JP6119622B2 - Method for producing indium hydroxide powder and cathode - Google Patents

Method for producing indium hydroxide powder and cathode Download PDF

Info

Publication number
JP6119622B2
JP6119622B2 JP2014014405A JP2014014405A JP6119622B2 JP 6119622 B2 JP6119622 B2 JP 6119622B2 JP 2014014405 A JP2014014405 A JP 2014014405A JP 2014014405 A JP2014014405 A JP 2014014405A JP 6119622 B2 JP6119622 B2 JP 6119622B2
Authority
JP
Japan
Prior art keywords
cathode
hydroxide powder
indium hydroxide
electrodes
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014014405A
Other languages
Japanese (ja)
Other versions
JP2015140282A (en
Inventor
剛 岩佐
剛 岩佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2014014405A priority Critical patent/JP6119622B2/en
Priority to CN201480058844.XA priority patent/CN105683416B/en
Priority to KR1020167007052A priority patent/KR102300880B1/en
Priority to PCT/JP2014/077193 priority patent/WO2015114886A1/en
Priority to TW103136445A priority patent/TW201529479A/en
Publication of JP2015140282A publication Critical patent/JP2015140282A/en
Application granted granted Critical
Publication of JP6119622B2 publication Critical patent/JP6119622B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • C01G15/003Preparation involving a liquid-liquid extraction, an adsorption or an ion-exchange
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/14Alkali metal compounds
    • C25B1/16Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/52Particles with a specific particle size distribution highly monodisperse size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

本発明は、電解法による水酸化インジウム粉の製造方法、及び、水酸化インジウム粉の製造方法で使用される陰極に関するものである。   The present invention relates to a method for producing indium hydroxide powder by an electrolytic method and a cathode used in a method for producing indium hydroxide powder.

近年、太陽電池用途やタッチパネル用途として透明導電膜の利用が増えてきており、それに伴って、スパッタリングターゲット等、透明導電膜形成用材料の需要が増加している。これらの透明導電膜形成用材料には、酸化インジウム系焼結材料が主に使用されており、その主原料として酸化インジウム粉が使用される。   In recent years, the use of transparent conductive films has increased for solar cell applications and touch panel applications, and accordingly, demand for transparent conductive film forming materials such as sputtering targets has increased. For these transparent conductive film forming materials, indium oxide-based sintered materials are mainly used, and indium oxide powder is used as the main raw material.

特許文献1には、酸化インジウム粉の製造方法として、金属インジウムを電解処理することで水酸化インジウムの沈殿を生じさせ、これを仮焼して酸化インジウム粉を製造する方法、いわゆる電解法が記載されている。 In Patent Document 1, as a method for producing indium oxide powder, there is a method of producing indium oxide powder by precipitating indium hydroxide powder by electrolytic treatment of metal indium and so-called electrolytic method. Have been described.

電解法においては、特許文献2に記載されるように、陽極板と陰極板を交互に複数枚配列することで、電極面積を大きくとる方法が用いられることがある。   In the electrolysis method, as described in Patent Document 2, a method of increasing the electrode area by arranging a plurality of anode plates and cathode plates alternately may be used.

特許文献2では、実施例において、電極間距離が25mm〜50mmと定められている。しかしながら、電極間距離と電解電圧は、密接な関係があり、電圧上昇による電極間の液温及びpH制御の観点から、電極間距離は極力近い方が望ましい。   In patent document 2, in the Example, the distance between electrodes is defined as 25 mm-50 mm. However, the distance between the electrodes and the electrolytic voltage are closely related, and it is desirable that the distance between the electrodes is as close as possible from the viewpoint of the liquid temperature between the electrodes and the pH control due to the voltage increase.

In(OH)の電解晶析方法における陰極と陽極の化学反応式は、式1−1、式1−2、及び式2の通りとなる。 The chemical reaction formula of the cathode and the anode in the electrolytic crystallization method of In (OH) 3 is as shown in Formula 1-1, Formula 1-2, and Formula 2.

陰極:(主)6NO +24H+18e→6NO+12HO (式1−1)
(副)18HO+18e→9H+18OH (式1−2)
陽極: 6In+18OH→6In(OH)+18e (式2)
Cathode: (Main) 6NO 3 + 24H + + 18e → 6NO + 12H 2 O (Formula 1-1)
(Sub) 18H 2 O + 18e → 9H 2 + 18OH (Formula 1-2)
Anode: 6In + 18OH → 6In (OH) 3 + 18e (Formula 2)

陰極の近傍の主反応では、Hを消費するためpHが上昇するが、陽極の近傍ではOHを消費するためpHが低下する。このため、陰極から陽極に向かってH濃度、すなわちpH値の上昇が発生する。電極間のpH値を均一にするためには、電解液を撹拌させてH濃度を均一にする必要がある。しかしながら、電極間距離が広がるほどイオンの移動がしづらくなるため、撹拌を十分に強くしないと効果が得られないという問題がある。 In the main reaction in the vicinity of the cathode, the pH is increased due to consumption of H + , but in the vicinity of the anode, the pH is decreased because of consumption of OH . For this reason, the H + concentration, that is, the pH value increases from the cathode toward the anode. In order to make the pH value between the electrodes uniform, it is necessary to stir the electrolyte to make the H + concentration uniform. However, since the movement of ions becomes more difficult as the distance between the electrodes increases, there is a problem that the effect cannot be obtained unless the stirring is sufficiently strong.

一方、電極間距離を短くした場合には、イオンの移動がしやすくなるため、撹拌の強さが同じでもH濃度はより均一化する。このため、電極間距離を短くした方がpH値を均一に制御しやすくなる。 On the other hand, when the distance between the electrodes is shortened, the ions are easily moved, so that the H + concentration becomes more uniform even if the stirring intensity is the same. For this reason, it becomes easier to control the pH value uniformly by shortening the distance between the electrodes.

しかしながら、極間距離が短すぎる場合には、電極間での接触やショートが発生しやすくなる他、電極間の電解液が十分に撹拌されず滞留してしまい、電極間のpHが上昇してしまう恐れがある。   However, if the distance between the electrodes is too short, contact or short-circuit between the electrodes is likely to occur, and the electrolyte solution between the electrodes stays without being sufficiently stirred, resulting in an increase in pH between the electrodes. There is a risk.

また、電極間の距離を広げた場合には、電極間電圧が上昇するため、液抵抗によって液温が上昇する。陰極での化学反応式1−2は、式1−1の反応に比べて標準電極電位が低いため、式1−1の反応に比べて式1−2の反応が起こる割合は低い。しかしながら、電極間電圧が上昇した場合には、陰極の表面電位がマイナス方向にシフトするため、式1−2の反応が起こる割合が大きくなる。   Further, when the distance between the electrodes is increased, the voltage between the electrodes increases, so that the liquid temperature increases due to the liquid resistance. Since chemical reaction formula 1-2 at the cathode has a lower standard electrode potential than the reaction of formula 1-1, the rate at which the reaction of formula 1-2 occurs is lower than the reaction of formula 1-1. However, when the voltage between the electrodes rises, the surface potential of the cathode shifts in the negative direction, so that the rate at which the reaction of Formula 1-2 occurs increases.

このため、陰極の近傍でのpH値は上昇しやすくなる。一方、式2でのOHの消費量は変化しないため、結果として液全体のpH値が上昇することとなる。 For this reason, the pH value in the vicinity of the cathode tends to increase. On the other hand, the consumption amount of OH − in Formula 2 does not change, and as a result, the pH value of the entire liquid increases.

すなわち、電極間距離を広げることによって、液温とpHの上昇が生じることとなり、液温制御に対応するため大容量のチラー設備等のコストが掛かる。   That is, by increasing the distance between the electrodes, the liquid temperature and the pH are increased, and the cost of a large-capacity chiller facility or the like is required to cope with the liquid temperature control.

一般に、水酸化物粒子の晶析では、pHが高くなるほど、粒子の核生成がしやすくなる。しかしながら、pH値の高い領域での晶析反応では、核生成しやすい反面、一度生成した核の溶解、再晶析は起こりにくくなる。このため、凝集しやすい小さな微粒子が多く残存する結果となり、二次粒子の粒径及び粒度分布が粗大化し、粒度分布の幅が広くなる。   Generally, in crystallization of hydroxide particles, the higher the pH, the easier the particle nucleation. However, in the crystallization reaction in a region having a high pH value, nucleation is likely to occur, but once formed nuclei are hardly dissolved or recrystallized. For this reason, many fine particles that tend to aggregate remain, and the particle size and particle size distribution of the secondary particles become coarse, and the width of the particle size distribution becomes wide.

一方で、pH値の低い領域での晶析反応では、核生成によって核周辺のOHが消費されるためpH値が低下し、これによって小さな核が溶解し、残存した核の成長が促進される。 On the other hand, in the crystallization reaction in a low pH region, the OH around the nucleus is consumed by nucleation, so the pH value is lowered, and this causes dissolution of small nuclei and promotes the growth of the remaining nuclei. The

このように、晶析反応では、液温とpH値の低い領域で反応を行うことが望ましいが、適度な電極間距離を保ちつつ、液温とpHの上昇を抑えることは困難であった。   As described above, in the crystallization reaction, it is desirable to perform the reaction in a region where the liquid temperature and the pH value are low, but it is difficult to suppress the increase in the liquid temperature and the pH while maintaining an appropriate distance between the electrodes.

特許第2829556号Japanese Patent No. 2829556 特開2013−36074号JP 2013-36074 A

本発明は、上述のような従来の実情に鑑みて提案されたものであり、電極間の液温とpHの上昇を抑制し、水酸化インジウム粉の粒径が均一性に優れ、粒度分布幅の狭い水酸化インジウム粉を得ることができる水酸化インジウム粉の製造方法、及び、水酸化インジウム粉の製造方法で使用される陰極を提供するものである。   The present invention has been proposed in view of the above-described conventional situation, suppresses the increase in the liquid temperature and pH between the electrodes, the indium hydroxide powder has excellent uniformity in particle size, and the particle size distribution width. The present invention provides a method for producing indium hydroxide powder capable of obtaining a narrow indium hydroxide powder, and a cathode used in the method for producing indium hydroxide powder.

本発明に係る水酸化インジウム粉の製造方法では、陰極とを複数枚交互に並べて、電解液中で電解することで水酸化インジウム粉を生成する水酸化インジウム粉の製造方法において、電解に使用する陰極の、電解反応が起こる主面部が網状に形成され、網状は、陰極の主面部にラス加工による孔を形成したもの、または陰極の主面部にパンチング加工による孔を形成したものであることを特徴とする。 In the method for producing indium hydroxide powder according to the present invention, a plurality of cathodes are alternately arranged and electrolyzed in an electrolytic solution, and used for electrolysis in a method for producing indium hydroxide powder by producing indium hydroxide powder. The main surface part of the cathode where the electrolytic reaction occurs is formed in a net shape, and the net shape is one in which a hole by lath processing is formed in the main surface portion of the cathode or a hole by punching processing is formed in the main surface portion of the cathode. Features.

また、本発明に係る水酸化インジウム粉の製造方法では、陽極と陰極間の液温を電解装置の設定温度に対して±2℃の範囲に制御し、陽極と陰極間の電解液のpHを3.2〜4.0の範囲に制御することが好ましい。さらに、本発明に係る水酸化インジウム粉の製造方法では、陽極と陰極の間の電極間距離が10〜25mmであることが好ましい。 Further, in the method for producing indium hydroxide powder according to the present invention, the liquid temperature between the anode and the cathode is controlled within a range of ± 2 ° C. with respect to the set temperature of the electrolyzer, and the pH of the electrolyte between the anode and the cathode is controlled. It is preferable to control within the range of 3.2 to 4.0. Furthermore, in the method for producing indium hydroxide powder according to the present invention, the distance between the anode and the cathode is preferably 10 to 25 mm.

また本発明に係る陰極は、水酸化インジウム粉の製造方法において使用される陰極であって、陰極の主面部を網状に形成してなり、網状は、陰極の主面部にラス加工による孔を形成したもの、または陰極の主面部にパンチング加工による孔を形成したものである陰極である。 The cathode according to the present invention, there is provided a cathode for use in the method of manufacturing the indium hydroxide powder, Ri Na form a main surface of the cathode mesh, braided, hole by lath machining on the main surface of the cathode Or a hole in which a hole is formed by punching in the main surface portion of the cathode.

本発明では、電極間の液温とpHの上昇を抑制し、粒径の均一性に優れ、粒度分布幅の狭い水酸化インジウム粉を得ることができる。   In the present invention, an increase in liquid temperature and pH between electrodes can be suppressed, and indium hydroxide powder having excellent particle size uniformity and a narrow particle size distribution width can be obtained.

本発明を適用した網状の陰極の形状の例を示した図である。図1(A)は、ラス加工を施した場合の網状の陰極の一例を示した図であり、図1(B)は、パンチング加工を施した場合の網状の陰極の一例を示した図である。It is the figure which showed the example of the shape of the net-like cathode to which this invention is applied. FIG. 1A is a diagram illustrating an example of a net-like cathode when lath processing is performed, and FIG. 1B is a diagram illustrating an example of a net-like cathode when punching is performed. is there. 実施例及び比較例での電解時における陽極及び陰極間の液温の推移を表す図である。It is a figure showing transition of the liquid temperature between the anode and cathode at the time of the electrolysis in an Example and a comparative example. 実施例及び比較例での電解時における陽極及び陰極間の電解液のpHの推移を表す図である。It is a figure showing transition of pH of the electrolyte solution between the anode and the cathode at the time of electrolysis in an Example and a comparative example. 実施例及び比較例により得られた水酸化インジウムの粒度を表す図である。It is a figure showing the particle size of the indium hydroxide powder obtained by the Example and the comparative example.

以下に、本発明を適用した水酸化インジウム粉の製造方法、及び、水酸化インジウム粉の製造方法で使用される陰極について、以下の順序で説明する。
1.水酸化インジウム粉の製造方法
2.陰極の構造
Below, the manufacturing method of the indium hydroxide powder to which the present invention is applied and the cathode used in the manufacturing method of the indium hydroxide powder will be described in the following order.
1. Method for producing indium hydroxide powder2. Cathode structure

<1.水酸化インジウム粉の製造方法>
水酸化インジウムの製造方法では、濃度、pH及び溶解度等を調整した電解液を用いて電解反応を利用して水酸化インジウムを得る。この製造方法では、原料とする金属インジウムを陽極(アノード)とし、対極の陰極(カソード)に導電性の金属を使用し、両者を電解液に浸漬して両極間に電位差を発生させ電流を生じさせることにより陽極において金属の溶解が進行する。さらに、水酸化インジウムの製造方法では、電解液において、生成される水酸化インジウムの溶解度が低い状態となるようにpHを調整することにより、水酸化インジウムスラリーが晶析し沈殿を生じさせる。
<1. Method for producing indium hydroxide powder>
In the method for producing indium hydroxide, indium hydroxide is obtained by utilizing an electrolytic reaction using an electrolytic solution whose concentration, pH, solubility and the like are adjusted. In this manufacturing method, metal indium as a raw material is used as an anode, and a conductive metal is used for a cathode (cathode) as a counter electrode, and both are immersed in an electrolytic solution to generate a potential difference between both electrodes to generate a current. As a result, dissolution of the metal proceeds at the anode. Furthermore, in the method for producing indium hydroxide, the indium hydroxide slurry crystallizes and precipitates by adjusting the pH so that the solubility of the produced indium hydroxide is low in the electrolytic solution.

陽極に使用する金属インジウムは、特に限定されないが、水酸化インジウム仮焼して得られる酸化インジウム粉への不純物の混入を抑制するため高純度のものが望ましい。金属インジウムとしては、純度99.9999%(通称6N品)が好適品として挙げることができる。 The metal indium used for the anode is not particularly limited, but a high-purity metal is desirable in order to suppress the mixing of impurities into the indium oxide powder obtained by calcining the indium hydroxide powder . As metal indium, a purity of 99.9999% (commonly called 6N product) can be mentioned as a suitable product.

陰極には、電解液によって腐食しない材質であればよく、導電性の金属等が用いられる。陰極には、例えば不溶性のチタン板等を用いることができ、チタン板を白金でコーティングした不溶性電極、ステンレス鋼(SUS)板、In板などを用いることができる。なお、陰極は、主面部が網状に形成されている。   The cathode may be made of any material that does not corrode by the electrolytic solution, and a conductive metal or the like is used. As the cathode, for example, an insoluble titanium plate or the like can be used, and an insoluble electrode obtained by coating a titanium plate with platinum, a stainless steel (SUS) plate, an In plate, or the like can be used. The cathode has a main surface formed in a net shape.

陽極と陰極の間の電極間距離は、特に指定されないが、10〜25mmが好ましい。25mmを超えると、液抵抗により電圧が上昇するため、電極間の液温並びにpHが上昇し、水酸化インジウムの粒径が不均一になり粒度分布の幅が広くなる。また10mm未満の場合では、電極間での接触、ショートが発生しやすくなる。 The distance between the anode and the cathode is not particularly specified, but is preferably 10 to 25 mm. If it exceeds 25 mm, the voltage increases due to the liquid resistance, so the liquid temperature and pH between the electrodes increase, the particle size of the indium hydroxide powder becomes non-uniform, and the width of the particle size distribution becomes wider. In the case of less than 10 mm, contact between electrodes and short circuit are likely to occur.

電解液としては、水溶性の硝酸塩、硫酸塩、塩化物塩等の一般的な電解質塩の水溶液を用いることができる。電解液としては、その中でも、水酸化インジウム粉を沈殿した後の乾燥、仮焼後に硝酸イオン及びアンモニウムイオンが窒素化合物として除去されて不純物として残らない硝酸アンモニウムを使用した硝酸アンモニウム水溶液が好ましい。   As the electrolytic solution, an aqueous solution of a general electrolyte salt such as a water-soluble nitrate, sulfate, or chloride salt can be used. Among them, an aqueous ammonium nitrate solution using ammonium nitrate in which nitrate ions and ammonium ions are removed as nitrogen compounds after precipitation of indium hydroxide powder and calcination is left as impurities is preferable.

電解液は、生成された水酸化インジウム粉の溶解度が10−6〜10−3mol/Lの範囲であることが好ましい。水酸化インジウム粉の溶解度が10−6mol/Lよりも低い場合には、陽極から溶け出したインジウムイオンが核化しやすくなるため、一次粒子径が微細化し過ぎてしまう。一次粒子径が微細化し過ぎた場合には、後の水酸化インジウム粉を回収する工程における水酸化インジウム粉の分離回収が困難となるため好ましくない。 The electrolytic solution preferably has a solubility of the produced indium hydroxide powder in the range of 10 −6 to 10 −3 mol / L. When the solubility of the indium hydroxide powder is lower than 10 −6 mol / L, indium ions dissolved from the anode are easily nucleated, so that the primary particle diameter becomes too fine. When the primary particle diameter is too fine, it is not preferable because it becomes difficult to separate and recover the indium hydroxide powder in the subsequent step of recovering the indium hydroxide powder.

一方、水酸化インジウム粉の溶解度が10−3mol/Lよりも高い場合は、粒成長が促進されるため、一次粒子径が大きくなる。このため、粒子を成長させるほど、成長する粒子と成長しない粒子の間で粒子径の違いが大きくなる。粒子径の違いは、凝集の度合いに影響を与えるため、結果として水酸化インジウム粉の粒度分布の幅が広くなってしまう。水酸化インジウム粉の粒度分布の幅が広くなると、水酸化インジウム粉を仮焼して得られる酸化インジウム粉の粒度分布の幅も広くなり、これを焼結して得られるスパッタリングターゲットの密度は高密度となり難いため好ましくない。 On the other hand, when the solubility of the indium hydroxide powder is higher than 10 −3 mol / L, grain growth is promoted, so that the primary particle diameter becomes large. For this reason, the larger the particle is grown, the larger the difference in particle size between the growing particle and the non-growing particle. Since the difference in particle diameter affects the degree of aggregation, as a result, the width of the particle size distribution of the indium hydroxide powder becomes wide. If the width of the particle size distribution of the indium hydroxide powder becomes wider, the width of the particle size distribution of the indium oxide powder obtained by calcining the indium hydroxide powder also becomes wider, and the density of the sputtering target obtained by sintering this becomes higher. This is not preferable because it is difficult to achieve density.

したがって、電解液は、水酸化インジウム粉の溶解度が10−6〜10−3mol/Lの範囲であればよく、硝酸アンモニウムの濃度、pH、液温等により溶解度を制御することができる。 Therefore, the electrolyte solution should just have the solubility of indium hydroxide powder in the range of 10 <-6 > -10 < -3 > mol / L, and can control solubility with the density | concentration, pH, liquid temperature, etc. of ammonium nitrate.

電解液の濃度については、特に限定されないが、0.1〜2.0mol/Lが好ましい。0.1mol/Lより薄いと電解時の電圧上昇が大きくなり、電極の接触部など接触抵抗が高い場所で発熱量が大きくなる。これにより、電極が発熱することで電解液の温度が上昇したり、電力コストが高くなるなどの問題が生じるため好ましくない。2.0mol/Lより濃くなると、電解によって水酸化インジイウム粒子が粗大化し、粒径のばらつきが大きくなるため好ましくない。   Although it does not specifically limit about the density | concentration of electrolyte solution, 0.1-2.0 mol / L is preferable. If it is thinner than 0.1 mol / L, the voltage rise during electrolysis will increase, and the amount of heat generated will increase at places where the contact resistance is high, such as the contact portion of the electrode. As a result, problems such as an increase in the temperature of the electrolytic solution and an increase in power cost due to heat generation of the electrodes are not preferable. When the concentration is higher than 2.0 mol / L, the indium hydroxide particles are coarsened by electrolysis and the variation in the particle size becomes large, which is not preferable.

陽極と陰極間の電解液のpHについては、特に限定されないが、3.2〜4.0が好ましい。電解液のpHが3.2より小さい場合には、水酸化物の沈殿が生じにくく、また4.0よりも大きい場合には、水酸化物の析出速度が速過ぎて濃度不均一のまま沈殿が形成されるため粒径が不均一となり、粒度分布幅が広がってしまい好ましくない。なお、電解液全体のpHも3.2〜4.0となっていることが好ましい。陰極の主面部が網状に形成されていることにより、電解液が陰極の網状の孔を介して循環しやすくなり、電解液が全体的に均一に混ざることで電極間のpHの上昇を抑制できる。   Although it does not specifically limit about the pH of the electrolyte solution between an anode and a cathode, 3.2-4.0 are preferable. When the pH of the electrolyte is less than 3.2, hydroxide precipitation is difficult to occur, and when it is greater than 4.0, the precipitation rate of the hydroxide is too high and the concentration is not uniform. Is not preferable because the particle size is non-uniform and the particle size distribution width is widened. In addition, it is preferable that pH of the whole electrolyte solution is also 3.2-4.0. Since the main surface portion of the cathode is formed in a net shape, the electrolyte solution can be easily circulated through the cathode network holes, and the increase in pH between the electrodes can be suppressed by uniformly mixing the electrolyte solution as a whole. .

陽極と陰極間の電解液は、例えば、硝酸アンモニウムの濃度を0.1〜2.0mol/L、pHを3.2〜4.0、電極間の液温を20〜60℃の範囲に調整することにより、水酸化インジウム粉の溶解度を10−6〜10−3mol/Lの範囲に制御することができる。pHは、硝酸アンモニウムの添加量により調整することができる。 The electrolyte solution between the anode and the cathode is adjusted, for example, to a concentration of ammonium nitrate of 0.1 to 2.0 mol / L, a pH of 3.2 to 4.0, and a liquid temperature between the electrodes of 20 to 60 ° C. Thereby, the solubility of indium hydroxide powder can be controlled in the range of 10 <-6 > -10 < -3 > mol / L. The pH can be adjusted by the amount of ammonium nitrate added.

陽極と陰極間の電解液の液温が20℃よりも低い場合には、析出速度が遅すぎ、また60℃よりも高い場合には、析出速度が速過ぎて濃度不均一のまま沈殿が形成されるため粒径が不均一となり、水酸化インジウム粉の粒度分布幅が広がるため好ましくない。また、電極間の液温は、電解装置の設定温度に対して±2℃の範囲に制御することが好ましい。電極間の電解液の温度範囲が±2℃よりも広くなると水酸化インジウムの粒径分布が広くなってしまう。電極間の電解液の液温を、電解装置の設定温度に対して±2℃の範囲に制御することで、粒径の均一性に優れ、粒度分布幅の狭い水酸化インジウム粉を得ることができる。陰極の主面部が網状に形成されていることにより、電解液が陰極の網状の孔を介して循環しやすくなり、電解液が全体的に均一に混ざることで電極間の液温の上昇を抑制できる。 When the temperature of the electrolyte solution between the anode and the cathode is lower than 20 ° C., the deposition rate is too slow, and when it is higher than 60 ° C., the deposition rate is too high and precipitates are formed with non-uniform concentration. Therefore, the particle size becomes non-uniform and the particle size distribution width of the indium hydroxide powder is widened, which is not preferable. Moreover, it is preferable to control the liquid temperature between electrodes in the range of +/- 2 degreeC with respect to the preset temperature of an electrolyzer. When the temperature range of the electrolyte solution between the electrodes becomes wider than ± 2 ° C., the particle size distribution width of the indium hydroxide powder becomes wide . By controlling the temperature of the electrolyte between the electrodes within a range of ± 2 ° C with respect to the set temperature of the electrolyzer, it is possible to obtain indium hydroxide powder having excellent particle size uniformity and a narrow particle size distribution range. it can. The main surface of the cathode is formed in a net-like shape, which makes it easier for the electrolyte to circulate through the cathode-like holes in the cathode, and prevents the increase in the liquid temperature between the electrodes by mixing the electrolyte uniformly. it can.

また、電解液には、水酸化インジウムの溶解安定性を向上させるために、クエン酸や酒石酸、グリコール酸などの含酸素キレート化合物やEDTAなどの含窒素キレートを必要に応じ添加してもよい。 In addition, an oxygen-containing chelate compound such as citric acid, tartaric acid or glycolic acid or a nitrogen-containing chelate such as EDTA may be added to the electrolytic solution as necessary in order to improve the dissolution stability of the indium hydroxide powder. .

電解条件は、特に限定されないが電流密度を3A/dm〜24A/dmで行うことが好ましい。電流密度が3A/dmより低い場合には水酸化インジウム粉の生産効率が低下してしまう。電流密度が24A/dmより高い場合には電解電圧が上昇することで電極間の液温並びにpHが上昇してしまい、水酸化インジウムの粒径が不均一になり粒度分布の幅が広くなる。 The electrolysis conditions are not particularly limited, but the current density is preferably 3 A / dm 2 to 24 A / dm 2 . When the current density is lower than 3 A / dm 2 , the production efficiency of indium hydroxide powder is lowered. When the current density is higher than 24 A / dm 2 , the electrolysis voltage increases, so that the liquid temperature and pH between the electrodes increase, the particle size of the indium hydroxide powder becomes uneven, and the width of the particle size distribution is wide. Become.

以上のように、水酸化インジウム粉の製造方法では、電解に使用する陰極の主面部が網状に形成されていることにより、電解液が陰極の網状の孔を介して循環しやすくなる。これにより、水酸化インジウム粉の製造方法では、電解液が全体的に均一に混ざり、電極間の液温とpHの上昇を抑制し、粒径の均一性に優れ、粒度分布幅の狭い水酸化インジウム粉を得ることができる。さらに、電極間の液温を電解装置の設定温度に対して±2℃の範囲に制御し、電極間の電解液のpHを3.2〜4.0の範囲に制御することで、より粒径の均一性に優れ、粒度分布幅の狭い水酸化インジウム粉を得ることができる。   As described above, in the method for producing indium hydroxide powder, the main surface portion of the cathode used for electrolysis is formed in a net shape, so that the electrolytic solution is easily circulated through the net holes of the cathode. As a result, in the method for producing indium hydroxide powder, the electrolytic solution is uniformly mixed as a whole, the rise in the temperature and pH between the electrodes is suppressed, the particle size is excellent in uniformity, and the particle size distribution width is narrow. Indium powder can be obtained. Furthermore, the temperature of the liquid between the electrodes is controlled within a range of ± 2 ° C. with respect to the set temperature of the electrolysis apparatus, and the pH of the electrolytic solution between the electrodes is controlled within the range of 3.2 to 4.0. An indium hydroxide powder having excellent diameter uniformity and a narrow particle size distribution width can be obtained.

<2.陰極の構造>
上述の水酸化インジウム粉の製造方法では、以下に説明する陰極を用いる。陰極は、主面部を網状に形成してなる。また、陰極は、主に不溶性電極である。
<2. Structure of cathode>
In the above-described method for producing indium hydroxide powder, the cathode described below is used. The cathode has a main surface formed in a net shape. The cathode is mainly an insoluble electrode.

例えば、図1(A)に示されるような陰極1Aである。陰極1Aは、電源の給電部と電気的に接続される接触部2Aと、主に電解液と接し、電解反応が起こる主面部3Aとを有する。そして、陰極1Aは、陰極の主面部3Aにラス加工による孔4Aが形成されることで、網状の形状を有する。   For example, a cathode 1A as shown in FIG. Cathode 1A has a contact portion 2A that is electrically connected to a power supply portion of a power source, and a main surface portion 3A that is mainly in contact with an electrolytic solution and undergoes an electrolytic reaction. The cathode 1A has a net-like shape by forming holes 4A by lath processing on the main surface portion 3A of the cathode.

陰極1Aは、1.0mm厚のTi板に多数のスリットを交互に形成し、このスリットと直行する方向に板材を引き延ばすラス加工を施して網状に加工したものである。陰極1Aを網状に加工することにより、電極間に存在する電解液が滞留することなく電極間を循環されるようなる。 The cathode 1A is formed into a net by lath processing in which a large number of slits are alternately formed in a 1.0 mm thick Ti plate and the plate material is stretched in a direction perpendicular to the slits. By processing the cathode 1A into a net shape , the electrolyte existing between the electrodes is circulated between the electrodes without stagnation.

ラス加工の場合、網形状は特に限定されないが、1.0mm厚のTi板を使用した場合は、縦寸法3mm〜4mm、横寸法6mm〜7mmの菱形の孔による網形状が好ましい。   In the case of lath processing, the net shape is not particularly limited, but when a 1.0 mm thick Ti plate is used, a net shape with rhombus holes having a vertical dimension of 3 mm to 4 mm and a horizontal dimension of 6 mm to 7 mm is preferable.

また、陰極としては、例えば、図1(B)に示されるような陰極1Bであってもよい。陰極1Bは、電源の給電部と電気的に接続される接触部2Bと、主に電解液と接し、電解反応が起こる主面部3Bとを有する。そして、陰極1Bは、陰極の主面部3Bにパンチング加工による孔4Bが形成されることで、網状の形状を有する。   The cathode may be a cathode 1B as shown in FIG. 1B, for example. Cathode 1B has a contact portion 2B that is electrically connected to a power supply portion of the power source, and a main surface portion 3B that is mainly in contact with the electrolyte and undergoes an electrolytic reaction. The cathode 1B has a net-like shape by forming holes 4B by punching in the main surface portion 3B of the cathode.

その他、陰極は、電極間に有する電解液が滞留することなく循環すれば良いのでパンチングボードやエッチングによる孔加工も有効である。   In addition, since the cathode only needs to circulate without the electrolyte solution between the electrodes staying, punching board or hole processing by etching is also effective.

なお、図1に示す陰極1A、1Bは一例であり、孔の形状、大きさ、数、間隔等はこれらに限定されるものではない。   Note that the cathodes 1A and 1B shown in FIG. 1 are examples, and the shape, size, number, interval, and the like of the holes are not limited to these.

以上のような網状の陰極は、金属インジウムからなる陽極と共に、例えば、電解液中に複数枚交互に並べて電解を行う。この電解では、陰極の形状を網状とすることで、電解液は陽極と陰極間に滞留することなく網状の陰極を通って循環する。これにより、電解液が全体的に均一に混ざり、電極間の液温とpHの上昇を抑制することができ、粒径の均一性に優れ、粒度分布幅の狭い水酸化インジウム粉を得ることができる。   For example, a plurality of reticulated cathodes as described above are electrolyzed together with an anode made of metallic indium in an electrolytic solution. In this electrolysis, the shape of the cathode is made reticulated so that the electrolyte circulates through the reticulated cathode without staying between the anode and the cathode. As a result, the electrolytic solution is uniformly mixed as a whole, the rise in the temperature and pH between the electrodes can be suppressed, and indium hydroxide powder having excellent particle size uniformity and a narrow particle size distribution width can be obtained. it can.

以下、本発明を適用した具体的な実施例について説明するが、本発明は、これらの実施例に限定されるものではない。   Specific examples to which the present invention is applied will be described below, but the present invention is not limited to these examples.

実施例及び比較例について共通する条件として、電解液に1mol/Lの硝酸アンモニウム水溶液を使用した。また、電極間の液温を40℃、pHを3.5に設定し、電流密度12A/dmにより、陽極として金属インジウム14枚(サイズ30cm×30cm×4mm厚)を電解法により電解し、水酸化インジウムスラリーを作製した。なお、電極間の液温は、電極間の電解液中に温度計を漬すことで測定し、電極間のpHは、電極間の電解液を採取し、即座に電解液のpHをpHメーターで測定した。 As conditions common to the examples and comparative examples, a 1 mol / L ammonium nitrate aqueous solution was used as the electrolyte. In addition, the liquid temperature between the electrodes was set to 40 ° C., the pH was set to 3.5, and 14 sheets of metal indium (size 30 cm × 30 cm × 4 mm thickness) were electrolyzed as an anode by an electrolysis method with a current density of 12 A / dm 2 An indium hydroxide slurry was prepared. The temperature between the electrodes is measured by immersing a thermometer in the electrolyte between the electrodes. The pH between the electrodes is obtained by collecting the electrolyte between the electrodes and immediately adjusting the pH of the electrolyte to a pH meter. Measured with

(実施例1)
実施例1では、陽極に対する陰極として、1mm厚のTi板に網ピッチ1mmでラス加工を施し、縦寸法3.2mm、横寸法6mmの菱形の孔を形成し、30cm×30cm×1mm厚の網状の陰極板を用いた。陽極と陰極の極間距離を17mmとして電解を行い、電時における電極間の液温及びpHの推移と、得られた水酸化インジウムの粒度分布の確認を行った。
Example 1
In Example 1, as a cathode with respect to the anode, a 1 mm thick Ti plate was subjected to lath processing with a mesh pitch of 1 mm to form rhombic holes having a longitudinal dimension of 3.2 mm and a lateral dimension of 6 mm, and a mesh shape of 30 cm × 30 cm × 1 mm thickness The cathode plate was used. The distance between electrodes of the anode and the cathode performs electrolysis as 17 mm, transition and the liquid temperature and pH between electrodes at the time of electrolytic, check the particle size distribution of the obtained indium hydroxide powder was performed.

その結果、電極間の液温は約40℃でほぼ一定であった。また、電解液のpHも約3.5とほぼ一定であった。   As a result, the liquid temperature between the electrodes was substantially constant at about 40 ° C. Further, the pH of the electrolytic solution was almost constant at about 3.5.

得られた水酸化インジウムの粒度の累積分布においては、10%粒径(D10):0.626μm、50%粒径(D50):1.176μm、90%粒径(D90):1.864μmであった。 In the cumulative distribution of the particle size of the obtained indium hydroxide powder , 10% particle size (D10): 0.626 μm, 50% particle size (D50): 1.176 μm, 90% particle size (D90): 1.864 μm Met.

(実施例2)
実施例2では、陽極に対する陰極として、1mm厚のTi板に網ピッチ1mmでラス加工を施し、縦寸法3.2mm、横寸法6mmの菱形の孔を形成し、30cm×30cm×1mm厚の網状の陰極板を用いた。陽極と陰極の極間距離を25mmとして電解を行い、電時における極間の液温及びpHの推移と、得られた水酸化インジウムの粒度分布の確認を行った。
(Example 2)
In Example 2, as a cathode with respect to the anode, a 1 mm thick Ti plate was subjected to lath processing with a mesh pitch of 1 mm to form rhomboid holes having a longitudinal dimension of 3.2 mm and a lateral dimension of 6 mm, and a mesh shape of 30 cm × 30 cm × 1 mm thickness The cathode plate was used. The distance between electrodes of the anode and the cathode performs electrolysis as 25 mm, the transition of the liquid temperature and pH between poles during electrolytic, check the particle size distribution of the obtained indium hydroxide powder was performed.

その結果、電極間の液温は約40℃でほぼ一定であった。また、電解液のpHも約3.5とほぼ一定であった。   As a result, the liquid temperature between the electrodes was substantially constant at about 40 ° C. Further, the pH of the electrolytic solution was almost constant at about 3.5.

得られた水酸化インジウムの粒度の累積分布においては、10%粒径(D10):0.647μm、50%粒径(D50):1.345μm、90%粒径(D90):2.204μmであった。 In the cumulative distribution of the particle size of the obtained indium hydroxide powder , 10% particle size (D10): 0.647 μm, 50% particle size (D50): 1.345 μm, 90% particle size (D90): 2.204 μm Met.

(比較例1)
比較例1では、陽極に対する陰極として、網状の陰極ではなく、30cm×30cm×1mm厚の平板を使用した。陽極と陰極の極間距離を17mmとして電解を行い、電時における極間の液温及びpHの推移と、得られた水酸化インジウムの粒度分布の確認を行った。
(Comparative Example 1)
In Comparative Example 1, a flat plate having a thickness of 30 cm × 30 cm × 1 mm was used as a cathode for the anode, not a net-like cathode. The distance between electrodes of the anode and the cathode performs electrolysis as 17 mm, the transition of the liquid temperature and pH between poles during electrolytic, check the particle size distribution of the obtained indium hydroxide powder was performed.

その結果、電極間の液温は時間の経過とともに上昇した。また、電解液のpHも時間の経過とともに上昇した。   As a result, the liquid temperature between the electrodes increased with time. Moreover, the pH of the electrolyte also increased with the passage of time.

得られた水酸化インジウムの粒度の累積分布においては、10%粒径(D10):0.796μm、50%粒径(D50):2.023μm、90%粒径(D90):3.624μmであった。 In the cumulative distribution of the particle size of the obtained indium hydroxide powder , 10% particle size (D10): 0.796 μm, 50% particle size (D50): 2.023 μm, 90% particle size (D90): 3.624 μm Met.

(比較例2)
比較例2では、陽極に対する陰極としては、網状の陰極ではなく、30cm×30cm×1mm厚の平板を使用した。陽極と陰極の極間距離を25mmとして電解を行い、電時における極間の液温及びpHの推移と、得られた水酸化インジウムの粒度分布の確認を行った。
(Comparative Example 2)
In Comparative Example 2, a flat plate having a thickness of 30 cm × 30 cm × 1 mm was used as a cathode for the anode, not a net-like cathode. The distance between electrodes of the anode and the cathode performs electrolysis as 25 mm, the transition of the liquid temperature and pH between poles during electrolytic, check the particle size distribution of the obtained indium hydroxide powder was performed.

その結果、電極間の液温は時間の経過とともに上昇した。また、電解液のpHも時間の経過とともに上昇した。   As a result, the liquid temperature between the electrodes increased with time. Moreover, the pH of the electrolyte also increased with the passage of time.

得られた水酸化インジウムの粒度の累積分布においては、10%粒径(D10):0.814μm、50%粒径(D50):2.369μm、90%粒径(D90):4.432μmであった。 In the cumulative distribution of the particle size of the obtained indium hydroxide powder , 10% particle size (D10): 0.814 μm, 50% particle size (D50): 2.369 μm, 90% particle size (D90): 4.432 μm Met.

これらの結果をまとめたものを図2〜図4に示す。図2には、電極間の液温の推移、図3には、電極間の電解液におけるpHの推移、図4には、得られた水酸化インジウム粉の粒度を示す。   A summary of these results is shown in FIGS. FIG. 2 shows the transition of the liquid temperature between the electrodes, FIG. 3 shows the transition of the pH in the electrolyte solution between the electrodes, and FIG. 4 shows the particle size of the obtained indium hydroxide powder.

図2においては、網状の陰極を用いた実施例1、2では電極間の液温が約40℃でほぼ一定であるのに対し、平板状の陰極を用いた比較例1、2では時間の経過とともに液温が上昇している。よって、網状の陰極を用いることで電極間の液温の上昇を抑制することができることが分かる。   In FIG. 2, in Examples 1 and 2 using a mesh cathode, the liquid temperature between the electrodes is almost constant at about 40 ° C., whereas in Comparative Examples 1 and 2 using a flat cathode, the time is The liquid temperature increases with the passage of time. Therefore, it can be seen that an increase in the liquid temperature between the electrodes can be suppressed by using the net-like cathode.

また、図3においては、電解液のpHも、実施例1、2ではpHが約3.5とほぼ一定であるのに対し、比較例1、2では時間の経過とともにpH値が上昇してしまっている。よって、網状の陰極を用いることで電極間のpHの上昇を抑制することができることが分かる。   Also, in FIG. 3, the pH of the electrolyte solution is substantially constant at about 3.5 in Examples 1 and 2, whereas in Comparative Examples 1 and 2, the pH value increases with time. I'm stuck. Therefore, it can be seen that an increase in pH between the electrodes can be suppressed by using a net-like cathode.

さらに、図4においては、10%粒径では実施例1、2及び比較例1、2とでそれほど差がないのに対して、90%粒径では比較例1、2は、実施例1、2と比較しておよそ2倍程度大きくなっている。すなわち、実施例1又は2を適用した場合の方が、比較例1又は2を適用した場合に比べ、粒径の均一性に優れ、粒度分布幅の狭い水酸化インジウム粉が得られていることが分かる。   Further, in FIG. 4, the 10% particle size is not so different from Examples 1 and 2 and Comparative Examples 1 and 2, whereas the 90% particle size is Comparative Example 1 and 2 in Example 1. Compared to 2, it is about twice as large. That is, indium hydroxide powder having excellent particle size uniformity and a narrow particle size distribution width is obtained when Example 1 or 2 is applied, compared with the case where Comparative Example 1 or 2 is applied. I understand.

以上のとおり、本発明を適用すれば、電極間の液温とpHの上昇を抑制し、粒径の均一性に優れ、粒度分布幅の狭い水酸化インジウム粉を得ることができる。   As described above, by applying the present invention, it is possible to obtain an indium hydroxide powder that suppresses an increase in liquid temperature and pH between electrodes, is excellent in particle size uniformity, and has a narrow particle size distribution width.

1A,1B 陰極、2A,2B 接触部、3A,3B 主面部、4A,4B 孔 1A, 1B cathode, 2A, 2B contact part, 3A, 3B main surface part, 4A, 4B hole

Claims (4)

金属インジウムからなる陽極と、陰極とを複数枚交互に並べて、電解液中で電解することで水酸化インジウム粉を生成する水酸化インジウム粉の製造方法において、
上記電解に使用する上記陰極の、電解反応が起こる主面部が網状に形成され
上記網状は、上記陰極の主面部にラス加工による孔を形成したもの、または該陰極の主面部にパンチング加工による孔を形成したものであることを特徴とする水酸化インジウム粉の製造方法。
In the method for producing indium hydroxide powder in which a plurality of anodes made of metal indium and cathodes are alternately arranged and indium hydroxide powder is produced by electrolysis in an electrolytic solution,
The main surface portion where the electrolytic reaction of the cathode used for the electrolysis occurs is formed in a net shape ,
The method for producing indium hydroxide powder, wherein the mesh is formed by forming a hole by lath processing on the main surface portion of the cathode or by forming a hole by punching processing on the main surface portion of the cathode .
上記陽極と上記陰極間の液温を電解装置の設定温度に対して±2℃の範囲に制御し、上記陽極と上記陰極間の上記電解液のpHを3.2〜4.0の範囲に制御することを特徴とする請求項1記載の水酸化インジウム粉の製造方法。   The liquid temperature between the anode and the cathode is controlled within a range of ± 2 ° C. with respect to the set temperature of the electrolysis device, and the pH of the electrolyte between the anode and the cathode is set within a range of 3.2 to 4.0. The method for producing indium hydroxide powder according to claim 1, wherein the method is controlled. 上記陽極と上記陰極の間の電極間距離が10〜25mmであることを特徴とする請求項1又は2に記載の水酸化インジウム粉の製造方法。The method for producing indium hydroxide powder according to claim 1 or 2, wherein an interelectrode distance between the anode and the cathode is 10 to 25 mm. 請求項1乃至3のいずれか1項に記載の水酸化インジウム粉の製造方法において使用される陰極において、
該陰極の主面部を網状に形成してなり、
上記網状は、上記陰極の主面部にラス加工による孔を形成したもの、または該陰極の主面部にパンチング加工による孔を形成したものである陰極。
In the cathode used in the method for producing indium hydroxide powder according to any one of claims 1 to 3 ,
The main surface portion of the cathode Ri greens formed reticulated,
The net is a cathode in which holes are formed by lath processing on the main surface portion of the cathode, or holes are formed by punching processing on the main surface portion of the cathode.
JP2014014405A 2014-01-29 2014-01-29 Method for producing indium hydroxide powder and cathode Expired - Fee Related JP6119622B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014014405A JP6119622B2 (en) 2014-01-29 2014-01-29 Method for producing indium hydroxide powder and cathode
CN201480058844.XA CN105683416B (en) 2014-01-29 2014-10-10 The manufacture method and negative electrode of indium hydroxide powder
KR1020167007052A KR102300880B1 (en) 2014-01-29 2014-10-10 Process for producing indium hydroxide powder, and cathode
PCT/JP2014/077193 WO2015114886A1 (en) 2014-01-29 2014-10-10 Process for producing indium hydroxide powder, and cathode
TW103136445A TW201529479A (en) 2014-01-29 2014-10-22 Process for producing indium hydroxide powder, and cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014014405A JP6119622B2 (en) 2014-01-29 2014-01-29 Method for producing indium hydroxide powder and cathode

Publications (2)

Publication Number Publication Date
JP2015140282A JP2015140282A (en) 2015-08-03
JP6119622B2 true JP6119622B2 (en) 2017-04-26

Family

ID=53756486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014014405A Expired - Fee Related JP6119622B2 (en) 2014-01-29 2014-01-29 Method for producing indium hydroxide powder and cathode

Country Status (5)

Country Link
JP (1) JP6119622B2 (en)
KR (1) KR102300880B1 (en)
CN (1) CN105683416B (en)
TW (1) TW201529479A (en)
WO (1) WO2015114886A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110644013B (en) * 2019-10-30 2022-05-03 广东先导稀材股份有限公司 Indium oxide and preparation method of precursor thereof
CN112323084A (en) * 2020-09-15 2021-02-05 先导薄膜材料(广东)有限公司 Preparation method of nano indium oxide

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4615784A (en) * 1982-06-10 1986-10-07 Eltech Systems Corporation Narrow gap reticulate electrode electrolysis cell
JP2829556B2 (en) 1992-12-09 1998-11-25 株式会社ジャパンエナジー Method for producing indium oxide powder
KR970006076Y1 (en) * 1994-07-26 1997-06-19 박병근 Wardrobe for necktie
JPH0841673A (en) * 1994-08-02 1996-02-13 Mitsubishi Materials Corp Electrophoretic electrode
JPH1095615A (en) * 1996-06-20 1998-04-14 Mitsubishi Materials Corp Indium oxide powder for high density sintered compact
JPH10204669A (en) * 1997-01-16 1998-08-04 Mitsubishi Materials Corp Production of indium oxide powder
DE10030093C1 (en) * 2000-06-19 2002-02-21 Starck H C Gmbh Method and device for producing metal hydroxides or basic metal carbonates
JP4593038B2 (en) * 2001-09-21 2010-12-08 古河機械金属株式会社 Method for producing cobalt sulfate solution
CN101967652A (en) * 2010-11-11 2011-02-09 利尔化学股份有限公司 Electrolytic reaction device
JP5632340B2 (en) * 2011-08-05 2014-11-26 Jx日鉱日石金属株式会社 Electrolytic production apparatus and production method of indium hydroxide and compound containing indium hydroxide
CN104334771A (en) * 2012-05-31 2015-02-04 株式会社爱发科 Method for production of metal hydroxide and method for production of ITO sputtering target

Also Published As

Publication number Publication date
TW201529479A (en) 2015-08-01
KR102300880B1 (en) 2021-09-13
JP2015140282A (en) 2015-08-03
WO2015114886A1 (en) 2015-08-06
KR20160114034A (en) 2016-10-04
CN105683416B (en) 2017-12-15
CN105683416A (en) 2016-06-15

Similar Documents

Publication Publication Date Title
JP6090442B2 (en) Method for producing indium hydroxide powder and method for producing indium oxide powder
CN107935026B (en) Method and device for preparing nano indium oxide by electrolysis
Ru et al. Morphology-controlled preparation of lead powders by electrodeposition from different PbO-containing choline chloride-urea deep eutectic solvent
Avramović et al. Correlation between crystal structure and morphology of potentiostatically electrodeposited silver dendritic nanostructures
JP6119622B2 (en) Method for producing indium hydroxide powder and cathode
JP5972907B2 (en) Method for producing gallium hydroxide and method for producing gallium oxide powder
KR100767703B1 (en) Preparation method of silver nano-powder using electrolysis
JP6036644B2 (en) Method for producing indium hydroxide powder
JP6206382B2 (en) Method for producing indium hydroxide powder
JP6314904B2 (en) Method for producing indium hydroxide powder, method for producing indium oxide powder, and method for producing sputtering target
JP6201193B2 (en) Electrolytic apparatus for indium hydroxide powder or tin hydroxide powder, method for producing indium hydroxide powder or tin hydroxide powder, and method for producing sputtering target
CN110512225B (en) Preparation method of zinc oxide powder
JP5786994B1 (en) Indium hydroxide powder and indium oxide powder
JP5994524B2 (en) Method for producing metal hydroxide powder
JP2014088599A (en) Manufacturing installation of metalhydroxide, manufacturing method of metalhydroxide, and sputtering target
JP6201915B2 (en) Cathode and method for producing metal hydroxide using the same
JP6086053B2 (en) Method for producing indium hydroxide powder
JP2016117927A (en) Electrolytic device for indium hydroxide powder, method for producing indium hydroxide powder, and method for producing spattering target
JP6201195B2 (en) Electrolytic apparatus for indium hydroxide powder or tin hydroxide powder, method for producing indium hydroxide powder or tin hydroxide powder, and method for producing sputtering target
JP5711063B2 (en) Method for producing indium hydroxide
JP2019081919A (en) Electrolytic method
JP2016117928A (en) Electrolytic device for indium hydroxide powder or tin hydroxide powder, method for producing indium hydroxide powder or tin hydroxide powder, and method for producing sputtering target

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170313

R150 Certificate of patent or registration of utility model

Ref document number: 6119622

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees