JP6090442B2 - Method for producing indium hydroxide powder and method for producing indium oxide powder - Google Patents

Method for producing indium hydroxide powder and method for producing indium oxide powder Download PDF

Info

Publication number
JP6090442B2
JP6090442B2 JP2015519829A JP2015519829A JP6090442B2 JP 6090442 B2 JP6090442 B2 JP 6090442B2 JP 2015519829 A JP2015519829 A JP 2015519829A JP 2015519829 A JP2015519829 A JP 2015519829A JP 6090442 B2 JP6090442 B2 JP 6090442B2
Authority
JP
Japan
Prior art keywords
indium
hydroxide powder
indium oxide
particle size
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015519829A
Other languages
Japanese (ja)
Other versions
JPWO2014192650A1 (en
Inventor
憲明 菅本
憲明 菅本
龍夫 木部
龍夫 木部
哲郎 加茂
哲郎 加茂
剛 岩佐
剛 岩佐
哲史 川上
哲史 川上
功 高田
功 高田
水沼 昌平
昌平 水沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Publication of JPWO2014192650A1 publication Critical patent/JPWO2014192650A1/en
Application granted granted Critical
Publication of JP6090442B2 publication Critical patent/JP6090442B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5481Monomodal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Description

本発明は、粒径の均一性に優れ、粒度分布幅の狭い水酸化インジウム粉を得ることができる水酸化インジウム粉の製造方法及び酸化インジウム粉の製造方に関するものである。本出願は、日本国において2013年5月27日に出願された日本特許出願番号特願2013−111289を基礎として優先権を主張するものであり、この出願は参照されることにより、本出願に援用される。 The present invention is excellent in uniformity of the particle size, a manufacturing how preparation and indium oxide powder indium hydroxide powder can be obtained narrow indium hydroxide powder particle size distribution width. This application claims priority on the basis of Japanese Patent Application No. 2013-111289 filed on May 27, 2013 in Japan. This application is incorporated herein by reference. Incorporated.

最近、太陽電池用途やタッチパネル用途として透明導電膜の利用が増えてきており、それに伴って、スパッタリングターゲットなど透明導電膜形成用材料の需要が増加している。これらの透明導電膜形成用材料には酸化インジウム系焼結材料が主に使用されている。透明導電膜形成用材料の主原料として酸化インジウム粉が使用される。スパッタリングターゲットに用いられる酸化インジウム粉は、高密度ターゲットを得るために出来るだけ粒度分布の幅が小さいことが望ましい。   Recently, the use of transparent conductive films has increased for solar cell applications and touch panel applications, and accordingly, the demand for transparent conductive film forming materials such as sputtering targets has increased. For these transparent conductive film forming materials, indium oxide-based sintered materials are mainly used. Indium oxide powder is used as the main raw material for the transparent conductive film forming material. It is desirable that the indium oxide powder used for the sputtering target has the smallest possible particle size distribution in order to obtain a high-density target.

酸化インジウム粉の製造方法としては、主に、硝酸インジウム水溶液や塩化インジウム水溶液などの酸性水溶液をアンモニア水などのアルカリ性水溶液で中和して生じる水酸化インジウムの沈澱を乾燥し仮焼する、いわゆる中和法によって製造される。   As a method for producing indium oxide powder, mainly, a so-called medium-indium hydroxide precipitate formed by neutralizing an acidic aqueous solution such as an indium nitrate aqueous solution or an indium chloride aqueous solution with an alkaline aqueous solution such as ammonia water is dried and calcined. Manufactured by the sum method.

中和法では、得られる酸化インジウム粉の凝集を抑制するために、70〜95℃の高温の硝酸インジウム水溶液にアルカリ添加することで、針状の水酸化インジウムを得る方法が提案されている(例えば、特許文献1参照。)。針状の水酸化インジウムを仮焼することで凝集の少ない酸化インジウム粉を得ることができると開示されている。   In the neutralization method, in order to suppress aggregation of the obtained indium oxide powder, a method of obtaining needle-like indium hydroxide by adding an alkali to a high-temperature indium nitrate aqueous solution at 70 to 95 ° C. has been proposed ( For example, see Patent Document 1.) It is disclosed that indium oxide powder with less aggregation can be obtained by calcining acicular indium hydroxide.

しかしながら、中和法で製造した酸化インジウム粉は、粒径や粒度分布が不均一となりやすく、比較的大きなサイズの粒子が共存するという問題がある。このため、このような酸化インジウムを使用してスパッタリングターゲットを作製すると、大粒子による粒子間の空隙が生じ、密度が向上しにくくなる等の問題が生じる。   However, the indium oxide powder produced by the neutralization method has a problem that the particle size and particle size distribution are likely to be non-uniform, and relatively large particles coexist. For this reason, when a sputtering target is produced using such indium oxide, voids between particles due to large particles are generated, resulting in problems such as difficulty in improving the density.

この他に、中和法では、酸化インジウム粉製造後に大量の窒素排水が発生するため排水処理コストが大きくなるという問題がある。   In addition, the neutralization method has a problem that wastewater treatment costs increase because a large amount of nitrogen wastewater is generated after the production of indium oxide powder.

これを改善する方法としては、金属インジウムを電解処理することで水酸化インジウム粉の沈殿を生じさせ、これを仮焼して酸化インジウム粉を製造する方法、いわゆる電解法が提案されている(例えば、特許文献2参照。)。この方法では、中和法に比べて、酸化インジウム粉製造後の窒素排水量を格段に少なくすることができるほか、得られる酸化インジウム粉の粒径を均一化できる。   As a method for improving this, there has been proposed a method of producing indium oxide powder by precipitating indium hydroxide powder by electrolytic treatment of metal indium, and so-called electrolytic method (for example, , See Patent Document 2). In this method, the amount of nitrogen drainage after the production of indium oxide powder can be remarkably reduced as compared with the neutralization method, and the particle diameter of the resulting indium oxide powder can be made uniform.

しかしながら、電解法によって得られる水酸化インジウム粉は、電解液のpHが中性に近いことから非常に微細であり凝集しやすいという問題がある。これを仮焼して得られる酸化インジウム粉は、一次粒子径は比較的均一であるものの、それら粒子が強く凝集した凝集粉が得られやすくなる。凝集によって、粒度分布の幅が広くなるため、ターゲットの高密度化が阻害されるという問題がある。   However, the indium hydroxide powder obtained by the electrolytic method has a problem that it is very fine and easily aggregates because the pH of the electrolytic solution is close to neutral. Although the indium oxide powder obtained by calcining this has a relatively uniform primary particle size, it becomes easy to obtain an agglomerated powder in which these particles are strongly aggregated. Due to the aggregation, the width of the particle size distribution is widened, so that there is a problem that densification of the target is inhibited.

したがって、水酸化インジウム粉の製造方法において、製造後の窒素排水量が少ない電解法を用い、粒径が均一で粒度分布の幅が狭い水酸化インジウム粉を得る方法が求められる。   Therefore, in the method for producing indium hydroxide powder, there is a demand for a method for obtaining indium hydroxide powder having a uniform particle size and a narrow particle size distribution by using an electrolytic method with a small amount of nitrogen drainage after production.

特許第3314388号公報Japanese Patent No. 3314388 特許第2829556号公報Japanese Patent No. 2829556

そこで、本発明は、このような実情に鑑みて提案されたものであり、凝集し難く、粒径が均一であり、粒度分布幅が狭い水酸化インジウム粉を得ることができる水酸化インジウム粉の製造方法及び得られた水酸化インジウム粉を仮焼して酸化インジウム粉を得る酸化インジウム粉の製造方法、並びに得られた酸化インジウム粉を用いて作製したスパッタリングターゲットを提供することを目的とする。   Therefore, the present invention has been proposed in view of such circumstances, and is an indium hydroxide powder that is difficult to agglomerate, has a uniform particle size, and can obtain an indium hydroxide powder with a narrow particle size distribution width. An object of the present invention is to provide a production method, a production method of indium oxide powder obtained by calcining the obtained indium hydroxide powder to obtain indium oxide powder, and a sputtering target produced using the obtained indium oxide powder.

上述した目的を達成する本発明に係る水酸化インジウム粉の製造方法は、陽極に金属インジウムを用いた電解により水酸化インジウム粉を製造する水酸化インジウム粉の製造方法であって、電解液の濃度が0.1〜2.0mol/Lであり、pHが2.5〜5.0、液温が20〜60℃であり、電極電流密度が4〜20A/dmであり、電極間距離が1〜4cmであり、析出した水酸化インジウム粉を含む電解スラリーの濃度が2〜15%の範囲となるように電解を行うことを特徴とする。 The method for producing indium hydroxide powder according to the present invention that achieves the above-described object is a method for producing indium hydroxide powder by electrolysis using metal indium for the anode, and the concentration of the electrolytic solution Is 0.1 to 2.0 mol / L, pH is 2.5 to 5.0, liquid temperature is 20 to 60 ° C., electrode current density is 4 to 20 A / dm 2 , and the distance between the electrodes is It is 1 to 4 cm, and electrolysis is performed so that the concentration of the electrolytic slurry containing the precipitated indium hydroxide powder is in the range of 2 to 15%.

上述した目的を達成する本発明に係る酸化インジウム粉の製造方法は、上述の水酸化インジウム粉を仮焼して得られることを特徴とする。   The method for producing indium oxide powder according to the present invention that achieves the above-described object is characterized by being obtained by calcining the above-mentioned indium hydroxide powder.

本発明では、電解液の濃度、pH、液温、電極電流密度を制御し、析出した水酸化インジウム粉を含む電解スラリーの濃度が特定の範囲内となるように電解を行うことによって、生成した水酸化インジウム粉は凝集し難く、粒径が均一であり、粒度分布幅が狭い水酸化インジウム粉を製造することができる。これにより、本発明では、得られた水酸化インジウム粉を用いることにより、同様に粒径が均一で、粒度分布幅が狭い酸化インジウム粉が得られ、高密度のスパッタリングターゲットを得ることができる。   In the present invention, the electrolytic solution concentration, pH, liquid temperature, electrode current density are controlled, and electrolysis is performed so that the concentration of the electrolytic slurry containing the deposited indium hydroxide powder is within a specific range. Indium hydroxide powder is hard to agglomerate, has a uniform particle size, and can produce indium hydroxide powder with a narrow particle size distribution width. Accordingly, in the present invention, by using the obtained indium hydroxide powder, indium oxide powder having a uniform particle size and a narrow particle size distribution width can be obtained, and a high-density sputtering target can be obtained.

実施例及び比較例で用いた電解装置の概略図である。It is the schematic of the electrolysis apparatus used by the Example and the comparative example. 同電解装置における陰極と陽極の配置を示す概略図である。It is the schematic which shows arrangement | positioning of the cathode and anode in the same electrolysis apparatus.

以下に、本発明を適用した酸化インジウム粉の製造方法及びその製造方法により得られた酸化インジウム粉を用いたスパッタリングターゲットについて説明する。なお、本発明は、特に限定がない限り、以下の詳細な説明に限定されるものではない。本発明を適用した酸化インジウム粉の製造方法及びスパッタリングターゲットの実施の形態について、以下の順序で詳細に説明する。
1.酸化インジウム粉の製造方法
1−1.水酸化インジウム粉の製造工程
1−2.水酸化インジウム粉の回収工程
1−3.水酸化インジウム粉の乾燥工程
1−4.酸化インジウム粉の生成工程
2.スパッタリングターゲット
Below, the manufacturing method of the indium oxide powder to which this invention is applied and the sputtering target using the indium oxide powder obtained by the manufacturing method are demonstrated. Note that the present invention is not limited to the following detailed description unless otherwise specified. Embodiments of a method for producing indium oxide powder and a sputtering target to which the present invention is applied will be described in detail in the following order.
1. 1. Method for producing indium oxide powder 1-1. Production process of indium hydroxide powder 1-2. Recovery process of indium hydroxide powder 1-3. Indium hydroxide powder drying process 1-4. 1. Production process of indium oxide powder Sputtering target

1.酸化インジウム粉の製造方法
(1−1.水酸化インジウム粉の製造工程)
水酸化インジウム粉の製造方法は、電解反応を利用して水酸化インジウム粉を製造する。
1. Manufacturing method of indium oxide powder (1-1. Manufacturing process of indium hydroxide powder)
The manufacturing method of indium hydroxide powder manufactures indium hydroxide powder using an electrolytic reaction.

水酸化インジウム粉の製造方法は、インジウムをアノード(陽極)とし、対極のカソード(陰極)に導電性の金属やカーボン電極を使用し、陽極及び陰極を電解液に浸漬して両極間に電位差を発生させ電流を生じさせることで陽極金属を溶解する。電解において、電解液のpHを水酸化インジウムの溶解度より低い状態となる領域に制御することにより、水酸化インジウム粉の沈殿を生じさせ、水酸化インジウム粉を得る。   Indium hydroxide powder is produced by using indium as an anode (anode), using a conductive metal or carbon electrode for the cathode (cathode) of the counter electrode, and immersing the anode and cathode in the electrolyte to create a potential difference between the two electrodes. The anode metal is dissolved by generating and generating an electric current. In electrolysis, the pH of the electrolytic solution is controlled to a region that is lower than the solubility of indium hydroxide, thereby causing precipitation of indium hydroxide powder and obtaining indium hydroxide powder.

陽極には、例えば金属インジウム等を用いる。使用する金属インジウムは、特に限定されないが、酸化インジウム粉への不純物の混入を抑制するため高純度のものが望ましい。適切な金属インジウムとしては純度99.9999%(通称6N品)が好適品として使用される。   For the anode, for example, metal indium or the like is used. The metal indium to be used is not particularly limited, but a high-purity metal indium is desirable in order to suppress the mixing of impurities into the indium oxide powder. As a suitable metal indium, a purity of 99.9999% (commonly called 6N product) is preferably used.

陰極には、導電性の金属やカーボン電極等が用いられ、例えば不溶性のチタン等を用いることができる。   As the cathode, a conductive metal, a carbon electrode, or the like is used, and for example, insoluble titanium or the like can be used.

電解液としては、水溶性の硝酸塩、硫酸塩、塩化物塩等の一般的な電解質塩の水溶液を用いることができる。その中でも、水酸化インジウム粉を沈殿した後の乾燥、仮焼後に不純物の残らない硝酸アンモニウムを使用した硝酸アンモニウム水溶液が好ましい。   As the electrolytic solution, an aqueous solution of a general electrolyte salt such as a water-soluble nitrate, sulfate, or chloride salt can be used. Among them, an aqueous ammonium nitrate solution using ammonium nitrate in which impurities remain after drying and calcining after precipitation of indium hydroxide powder is preferable.

電解液の濃度は、0.1〜2.0mol/Lとする。電解液の濃度が低いほど安価となるが、濃度が0.1mol/Lよりも低い場合には、電解液の電気伝導率が低すぎて電流が生じないか、または必要電圧が実用範囲を超すため好ましくない。一方、電解液の濃度が2.0mol/Lあれば十分な電気伝導率が確保されるので、2.0mol/Lよりも高くすると不経済となるためこれ以上高くする必要はない。   The concentration of the electrolytic solution is 0.1 to 2.0 mol / L. The lower the concentration of the electrolytic solution, the lower the cost. However, when the concentration is lower than 0.1 mol / L, the electrical conductivity of the electrolytic solution is too low and no current is generated, or the necessary voltage exceeds the practical range. Therefore, it is not preferable. On the other hand, if the concentration of the electrolytic solution is 2.0 mol / L, sufficient electric conductivity is secured. Therefore, if it is higher than 2.0 mol / L, it becomes uneconomical and it is not necessary to increase it further.

電解液のpHは、2.5〜5.0の範囲とする。pHが2.5より小さい場合には、水酸化物の沈殿が生じず、5.0より大きい場合には水酸化物の析出速度が速すぎて濃度不均一のまま沈殿が形成されるため粒度分布幅が広くなり好ましくない。なお、水酸化物が沈殿を起こすpHは、共存イオンによっても影響を受けるので、2.5〜5.0の範囲内においてそれぞれにあったpHの範囲に調整することが必要である。また、クエン酸や酒石酸、グリコール酸等の含酸素キレート化合物やエチレンジアミン四酢酸(EDTA)等の含窒素キレートの共存によっても水酸化物の溶解安定性が向上するために、これらの存在も考慮して適正に水酸化物が沈殿するpHに調整する必要がある。   The pH of the electrolytic solution is in the range of 2.5 to 5.0. When the pH is less than 2.5, hydroxide precipitation does not occur. When the pH is greater than 5.0, the precipitation rate is too high and the precipitate is formed with non-uniform concentration. The distribution width becomes wide, which is not preferable. The pH at which the hydroxide precipitates is also affected by the coexisting ions, so it is necessary to adjust the pH within the range of 2.5 to 5.0. In addition, coexistence of oxygen-containing chelate compounds such as citric acid, tartaric acid and glycolic acid and nitrogen-containing chelates such as ethylenediaminetetraacetic acid (EDTA) improves the dissolution stability of hydroxides. Therefore, it is necessary to adjust the pH appropriately so that the hydroxide precipitates.

電解液の液温は、20〜60℃とする。20℃より低い場合には、水酸化物の析出速度が遅くなり過ぎ、また60℃より高い場合には、析出速度が速くなり過ぎて、濃度不均一のまま沈殿が形成されるため粒度分布幅が広くなり、粒度分布幅を小さく制御することができないため好ましくない。   The liquid temperature of the electrolytic solution is 20 to 60 ° C. When the temperature is lower than 20 ° C., the precipitation rate of the hydroxide is too slow, and when it is higher than 60 ° C., the precipitation rate is too high, and the precipitate is formed with non-uniform concentration. Is unfavorable since the particle size distribution width cannot be controlled to be small.

電流密度は、4〜20A/dmの範囲とする。電流密度が4A/dmより低い場合には、水酸化インジウム粉の生成速度が低下する。また電流密度が上がりすぎると、水酸化物沈殿発生よりもインジウムが負極上で析出する反応が優先し始めるため、その結果析出したインジウム金属が水酸化インジウム金属に混合して粒度を粗くしてしまうため好ましくない。20A/dmより高い場合にはその傾向が顕著になるため好ましくない。さらに電解電圧が上昇することで液温上昇が生じやすいこと、陽極の金属インジウムの表面が不動態化し電解し難くなるなどの問題も生じるので好ましくない。The current density is in the range of 4 to 20 A / dm2. When the current density is lower than 4 A / dm 2 , the production rate of indium hydroxide powder decreases. If the current density increases too much, the reaction in which indium precipitates on the negative electrode begins to prevail over the occurrence of hydroxide precipitation, and as a result, the precipitated indium metal mixes with indium hydroxide metal and coarsens the particle size. Therefore, it is not preferable. When it is higher than 20 A / dm 2, the tendency becomes remarkable, which is not preferable. Further, since the electrolysis voltage is increased, the liquid temperature is likely to increase, and the surface of the metal indium at the anode is passivated, which makes it difficult to perform electrolysis.

陽極と陰極の間の電極間距離は、1cm〜4cmの範囲内とすることが好ましい。1cmより狭い場合には、容易に物理的な接触が起きやすく短絡等が起きやすくなるため好ましくない。4cmより広い場合には、電流が生じないか、または必要電圧が実用範囲を超すため好ましくない。   The distance between the anode and the cathode is preferably in the range of 1 cm to 4 cm. When it is narrower than 1 cm, it is not preferable because a physical contact easily occurs and a short circuit easily occurs. If it is wider than 4 cm, no current is generated or the necessary voltage exceeds the practical range, which is not preferable.

電解は、水酸化インジウム粉が析出した電解液(以下、電解スラリーともいう。)の濃度が2〜15%の範囲内で行う。水酸化インジウム粉の沈殿量は電解の進行とともに増加するが、濃度が2%より低い場合には、濃度が低過ぎるので固液分離の効率が低くなり好ましくない。また、15%より高い場合には、電解液の粘性が上がりすぎて、電解液中で均一に拡散することが阻害されるため濃度不均一のまま沈殿が形成され、粒度分布幅が小さくならず好ましくない。   The electrolysis is performed within a range of 2 to 15% of the concentration of the electrolytic solution (hereinafter also referred to as electrolytic slurry) on which the indium hydroxide powder is deposited. The precipitation amount of indium hydroxide powder increases with the progress of electrolysis. However, when the concentration is lower than 2%, the concentration is too low, and the efficiency of solid-liquid separation is lowered, which is not preferable. On the other hand, if it is higher than 15%, the viscosity of the electrolytic solution is increased too much and the uniform diffusion in the electrolytic solution is hindered, so that a precipitate is formed with a non-uniform concentration and the particle size distribution width is not reduced. It is not preferable.

(1−2.水酸化インジウム粉の回収工程)
電解により得られた水酸化インジウム粉を電解液から固液分離し、分離した水酸化インジウム粉を純水で洗浄して再び固液分離して回収する。
(1-2. Indium hydroxide powder recovery process)
The indium hydroxide powder obtained by electrolysis is solid-liquid separated from the electrolytic solution, and the separated indium hydroxide powder is washed with pure water, solid-liquid separated again, and recovered.

固液分離方法としては、特に限定されないが、例えばロータリーフィルタ、遠心分離、フィルタープレス、加圧濾過、減圧濾過等を挙げることができる。   The solid-liquid separation method is not particularly limited, and examples thereof include a rotary filter, centrifugal separation, filter press, pressure filtration, and vacuum filtration.

(1−3.水酸化インジウム粉の乾燥工程)
次に、回収した水酸化インジウム粉の乾燥を行う。
(1-3. Indium hydroxide powder drying step)
Next, the recovered indium hydroxide powder is dried.

乾燥方法は、スプレードライヤ、空気対流型乾燥炉、赤外線乾燥炉等の乾燥機で行う。   The drying method is performed by a dryer such as a spray dryer, an air convection type drying furnace, an infrared drying furnace or the like.

乾燥条件は、水酸化インジウム粉の水分を除去できれば特に限定されないが、例えば乾燥温度は80℃〜150℃の範囲が好ましい。乾燥温度が80℃よりも低い場合には、乾燥が不十分となり、150℃よりも高い場合には、水酸化インジウムから酸化インジウムに変化してしまう。乾燥時間は、温度により異なるが、約10時間〜24時間である。   The drying conditions are not particularly limited as long as the moisture of the indium hydroxide powder can be removed. For example, the drying temperature is preferably in the range of 80 ° C to 150 ° C. When the drying temperature is lower than 80 ° C., the drying is insufficient. When the drying temperature is higher than 150 ° C., the indium hydroxide changes to indium oxide. The drying time varies depending on the temperature, but is about 10 hours to 24 hours.

以上のような水酸化インジウム粉の製造方法では、電解において電解液の濃度を0.1〜2.0mol/L、pHを2.5〜5.0、液温を20〜60℃の範囲とし、このような電解液に陽極と陰極を浸漬させ、電極電流密度が4A/dm〜20A/dmの範囲であって、電解スラリーの濃度が2〜15%となる範囲内で電解を行うことにより、凝集し難く、粒径が均一であり、粒度分布幅が狭い水酸化インジウム粉を得ることができる。In the method for producing indium hydroxide powder as described above, in the electrolysis, the concentration of the electrolyte is 0.1 to 2.0 mol / L, the pH is 2.5 to 5.0, and the temperature of the solution is 20 to 60 ° C. such an anode and a cathode immersed in the electrolyte, in the range electrode current density of 4A / dm 2 ~20A / dm 2 , the concentration of the electrolyte slurry perform electrolysis in a range of a 2-15% As a result, it is possible to obtain an indium hydroxide powder that is difficult to aggregate, has a uniform particle size, and has a narrow particle size distribution width.

また、得られる水酸化インジウム粉の一次粒子の形状は、柱状となる。水酸化インジウム粉の一次粒子が柱状であることによって、凝集が適度に抑制され、粒径がサブミクロン又は数ミクロンの粒度分布の狭い球状の二次粒子が得られる。   Moreover, the shape of the primary particle of the obtained indium hydroxide powder is a columnar shape. When the primary particles of the indium hydroxide powder are columnar, aggregation is moderately suppressed, and spherical secondary particles having a narrow particle size distribution with a particle size of submicron or several microns are obtained.

(1−4.酸化インジウム粉の生成工程)
酸化インジウム粉の生成工程では、乾燥後の水酸化インジウム粉を仮焼して酸化インジウム粉を生成する。仮焼条件は、例えば仮焼温度600℃〜800℃、仮焼時間1時間〜10時間で行うことが好ましい。なお、酸化インジウム粉の生成工程では、水酸化インジウム粉をより所望の粒径とするため必要に応じて解砕又は粉砕を行ってもよい。また、酸化インジウム粉の生成工程では、電解液に硝酸アンモニウムを用いた場合、仮焼により硝酸アンモニウムの分解が生じ、酸化インジウム粉への混入を防止することができる。
(1-4. Production process of indium oxide powder)
In the indium oxide powder production step, the indium hydroxide powder after drying is calcined to produce indium oxide powder. The calcination conditions are preferably, for example, a calcination temperature of 600 ° C to 800 ° C and a calcination time of 1 hour to 10 hours. In addition, in the production | generation process of an indium oxide powder, in order to make an indium hydroxide powder into a more desirable particle size, you may crush or grind | pulverize as needed. Moreover, in the production | generation process of indium oxide powder, when ammonium nitrate is used for electrolyte solution, decomposition | disassembly of ammonium nitrate arises by calcination and it can prevent mixing in indium oxide powder.

以上のような酸化インジウム粉の製造方法では、水酸化インジウム粉を電解法で生成する際に、上述のように電解液の濃度、pH、液温、電極電流密度を制御し、析出した水酸化インジウム粉を含む電解スラリーの濃度が特定の範囲内となるように電解を行うことによって、生成した水酸化インジウム粉は粒径が均一であり、粒度分布幅が狭い水酸化インジウム粉を製造することができる。これにより、酸化インジウム粉の製造方法では、粒径が均一であり、粒度分布幅が狭い水酸化インジウム粉を仮焼することで、粒径が均一であり、粒度分布幅が狭い酸化インジウム粉を得ることができる。   In the method for producing indium oxide powder as described above, when indium hydroxide powder is produced by electrolysis, the concentration, pH, liquid temperature, and electrode current density of the electrolyte are controlled as described above, and the precipitated hydroxide By performing electrolysis so that the concentration of the electrolytic slurry containing indium powder is within a specific range, the produced indium hydroxide powder has a uniform particle size and produces indium hydroxide powder with a narrow particle size distribution width. Can do. As a result, in the method for producing indium oxide powder, indium hydroxide powder having a uniform particle size and a narrow particle size distribution width is obtained by calcining indium hydroxide powder having a uniform particle size and a narrow particle size distribution width. Can be obtained.

また、酸化インジウム粉の製造方法では、中和法に比べて酸化インジウム粉の製造後の窒素排水量を抑制できる。   Moreover, in the manufacturing method of indium oxide powder, the nitrogen waste_water | drain amount after manufacture of indium oxide powder can be suppressed compared with the neutralization method.

2.スパッタリングターゲット
上述の水酸化インジウム粉の製造方法により得られた水酸化インジウム粉を仮焼して得られた酸化インジウム粉は、例えば透明導電膜の形成に用いられるスパッタリングターゲットの原料に用いられる。
2. Sputtering target The indium oxide powder obtained by calcining the indium hydroxide powder obtained by the above-described method for producing indium hydroxide powder is used as a raw material for a sputtering target used for forming a transparent conductive film, for example.

上述の酸化インジウム粉を酸化すず粉等のターゲットの他の原料と所定の割合で混合した造粒粉を作製する。次に、造粒粉を用いて例えばコールドプレス法により成型体を作製する。次に、成型体を大気圧下で例えば1300℃〜1600℃の温度範囲内で焼結を行う。次に、必要に応じて、焼結体の平面や側面を研磨する等の加工を行う。そして、焼結体をCu製のバッキングプレートにボンディングすることにより、酸化インジウム錫スパッタリングターゲット(ITOスパッタリングターゲット)を得ることができる。   A granulated powder is prepared by mixing the above-mentioned indium oxide powder with other raw materials of the target such as tin oxide powder at a predetermined ratio. Next, a molded body is produced by using, for example, a cold press method using the granulated powder. Next, the molded body is sintered in the temperature range of 1300 ° C. to 1600 ° C., for example, under atmospheric pressure. Next, processing such as polishing the flat surface and side surfaces of the sintered body is performed as necessary. Then, an indium tin oxide sputtering target (ITO sputtering target) can be obtained by bonding the sintered body to a Cu backing plate.

スパッタリングターゲットの製造方法では、原料となる酸化インジウム粉の粒径が均一であり、粒度分布幅が狭いものであるため、高密度の焼結体を得ることができ、ターゲットの密度を高くすることができる。これにより、ターゲットの加工中に割れ欠けが生じず、スパッタの際に異常放電が発生することを抑制できる。   In the sputtering target manufacturing method, since the indium oxide powder used as a raw material has a uniform particle size and a narrow particle size distribution width, a high-density sintered body can be obtained and the target density is increased. Can do. As a result, cracks are not generated during processing of the target, and abnormal discharge can be prevented from occurring during sputtering.

また、酸化インジウム粉は、スパッタリングターゲットの原料だけではなく、導電性ペーストや透明導電膜塗料に添加される。酸化インジウム粉は、粒径が均一であるため、導電性ペーストや透明導電膜塗料等に添加した場合には高分散を発現する。   Moreover, indium oxide powder is added not only to the raw material of the sputtering target but also to conductive paste and transparent conductive film paint. Since indium oxide powder has a uniform particle size, it exhibits high dispersion when added to conductive paste, transparent conductive film paint, and the like.

以下、本発明を適用した具体的な実施例について説明するが、本発明は、これらの実施例に限定されるものではない。   Specific examples to which the present invention is applied will be described below, but the present invention is not limited to these examples.

以下の実施例及び比較例では、図1に示す電解装置1を用いて水酸化インジウム粉の生成を行った。電解装置の具体的な構成については実施例1において説明する。   In the following Examples and Comparative Examples, indium hydroxide powder was generated using the electrolysis apparatus 1 shown in FIG. A specific configuration of the electrolyzer will be described in Example 1.

(実施例1)
電解装置1は、縦30cm、横40cm、深さ30cmの36L電解槽2と、縦40cm、横40cm、深さ50cmの80L調整槽3とを備え、電解槽2と調整槽3は隣接している。電解槽2と調整槽3は、循環ポンプ4により接続されている。
Example 1
The electrolysis apparatus 1 includes a 36 L electrolytic cell 2 having a length of 30 cm, a width of 40 cm, and a depth of 30 cm, and an 80 L adjustment tank 3 having a length of 40 cm, a width of 40 cm, and a depth of 50 cm, and the electrolytic cell 2 and the adjustment tank 3 are adjacent to each other. Yes. The electrolytic bath 2 and the adjustment bath 3 are connected by a circulation pump 4.

電解槽2には、底部より2cmの高さで底と平行に電解液5の液流を分散させるためにパンチプレート6が設けられている。即ち、パンチプレート6は、10cm四方あたり縦5列、横5列、計25個の直径3mmの穴がマス目状に等間隔に開いている。これにより、電解槽2では、循環ポンプ4により電解槽2の下部に注入された電解液5がパンチプレート6を通過し、各液流は偏流のないほぼ均一な液流を確保できる。   The electrolytic cell 2 is provided with a punch plate 6 for dispersing the liquid flow of the electrolytic solution 5 in parallel with the bottom at a height of 2 cm from the bottom. That is, the punch plate 6 has a total of 25 holes of 3 mm in diameter, 5 rows in a row and 5 rows in a 10 cm square. As a result, in the electrolytic cell 2, the electrolytic solution 5 injected into the lower part of the electrolytic cell 2 by the circulation pump 4 passes through the punch plate 6, and each liquid flow can ensure a substantially uniform liquid flow with no drift.

また、電解槽2には、図2に示すように陰極7と陽極8を配置した。陰極(カソード)7には、厚み1mm、巾30cm、高さ25cmのチタン金属板を5枚準備した。陽極(アノード)8には、純度99.9999%のインジウム金属を巾30cm、高さ25cm、厚み5mmの板状に成型したものを4枚準備した。これらの5枚の陰極7と4枚の陽極8を図2に示すように、電解槽内2のパンチプレート6上に垂直にして両極が互いに平行となるよう交互に配置した。陰極7と陽極8と間の距離を3.0cmに調節し配置した。5枚の陰極7は導線9で電気的に接続されている。   In addition, a cathode 7 and an anode 8 were disposed in the electrolytic cell 2 as shown in FIG. For the cathode (cathode) 7, five titanium metal plates having a thickness of 1 mm, a width of 30 cm, and a height of 25 cm were prepared. Four anodes (anodes) 8 were prepared by molding indium metal having a purity of 99.9999% into a plate shape having a width of 30 cm, a height of 25 cm, and a thickness of 5 mm. As shown in FIG. 2, these five cathodes 7 and four anodes 8 were alternately arranged vertically on the punch plate 6 in the electrolytic cell 2 so that both electrodes were parallel to each other. The distance between the cathode 7 and the anode 8 was adjusted to 3.0 cm. The five cathodes 7 are electrically connected by a conductive wire 9.

調整槽3は、電解液の温度を制御及び維持するための温調ヒーター11及び冷却器12を備える。また、調整槽3は、槽内の電解液5を撹拌する撹拌棒13を備える。   The adjustment tank 3 includes a temperature control heater 11 and a cooler 12 for controlling and maintaining the temperature of the electrolytic solution. Moreover, the adjustment tank 3 is equipped with the stirring rod 13 which stirs the electrolyte solution 5 in a tank.

電解装置1では、調整槽3に60Lの2.0mol/L硝酸アンモニウム水溶液が入っている。調整槽3において、電解液5の硝酸アンモニウム水溶液に対し1N硝酸を添加し、水素イオン濃度指数pHを4.0に調整した。pHの測定は、調整槽3に取り付けたpH電極10を用いて行った。この状態を維持しつつ、さらに温調ヒーター11及び冷却器12を使用して電解液5の温度を25℃に維持した。調整槽3では、撹拌棒13で槽内の電解液5を撹拌して電解液5の調整を行った。   In the electrolysis apparatus 1, 60 L of 2.0 mol / L ammonium nitrate aqueous solution is contained in the adjustment tank 3. In the adjustment tank 3, 1N nitric acid was added to the ammonium nitrate aqueous solution of the electrolytic solution 5 to adjust the hydrogen ion concentration index pH to 4.0. The pH was measured using the pH electrode 10 attached to the adjustment tank 3. While maintaining this state, the temperature of the electrolytic solution 5 was maintained at 25 ° C. using the temperature control heater 11 and the cooler 12. In the adjustment tank 3, the electrolytic solution 5 was adjusted by stirring the electrolytic solution 5 in the tank with the stirring rod 13.

電解中は、循環ポンプ4により20L/分の速度で調整槽3内の電解液5を電解槽2へ送った。電解槽2の電解液5は、オーバーフローにより調整槽3に戻るようになっている。   During the electrolysis, the electrolytic solution 5 in the adjustment tank 3 was sent to the electrolytic tank 2 by the circulation pump 4 at a speed of 20 L / min. The electrolytic solution 5 in the electrolytic tank 2 is returned to the adjustment tank 3 due to overflow.

電極電流密度は15A/dmに調節し、6時間電解を継続した。電解により析出した水酸化インジウム粉をヌッチェ濾過瓶にて減圧濾過を行い回収した。The electrode current density was adjusted to 15 A / dm 2 and electrolysis was continued for 6 hours. The indium hydroxide powder deposited by electrolysis was collected by filtration under reduced pressure in a Nutsche filter bottle.

回収した水酸化インジウム粉の粒度分布をレーザー光ドップラー法により測定した結果を表1に示す。水酸化インジウム粉の粒度分布は、最小径0.3μm、最大径1.2μmであり、極めて限定された範囲の粒度分布を有していた。   Table 1 shows the results of measuring the particle size distribution of the recovered indium hydroxide powder by the laser beam Doppler method. The particle size distribution of the indium hydroxide powder had a minimum diameter of 0.3 μm and a maximum diameter of 1.2 μm, and had a particle size distribution in a very limited range.

次に、得られた水酸化インジウム粉を120℃、12時間での大気中静置条件で乾燥し、大気中700℃で焼成した。得られた酸化インジウムの粒度分布は、最小径0.5μm、最大径1.2μmであり、同様に極めて限定された範囲の粒度分布を有していた。固形物量の重量を調べた結果から、電解における電解スラリーの濃度は3.2wt%であった。   Next, the obtained indium hydroxide powder was dried at 120 ° C. for 12 hours in the air, and baked at 700 ° C. in the air. The particle size distribution of the obtained indium oxide had a minimum diameter of 0.5 μm and a maximum diameter of 1.2 μm, and similarly had a particle size distribution in a very limited range. From the result of examining the weight of the amount of solid matter, the concentration of the electrolytic slurry in electrolysis was 3.2 wt%.

この後、コールドプレス大気圧焼結法によって酸化インジウム単独での焼結体を作製した。この結果、焼結体の密度は、酸化インジウムの真比重7.18g/cmに対して99.5%の高密度であった。Thereafter, a sintered body of indium oxide alone was produced by a cold press atmospheric pressure sintering method. As a result, the density of the sintered body was 99.5% higher than the true specific gravity of indium oxide of 7.18 g / cm 3 .

(実施例2)
実施例2では、実施例1の条件で、電解液の硝酸アンモニウム水溶液を0.5mol/Lとした他は実施例1と同じ方法で電解を実施した。そして、得られた水酸化インジウム粉から実施例1と同じ方法で酸化インジウム焼結体を作製した。
(Example 2)
In Example 2, electrolysis was performed in the same manner as in Example 1 except that the ammonium nitrate aqueous solution of the electrolytic solution was changed to 0.5 mol / L under the conditions of Example 1. And the indium oxide sintered compact was produced by the same method as Example 1 from the obtained indium hydroxide powder.

実施例2では、電解液の水酸化インジウム粉の濃度は3.2wt%であった。また実施例1と同様に測定した水酸化インジウム粉の粒度分布は、最小径0.3μm、最大径1.0μmであり、よく限定された範囲の粒度分布を有していた。同様に酸化インジウム粉の粒度分布は、最小径0.5μm、最大径1.2μmであり、同様に限定された範囲の粒度分布であった。酸化インジウム焼結体の密度は、真比重に対して99.6%の高密度であった。   In Example 2, the concentration of indium hydroxide powder in the electrolytic solution was 3.2 wt%. Further, the particle size distribution of the indium hydroxide powder measured in the same manner as in Example 1 had a minimum diameter of 0.3 μm and a maximum diameter of 1.0 μm, and had a well-defined range of particle size distribution. Similarly, the particle size distribution of the indium oxide powder was a minimum particle size of 0.5 μm and a maximum particle size of 1.2 μm. The density of the indium oxide sintered body was 99.6% of the true specific gravity.

(実施例3)
実施例3では、実施例1の条件で、電解温度を50℃とした他は実施例1と同じ方法で電解を実施した。そして、得られた水酸化インジウム粉から実施例1と同じ方法で酸化インジウム焼結体を作製した。
(Example 3)
In Example 3, electrolysis was performed in the same manner as in Example 1 except that the electrolysis temperature was set to 50 ° C. under the conditions of Example 1. And the indium oxide sintered compact was produced by the same method as Example 1 from the obtained indium hydroxide powder.

実施例3では、電解液の水酸化インジウム粉の濃度は3.2wt%であった。また実施例1と同様に測定した水酸化インジウム粉の粒度分布は、最小径0.3μm、最大径1.2μmであり、よく限定された範囲の粒度分布を有していた。同様に酸化インジウム粉の粒度分布は、最小径0.5μm、最大径1.2μmであり、同様に限定された範囲の粒度分布であった。酸化インジウム焼結体の密度は、真比重に対して99.5%の高密度であった。   In Example 3, the concentration of indium hydroxide powder in the electrolytic solution was 3.2 wt%. In addition, the particle size distribution of the indium hydroxide powder measured in the same manner as in Example 1 had a minimum diameter of 0.3 μm and a maximum diameter of 1.2 μm, and had a well-defined range of particle size distribution. Similarly, the particle size distribution of the indium oxide powder was a minimum particle size of 0.5 μm and a maximum particle size of 1.2 μm. The density of the indium oxide sintered body was 99.5% of the true specific gravity.

(実施例4)
実施例4では、実施例1の条件で、電極電流密度を8A/dmとした他は実施例1と同じ方法で電解を実施した。そして、得られた水酸化インジウム粉から実施例1と同じ方法で酸化インジウム焼結体を作製した。
Example 4
In Example 4, electrolysis was performed in the same manner as in Example 1 except that the electrode current density was 8 A / dm 2 under the conditions of Example 1. And the indium oxide sintered compact was produced by the same method as Example 1 from the obtained indium hydroxide powder.

実施例4では、電解液の水酸化インジウム粉の濃度は2.0wt%であった。また実施例1と同様に測定した水酸化インジウム粉の粒度分布は、最小径0.3μm、最大径1.2μmであり、よく限定された範囲の粒度分布を有していた。同様に酸化インジウム粉の粒度分布は、最小径0.5μm、最大径1.2μmであり、同様に限定された範囲の粒度分布であった。酸化インジウム焼結体の密度は、真比重に対して99.5%の高密度であった。   In Example 4, the concentration of indium hydroxide powder in the electrolytic solution was 2.0 wt%. In addition, the particle size distribution of the indium hydroxide powder measured in the same manner as in Example 1 had a minimum diameter of 0.3 μm and a maximum diameter of 1.2 μm, and had a well-defined range of particle size distribution. Similarly, the particle size distribution of the indium oxide powder was a minimum particle size of 0.5 μm and a maximum particle size of 1.2 μm. The density of the indium oxide sintered body was 99.5% of the true specific gravity.

(実施例5)
実施例5は、実施例1の条件で、電極電流密度を17A/dmとした他は実施例1と同じ方法で電解を実施した。そして、得られた水酸化インジウム粉から実施例1と同じ方法で酸化インジウム焼結体を作製した。
(Example 5)
In Example 5, electrolysis was performed in the same manner as in Example 1 except that the electrode current density was 17 A / dm 2 under the conditions of Example 1. And the indium oxide sintered compact was produced by the same method as Example 1 from the obtained indium hydroxide powder.

実施例5では、電解スラリーの濃度は3.2wt%であった。また実施例1と同様に測定した水酸化インジウム粉の粒度分布は、最小径0.3μm、最大径1.2μmであり、限定された範囲の粒度分布を有していた。同様に酸化インジウム粉の粒度分布は、最小径0.5μm、最大径1.2μmであり、同様に限定された範囲の粒度分布であった。また酸化インジウム焼結体の密度は、真比重に対して99.3%の高密度であった。   In Example 5, the concentration of the electrolytic slurry was 3.2 wt%. In addition, the particle size distribution of the indium hydroxide powder measured in the same manner as in Example 1 had a minimum diameter of 0.3 μm and a maximum diameter of 1.2 μm, and had a limited range of particle size distribution. Similarly, the particle size distribution of the indium oxide powder was a minimum particle size of 0.5 μm and a maximum particle size of 1.2 μm. The density of the indium oxide sintered body was 99.3% of the true specific gravity.

(実施例6)
実施例6では、実施例1の条件で、電流密度を19A/dm、かつ電解時間を15時間とした他は実施例1と同じ方法で電解を実施した。そして、得られた水酸化インジウム粉から実施例1と同じ方法で酸化インジウム焼結体を作製した。
(Example 6)
In Example 6, electrolysis was performed in the same manner as in Example 1 except that the current density was 19 A / dm 2 and the electrolysis time was 15 hours under the conditions of Example 1. And the indium oxide sintered compact was produced by the same method as Example 1 from the obtained indium hydroxide powder.

実施例6では、電解スラリーの濃度は12.0wt%であった。また実施例1と同様に測定した水酸化インジウムの粒度分布では最小径0.2μm、最大径1.4μmであり、限定された範囲の粒度分布を有していた。同様に酸化インジウムの粒度分布は最小径0.6μm、最大径1.4μmであり、同様に限定された範囲の粒度分布であった。また酸化インジウム焼結体の密度は真比重に対して99.2%なる高密度であった。   In Example 6, the concentration of the electrolytic slurry was 12.0 wt%. The particle size distribution of indium hydroxide measured in the same manner as in Example 1 had a minimum diameter of 0.2 μm and a maximum diameter of 1.4 μm, and had a limited range of particle size distribution. Similarly, the particle size distribution of indium oxide was a minimum diameter of 0.6 μm and a maximum diameter of 1.4 μm, and the particle size distribution was limited in the same manner. The density of the indium oxide sintered body was 99.2% with respect to the true specific gravity.

(実施例7)
実施例7では、実施例1の条件で、電解液濃度を1.0mol/Lとし、電極間距離を1.5cmとした他は実施例1と同じ方法で電解を実施した。そして、得られた水酸化インジウム粉から実施例1と同じ方法で酸化インジウム焼結体を作製した。
(Example 7)
In Example 7, electrolysis was performed in the same manner as in Example 1 except that the electrolyte concentration was 1.0 mol / L and the distance between the electrodes was 1.5 cm under the conditions of Example 1. And the indium oxide sintered compact was produced by the same method as Example 1 from the obtained indium hydroxide powder.

実施例7では、電解スラリーの濃度は3.2wt%であった。また実施例1と同様に測定した水酸化インジウム粉の粒度分布は、最小径0.3μm、最大径1.2μmであり、同様に限定された範囲の粒度分布を有していた。同様に酸化インジウム粉の粒度分布は最小径0.5μm、最大径1.2μmであり同様によく限定された範囲の粒度分布であった。また酸化インジウム焼結体の密度は真比重に対して99.5%なる高密度であった。   In Example 7, the concentration of the electrolytic slurry was 3.2 wt%. Further, the particle size distribution of the indium hydroxide powder measured in the same manner as in Example 1 had a minimum diameter of 0.3 μm and a maximum diameter of 1.2 μm, and had a particle size distribution in a limited range. Similarly, the particle size distribution of the indium oxide powder has a minimum diameter of 0.5 μm and a maximum diameter of 1.2 μm. The density of the indium oxide sintered body was 99.5% of the true specific gravity.

(比較例1)
比較例1では、実施例1の条件で、電解液濃度を0.04mol/L、電極電流密度を6A/dmとした他は実施例1と同じ方法で電解を行った。
(Comparative Example 1)
In Comparative Example 1, electrolysis was performed in the same manner as in Example 1 except that the electrolytic solution concentration was 0.04 mol / L and the electrode current density was 6 A / dm 2 under the conditions of Example 1.

この結果、所定電流密度に合わせるために印加する電圧が常用範囲を大きく逸脱しかつ安定した電圧値を維持できなかった。   As a result, the voltage applied to match the predetermined current density greatly deviated from the normal range, and a stable voltage value could not be maintained.

(比較例2)
比較例2では、実施例1の条件で、電解液濃度を3.0mol/Lとした他は実施例1と同じ方法で電解を実施した。
(Comparative Example 2)
In Comparative Example 2, electrolysis was performed in the same manner as in Example 1 except that the electrolytic solution concentration was 3.0 mol / L under the conditions of Example 1.

比較例2では、電解スラリーの濃度は3.2wt%であった。また実施例1と同様に測定した水酸化インジウム粉の粒度分布は、最小径0.3μm、最大径3.0μmであり、同様に酸化インジウム粉の粒度分布は、最小径0.3μm、最大径3.0μmであり、どちらも実施例1〜7での結果に比べて広い分布であった。また酸化インジウム焼結体の相対密度は89.7%であり実施例1〜7に比べて明らかに低い値であった。   In Comparative Example 2, the concentration of the electrolytic slurry was 3.2 wt%. The particle size distribution of the indium hydroxide powder measured in the same manner as in Example 1 has a minimum diameter of 0.3 μm and a maximum diameter of 3.0 μm. Similarly, the particle size distribution of indium oxide powder has a minimum diameter of 0.3 μm and a maximum diameter. The distribution was 3.0 μm, both of which were wider than the results in Examples 1-7. The relative density of the indium oxide sintered body was 89.7%, which was clearly lower than those of Examples 1-7.

(比較例3)
比較例3では、実施例1の条件で、電解のpHを2.3、電解温度を30℃、電解時間を4時間とした他は実施例1と同じ方法で電解を実施した。
(Comparative Example 3)
In Comparative Example 3, electrolysis was performed in the same manner as in Example 1, except that the electrolysis pH was 2.3, the electrolysis temperature was 30 ° C., and the electrolysis time was 4 hours.

この結果、陽極インジウムの電解は進まず、まったく水酸化インジウムの沈殿も進まなかった。   As a result, electrolysis of anodic indium did not proceed, and precipitation of indium hydroxide did not proceed at all.

(比較例4)
比較例4では、実施例1の条件で、電解のpHを6.5とした他は実施例1と同じ方法で電解を実施した。そして、得られた水酸化インジウム粉から実施例1と同じ方法で酸化インジウム焼結体を作製した。
(Comparative Example 4)
In Comparative Example 4, electrolysis was performed in the same manner as in Example 1 except that the electrolysis pH was set to 6.5 under the conditions of Example 1. And the indium oxide sintered compact was produced by the same method as Example 1 from the obtained indium hydroxide powder.

この結果、電解スラリーの濃度は3.2wt%であった。また実施例1と同様に測定した水酸化インジウム粉の粒度分布は、最小径0.1μm、最大径9.0μmであり、同様に酸化インジウム粉の粒度分布は、最小径0.2μm、最大径8.8μmであり、どちらも実施例1〜7での結果に比べて広い分布であった。また酸化インジウム焼結体の相対密度は87.0%であり実施例1〜7に比べて明らかに低い値であった。   As a result, the concentration of the electrolytic slurry was 3.2 wt%. The particle size distribution of the indium hydroxide powder measured in the same manner as in Example 1 has a minimum diameter of 0.1 μm and a maximum diameter of 9.0 μm. Similarly, the particle size distribution of indium oxide powder has a minimum diameter of 0.2 μm and a maximum diameter. The distribution was 8.8 μm, both of which were wider than the results in Examples 1 to 7. The relative density of the indium oxide sintered body was 87.0%, which was clearly lower than those of Examples 1-7.

(比較例5)
比較例5では、実施例1の条件で、電解温度を18℃とした他は実施例1と同じ方法で電解を実施した。そして、得られた水酸化インジウム粉から実施例1と同じ方法で酸化インジウム焼結体を作製した。
(Comparative Example 5)
In Comparative Example 5, electrolysis was performed in the same manner as in Example 1 except that the electrolysis temperature was 18 ° C. under the conditions of Example 1. And the indium oxide sintered compact was produced by the same method as Example 1 from the obtained indium hydroxide powder.

比較例5では、電解スラリーの濃度は3.2wt%であった。また実施例1と同様に測定した水酸化インジウム粉の粒度分布は、最小径0.8μm、最大径2.8μmであり、同様に酸化インジウム粉の粒度分布は、最小径0.9μm、最大径3.0μmであり、どちらも実施例1〜7での結果に比べて広い分布であった。また酸化インジウム焼結体の相対密度は91.0%であり実施例1〜7に比べて明らかに低い値であった。   In Comparative Example 5, the concentration of the electrolytic slurry was 3.2 wt%. The particle size distribution of the indium hydroxide powder measured in the same manner as in Example 1 has a minimum diameter of 0.8 μm and a maximum diameter of 2.8 μm. Similarly, the particle size distribution of indium oxide powder has a minimum diameter of 0.9 μm and a maximum diameter. The distribution was 3.0 μm, both of which were wider than the results in Examples 1-7. The relative density of the indium oxide sintered body was 91.0%, which was clearly lower than those of Examples 1-7.

(比較例6)
比較例6では、実施例1の条件で、電解温度を65℃とした他は実施例1と同じ方法で電解を実施した。そして、得られた水酸化インジウム粉から実施例1と同じ方法で酸化インジウム焼結体を作製した。
(Comparative Example 6)
In Comparative Example 6, electrolysis was performed in the same manner as in Example 1 except that the electrolysis temperature was set to 65 ° C. under the conditions of Example 1. And the indium oxide sintered compact was produced by the same method as Example 1 from the obtained indium hydroxide powder.

比較例6では、電解スラリーの濃度は3.2wt%であった。また実施例1と同様に測定した水酸化インジウム粉の粒度分布は、最小径0.2μm、最大径8.0μmであり、同様に酸化インジウム粉の粒度分布は、最小径0.2μm、最大径8.2μmであり、どちらも実施例1〜7での結果に比べて広い分布であった。また酸化インジウム焼結体の相対密度は88.0%であり実施例1〜7に比べて明らかに低い値であった。   In Comparative Example 6, the electrolytic slurry concentration was 3.2 wt%. The particle size distribution of the indium hydroxide powder measured in the same manner as in Example 1 has a minimum diameter of 0.2 μm and a maximum diameter of 8.0 μm. Similarly, the particle size distribution of indium oxide powder has a minimum diameter of 0.2 μm and a maximum diameter. It was 8.2 μm, and both were broader than the results in Examples 1 to 7. The relative density of the indium oxide sintered body was 88.0%, which was clearly lower than those of Examples 1-7.

(比較例7)
比較例7では、実施例1の条件で、電極電流密度を2A/dmとし、電解時間を12時間とした他は実施例1と同じ方法で電解を実施した。そして、得られた水酸化インジウム粉から実施例1と同じ方法で酸化インジウム焼結体を作製した。
(Comparative Example 7)
In Comparative Example 7, electrolysis was performed in the same manner as in Example 1 except that the electrode current density was 2 A / dm 2 and the electrolysis time was 12 hours under the conditions of Example 1. And the indium oxide sintered compact was produced by the same method as Example 1 from the obtained indium hydroxide powder.

比較例7では、電解スラリーの濃度は少なく1.0wt%に満たなかった。また実施例1と同様に測定した水酸化インジウム粉の粒度分布は、最小径0.2μm、最大径2.8μmであり、同様に酸化インジウム粉の粒度分布は、最小径0.8μm、最大径3.1μmであり、どちらも実施例1〜7での結果に比べて広い分布であった。また酸化インジウム焼結体の相対密度は90.0%であり実施例1〜7に比べて明らかに低い値であった。   In Comparative Example 7, the concentration of the electrolytic slurry was small and less than 1.0 wt%. The particle size distribution of the indium hydroxide powder measured in the same manner as in Example 1 has a minimum diameter of 0.2 μm and a maximum diameter of 2.8 μm. Similarly, the particle size distribution of indium oxide powder has a minimum diameter of 0.8 μm and a maximum diameter. The distribution was 3.1 μm, both of which were wider than the results in Examples 1 to 7. The relative density of the indium oxide sintered body was 90.0%, which was clearly lower than those of Examples 1-7.

(比較例8)
比較例8では、実施例1の条件で、電解液の温度を28℃とし、電極電流密度を28A/dmとした他は実施例1と同じ方法で電解を実施した。そして、得られた水酸化インジウム粉から実施例1と同じ方法で酸化インジウム焼結体を作製した。
(Comparative Example 8)
In Comparative Example 8, electrolysis was performed in the same manner as in Example 1 except that the temperature of the electrolyte was 28 ° C. and the electrode current density was 28 A / dm 2 under the conditions of Example 1. And the indium oxide sintered compact was produced by the same method as Example 1 from the obtained indium hydroxide powder.

比較例8では、電解スラリーの濃度は6.0wt%であった。また実施例1と同様に測定した水酸化インジウム粉の粒度分布は、最小径0.2μm、最大径8.1μmであり、同様に酸化インジウム粉の粒度分布は、最小径0.3μm、最大径8.3μmであり、どちらも実施例1〜7での結果に比べて広い分布であった。また酸化インジウム焼結体の相対密度は89.0%であり実施例1〜7に比べて明らかに低い値であった。   In Comparative Example 8, the concentration of the electrolytic slurry was 6.0 wt%. The particle size distribution of the indium hydroxide powder measured in the same manner as in Example 1 has a minimum diameter of 0.2 μm and a maximum diameter of 8.1 μm. Similarly, the particle size distribution of indium oxide powder has a minimum diameter of 0.3 μm and a maximum diameter. The distribution was 8.3 μm, both of which were wider than the results in Examples 1-7. The relative density of the indium oxide sintered body was 89.0%, which was clearly lower than those of Examples 1-7.

(比較例9)
比較例9では、実施例1の条件で、電解時間を34時間とした他は実施例1と同じ方法で電解を実施した。そして、得られた水酸化インジウム粉から実施例1と同じ方法で酸化インジウム焼結体を作製した。
(Comparative Example 9)
In Comparative Example 9, electrolysis was performed in the same manner as in Example 1 except that the electrolysis time was 34 hours under the conditions of Example 1. And the indium oxide sintered compact was produced by the same method as Example 1 from the obtained indium hydroxide powder.

比較例9では、電解スラリーの濃度は18.0wt%であった。また実施例1と同様に測定した水酸化インジウム粉の粒度分布は、最小径0.3μm、最大径2.0μmであり、同様に酸化インジウム粉の粒度分布は、最小径0.5μm、最大径2.0μmであり、どちらも実施例1〜7での結果に比べて広い分布であった。また酸化インジウム焼結体の相対密度は96.2%であり実施例1〜7に比べて明らかに低い値であった。   In Comparative Example 9, the concentration of the electrolytic slurry was 18.0 wt%. The particle size distribution of the indium hydroxide powder measured in the same manner as in Example 1 has a minimum diameter of 0.3 μm and a maximum diameter of 2.0 μm. Similarly, the particle size distribution of indium oxide powder has a minimum diameter of 0.5 μm and a maximum diameter. The distribution was 2.0 μm, both of which were wider than the results in Examples 1 to 7. The relative density of the indium oxide sintered body was 96.2%, which was clearly lower than those of Examples 1-7.

(比較例10)
比較例10では、実施例1の条件で、電解時間を42時間とした他は実施例1と同じ方法で電解を実施した。そして、得られた水酸化インジウム粉から実施例1と同じ方法で酸化インジウム焼結体を作製した。
(Comparative Example 10)
In Comparative Example 10, electrolysis was performed in the same manner as in Example 1 except that the electrolysis time was 42 hours under the conditions of Example 1. And the indium oxide sintered compact was produced by the same method as Example 1 from the obtained indium hydroxide powder.

比較例10では、電解スラリーの濃度は22.0wt%であった。また実施例1と同様に測定した水酸化インジウム粉の粒度分布は、最小径0.7μm、最大径2.8μmであり、同様に酸化インジウム粉の粒度分布は、最小径0.8μm、最大径3.0μmであり、どちらも実施例1〜7での結果に比べて広い分布であった。また酸化インジウム焼結体の相対密度は91.0%であり実施例1〜7に比べて明らかに低い値であった。   In Comparative Example 10, the concentration of the electrolytic slurry was 22.0 wt%. The particle size distribution of the indium hydroxide powder measured in the same manner as in Example 1 has a minimum diameter of 0.7 μm and a maximum diameter of 2.8 μm. Similarly, the particle size distribution of indium oxide powder has a minimum diameter of 0.8 μm and a maximum diameter. The distribution was 3.0 μm, both of which were wider than the results in Examples 1-7. The relative density of the indium oxide sintered body was 91.0%, which was clearly lower than those of Examples 1-7.

(比較例11)
比較例11では、実施例1の条件で、電極間距離を0.5cmとした他は実施例1と同じ方法で電解を実施した。
(Comparative Example 11)
In Comparative Example 11, electrolysis was performed in the same manner as in Example 1 except that the distance between the electrodes was set to 0.5 cm under the conditions of Example 1.

この結果、電極どうしの接触による短絡が起こり、電流値が安定せず安定した電解ができなかった。   As a result, a short circuit occurred due to contact between the electrodes, the current value was not stable, and stable electrolysis was not possible.

(比較例12)
比較例12では、実施例1の条件で、電極間距離を5.0cmとした他は実施例1と同じ方法で電解を実施した。ただし、電極間距離を5.0cmとすると、実施例1と同数の電極板を電解槽内に配置することが出来ないため、陰極を3枚、陽極を2枚準備し、電解槽内に交互に配置した。そして、得られた水酸化インジウム粉から実施例1と同じ方法で酸化インジウム焼結体を作製した。
(Comparative Example 12)
In Comparative Example 12, electrolysis was performed in the same manner as in Example 1 except that the distance between the electrodes was set to 5.0 cm under the conditions of Example 1. However, if the distance between the electrodes is 5.0 cm, the same number of electrode plates as in Example 1 cannot be arranged in the electrolytic cell, so three cathodes and two positive electrodes are prepared and alternately arranged in the electrolytic cell. Arranged. And the indium oxide sintered compact was produced by the same method as Example 1 from the obtained indium hydroxide powder.

比較例12では、電解スラリーの濃度は3.2wt%であった。この水酸化インジウムの粒度分布は、実施例1と同じ方法で測定して最小径0.6μm、最大径3.0μmであり、同様に酸化インジウム粉の粒度分布は、最小径0.8μm、最大径3.0μmであり、どちらも実施例1〜7での結果に比べて広い分布であった。また酸化インジウム焼結体の相対密度は93.0%であり実施例1〜7に比べて明らかに低い値であった。   In Comparative Example 12, the concentration of the electrolytic slurry was 3.2 wt%. The particle size distribution of this indium hydroxide was measured by the same method as in Example 1, and the minimum diameter was 0.6 μm and the maximum diameter was 3.0 μm. Similarly, the particle size distribution of indium oxide powder was the minimum diameter of 0.8 μm and the maximum The diameter was 3.0 μm, both of which were wider than the results in Examples 1-7. The relative density of the indium oxide sintered body was 93.0%, which was clearly lower than those of Examples 1-7.

(比較例13)
比較例13は、実施例1の条件で、電解液濃度を0.5mol/Lとし、電解液のpHを8.0とし、電解温度を10℃とし、電極電流密度を12A/dmとした他は実施例1と同じ方法で電解を実施した。そして、得られた水酸化インジウム粉から実施例1と同じ方法で酸化インジウム焼結体を作製した。
(Comparative Example 13)
In Comparative Example 13, the electrolytic solution concentration was 0.5 mol / L, the electrolytic solution pH was 8.0, the electrolytic temperature was 10 ° C., and the electrode current density was 12 A / dm 2 under the conditions of Example 1. The others were electrolyzed in the same manner as in Example 1. And the indium oxide sintered compact was produced by the same method as Example 1 from the obtained indium hydroxide powder.

比較例13では、電解スラリーの濃度は2.6wt%であった。また実施例1と同様に測定した水酸化インジウム粉の粒度分布は、最小径0.1μm、最大径8.5μmであり、同様に酸化インジウムの粒度分布は最小径0.2μm、最大径8.8μmであり、どちらも実施例1〜7での結果に比べて広い分布であった。また酸化インジウム焼結体の相対密度は87.0%であり実施例1〜7に比べて明らかに低い値であった。   In Comparative Example 13, the concentration of the electrolytic slurry was 2.6 wt%. The particle size distribution of the indium hydroxide powder measured in the same manner as in Example 1 has a minimum diameter of 0.1 μm and a maximum diameter of 8.5 μm. Similarly, the particle size distribution of indium oxide has a minimum diameter of 0.2 μm and a maximum diameter of 8. μm. 8 μm, both of which were wider than the results in Examples 1-7. The relative density of the indium oxide sintered body was 87.0%, which was clearly lower than those of Examples 1-7.

(比較例14)
比較例14は、実施例1の条件で、電解液濃度を1.0mol/Lとし、電解液のpHを6.0とし、電解温度を50℃とし、電極電流密度を12A/dmとした他は実施例1と同じ方法で電解を実施した。そして、得られた水酸化インジウム粉から実施例1と同じ方法で酸化インジウム焼結体を作製した。
(Comparative Example 14)
In Comparative Example 14, the electrolytic solution concentration was 1.0 mol / L, the electrolytic solution pH was 6.0, the electrolytic temperature was 50 ° C., and the electrode current density was 12 A / dm 2 under the conditions of Example 1. The others were electrolyzed in the same manner as in Example 1. And the indium oxide sintered compact was produced by the same method as Example 1 from the obtained indium hydroxide powder.

比較例14では、電解スラリーの濃度は2.6wt%であった。この水酸化インジウム粉の粒度分布は、実施例1と同じ方法で測定して最小径0.1μm、最大径8.0μmであり、同様に酸化インジウム粉の粒度分布は、最小径0.1μm、最大径8.0μmであり、どちらも実施例1〜7での結果に比べて広い分布であった。また酸化インジウム焼結体の相対密度は87.0%であり実施例1〜7に比べて明らかに低い値であった。   In Comparative Example 14, the concentration of the electrolytic slurry was 2.6 wt%. The particle size distribution of the indium hydroxide powder was measured by the same method as in Example 1, and the minimum diameter was 0.1 μm and the maximum diameter was 8.0 μm. Similarly, the particle size distribution of the indium oxide powder was the minimum diameter of 0.1 μm, The maximum diameter was 8.0 μm, and both had a wider distribution than the results in Examples 1-7. The relative density of the indium oxide sintered body was 87.0%, which was clearly lower than those of Examples 1-7.

Figure 0006090442
Figure 0006090442

以上のように実施例及び比較例の結果から、実施例1〜7のように、電解液の濃度が0.1〜2.0mol/L、pHが2.5〜5.0、液温が20〜60℃、電極電流密度が4A/dm〜20A/dm、電解液中の水酸化インジウム粉の濃度が2〜15%を満たすように電解を行うことで、水酸化インジウム粉及び酸化インジウム粉の粒度分布幅が狭く、粒径が均一であり、酸化インジウム焼結体の密度が高いことがわかる。As described above, from the results of Examples and Comparative Examples, as in Examples 1 to 7, the concentration of the electrolytic solution was 0.1 to 2.0 mol / L, the pH was 2.5 to 5.0, and the liquid temperature was Electrolysis is performed so that the concentration of indium hydroxide powder in the electrolytic solution is 20 to 60 ° C., the electrode current density is 4 A / dm 2 to 20 A / dm 2 , and the concentration of indium hydroxide powder in the electrolytic solution is 2 to 15%. It can be seen that the particle size distribution width of the indium powder is narrow, the particle size is uniform, and the density of the indium oxide sintered body is high.

Claims (6)

陽極に金属インジウムを用いた電解により水酸化インジウム粉を製造する水酸化インジウム粉の製造方法において、
電解液の濃度が0.1〜2.0mol/Lであり、pHが2.5〜5.0、液温が20〜60℃であり、
電極電流密度が4〜20A/dmであり、
電極間距離が1〜4cmであり、
析出した上記水酸化インジウム粉を含む電解スラリーの濃度が2〜15%の範囲となるように電解を行うことを特徴とする水酸化インジウム粉の製造方法。
In the method for producing indium hydroxide powder, which produces indium hydroxide powder by electrolysis using metal indium for the anode,
The concentration of the electrolytic solution is 0.1 to 2.0 mol / L, the pH is 2.5 to 5.0, and the liquid temperature is 20 to 60 ° C.
The electrode current density is 4-20 A / dm 2 ;
The distance between the electrodes is 1 to 4 cm,
Electrolyzing so that the density | concentration of the electrolysis slurry containing the said indium hydroxide powder deposited may be 2 to 15% of range, The manufacturing method of the indium hydroxide powder characterized by the above-mentioned.
上記電解液は、硝酸アンモニウムであることを特徴とする請求項1記載の水酸化インジウム粉の製造方法。   2. The method for producing indium hydroxide powder according to claim 1, wherein the electrolytic solution is ammonium nitrate. 上記水酸化インジウム粉の一次粒子は、柱状形状であることを特徴とする請求項1又は請求項2記載の水酸化インジウム粉の製造方法。   The method for producing indium hydroxide powder according to claim 1 or 2, wherein the primary particles of the indium hydroxide powder have a columnar shape. 陽極に金属インジウムを用いた電解により得られた水酸化インジウム粉を仮焼して酸化インジウム粉を得る酸化インジウム粉の製造方法において、
電解液の濃度が0.1〜2.0mol/Lであり、pHが2.5〜5.0、液温が20〜60℃であり、
電極電流密度が4〜20A/dmであり、
電極間距離が1〜4cmであり、
析出した上記水酸化インジウム粉を含む電解スラリーの濃度が2〜15%の範囲となるように電解を行うことを特徴とする酸化インジウム粉の製造方法。
In the method for producing indium oxide powder, indium oxide powder obtained by calcining indium hydroxide powder obtained by electrolysis using metal indium for the anode,
The concentration of the electrolytic solution is 0.1 to 2.0 mol / L, the pH is 2.5 to 5.0, and the liquid temperature is 20 to 60 ° C.
The electrode current density is 4-20 A / dm 2 ;
The distance between the electrodes is 1 to 4 cm,
Electrolyzing so that the density | concentration of the electrolysis slurry containing the said indium hydroxide powder which precipitated may become the range of 2-15%, The manufacturing method of the indium oxide powder characterized by the above-mentioned.
上記電解液は、硝酸アンモニウムであることを特徴とする請求項4記載の酸化インジウム粉の製造方法。   5. The method for producing indium oxide powder according to claim 4, wherein the electrolytic solution is ammonium nitrate. 上記水酸化インジウム粉の一次粒子は、柱状形状であることを特徴とする請求項4又は請求項5記載の酸化インジウム粉の製造方法。   6. The method for producing indium oxide powder according to claim 4, wherein the primary particles of the indium hydroxide powder have a columnar shape.
JP2015519829A 2013-05-27 2014-05-23 Method for producing indium hydroxide powder and method for producing indium oxide powder Expired - Fee Related JP6090442B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013111289 2013-05-27
JP2013111289 2013-05-27
PCT/JP2014/063671 WO2014192650A1 (en) 2013-05-27 2014-05-23 Method for producing indium hydroxide powder, method for producing indium oxide powder, and sputtering target

Publications (2)

Publication Number Publication Date
JPWO2014192650A1 JPWO2014192650A1 (en) 2017-02-23
JP6090442B2 true JP6090442B2 (en) 2017-03-08

Family

ID=51988683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015519829A Expired - Fee Related JP6090442B2 (en) 2013-05-27 2014-05-23 Method for producing indium hydroxide powder and method for producing indium oxide powder

Country Status (5)

Country Link
JP (1) JP6090442B2 (en)
KR (1) KR102129451B1 (en)
CN (1) CN105264119B (en)
TW (1) TWI601854B (en)
WO (1) WO2014192650A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6222072B2 (en) * 2014-12-19 2017-11-01 住友金属鉱山株式会社 Electrolytic apparatus for indium hydroxide powder or tin hydroxide powder, method for producing indium hydroxide powder or tin hydroxide powder, and method for producing sputtering target
JP6222071B2 (en) * 2014-12-19 2017-11-01 住友金属鉱山株式会社 Electrolytic apparatus for indium hydroxide powder, method for producing indium hydroxide powder, and method for producing sputtering target
JP6314904B2 (en) * 2015-05-14 2018-04-25 住友金属鉱山株式会社 Method for producing indium hydroxide powder, method for producing indium oxide powder, and method for producing sputtering target
CN107935026B (en) * 2017-11-24 2021-01-15 郑州大学 Method and device for preparing nano indium oxide by electrolysis
CN112323084A (en) * 2020-09-15 2021-02-05 先导薄膜材料(广东)有限公司 Preparation method of nano indium oxide
CN114540826B (en) * 2022-01-12 2023-09-19 株洲火炬安泰新材料有限公司 Method for preparing high-activity indium oxide by electrolytic method and method for preparing ITO target
CN115321585B (en) * 2022-08-09 2023-08-11 先导薄膜材料(安徽)有限公司 Indium hydroxide washing process
JP7394249B1 (en) * 2023-05-15 2023-12-07 株式会社アルバック Molybdenum target and its manufacturing method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3314388B2 (en) 1991-04-26 2002-08-12 東ソー株式会社 Method for producing indium hydroxide, indium oxide and ITO sintered body
JP2736492B2 (en) * 1992-12-28 1998-04-02 株式会社ジャパンエナジー Method for producing indium oxide-tin oxide powder
JP2829556B2 (en) * 1992-12-09 1998-11-25 株式会社ジャパンエナジー Method for producing indium oxide powder
US5417816A (en) * 1992-12-09 1995-05-23 Nikko Kyodo, Ltd. Process for preparation of indium oxide-tin oxide powder
JP3203587B2 (en) * 1993-11-22 2001-08-27 株式会社ジャパンエナジー How to recover indium
JPH1095615A (en) * 1996-06-20 1998-04-14 Mitsubishi Materials Corp Indium oxide powder for high density sintered compact
JPH10204669A (en) * 1997-01-16 1998-08-04 Mitsubishi Materials Corp Production of indium oxide powder
JP4598921B2 (en) * 2000-06-09 2010-12-15 出光興産株式会社 Indium recovery method
WO2013015032A1 (en) * 2011-07-26 2013-01-31 Jx日鉱日石金属株式会社 Method for producing indium hydroxide or compound containing indium hydroxide
JP5632340B2 (en) * 2011-08-05 2014-11-26 Jx日鉱日石金属株式会社 Electrolytic production apparatus and production method of indium hydroxide and compound containing indium hydroxide
JP5949663B2 (en) * 2012-09-13 2016-07-13 住友金属鉱山株式会社 Method for producing indium hydroxide powder, method for producing indium oxide powder, and sputtering target

Also Published As

Publication number Publication date
TW201504475A (en) 2015-02-01
CN105264119A (en) 2016-01-20
JPWO2014192650A1 (en) 2017-02-23
TWI601854B (en) 2017-10-11
KR20160012134A (en) 2016-02-02
WO2014192650A1 (en) 2014-12-04
KR102129451B1 (en) 2020-07-03
CN105264119B (en) 2017-07-04

Similar Documents

Publication Publication Date Title
JP6090442B2 (en) Method for producing indium hydroxide powder and method for producing indium oxide powder
JP5949663B2 (en) Method for producing indium hydroxide powder, method for producing indium oxide powder, and sputtering target
JP6314904B2 (en) Method for producing indium hydroxide powder, method for producing indium oxide powder, and method for producing sputtering target
KR102300880B1 (en) Process for producing indium hydroxide powder, and cathode
KR102068832B1 (en) Indium hydroxide powder and indium oxide powder
JP6201193B2 (en) Electrolytic apparatus for indium hydroxide powder or tin hydroxide powder, method for producing indium hydroxide powder or tin hydroxide powder, and method for producing sputtering target
TWI579239B (en) A method for producing tin hydroxide powder, and a tin hydroxide powder
JP6206382B2 (en) Method for producing indium hydroxide powder
CN110512225B (en) Preparation method of zinc oxide powder
JP5994524B2 (en) Method for producing metal hydroxide powder
JP2014088599A (en) Manufacturing installation of metalhydroxide, manufacturing method of metalhydroxide, and sputtering target
JP2015199628A (en) Method for producing indium hydroxide powder
JP2016113684A (en) Electrolytic device and method for producing indium hydroxide powder
JP6318719B2 (en) Sulfuric acid copper electrolyte and method for producing dendritic copper powder using this electrolyte
JP6201195B2 (en) Electrolytic apparatus for indium hydroxide powder or tin hydroxide powder, method for producing indium hydroxide powder or tin hydroxide powder, and method for producing sputtering target
JP6350311B2 (en) Method for producing indium oxide powder
JP6040900B2 (en) Method for producing metal hydroxide
JP6222072B2 (en) Electrolytic apparatus for indium hydroxide powder or tin hydroxide powder, method for producing indium hydroxide powder or tin hydroxide powder, and method for producing sputtering target
JP2015086441A (en) Method of producing indium hydroxide powder

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170123

R150 Certificate of patent or registration of utility model

Ref document number: 6090442

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees