれるため窒素を除去するための高価な排水設備が必要となる。また、この方法では、沈殿の条件を一定にするのが困難で粒子形状、粒度分布のバラツキが大きくなる。   However, this method has the following problems. In this method, since a large amount of nitrogen is contained in the wastewater, an expensive drainage facility for removing nitrogen is required. Also, with this method, it is difficult to make the precipitation conditions constant, and the variation in particle shape and particle size distribution increases.

このような問題に対して、インジウム又はガリウムを陽極として電解し、溶出した金属イオンを電解液中で水酸化物として製造する方法が提案されている(例えば、特許文献3、4参照。)。   To solve such a problem, a method has been proposed in which indium or gallium is electrolyzed as an anode, and the eluted metal ions are produced as hydroxides in an electrolytic solution (see, for example, Patent Documents 3 and 4).

しかしながら、この提案されている方法では、上述の問題は解決しているが、新たな問題が生じる。提案されている方法では、陽極として固体金属を使用しているため、電解時間とともに電極状態が変わり、電流密度を一定にできず水酸化物の粒度、結晶性などが変動しまうという問題が生じる。連続的に生産する場合には、電流密度を一定にするために減肉陽極の取替えなどが頻繁に発生するため生産性が落ちてしまう。また、最後まで陽極を使いきることができないため陽極の再加工が必要となり、手間がかかってしまう。   However, this proposed method solves the above-mentioned problems but creates new problems. In the proposed method, since a solid metal is used as the anode, the electrode state changes with the electrolysis time, and the current density cannot be made constant, resulting in a problem that the hydroxide particle size, crystallinity, and the like vary. In the case of continuous production, the productivity decreases due to frequent replacement of the thinning anode in order to keep the current density constant. Moreover, since the anode cannot be used up to the end, it is necessary to rework the anode, which takes time.

国際公開2009/148154号公報International Publication No. 2009/148154 特開2011−190542号公報JP 2011-190542 A 特開平6−171937号公報JP-A-6-171937 特開平11−322334号公報JP-A-11-322334

そこで、本発明は、このような実情に鑑みて提案されたものであり、ハロゲン元素の混入がなく、粒径が均一で粒度分布が狭い金属化合物粉末を効率良く製造することができる金属化合物粉末の製造方法、この製造方法により得られた金属化合物粉末を熱処理した焼成粉末及び焼成粉末を含有するスパッタリングターゲットを提供することを目的とする。   Accordingly, the present invention has been proposed in view of such circumstances, and a metal compound powder that can efficiently produce a metal compound powder having a uniform particle size and a narrow particle size distribution without the inclusion of halogen elements. It is an object of the present invention to provide a production method, a fired powder obtained by heat-treating a metal compound powder obtained by this production method, and a sputtering target containing the fired powder.

上述した目的を達成する本発明に係る金属水酸化物粉末の製造方法は、インジウム−ガリウム金属を溶融してなる陽極と、ハロゲン元素を含まない電解液とを用いて電解反応により該電解液中に金属水酸化物粉末を析出させることを特徴とする。 The method for producing a metal hydroxide powder according to the present invention that achieves the above-described object includes an anode formed by melting indium-gallium metal and an electrolytic solution that does not contain a halogen element. It is characterized by depositing metal hydroxide powder on the surface.

本発明では、単体金属又は合金を溶融してなる陽極を用いることで、陽極と電解液との界面を平坦にすることができ、電解により減肉が生じても重力によって陽極が下がるだけであるため電解液との界面を平坦に保つことができる。これにより、本発明では、陽極表面が平坦であるため電流密度を一定にすることができ、粒径が均一で粒度分布幅が狭い金属化合物粉末を製造することができる。また、本発明では、陽極の電流密度を一定に保つことができるため、陽極の取り替えや加工等の作業を減らすことができ、効率良く金属化合物粉末を製造することができる。更に、本発明では、ハロゲン元素を含まない電解液を用いるため、金属化合物粉末にハロゲン元素が混入することを防止できる。   In the present invention, by using an anode formed by melting a single metal or an alloy, the interface between the anode and the electrolytic solution can be flattened, and even if thinning occurs due to electrolysis, the anode is merely lowered by gravity. Therefore, the interface with the electrolytic solution can be kept flat. Thereby, in this invention, since an anode surface is flat, a current density can be made constant, and a metal compound powder with a uniform particle size and a narrow particle size distribution width can be manufactured. Moreover, in this invention, since the current density of an anode can be kept constant, work, such as replacement | exchange of an anode and a process, can be reduced, and metal compound powder can be manufactured efficiently. Furthermore, in this invention, since the electrolyte solution which does not contain a halogen element is used, it can prevent that a halogen element mixes in metal compound powder.

本発明を適用した金属化合物粉末の製造方法を適用した装置を示す概略図である。It is the schematic which shows the apparatus to which the manufacturing method of the metal compound powder to which this invention is applied.

以下に、本発明を適用した金属化合物粉末の製造方法、焼成粉末及びスパッタリングターゲットについて詳細に説明する。なお、本発明は、特に限定がない限り、以下の詳細な説明に限定されるものではない。   Below, the manufacturing method of metal compound powder to which this invention is applied, a baked powder, and a sputtering target are demonstrated in detail. Note that the present invention is not limited to the following detailed description unless otherwise specified.

1.金属化合物粉末の製造方法
(1−1)金属化合物粉末の生成方法
(1−2)金属化合物粉末の回収工程
(1−3)金属化合物粉末の乾燥工程
2.焼成粉末の製造方法
3.スパッタリングターゲットの製造方法
1. Method for producing metal compound powder (1-1) Method for producing metal compound powder (1-2) Metal compound powder recovery step (1-3) Metal compound powder drying step 2. Manufacturing method of baked powder Manufacturing method of sputtering target

1.金属化合物粉末の製造方法
(1−1)金属化合物粉末の生成方法
金属化合物粉末は、ITO膜、IGZO膜の形成に用いられる酸化インジウム系透明導電体材料や酸化インジウム系酸化物半導体材料用のスパッタリングターゲットの原料として用いられるものである。金属化合物粉末としては、インジウム、ガリウム、インジウム−ガリウム合金、インジウム−ガリウム−亜鉛合金等の酸化物又は水酸化物である。
1. Method for producing metal compound powder (1-1) Method for producing metal compound powder Metal compound powder is used for sputtering for indium oxide-based transparent conductor materials and indium oxide-based oxide semiconductor materials used for forming ITO films and IGZO films. It is used as a target raw material. Examples of the metal compound powder include oxides or hydroxides such as indium, gallium, indium-gallium alloy, and indium-gallium-zinc alloy.

金属化合物粉末の製造方法は、金属化合物粉末を構成する単体金属又は合金を溶融したものを陽極とし、電解液にはハロゲン元素を含まないものを用いて、電解反応により電解液に金属化合物粉末を析出させる。金属化合物粉末の製造方法は、例えば図1に示すような電解装置1を用いて行うことができる。   The metal compound powder is produced by melting a single metal or alloy constituting the metal compound powder as an anode, and using an electrolyte solution that does not contain a halogen element. Precipitate. The manufacturing method of metal compound powder can be performed using the electrolyzer 1 as shown, for example in FIG.

電解装置1は、電解槽2の底部に単体金属又は合金を溶融した陽極3と、陽極3上に電解液4を配置し、陽極3中に配置したカーボン電極5と対向するように電解液4中の陰極6が配置され、カーボン電極5と陰極6との間に定電流電源7が接続されている。この電解装置1では、単体金属又は合金を溶融した液体状の陽極3を用いることにより、電解液4との界面8に凸部がなく、界面8が平坦となっている。更に、電解装置1には、陽極材を陽極3に供給する陽極材供給手段9、電解槽2内の温度を調整する温度調整手段10を有する。また、電解装置1には、ポンプ11で析出した金属化合物粉末12を電解液4と共に吸引パイプ13を介して吸引し、排出パイプ14から電解液4のみを電解槽2に戻す循環機構15が設けられている。   The electrolysis apparatus 1 includes an anode 3 in which a single metal or alloy is melted at the bottom of an electrolytic cell 2, and an electrolyte solution 4 disposed on the anode 3, and the electrolyte solution 4 so as to face the carbon electrode 5 disposed in the anode 3. An inner cathode 6 is arranged, and a constant current power source 7 is connected between the carbon electrode 5 and the cathode 6. In this electrolysis apparatus 1, by using the liquid anode 3 in which a single metal or an alloy is melted, the interface 8 with the electrolyte 4 has no convex portion, and the interface 8 is flat. Furthermore, the electrolysis apparatus 1 has an anode material supply means 9 for supplying the anode material to the anode 3 and a temperature adjustment means 10 for adjusting the temperature in the electrolytic cell 2. The electrolysis apparatus 1 is provided with a circulation mechanism 15 that sucks the metal compound powder 12 deposited by the pump 11 through the suction pipe 13 together with the electrolytic solution 4 and returns only the electrolytic solution 4 from the discharge pipe 14 to the electrolytic cell 2. It has been.

電解法により金属化合物粉末12を生成する場合、陽極3の減肉は、陽極3表面の形状により進行が異なる。例えば、固体状の陽極を用いた場合には、凸部に電解が集中し減肉が進行しやすい。このため、固体状の陽極では、形状、配置等により、不均一な減肉がおこり、電流密度が局部的に変動してしまう。しかしながら、図1に示す電解装置1では、陽極3が液体状態であり、凸部が存在しないため減肉が均一に進行し、界面8の平坦を維持できることから、電流密度が均一となり、生成される金属化合物粉末12の粒径が均一で粒度分布を狭くすることができる。   When the metal compound powder 12 is produced by the electrolytic method, the progress of the thinning of the anode 3 varies depending on the shape of the surface of the anode 3. For example, when a solid anode is used, electrolysis concentrates on the convex portion and thinning easily proceeds. For this reason, in a solid anode, uneven thinning occurs due to the shape, arrangement, etc., and the current density locally fluctuates. However, in the electrolysis apparatus 1 shown in FIG. 1, the anode 3 is in a liquid state, and since there is no convex portion, the thinning proceeds uniformly and the flatness of the interface 8 can be maintained. The metal compound powder 12 has a uniform particle size and a narrow particle size distribution.

陽極3は、インジウム及び/又はガリウムを含むものであり、例えばインジウム単体、ガリウム単体、インジウム−ガリウム合金、インジウム−ガリウム−亜鉛合金等を溶融したものである。電解槽2に投入する陽極材は、電解槽2内で液相の状態になるものであれば、形状は特に問わない。したがって、陽極材は、固体でも液体でも粒状でもインゴットでも全く問題ない。また、合金で液相になるものであれば端成分金属の組み合わせ、金属間化合物も使用可能である。   The anode 3 contains indium and / or gallium, and is made by melting, for example, indium simple substance, gallium simple substance, indium-gallium alloy, indium-gallium-zinc alloy, or the like. The shape of the anode material put into the electrolytic cell 2 is not particularly limited as long as it is in a liquid phase in the electrolytic cell 2. Therefore, the anode material can be solid, liquid, granular or ingot. Further, a combination of end component metals and intermetallic compounds can be used as long as they are in a liquid phase with an alloy.

また、陽極3は、電解により減肉しても電極間間隔が変わらないように、必要な量の陽極材が陽極材供給手段9により供給される。電解装置1では、固体状の陽極材が投入されれば電解槽2内で短時間で液体化し、又は液体状の陽極材を投入すれば、液体状であるため、電極面積、表面状態を減肉前とほぼ同じ状態で維持することができる。これにより、陽極3は、減肉しても電解液4との界面8に凸部ができることがなく、界面8を平坦に維持することができ、電流密度を一定に維持することができる。   The anode 3 is supplied with a necessary amount of anode material by the anode material supply means 9 so that the distance between the electrodes does not change even if the anode 3 is thinned by electrolysis. In the electrolysis apparatus 1, the solid state anode material is liquefied in a short time in the electrolytic cell 2, or the liquid state anode material is liquid, so that the electrode area and surface state are reduced. It can be maintained in almost the same state as before meat. Thereby, even if the anode 3 is thinned, there is no protrusion at the interface 8 with the electrolytic solution 4, the interface 8 can be kept flat, and the current density can be kept constant.

電解液4は、焼結性に著しく影響を与えるハロゲン元素含まないものであり、例えば硝酸アンモニウム、硫酸アンモニウム、炭酸アンモニウムなどがコスト、使い勝手の点から好ましい。   The electrolytic solution 4 does not contain a halogen element that significantly affects the sinterability. For example, ammonium nitrate, ammonium sulfate, or ammonium carbonate is preferable from the viewpoint of cost and usability.

また、電解液4は、沸点が設定する電解温度と同じ又はより高いものが好ましい。例えば、水系の電解液4を用い、陽極3としてガリウムースズ(13.7wt%―86.3wt%)合金を用いた場合に、合金の融点が29.8℃であることから、これ以上の温度で100℃以下の条件で電解を行えば陽極3は常に液体状態となっている。これにより、陽極3と電解液4との界面8は、平坦になり、安定した電流密度の条件下で電解を行うことが可能となる。なお、電解液4は、ハロゲン元素を含まないこと、沸点が電解温度よりも高いことが好ましいこと以外は特に限定されない。   Moreover, the electrolyte solution 4 is preferably the same or higher than the electrolysis temperature set by the boiling point. For example, when an aqueous electrolyte solution 4 is used and a gallium suds (13.7 wt% -86.3 wt%) alloy is used as the anode 3, the melting point of the alloy is 29.8 ° C. If electrolysis is performed under conditions of 100 ° C. or lower, the anode 3 is always in a liquid state. As a result, the interface 8 between the anode 3 and the electrolytic solution 4 becomes flat, and electrolysis can be performed under conditions of a stable current density. The electrolytic solution 4 is not particularly limited except that it does not contain a halogen element and preferably has a boiling point higher than the electrolysis temperature.

陰極6は、電解質に対して不溶性であれば特に限定されない。陰極としては、例えばカーボン、チタン等が好ましい。陰極の形状は、板、メッシュなどが使用可能である。   The cathode 6 is not particularly limited as long as it is insoluble in the electrolyte. As the cathode, for example, carbon, titanium and the like are preferable. As the shape of the cathode, a plate, a mesh, or the like can be used.

温度調整手段10は、電解槽2内の温度を所望の温度に調整する手段であり、加温及び冷却機能を有するものである。   The temperature adjusting means 10 is a means for adjusting the temperature in the electrolytic cell 2 to a desired temperature, and has heating and cooling functions.

循環機構15は、析出した金属化合物粉末12を回収し、電解液4のみを電解槽2に循環させるものである。循環機構15は、ポンプ11で金属化合物粉末12を電解液4と共に吸引パイプ13を介して吸引する。循環機構15は、詳細を図示しないが、金属化合物粉末12と電解液4とを例えばフィルタにより分離し、金属化合物粉末12は回収し、電解液4は排出パイプ14を介して電解槽2内に戻す。更に、電解装置1には、陽極3側に設けたカーボン電極5上に生成した金属化合物粉末12が沈殿しても、カーボン電極5の上方に位置する陽極3を撹拌機等で撹拌して金属化合物粉末12を電解液4中に分散させることで回収することができる。   The circulation mechanism 15 collects the deposited metal compound powder 12 and circulates only the electrolytic solution 4 to the electrolytic cell 2. The circulation mechanism 15 sucks the metal compound powder 12 together with the electrolyte 4 through the suction pipe 13 with the pump 11. Although not shown in detail, the circulation mechanism 15 separates the metal compound powder 12 and the electrolytic solution 4 by, for example, a filter, collects the metal compound powder 12, and the electrolytic solution 4 enters the electrolytic cell 2 through the discharge pipe 14. return. Furthermore, even if the metal compound powder 12 formed on the carbon electrode 5 provided on the anode 3 side precipitates in the electrolysis apparatus 1, the anode 3 located above the carbon electrode 5 is agitated with a stirrer or the like to form a metal. The compound powder 12 can be recovered by dispersing it in the electrolytic solution 4.

以上のような構成からなる電解装置1では、電解槽2の底部に液体状の陽極3が配置され、陽極3上に電解液4が存在することで、陽極3と電解液4との界面8に凸部がなく、界面8が平坦となっている。これにより、この電解装置1では、陽極3の電流密度が均一となる。   In the electrolysis apparatus 1 having the above-described configuration, the liquid anode 3 is disposed at the bottom of the electrolytic cell 2, and the electrolyte solution 4 is present on the anode 3, whereby the interface 8 between the anode 3 and the electrolyte solution 4. There are no projections and the interface 8 is flat. Thereby, in this electrolysis apparatus 1, the current density of the anode 3 becomes uniform.

そして、電解装置1では、温度調整手段10によって、電解温度を陽極3に用いる単体金属又は合金の融点よりも高くなるようにして電解を行う。電解装置1では、電解温度を単体金属又は合金の融点よりも高くすることによって、陽極3を常に液体状にすることができる。陽極3として用いる例えばインジウムの融点は約156℃、ガリウムの融点は約29℃であり、合金は合金割合によって融点が異なる。   In the electrolysis apparatus 1, electrolysis is performed by the temperature adjusting means 10 such that the electrolysis temperature is higher than the melting point of a single metal or alloy used for the anode 3. In the electrolysis apparatus 1, the anode 3 can always be liquid by making the electrolysis temperature higher than the melting point of the single metal or alloy. For example, indium used as the anode 3 has a melting point of about 156 ° C. and gallium has a melting point of about 29 ° C., and alloys have different melting points depending on the alloy ratio.

電解装置1では、温度調整手段10で所定の電解温度とし、定電流電源7で所定の電流密度を通電して電解を行うと、金属化合物粉末12として陽極金属の酸化物又は水酸化物が電解液4に析出する。そして、電解装置1では、電解により陽極3が減肉しても、液体状態の陽極3は重力により下がるため、電解液4との界面8が平坦なままであり陽極3の表面形状は変化しない。陽極材を陽極材供給手段9で補給することにより、陽極材が液体状態であるため、電極面積、表面形状を減肉前の状態とほぼ同じ状態で維持できる。これにより、この金属化合物粉末の製造方法は、減肉が生じても陽極3における電流密度を一定に保つことができるため、粒径が均一で粒度分布幅が狭い金属化合物粉末12を得ることができる。また、連続的に電解を行う場合であっても、陽極材を連続的に供給することで陽極3の電流密度を一定に維持できることから、従来のように減肉した陽極の取り替えを頻繁に行う必要がないため、生産性が低下せず、更に陽極の再加工を必要としないため、コスト高となることも抑えることができる。   In the electrolysis apparatus 1, when electrolysis is performed by setting a predetermined electrolysis temperature with the temperature adjusting means 10 and applying a predetermined current density with the constant current power source 7, an oxide or hydroxide of the anode metal is electrolyzed as the metal compound powder 12. It precipitates in liquid 4. In the electrolysis apparatus 1, even if the anode 3 is thinned by electrolysis, the liquid-state anode 3 is lowered by gravity, so the interface 8 with the electrolyte 4 remains flat and the surface shape of the anode 3 does not change. . By replenishing the anode material with the anode material supply means 9, since the anode material is in a liquid state, the electrode area and the surface shape can be maintained in substantially the same state as before the thinning. As a result, the metal compound powder manufacturing method can keep the current density at the anode 3 constant even if the metal loss occurs, so that the metal compound powder 12 having a uniform particle size and a narrow particle size distribution width can be obtained. it can. In addition, even when the electrolysis is continuously performed, the anode 3 is continuously supplied, so that the current density of the anode 3 can be maintained constant. Therefore, the thinned anode is frequently replaced as in the past. Since it is not necessary, productivity does not decrease, and further, reworking of the anode is not required, so that an increase in cost can be suppressed.

(1−2)金属化合物粉末の回収工程
上述した金属化合物粉末の製造方法により得られた金属化合物粉末12は、電解液4から固液分離し、分離した金属化合物粉末12を純水で洗浄して再び固液分離して回収する。固液分離方法は、例えばロータリーフィルタ、遠心分離、フィルタープレス、加圧濾過、減圧濾過等による濾過を挙げることができる。
(1-2) Metal Compound Powder Recovery Step The metal compound powder 12 obtained by the above-described method for producing a metal compound powder is solid-liquid separated from the electrolytic solution 4, and the separated metal compound powder 12 is washed with pure water. Then separate the liquid and collect again. Examples of the solid-liquid separation method include filtration by a rotary filter, centrifugation, filter press, pressure filtration, vacuum filtration, and the like.

(1−3)金属化合物粉末の乾燥工程
次に、回収した金属化合物粉末12を乾燥する。乾燥方法は、スプレードライヤ、空気対流型乾燥炉、赤外線乾燥炉等の乾燥機で行う。乾燥条件は、透明導電体材料や半導体材料の原料製造の際に一般的に適用される条件と同様であり、特に限定されないが、例えば乾燥温度は80℃〜150℃の範囲が好ましい。乾燥温度が80℃よりも低い場合には、乾燥が不十分となり、150℃よりも高い場合には、金属化合物粉末12の水酸化物が酸化物に変化してしまい、次工程の仮焼にて焼成粉末の粒度分布が大きくなり、粒度分布調整において不都合が生じてしまう。また、金属化合物粉末12が酸化物の場合においても、乾燥温度が150℃よりも高いと同様に粒度分布調整に不都合が生じてしまう。したがって、乾燥温度は、金属化合物粉末12の水分が飛ばせる程度の低温で乾燥することが好ましい。乾燥時間は、温度により異なるが、約10時間〜24時間である。
(1-3) Drying step of metal compound powder Next, the recovered metal compound powder 12 is dried. The drying method is performed by a dryer such as a spray dryer, an air convection type drying furnace, an infrared drying furnace or the like. Drying conditions are the same as those generally applied in the production of transparent conductor materials and semiconductor materials, and are not particularly limited. For example, the drying temperature is preferably in the range of 80 ° C to 150 ° C. When the drying temperature is lower than 80 ° C., the drying is insufficient. When the drying temperature is higher than 150 ° C., the hydroxide of the metal compound powder 12 is changed to an oxide, which is used for calcination in the next step. As a result, the particle size distribution of the calcined powder becomes large, which causes inconvenience in adjusting the particle size distribution. In addition, even when the metal compound powder 12 is an oxide, if the drying temperature is higher than 150 ° C., there is a problem in adjusting the particle size distribution. Therefore, it is preferable that the drying temperature is as low as the moisture of the metal compound powder 12 can be removed. The drying time varies depending on the temperature, but is about 10 hours to 24 hours.

2.焼成粉末の製造方法
焼成粉末の製造方法は、上述した金属化合物粉末の製造方法により得られた金属化合物粉末12の金属酸化物又は金属水酸化物を仮焼する。熱処理の条件は、金属化合物粉末12を例えば400℃から1000℃程度の温度で焼成し、焼成粉末とする。焼成粉末は、粒径が均一で粒度分布幅が狭い金属化合物粉末12を焼成しているため、粒径が均一で粒度分布幅が狭い酸化物混合体粉末又は複合酸化物粉末が得られる。酸化物混合体粉末は、例えばインジウム酸化物とガリウム酸化物の混合体粉末等であり、複合酸化物粉末としては、インジウム−ガリウム合金酸化物粉末等である。
2. The manufacturing method of a baked powder The manufacturing method of a baked powder calcines the metal oxide or metal hydroxide of the metal compound powder 12 obtained by the manufacturing method of the metal compound powder mentioned above. The heat treatment is performed by firing the metal compound powder 12 at a temperature of about 400 ° C. to 1000 ° C., for example. Since the fired powder is obtained by firing the metal compound powder 12 having a uniform particle size and a narrow particle size distribution width, an oxide mixture powder or a composite oxide powder having a uniform particle size and a narrow particle size distribution width is obtained. The oxide mixture powder is, for example, a mixture powder of indium oxide and gallium oxide, and the composite oxide powder is indium-gallium alloy oxide powder.

3.スパッタリングターゲットの製造方法
スパッタリングターゲットの製造方法は、先ず、上述した焼成粉末をターゲットの他の原料と所定の割合で混合し造粒粉を作製する。次に、造粒粉を用いて例えばコードプレス法により成型体を作製する。次に、成型体を大気圧下で例えば1300℃〜1600℃の温度範囲内で焼結を行う。次に、必要に応じて、焼結体の平面や側面を研磨する等の加工を行う。そして、焼結体をCu製のバッキングプレートにボンディングすることにより、スパッタリングターゲットを得ることができる。
3. Manufacturing method of sputtering target The manufacturing method of a sputtering target first mixes the baked powder mentioned above with the other raw material of a target in a predetermined ratio, and produces granulated powder. Next, a molded body is produced by using, for example, a code press method using the granulated powder. Next, the molded body is sintered in the temperature range of 1300 ° C. to 1600 ° C., for example, under atmospheric pressure. Next, processing such as polishing the flat surface and side surfaces of the sintered body is performed as necessary. And a sputtering target can be obtained by bonding a sintered compact to the backing plate made from Cu.

スパッタリングターゲットの製造方法では、原料となる焼成粉末の粒径が均一であり、粒度分布が狭いものであるため、高密度の焼結体を得ることができ、ターゲットの密度を高くすることができる。これにより、ターゲットの加工中に割れ欠けが生じず,スパッタの際に異常放電が発生することを抑制できる。   In the method for producing a sputtering target, since the particle size of the fired powder as a raw material is uniform and the particle size distribution is narrow, a high-density sintered body can be obtained and the density of the target can be increased. . As a result, cracks are not generated during processing of the target, and abnormal discharge can be prevented from occurring during sputtering.

<実施例1>
実施例1では、図1に示したような電解装置を用い、陽極材料としてインジウムーガリウム金属(組成In:13mol%、Ga:87mol%、融点:約17℃)を用いて、40℃の硝酸アンモニウム水溶液(NHNO濃度:1mol/L)中において、電解温度を40℃に設定し、定電流電源で電流密度を600A/mに制御して連続電解を行った。電解中は電極間間隔が変わらないようにインジウムーガリウム金属を液体状態で電解槽に逐次投入した。電解中の電圧はプラスマイナス2%と安定した電解条件を維持できた。
<Example 1>
In Example 1, an electrolytic apparatus as shown in FIG. 1 is used, and an indium-gallium metal (composition In: 13 mol%, Ga: 87 mol%, melting point: about 17 ° C.) is used as an anode material. In an aqueous ammonium nitrate solution (NH 4 NO 3 concentration: 1 mol / L), the electrolysis temperature was set to 40 ° C., and the current density was controlled to 600 A / m 2 with a constant current power source to perform continuous electrolysis. During electrolysis, indium-gallium metal was sequentially put into the electrolytic cell in a liquid state so that the distance between the electrodes did not change. The voltage during electrolysis was 2% plus or minus 2 and stable electrolysis conditions could be maintained.

電解反応後、電解槽中の電解液を回収しろ過、洗浄及び乾燥し、インジウム水酸化物とガリウム水酸化物の混合体を得た。これを大気中600℃で2時間焼成し、焼成粉末として酸化インジウムと酸化ガリウムの金属化合物粉末を得た。この粉末をレーザ式粒度分布測定器にて粒度測定した。粒度はD50、粒度分布はD10及びD90の値で評価したところ、D50は0.9μm、D10は0.6μm、D90は1.4μmと非常に粒度分布の狭い粒子が得られた。粉末中の塩素濃度を分析したところ5ppm以下であった。   After the electrolytic reaction, the electrolytic solution in the electrolytic cell was collected, filtered, washed, and dried to obtain a mixture of indium hydroxide and gallium hydroxide. This was calcined at 600 ° C. for 2 hours in the air to obtain a metal compound powder of indium oxide and gallium oxide as a calcined powder. The particle size of this powder was measured with a laser type particle size distribution analyzer. When the particle size was evaluated as D50, and the particle size distribution was evaluated as D10 and D90, particles having a very narrow particle size distribution of D50 of 0.9 μm, D10 of 0.6 μm, and D90 of 1.4 μm were obtained. The chlorine concentration in the powder was analyzed and found to be 5 ppm or less.

<実施例2>
実施例2では、実施例1と同じ装置を用いて、インジウムーガリウム金属(組成In:50mol%、Ga:50mol%、融点約70℃)を陽極とし、75℃の硝酸アンモニウム水溶液(NHNO濃度が1mol/L)中において、電解温度を75℃に設定し、定電流電源で電流密度を600A/m に制御して連続電解を行った。電極間間隔変わらないようにインジウムーガリウム金属を液体状態で電解槽に逐次投入した。電解中の電圧はプラスマイナス2%と安定した電解条件維持できた。
<Example 2>
In Example 2, using the same apparatus as in Example 1, indium-gallium metal (composition In: 50 mol%, Ga: 50 mol%, melting point: about 70 ° C.) is used as an anode, and an aqueous ammonium nitrate solution (NH 4 NO at 75 ° C.) is used. 3 concentration was 1 mol / L), the electrolysis temperature was set to 75 ° C., and the current density was controlled to 600 A / m 2 with a constant current power source to perform continuous electrolysis. Indium-gallium metal was sequentially introduced into the electrolytic cell in a liquid state so that the distance between the electrodes did not change. The voltage during electrolysis was 2% plus or minus 2 and stable electrolysis conditions could be maintained.

電解反応後、電解槽中の電解液を回収し、ろ過、洗浄及び乾燥し、インジウム水酸化物とガリウム水酸化物の混合体を得た。これを大気中600℃で2時間焼成し、焼成粉末として酸化インジウムと酸化ガリウムの金属化合物粉末を得た。この粉末をレーザ式粒度分布測定器にて粒度測定した。粒度はD50、粒度分布はD10及びD90の値で評価したところ、D50は1.1μm、D10は0.5μm、D90は1.2μmと非常に粒度分布の狭い粒子が得られた。粉末中の塩素濃度を分析したところ5ppm以下であった。   After the electrolytic reaction, the electrolytic solution in the electrolytic cell was collected, filtered, washed and dried to obtain a mixture of indium hydroxide and gallium hydroxide. This was calcined at 600 ° C. for 2 hours in the air to obtain a metal compound powder of indium oxide and gallium oxide as a calcined powder. The particle size of this powder was measured with a laser type particle size distribution analyzer. When the particle size was evaluated as D50, and the particle size distribution was evaluated as D10 and D90, D50 was 1.1 μm, D10 was 0.5 μm, and D90 was 1.2 μm. The chlorine concentration in the powder was analyzed and found to be 5 ppm or less.

<比較例1>
比較例1は、実施例1と同じ装置で陽極にインジウムーガリウム金属(組成In:50mol%、Ga:50mol%、融点:約70℃)を陽極とした。電解液に硝酸アンモニウム水溶液(NHNO濃度:1mol/L)を用いた。比較例1では、必要量の陽極材を電解槽に投入し、液温を90℃まで上昇させ、陽極材を溶融しその後液温50℃まで冷却し、合金固体の陽極を形成し、定電流電源で電流密度を600A/mに制御して電解を行った。時間とともに陽極が減肉してしまい、電解電位は時間ともに+10%増加した。このため、一度電解を中止し、投入時の電極厚みに相当する固体陽極を投入、液温を90℃まで上げた。溶解して初期と同じ電極間隔になるように陽極形成し、液温50℃に戻し、電極を固化させ再度電解を行った。
<Comparative Example 1>
In Comparative Example 1, indium-gallium metal (composition In: 50 mol%, Ga: 50 mol%, melting point: about 70 ° C.) was used as the anode in the same apparatus as in Example 1. An aqueous ammonium nitrate solution (NH 4 NO 3 concentration: 1 mol / L) was used as the electrolytic solution. In Comparative Example 1, a required amount of anode material is put into an electrolytic cell, the liquid temperature is raised to 90 ° C., the anode material is melted and then cooled to 50 ° C., and an alloy solid anode is formed. Electrolysis was performed by controlling the current density to 600 A / m 2 with a power source. The anode thinned with time, and the electrolytic potential increased by + 10% with time. For this reason, the electrolysis was once stopped, a solid anode corresponding to the electrode thickness at the time of charging was charged, and the liquid temperature was raised to 90 ° C. An anode was formed so as to dissolve and have the same electrode interval as the initial stage, and the temperature was returned to 50 ° C., the electrode was solidified and electrolysis was performed again.

この作業を複数繰り返したために、電解時間は、実施例2と同じであるが実稼動時間は2倍となり生産性は悪化した。電解反応後、電解槽中の電解液を回収し、ろ過、洗浄及び乾燥し、インジウム水酸化物とガリウム水酸化物の混合体を得た。これを大気中600℃で2時間焼成し、酸化インジウムと酸化ガリウムの金属化合物粉末を得た。この粉末をレーザ式粒度分布測定器にて粒度測定した。粒度はD50、粒度分布はD10及びD90の値で評価したところ、D50は1.2μm、D10は0.3μm、D90は4μmと粒度分布の広い粒子が得られた。粉末中の塩素濃度分析したところ5ppm以下であった。   Since this operation was repeated a plurality of times, the electrolysis time was the same as in Example 2, but the actual operation time was doubled and the productivity deteriorated. After the electrolytic reaction, the electrolytic solution in the electrolytic cell was collected, filtered, washed and dried to obtain a mixture of indium hydroxide and gallium hydroxide. This was fired at 600 ° C. for 2 hours in the atmosphere to obtain a metal compound powder of indium oxide and gallium oxide. The particle size of this powder was measured with a laser type particle size distribution analyzer. When the particle size was evaluated as D50 and the particle size distribution as D10 and D90, particles having a wide particle size distribution such as D50 of 1.2 μm, D10 of 0.3 μm, and D90 of 4 μm were obtained. The chlorine concentration in the powder was analyzed and found to be 5 ppm or less.

<比較例2>
比較例2では、実施例1と同じ装置で、実施例1と同様にインジウムーガリウム金属(組成In:13mol%、Ga:87mol%、融点:約17℃)を用い、40℃の塩酸アンモニウム水溶液(NHCl濃度:1mol/L)中において、電解温度を40℃に設定し、定電流電源で電流密度を600A/mに制御して連続電解した。電極間間隔変わらないようにインジウムーガリウム金属を液体状態で電解槽に逐次投入した。電解中の電圧はプラスマイナス2%と安定した電解条件維持できた。
<Comparative example 2>
In Comparative Example 2, in the same apparatus as in Example 1, indium-gallium metal (composition In: 13 mol%, Ga: 87 mol%, melting point: about 17 ° C) was used as in Example 1, and ammonium chloride at 40 ° C was used. In an aqueous solution (NH 4 Cl concentration: 1 mol / L), the electrolysis temperature was set to 40 ° C., and the current density was controlled to 600 A / m 2 with a constant current power source, and continuous electrolysis was performed. Indium-gallium metal was sequentially introduced into the electrolytic cell in a liquid state so that the distance between the electrodes did not change. The voltage during electrolysis was 2% plus or minus 2 and stable electrolysis conditions could be maintained.

電解反応後、電解槽中の電解液を回収し、ろ過、洗浄及び乾燥し、インジウム水酸化物とガリウム水酸化物の混合体を得た。これを大気中600℃で2時間焼成し、焼成粉末として酸化インジウムと酸化ガリウムの金属化合物粉末を得た。この粉末をレーザ式粒度分布測定器にて粒度測定した。粒度はD50、粒度分布はD10及びD90の値で評価したところ、D50は0.9μm、D10は0.6μm、D90は1.7μmと粒度分布の狭い粒子が得られた。粉末中の塩素濃度分析したところ40ppmであった。   After the electrolytic reaction, the electrolytic solution in the electrolytic cell was collected, filtered, washed and dried to obtain a mixture of indium hydroxide and gallium hydroxide. This was calcined at 600 ° C. for 2 hours in the air to obtain a metal compound powder of indium oxide and gallium oxide as a calcined powder. The particle size of this powder was measured with a laser type particle size distribution analyzer. When the particle size was evaluated as D50 and the particle size distribution as D10 and D90, particles having a narrow particle size distribution of D50 of 0.9 μm, D10 of 0.6 μm, and D90 of 1.7 μm were obtained. The chlorine concentration in the powder was analyzed and found to be 40 ppm.

以下の表1に、実施例及び比較例の電解液、陽極組成、融点、陽極温度、D10、D50、D90を示す。   Table 1 below shows the electrolytic solutions, anode compositions, melting points, anode temperatures, D10, D50, and D90 of Examples and Comparative Examples.

Figure 0005994524
Figure 0005994524

次に、実施例及び比較例の酸化ガリウムと酸化インジウムの金属化合物粉末を用いて、圧力:294MPa(3ton/cm)でプレス成形し、これらを1500℃、7時間、空気中で焼成し、直径20cmの焼結体を得た。実施例1、2の相対密度は、95%、98%であり、比較例1、2の相対密度は、87%、70%であった。 Next, using the metal compound powders of gallium oxide and indium oxide of Examples and Comparative Examples, press molding was performed at a pressure of 294 MPa (3 ton / cm 2 ), and these were fired in air at 1500 ° C. for 7 hours. A sintered body having a diameter of 20 cm was obtained. The relative densities of Examples 1 and 2 were 95% and 98%, and the relative densities of Comparative Examples 1 and 2 were 87% and 70%.

表1に示す結果から、実施例1及び2では、粒径が均一で粒度分布幅が狭い水酸化インジウムと水酸化ガリウムの混合体が得られたため、粒径が均一で粒度分布幅が狭い酸化インジウムと酸化ガリウムの金属化合物粉末となり、極めて高密度な焼結体を得ることができた。また、実施例1及び2では、ハロゲン元素を含まない硝酸アンモニウムを電解液に用いたため、焼結体にハロゲン元素が含有されることを抑制できた。   From the results shown in Table 1, in Examples 1 and 2, since a mixture of indium hydroxide and gallium hydroxide having a uniform particle size and a narrow particle size distribution width was obtained, oxidation with a uniform particle size and a narrow particle size distribution width was obtained. It became a metal compound powder of indium and gallium oxide, and an extremely high density sintered body could be obtained. In Examples 1 and 2, since ammonium nitrate containing no halogen element was used for the electrolyte, it was possible to suppress the halogen element from being contained in the sintered body.

比較例1では、固体状の陽極を用いたため、陽極の減肉により電流密度が一定とならず、粒径が不均一で粒度分布幅の広い酸化物粉末となった。このため、比較例2では、焼結が阻害され、焼結体の相対密度が低くなった。比較例2は、電解液に塩酸アンモニウムを使用したため、酸化物粉末に塩素が多量に含有され、焼結が阻害され、ターゲットの相対密度が低くなった。   In Comparative Example 1, since a solid anode was used, the current density was not constant due to thinning of the anode, resulting in an oxide powder having a non-uniform particle size and a wide particle size distribution range. For this reason, in the comparative example 2, sintering was inhibited and the relative density of the sintered compact became low. In Comparative Example 2, ammonium chloride was used as the electrolytic solution, so that the oxide powder contained a large amount of chlorine, the sintering was inhibited, and the relative density of the target was lowered.

実施例1及び2で示したように本発明を適用した金属化合物粉末の製造方法は、陽極の取替えを必要としないため生産性が高く、電解条件の安定性も高く、得られた粉末は、高密度の焼結体を形成することが可能である。このため、本発明を適用した金属化合物粉末の製造方法により得られた金属化合物粉末をスパッタリングターゲット用の焼結体として利用した場合、ノジュールの発生が少なく優れた性能を示しことが期待できる。   As shown in Examples 1 and 2, the production method of the metal compound powder to which the present invention is applied does not require replacement of the anode, so that the productivity is high and the stability of the electrolysis conditions is high. It is possible to form a high-density sintered body. For this reason, when the metal compound powder obtained by the manufacturing method of the metal compound powder to which the present invention is applied is used as a sintered body for a sputtering target, it can be expected to exhibit excellent performance with little generation of nodules.

Claims (2)

インジウム−ガリウム金属を溶融してなる陽極と、ハロゲン元素を含まない電解液とを用いて電解反応により該電解液中に金属水酸化物粉末を析出させることを特徴とする金属水酸化物粉末の製造方法。 Indium - an anode formed by molten gallium metal, metal hydroxide powder characterized by depositing a metal hydroxide powder in electrolytic solution by electrolytic reaction using an electrolytic solution containing no halogen elements Production method. 電解温度は、上記インジウム−ガリウム金属の融点よりも高い温度であることを特徴する請求項1記載の金属水酸化物粉末の製造方法。 2. The method for producing a metal hydroxide powder according to claim 1, wherein the electrolysis temperature is higher than the melting point of the indium-gallium metal.
JP2012209646A 2012-09-24 2012-09-24 Method for producing metal hydroxide powder Active JP5994524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012209646A JP5994524B2 (en) 2012-09-24 2012-09-24 Method for producing metal hydroxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012209646A JP5994524B2 (en) 2012-09-24 2012-09-24 Method for producing metal hydroxide powder

Publications (2)

Publication Number Publication Date
JP2014062313A JP2014062313A (en) 2014-04-10
JP5994524B2 true JP5994524B2 (en) 2016-09-21

Family

ID=50617799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012209646A Active JP5994524B2 (en) 2012-09-24 2012-09-24 Method for producing metal hydroxide powder

Country Status (1)

Country Link
JP (1) JP5994524B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109706467A (en) * 2019-03-04 2019-05-03 河北恒博新材料科技股份有限公司 The method of electrolytic preparation oxide of high activity indium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6201193B2 (en) * 2014-08-07 2017-09-27 住友金属鉱山株式会社 Electrolytic apparatus for indium hydroxide powder or tin hydroxide powder, method for producing indium hydroxide powder or tin hydroxide powder, and method for producing sputtering target

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3146706B2 (en) * 1992-12-24 2001-03-19 住友金属鉱山株式会社 Gallium electrolysis method
JPH10204669A (en) * 1997-01-16 1998-08-04 Mitsubishi Materials Corp Production of indium oxide powder
JPH10273318A (en) * 1997-03-28 1998-10-13 Mitsubishi Materials Corp Production of gallium oxide powder
WO2013103034A1 (en) * 2012-01-06 2013-07-11 Jx日鉱日石金属株式会社 Method for producing gallium hydroxide, method for producing gallium oxide powder, gallium oxide powder, gallium oxide sintered compact and sputtering target formed from sintered compact

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109706467A (en) * 2019-03-04 2019-05-03 河北恒博新材料科技股份有限公司 The method of electrolytic preparation oxide of high activity indium

Also Published As

Publication number Publication date
JP2014062313A (en) 2014-04-10

Similar Documents

Publication Publication Date Title
US8734633B2 (en) Method of recovering valuable metal from scrap containing conductive oxide
US8685225B2 (en) Method of recovering valuable metal from scrap conductive oxide
JP6090442B2 (en) Method for producing indium hydroxide powder and method for producing indium oxide powder
US8308933B2 (en) Method of recovering valuable metals from IZO scrap
JP5512771B2 (en) Method for recovering valuable metals from IZO scrap
KR101155357B1 (en) Process for recovery of valuable metals from scrap izo
TWI583798B (en) Process for the recovery of indium-tin alloy from ITO target waste, manufacture of indium oxide-tin oxide powder, and manufacturing method of ITO target
JP4747286B2 (en) Fine tin oxide powder and its production method and use
JP5994524B2 (en) Method for producing metal hydroxide powder
JP5972907B2 (en) Method for producing gallium hydroxide and method for producing gallium oxide powder
JP6314904B2 (en) Method for producing indium hydroxide powder, method for producing indium oxide powder, and method for producing sputtering target
JP5869361B2 (en) Method for producing ITO powder and method for producing ITO sputtering target
JP5786994B1 (en) Indium hydroxide powder and indium oxide powder
JP6119622B2 (en) Method for producing indium hydroxide powder and cathode
JP2014088599A (en) Manufacturing installation of metalhydroxide, manufacturing method of metalhydroxide, and sputtering target
JP2001303239A (en) Method for manufacturing ito target
EP3161188B1 (en) Method of producing metallic tantalum
JP6222067B2 (en) Method for regenerating anode, method for producing indium hydroxide powder, method for producing indium oxide powder, and method for producing sputtering target
JP6350311B2 (en) Method for producing indium oxide powder
JP2016117928A (en) Electrolytic device for indium hydroxide powder or tin hydroxide powder, method for producing indium hydroxide powder or tin hydroxide powder, and method for producing sputtering target

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160808

R150 Certificate of patent or registration of utility model

Ref document number: 5994524

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150