KR20160131996A - Indium hydroxide powder and indium oxide powder - Google Patents

Indium hydroxide powder and indium oxide powder Download PDF

Info

Publication number
KR20160131996A
KR20160131996A KR1020167007070A KR20167007070A KR20160131996A KR 20160131996 A KR20160131996 A KR 20160131996A KR 1020167007070 A KR1020167007070 A KR 1020167007070A KR 20167007070 A KR20167007070 A KR 20167007070A KR 20160131996 A KR20160131996 A KR 20160131996A
Authority
KR
South Korea
Prior art keywords
indium
plane
powder
oxide powder
indium oxide
Prior art date
Application number
KR1020167007070A
Other languages
Korean (ko)
Other versions
KR102068832B1 (en
Inventor
노리아키 스가모토
다츠오 기베
데츠지 가와카미
츠요시 이와사
데츠로 가모
쇼헤이 미즈누마
Original Assignee
스미토모 긴조쿠 고잔 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 스미토모 긴조쿠 고잔 가부시키가이샤 filed Critical 스미토모 긴조쿠 고잔 가부시키가이샤
Publication of KR20160131996A publication Critical patent/KR20160131996A/en
Application granted granted Critical
Publication of KR102068832B1 publication Critical patent/KR102068832B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • C01P2006/13Surface area thermal stability thereof at high temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Physical Vapour Deposition (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

고밀도의 소결체를 얻는다. Wilson식으로부터 구한 (200)면 및 (400)면의 배향 지수가 각각 2.0 이상, (442)면의 배향 지수가 0.5 이하이고, 또한 (200)면의 배향 지수에 대한 (400)면의 배향 지수의 비가 1.5 이상이며, (220)면 및 (420)면의 회절 피크가 나타나고 있지 않은 수산화인듐 분말을 하소하여 얻어진 산화인듐 분말을 이용한다. A high-density sintered body is obtained. The orientation indices of the (200) plane and the (400) plane obtained from the Wilson equation are 2.0 or more, the orientation index of the (442) plane is 0.5 or less and the orientation index of the (400) plane to the orientation index of the Of the indium oxide powder obtained by calcining the indium hydroxide powder not having a diffraction peak on the (220) plane and the (420) plane is used.

Description

수산화인듐 분말 및 산화인듐 분말{INDIUM HYDROXIDE POWDER AND INDIUM OXIDE POWDER}[0001] INDIUM HYDROXIDE POWDER AND INDIUM OXIDE POWDER [0002]

본 발명은 고밀도의 산화인듐주석 스퍼터링 타겟(ITO 스퍼터링 타겟)을 제작할 수 있는 수산화인듐 분말 및 산화인듐 분말에 관한 것이다. 또한, 본 출원은 일본국에서 2014년 3월 11일에 출원된 일본 특허 출원 번호 특원 제2014-47507을 기초로 하여 우선권을 주장하는 것이며, 이 출원은 참조됨으로써, 본 출원에 원용된다. The present invention relates to indium hydroxide powder and indium oxide powder capable of producing a high-density indium tin oxide sputtering target (ITO sputtering target). The present application also claims priority to Japanese Patent Application No. 2014-47507, filed on March 11, 2014, which is hereby incorporated by reference in its entirety.

최근, 태양 전지 용도와 터치 패널 용도로서 투명 도전막의 이용이 증가하고 있고, 그에 따라 스퍼터링 타겟 등, 투명 도전막 형성용 재료의 수요가 증가하고 있다. 이들 투명 도전막 형성용 재료에는, 산화인듐계 소결 재료가 주로 사용되고 있고, 그 주원료로서 산화인듐 분말이 사용되고 있다. 스퍼터링 타겟에 사용되는 산화인듐 분말은, 고밀도 타겟을 얻기 위해서 가능한 한 비표면적이 제어되고, 분산성이 좋은 것이 바람직하다.2. Description of the Related Art In recent years, use of a transparent conductive film as a solar cell application and a touch panel application has been increasing, and accordingly, a demand for a material for forming a transparent conductive film such as a sputtering target is increasing. An indium oxide-based sintered material is mainly used as the material for forming a transparent conductive film, and indium oxide powder is used as the main material. The indium oxide powder used in the sputtering target is preferably controlled in its specific surface area as much as possible in order to obtain a high-density target and good in dispersibility.

산화인듐 분말의 제조 방법으로서는, 주로, 질산인듐 수용액이나 염화인듐 수용액 등의 산성 수용액을 암모니아수 등의 알칼리성 수용액으로 중화하여 발생하는 수산화인듐의 침전을 건조하여 하소하는, 이른바 중화법에 의해 제조된다. As a production method of the indium oxide powder, it is mainly produced by a so-called neutralization method in which a precipitate of indium hydroxide generated by neutralizing an acidic aqueous solution such as an aqueous solution of indium nitrate or an aqueous solution of indium chloride with an alkaline aqueous solution such as ammonia water is dried and calcined.

중화법에서는, 산화인듐 분말의 응집을 억제하기 위해서, 70∼95℃의 고온의 질산인듐 수용액에 알칼리를 첨가함으로써, 침상(針狀)의 수산화인듐 분말을 얻는 방법이 제안되어 있다(예컨대, 특허문헌 1 참조). 이 방법에서는, 침상의 수산화인듐 분말을 하소함으로써 응집이 적은 산화인듐 분말을 얻을 수 있다. In the neutralization method, there has been proposed a method of obtaining needle-shaped indium hydroxide powder by adding alkali to an aqueous solution of indium nitrate at a high temperature of 70 to 95 캜 in order to suppress aggregation of the indium oxide powder See Document 1). In this method, the indium hydroxide powder of the needle-like phase is calcined to obtain an indium oxide powder having less aggregation.

그러나, 중화법으로 제조한 산화인듐 분말은, 입자 직경이나 입도 분포가 불균일해지기 쉽고, 스퍼터링 타겟을 제조하면 타겟의 밀도가 높아지지 않으며, 밀도에 불균일함이 발생한다고 하는 문제나 스퍼터링시에 이상 방전이 발생하기 쉽다고 하는 문제가 생긴다. 또한, 중화법에서는, 산화인듐 분말 제조 후에 대량의 질소 배수가 발생하기 때문에 배수 처리 비용이 커진다고 하는 문제가 있다.However, the indium oxide powder produced by the neutralization method tends to be uneven in particle diameter and particle size distribution, and the density of the target is not increased when the sputtering target is produced, There arises a problem that discharge tends to occur. In addition, in the neutralization method, since a large amount of nitrogen wastewater is generated after the production of the indium oxide powder, there is a problem that the wastewater treatment cost becomes large.

이러한 문제를 개선하는 방법으로서는, 금속 인듐을 전해 처리함으로써 수산화인듐의 침전을 발생시키고, 이것을 하소하여 산화인듐 분말을 제조하는 방법, 이른바 전해법이 제안되어 있다(예컨대, 특허문헌 2 참조). 전해법에서는, 중화법에 비해, 산화인듐 분말 제조 후의 질소 배수량을 현격히 적게 할 수 있는 것 외에, 얻어지는 산화인듐 분말의 입자 직경을 균일화할 수 있다.As a method for solving this problem, there has been proposed a method for producing indium oxide powder by calcination of indium hydroxide by electrolytic treatment of metal indium, so-called electrolytic solution (for example, refer to Patent Document 2). In the electrolytic solution, the amount of nitrogen discharged after the production of the indium oxide powder can be remarkably reduced as compared with the neutralization method, and the particle diameter of the obtained indium oxide powder can be made uniform.

그러나, 전해법에 의해 얻어지는 수산화인듐 분말은, 전해액의 pH가 중성에 가깝기 때문에 매우 미세하며 응집되기 쉽다고 하는 문제가 있다. 이것을 하소하여 얻어지는 산화인듐 분말은, 일차 입자 직경은 비교적 균일하지만, 이들 입자가 강하게 응집된 응집 분말이 되기 쉽다. 이러한 산화인듐 분말은, 응집에 의해, 입도 분포의 폭이 넓어지기 때문에, 타겟의 고밀도화가 저해된다고 하는 문제가 있다.However, since the pH of the electrolytic solution is close to neutrality, the indium hydroxide powder obtained by the electrolytic method has a problem that it is very fine and easily aggregated. The indium oxide powder obtained by calcining this is relatively uniform in the primary particle diameter, but is liable to be a coagulated powder in which these particles are strongly aggregated. This indium oxide powder has a problem that the density of the target is prevented from becoming high because the particle size distribution is broadened by coagulation.

특허문헌 1: 일본 특허 제3314388호 공보Patent Document 1: Japanese Patent No. 3314388 특허문헌 2: 일본 특허 제2829556호 공보Patent Document 2: Japanese Patent No. 2829556

그래서, 본 발명은, 이러한 실정을 감안하여 제안된 것으로, 고밀도의 소결체를 얻을 수 있는 수산화인듐 분말 및 그것을 하소하여 얻어지는 산화인듐 분말을 제공하는 것을 목적으로 한다. DISCLOSURE OF THE INVENTION The present invention has been made in view of such circumstances, and an object of the present invention is to provide indium hydroxide powder capable of obtaining a high-density sintered body and indium oxide powder obtained by calcining thereof.

전술한 목적을 달성하는 본 발명에 따른 수산화인듐 분말은, Wilson식으로부터 구한 (200)면 및 (400)면의 배향 지수가 각각 2.0 이상, (442)면의 배향 지수가 0.5 이하이고, 또한 (200)면의 배향 지수에 대한 (400)면의 배향 지수의 비가 1.5 이상이며, (220)면 및 (420)면의 회절 피크를 갖고 있지 않은 것을 특징으로 한다. The indium hydroxide powder according to the present invention for achieving the above objects has an orientation index of 2.0 or more and an orientation index of the (200) plane and a (400) plane of 0.5 or less, 200) plane is not less than 1.5 and the diffraction peaks of the (220) plane and the (420) plane are not present.

전술한 목적을 달성하는 본 발명에 따른 산화인듐 분말은, BET값이 10∼15 ㎡/g이고, 입도 분포의 누적 입도 10% 직경(D10)이 0.2 ㎛ 이상, 누적 입도 90% 직경(D90)이 2.7 ㎛ 이하인 것을 특징으로 한다. The indium oxide powder according to the present invention for achieving the above object has a BET value of 10 to 15 m 2 / g, a cumulative particle size of 10% diameter (D10) of 0.2 μm or more, a cumulative particle size of 90% diameter (D90) Is 2.7 mu m or less.

본 발명에서는, 어떤 특정한 결정면, 즉 (200)면, (400)면 및 (442)면에 배향하며, 특정한 배향 지수를 갖는 결정성이 높은 수산화인듐 분말을 하소하여 얻어지고, 비표면적이 제어된 분산성이 좋은 산화인듐 분말이다. 이에 의해, 본 발명에서는, 그 산화인듐 분말을 이용함으로써, 상대 밀도가 높은 소결체를 얻을 수 있다. In the present invention, it is possible to obtain indium hydroxide powder having a specific crystallinity, which is oriented to a specific crystal plane, i.e., (200) plane, (400) plane and (442) plane and has a specific orientation index, It is an indium oxide powder with good dispersibility. Thus, in the present invention, by using the indium oxide powder, a sintered body having a high relative density can be obtained.

도 1은 본 발명을 적용한 산화인듐 분말의 제조 방법을 도시한 흐름도이다.1 is a flow chart showing a method for producing an indium oxide powder to which the present invention is applied.

이하에, 본 발명을 적용한 수산화인듐 분말 및 산화인듐 분말에 대해 설명한다. 또한, 본 발명은, 특별히 한정이 없는 한, 이하의 상세한 설명에 한정되는 것이 아니다. 본 발명을 적용한 수산화인듐 분말 및 산화인듐 분말의 실시형태에 대해, 이하의 순서로 상세히 설명한다. Hereinafter, the indium hydroxide powder and the indium oxide powder to which the present invention is applied will be described. Further, the present invention is not limited to the following detailed description unless otherwise specified. Embodiments of the indium hydroxide powder and the indium oxide powder to which the present invention is applied will be described in detail in the following order.

1. 산화인듐 분말의 제조 방법1. Manufacturing method of indium oxide powder

1-1. 수산화인듐 분말의 생성 공정 1-1. Production process of indium hydroxide powder

1-2. 수산화인듐 분말의 회수 공정 1-2. Recovery process of indium hydroxide powder

1-3. 수산화인듐 분말의 건조 공정 1-3. Drying process of indium hydroxide powder

1-4. 수산화인듐 분말 1-4. Indium hydroxide powder

1-5. 산화인듐 분말의 생성 공정 1-5. Production process of indium oxide powder

1-6. 산화인듐 분말 1-6. Indium oxide powder

2. 스퍼터링 타겟의 제조 방법2. Manufacturing method of sputtering target

1. 산화인듐 분말의 제조 방법1. Manufacturing method of indium oxide powder

산화인듐 분말의 제조 방법은, 도 1에 도시된 바와 같이, 전해법에 의해 수산화인듐 분말을 생성하는 수산화인듐 분말의 생성 공정 S1과, 생성된 수산화인듐 분말을 회수하는 회수 공정 S2와, 회수한 수산화인듐 분말을 건조하는 건조 공정 S3과, 건조한 수산화인듐 분말을 하소하여 산화인듐 분말을 얻는 산화인듐 분말의 생성 공정 S4를 갖는다. As shown in Fig. 1, the method for producing indium oxide powder includes a step S1 of producing indium hydroxide powder to produce indium hydroxide powder by electrolysis, a recovering step S2 for recovering the produced indium hydroxide powder, A drying step S3 for drying the indium hydroxide powder, and a production step S4 of indium oxide powder for calcining the dried indium hydroxide powder to obtain indium oxide powder.

수산화인듐 분말은, 후술하는 바와 같이 인듐을 포함하는 양극, 질산암모늄 수용액을 전해액에 이용하고, 전해액의 pH를 2.5∼4.0, 액온을 20∼60℃의 범위가 되도록 제어하여 생성되며, X선 회절에 의해 얻어지는 결정면 방위가 (200)면, (400)면 및 (442)면에 배향하고 있는 결정성이 높은 것이다. 수산화인듐 분말은, Wilson식으로부터 구한 (200)면 및 (400)면의 배향 지수가 각각 2.0 이상이고, (400)면에 우선 배향하고 있으며, (200)면의 배향 지수에 대한 (400)면의 배향 지수의 비가 1.5 이상이고, (442)면의 배향 지수가 0.5 이하이며, (220)면 및 (420)면의 회절 피크를 갖고 있지 않은 것이 특징이다. 이러한 수산화인듐 분말을 하소하여 얻어진 산화인듐 분말은, 비표면적이 제어되어 있고, 분산성이 좋은 것이다. The indium hydroxide powder is produced by controlling the pH of the electrolytic solution to be in the range of 2.5 to 4.0 and the liquid temperature in the range of 20 to 60 캜 by using an anode containing indium and an aqueous solution of ammonium nitrate in the electrolytic solution as described later, (400) plane and the (442) plane, the crystallinity oriented at the (200) plane is high. The indium hydroxide powder has orientation indices of the (200) plane and the (400) plane determined from the Wilson equation of 2.0 or more and preferentially oriented to the (400) plane and the (400) plane Is not less than 1.5 and the orientation index of the (442) plane is not more than 0.5, and the diffraction peaks of the (220) plane and the (420) plane are not present. The indium oxide powder obtained by calcining the indium hydroxide powder has a controlled specific surface area and is excellent in dispersibility.

(1-1) 수산화인듐 분말의 생성 공정(1-1) Production process of indium hydroxide powder

수산화인듐 분말의 생성 공정 S1에서는, 인듐을 포함하는 양극과, 음극을 전해액에 침지시키고, 전해 반응에 의해 수산화인듐 분말을 생성한다. In the step S1 of producing indium hydroxide powder, a positive electrode containing indium and a negative electrode are immersed in an electrolytic solution, and an indium hydroxide powder is produced by an electrolysis reaction.

양극에는, 예컨대 금속 인듐 등을 이용할 수 있으며, 산화인듐 분말에의 불순물의 혼입을 억제하기 위해서 가능한 한 고순도인 것이 바람직하다. 음극에는, 도전성의 금속이나 카본 전극 등이 이용되며, 예컨대 불용성의 티탄을 백금으로 코팅한 것 등을 이용할 수 있다. As the anode, for example, metal indium and the like can be used, and it is preferable that the purity is as high as possible in order to suppress the incorporation of impurities into the indium oxide powder. For the cathode, a conductive metal, a carbon electrode, or the like is used, and for example, insoluble titanium coated with platinum can be used.

전해액에는, 수용성의 질산염, 황산염, 염화물염 등의 일반적인 전해질염의 수용액을 이용할 수 있다. 그 중에서도 질산암모늄 수용액을 이용한 경우에는, 질산 이온, 암모늄 이온이 산화인듐 분말의 생성 공정 S4에 있어서의 하소에 의해 질소 화합물로서 제거되기 때문에, 불순물 성분의 혼입을 방지할 수 있다. 한편, 전해액에 염화암모늄이나 황산암모늄을 이용한 경우에는, 염화물 이온이나 황산 이온 등의 불순물 성분이 혼입되어 버린다. 따라서, 전해액에는, 질산암모늄 수용액을 이용하는 것이 바람직하다. As the electrolytic solution, an aqueous solution of a common electrolytic salt such as a water-soluble nitrate salt, a sulfate salt or a chloride salt can be used. Among them, when an ammonium nitrate aqueous solution is used, nitrate ions and ammonium ions are removed as nitrogen compounds by calcination in the production step S4 of the indium oxide powder, so that the incorporation of the impurity components can be prevented. On the other hand, when ammonium chloride or ammonium sulfate is used for the electrolytic solution, impurity components such as chloride ions and sulfate ions are mixed. Therefore, it is preferable to use an ammonium nitrate aqueous solution as the electrolytic solution.

전해액의 농도는, 0.1∼2.0 ㏖/L의 범위로 하는 것이 바람직하다. 전해액의 농도가 0.1 ㏖/L보다 낮으면, 전해액의 전기 전도도가 저하되고, 전해 전압이 상승하기 때문에, 통전부가 발열하거나, 전력 비용이 높아지는 등의 문제가 발생하기 때문에 바람직하지 않다. 한편, 전해액의 농도가 2.0 ㏖/L보다 높으면, 전해에 의해 생성되는 수산화인듐 분말이 조대화(粗大化)되는 데다가, 입자 직경의 변동이 커지기 때문에 바람직하지 않다. 따라서, 전해액의 농도는, 0.1∼2.0 ㏖/L의 범위로 하는 것이 바람직하다. The concentration of the electrolytic solution is preferably in the range of 0.1 to 2.0 mol / L. When the concentration of the electrolytic solution is lower than 0.1 mol / L, the electric conductivity of the electrolytic solution lowers and the electrolytic voltage rises, which causes problems such as heat generation of the current-carrying portion and high power cost. On the other hand, if the concentration of the electrolytic solution is higher than 2.0 mol / L, the indium hydroxide powder produced by electrolysis becomes coarse and the fluctuation of the particle diameter becomes large, which is not preferable. Therefore, the concentration of the electrolytic solution is preferably in the range of 0.1 to 2.0 mol / L.

전해액의 pH는, pH2.5∼4.0의 범위로 하는 것이 바람직하다. 전해액이 pH4.0보다 높아지면, 생성되는 수산화인듐 분말은, 원하는 (200)면, (400)면 및 (442)면 이외의 (220)면, (420)면의 회절 피크가 출현해 버린다. 이러한 수산화인듐 분말은, 결정성에 흐트러짐이 발생하고, 일차 입자 직경이 미세화되며, 응집성을 갖는 분말이 되고, 결과로서 입도 분포의 폭이 넓어져 버린다. 또한, 전해액이 pH2.5보다 낮으면, 음극에 메탈의 인듐이 석출해 버려, 수산화인듐 분말의 생산 효율이 저하된다. 따라서, 전해액의 pH는, pH2.5∼4.0의 범위로 하는 것이 바람직하다. The pH of the electrolytic solution is preferably in the range of pH 2.5 to 4.0. When the electrolytic solution is higher than pH 4.0, the resulting indium hydroxide powder shows diffraction peaks of (220) plane and (420) plane other than the desired (200) plane, the (400) plane and the (442) plane. Such indium hydroxide powder causes crystallization disturbance, makes the primary particle diameter fine, and has a cohesive property, resulting in a wider range of particle size distribution. In addition, if the electrolytic solution is lower than pH 2.5, indium metal precipitates on the cathode and the production efficiency of the indium hydroxide powder is lowered. Therefore, the pH of the electrolytic solution is preferably in the range of pH 2.5 to 4.0.

전해액의 액온은, 20∼60℃의 범위가 바람직하다. 전해액의 온도가 20℃보다 낮거나, 또는 60℃보다 높으면, 원하는 (200)면, (400)면 및 (442)면 이외의 (220)면, (420)면의 회절 피크가 출현해 버린다. 또한, 전해액의 온도가 20℃보다 낮은 경우에는, 수산화인듐 분말의 결정성에 흐트러짐이 발생하고, 일차 입자 직경이 미세화되며, 응집성을 갖는 분말이 되고, 결과로서 입도 분포의 폭이 넓어져 버린다. 또는, 전해액의 온도가 60℃보다 높은 경우에는, 입자 성장이 촉진되기 때문에, 일차 입자 직경이 커진다. 입자 직경의 차이는, 응집의 정도에 영향을 주기 때문에, 결과로서, 상이한 입자 직경의 수산화인듐 분말을 포함하는 경우에는, 입도 분포의 폭이 넓어져 버린다. 따라서, 전해액의 액온은, 20∼60℃의 범위로 하는 것이 바람직하다. The liquid temperature of the electrolytic solution is preferably in the range of 20 to 60 캜. When the temperature of the electrolytic solution is lower than 20 캜 or higher than 60 캜, diffraction peaks of the (220) plane and the (420) plane other than the desired (200) plane, the (400) plane and the (442) plane appear. When the temperature of the electrolytic solution is lower than 20 占 폚, the crystallinity of the indium hydroxide powder is disturbed, the primary particle diameter becomes finer and the powder becomes cohesive. As a result, the width of the particle size distribution becomes wider. Alternatively, when the temperature of the electrolytic solution is higher than 60 占 폚, the primary particle diameter is increased because the particle growth is promoted. The difference in particle diameter affects the degree of agglomeration. As a result, when the powder contains indium hydroxide powder of different particle diameters, the width of the particle size distribution is widened. Therefore, the liquid temperature of the electrolytic solution is preferably in the range of 20 to 60 캜.

전해 조건은, 특별히 한정되지 않으나, 전류 밀도를 3∼15 A/dm2로 행하는 것이 바람직하다. 전류 밀도가 3 A/dm2보다 낮으면, 수산화인듐 분말의 생산 효율이 저하되어 버린다. 전류 밀도가 15 A/dm2보다 높으면, 전해 전압이 상승함으로써 액온 상승이 발생하기 쉬워지는 것, 금속 인듐의 표면이 부동태화되어 전해되기 어려워지는 등의 문제가 발생해 버린다. 따라서, 전류 밀도를 3∼15 A/dm2로 하는 것이 바람직하다. The electrolytic condition is not particularly limited, but it is preferable to conduct the current density at 3 to 15 A / dm 2 . If the current density is lower than 3 A / dm 2 , the production efficiency of the indium hydroxide powder is lowered. If the current density is higher than 15 A / dm 2 , the rise of the electrolytic voltage tends to cause rise of the liquid temperature, and the surface of the metal indium becomes passivated and becomes difficult to be electrolyzed. Therefore, it is preferable to set the current density to 3 to 15 A / dm 2 .

(1-2) 수산화인듐 분말의 회수 공정(1-2) Recovery process of indium hydroxide powder

수산화인듐 분말의 회수 공정 S2는, 수산화인듐 분말의 생성 공정 S1에서 생성된 수산화인듐 분말을 전해액으로부터 고액(固液) 분리하고, 분리한 수산화인듐 분말을 순수로 세정하여 다시 고액 분리하여 회수한다. 고액 분리 방법은, 예컨대 로터리 필터, 원심 분리, 필터 프레스, 가압 여과, 감압 여과 등에 의한 여과를 들 수 있다. 한편, 세정 횟수는 특별히 한정되지 않고, 필요에 따라 복수 회 행한다.In the step S2 of recovering the indium hydroxide powder, the indium hydroxide powder produced in the step S1 of producing the indium hydroxide powder is separated from the electrolytic solution by solid-liquid separation, and the separated indium hydroxide powder is washed with purified water and recovered again by solid-liquid separation. The solid-liquid separation method includes, for example, filtration by rotary filter, centrifugation, filter press, pressure filtration, vacuum filtration and the like. On the other hand, the number of times of cleaning is not particularly limited, and is carried out plural times as required.

(1-3) 수산화인듐 분말의 건조 공정(1-3) Drying process of indium hydroxide powder

수산화인듐 분말의 건조 공정 S3에서는, 회수한 수산화인듐 분말의 건조를 행한다. 건조 방법은, 특별히 한정되지 않으나, 예컨대 스프레이 드라이어, 공기 대류형 건조로, 적외선 건조로 등의 건조기로 행한다. 건조 조건은, 수산화인듐 분말의 수분을 제거할 수 있으면 특별히 한정되지 않으나, 예컨대 건조 온도는 80∼150℃의 범위가 바람직하다. 건조 온도가 80℃보다 낮으면, 건조가 불충분해진다. 건조 온도가 150℃보다 높으면, 수산화인듐에서 산화인듐으로 변화해 버려, 다음 공정에서의 산화인듐 분말의 입도 분포의 조정에 있어서 부적합해진다. 또한, 건조 시간은, 온도에 따라 상이하지만, 약 10∼24시간이다.In the drying step S3 of the indium hydroxide powder, the recovered indium hydroxide powder is dried. The drying method is not particularly limited, but is performed by a dryer such as a spray dryer, an air convection type drying furnace, or an infrared drying furnace. The drying conditions are not particularly limited as long as the water content of the indium hydroxide powder can be removed. For example, the drying temperature is preferably in the range of 80 to 150 캜. If the drying temperature is lower than 80 캜, the drying becomes insufficient. If the drying temperature is higher than 150 ° C, indium hydroxide changes to indium oxide, which is not suitable for adjustment of the particle size distribution of the indium oxide powder in the next step. The drying time varies depending on the temperature, but is about 10 to 24 hours.

(1-4) 수산화인듐 분말(1-4) Indium hydroxide powder

수산화인듐 분말은, 전술한 전해 조건에 의해 생성되며, 결정면 방위가 (200)면, (400)면 및 (442)면에 배향하고 있는 결정성이 높은 것이다. 수산화인듐 분말은, Wilson식으로부터 구한 (200)면 및 (400)면의 배향 지수가 각각 2.0 이상이고, (442)면의 배향 지수가 0.5 이하이며, (200)면의 배향 지수에 대한 (400)면의 배향 지수의 비가 1.5 이상이다. 얻어진 수산화인듐 분말은, (220)면 및 (420)면의 회절 피크를 갖고 있지 않다. 이러한 수산화인듐 분말은, 응집이 억제되어 있고, 입도 분포가 좁은 것이다. 결정상의 측정은, X선 회절 장치를 이용하여 측정하였다. 배향 지수는, X선 회절로부터 구한 각각의 면 지수의 회절 강도를 이용하여, Wilson식에 의해 산출하였다.The indium hydroxide powder is produced by the aforementioned electrolytic conditions and has a high crystallinity oriented in the (200) plane, the (400) plane and the (442) plane. The indium hydroxide powder preferably has an orientation index of 2.0 or more and a orientation index of the (442) plane of 0.5 or less and a (400) orientation index of the (200) ) Plane is 1.5 or more. The obtained indium hydroxide powder does not have diffraction peaks of (220) plane and (420) plane. Such an indium hydroxide powder has an inhibited aggregation and a narrow particle size distribution. The crystal phase measurement was carried out using an X-ray diffractometer. The orientation indices were calculated by the Wilson equation using the diffraction intensities of the respective surface indices obtained from the X-ray diffraction.

(1-5) 산화인듐 분말의 생성 공정(1-5) Production process of indium oxide powder

산화인듐 분말의 생성 공정 S4에서는, 수산화인듐 분말의 건조 공정 S3에 의한 건조 후의 수산화인듐 분말을 하소하여 산화인듐 분말을 생성한다. 하소 조건은, 적절하게 결정하지만, 예컨대 하소 온도 600∼800℃, 하소 시간 1∼10시간으로 행하는 것이 바람직하다. In the production step S4 of the indium oxide powder, the indium hydroxide powder after the drying in the drying step S3 of the indium hydroxide powder is calcined to produce indium oxide powder. The calcination conditions are appropriately determined, but preferably calcination temperature is 600 to 800 deg. C and calcination time is 1 to 10 hours.

하소 온도가 600℃보다 낮으면, 산화인듐 분말의 BET값이 15 ㎡/g을 넘어 버려, 일차 입자가 지나치게 작기 때문에, 응집성을 갖는 분말이 된다. 이에 의해, 얻어진 산화인듐 분말에서는, 고밀도의 소결 재료, 예컨대 산화인듐주석(ITO) 소결 재료를 얻을 수 없다. 하소 온도가 800℃보다 높으면, 산화인듐 분말의 BET값이 10 ㎡/g 미만이 되어, 일차 입자 직경이 커지고, 입자 사이에 생기는 빈 구멍도 커지기 때문에, 소결성이 저하된다. 이에 의해, 얻어진 산화인듐 분말에서는, 고밀도의 소결 재료를 얻을 수 없다. 따라서, 고밀도의 소결 재료를 얻기 위해서는, 하소 온도를 600℃∼800℃의 범위로 하는 것이 바람직하다. When the calcination temperature is lower than 600 占 폚, the BET value of the indium oxide powder exceeds 15 m < 2 > / g, and the primary particles are too small, so that the powder becomes cohesive. As a result, a high-density sintered material such as indium tin oxide (ITO) sintered material can not be obtained in the obtained indium oxide powder. If the calcination temperature is higher than 800 DEG C, the BET value of the indium oxide powder becomes less than 10 m < 2 > / g, the primary particle diameter becomes large and the pores formed between the particles become large. As a result, a high-density sintered material can not be obtained in the obtained indium oxide powder. Therefore, in order to obtain a high-density sintered material, it is preferable to set the calcination temperature in the range of 600 占 폚 to 800 占 폚.

(1-6) 산화인듐 분말(1-6) Indium oxide powder

얻어진 산화인듐 분말은, 비표면적의 BET값이 10∼15 ㎡/g의 범위 내로 제어되어 있고, 입도 분포의 누적 입도 10% 직경(D10)이 0.2 ㎛ 이상, 누적 입도 90% 직경(D90)이 2.7 ㎛ 이하이다. 이러한 산화인듐 분말은, 비표면적이 제어되어 있고, 분산성이 좋으며, 응집이 적기 때문에, 고밀도의 소결 재료를 생성할 수 있다.The obtained indium oxide powder was controlled so that the BET value of the specific surface area was controlled within the range of 10 to 15 m 2 / g, the cumulative particle size 10% diameter D 10 of the particle size distribution was 0.2 μm or more, the cumulative particle size 90% diameter D 90 2.7 탆 or less. Such indium oxide powder has a controlled specific surface area, good dispersibility, and less aggregation, so that a high-density sintered material can be produced.

또한, 산화인듐 분말의 생성 공정 S4에서는, 수산화인듐 분말을 보다 원하는 입자 직경으로 하기 위해서 필요에 따라 해쇄(解碎) 또는 분쇄를 행해도 좋다. 또한, 이 산화인듐 분말의 생성 공정 S4에서는, 수산화인듐 분말의 전해시에 전해액에 질산암모늄을 이용한 경우, 질산암모늄의 분해가 발생하여, 산화인듐 분말에의 혼입을 방지할 수 있다.Further, in the production step S4 of the indium oxide powder, the indium hydroxide powder may be crushed or pulverized as necessary in order to obtain a more desirable particle diameter. Further, in the production step S4 of the indium oxide powder, when ammonium nitrate is used in the electrolytic solution at the time of electrolysis of the indium hydroxide powder, decomposition of ammonium nitrate occurs, and mixing into the indium oxide powder can be prevented.

이상과 같이, 산화인듐 분말의 제조 방법에서는, 인듐을 포함하는 양극을 이용한 전해 반응에 의해 수산화인듐 분말을 얻을 때에, 전해액으로서 예컨대 질산암모늄 수용액을 이용하고, 전해액의 pH를 2.5∼4.0, 액온을 20∼60℃의 범위가 되도록 제어함으로써, (200)면, (400)면 및 (442)면에 배향하고 있는 결정성이 높은 수산화인듐 분말을 얻을 수 있다. 얻어진 수산화인듐 분말은, 응집이 억제되고, 입도 분포가 좁은 것이다. 산화인듐 분말의 제조 방법에서는, 얻어진 수산화인듐 분말을 하소함으로써, 비표면적이 10∼15 ㎡/g의 범위 내이며, 분산성이 좋고, D10이 0.2 ㎛ 이상, D90이 2.7 ㎛ 이하인 입도 분포가 좁은 산화인듐 분말을 제조할 수 있다. 따라서, 얻어진 산화인듐 분말을 이용하여 스퍼터링 타겟을 제조한 경우에는, 고밀도의 소결체를 얻을 수 있다. As described above, in the method for producing indium oxide powder, when an indium hydroxide powder is obtained by an electrolytic reaction using an anode containing indium, an aqueous solution of ammonium nitrate, for example, is used as an electrolytic solution and the pH of the electrolytic solution is adjusted to 2.5 to 4.0, It is possible to obtain a highly crystalline indium hydroxide powder oriented on the (200) plane, the (400) plane and the (442) plane by controlling it to be in the range of 20 to 60 ° C. The obtained indium hydroxide powder is inhibited from aggregation and has a narrow particle size distribution. In the method for producing indium oxide powder, the obtained indium hydroxide powder is calcined to have a specific surface area in the range of 10 to 15 m < 2 > / g, good dispersibility, a narrow particle size distribution in which D10 is 0.2 mu m or more, D90 is 2.7 mu m or less An indium oxide powder can be produced. Therefore, when a sputtering target is produced using the obtained indium oxide powder, a high-density sintered body can be obtained.

또한, 이 산화인듐 분말의 제조 방법에서는, 중화법에 비해 산화인듐 분말의 제조 후의 질소 배수량을 억제할 수 있다. Further, in the method for producing the indium oxide powder, the amount of nitrogen discharged after the production of the indium oxide powder can be suppressed as compared with the neutralization method.

2. 스퍼터링 타겟의 제조 방법2. Manufacturing method of sputtering target

스퍼터링 타겟의 제조 방법은, 먼저, 전술한 산화인듐 분말의 제조 방법에 의해 얻어진 산화인듐 분말을 산화주석 분말 등의 타겟의 다른 원료와 소정의 비율로 혼합하여 조립(造粒) 분말을 제작한다. 다음으로, 조립 분말을 이용하여 예컨대 콜드 프레스법에 의해 성형체를 제작한다. 다음으로, 성형체를 대기압하에서 예컨대 1300∼1600℃의 온도 범위 내에서 소결을 행한다. 다음으로, 필요에 따라, 소결체의 평면이나 측면을 연마하는 등의 가공을 행한다. 그리고, 소결체를 Cu제의 배킹 플레이트에 본딩함으로써, 산화인듐주석 스퍼터링 타겟(ITO 스퍼터링 타겟)을 얻을 수 있다.In the sputtering target manufacturing method, first, the indium oxide powder obtained by the above-mentioned production method of the indium oxide powder is mixed with other raw materials of the target such as tin oxide powder at a predetermined ratio to prepare a granulated powder. Next, a compact is produced by, for example, a cold press method using the granulated powder. Next, sintering is performed in a temperature range of, for example, 1300 to 1600 캜 under atmospheric pressure. Next, the sintered body is subjected to processing such as grinding the plane or the side face, if necessary. Then, an indium tin oxide sputtering target (ITO sputtering target) can be obtained by bonding the sintered body to a backing plate made of Cu.

스퍼터링 타겟의 제조 방법에서는, 원료가 되는 산화인듐 분말의 비표면적이 제어되어 있고, 분산성이 좋은 것이기 때문에, 고밀도의 소결체를 얻을 수 있고, 스퍼터링 타겟의 밀도를 높게 할 수 있다. 이에 의해, 스퍼터링 타겟은, 가공 중에 깨짐 이지러짐이 발생하지 않고, 스퍼터시에 이상 방전이 발생하는 것도 억제할 수 있다. In the method for producing a sputtering target, since the specific surface area of the indium oxide powder as a raw material is controlled and the dispersibility is good, a high-density sintered body can be obtained and the density of the sputtering target can be increased. Thereby, the sputtering target does not cause cracking during machining, and it is also possible to suppress occurrence of abnormal discharge during sputtering.

실시예Example

이하, 본 발명을 적용한 구체적인 실시예에 대해 설명하지만, 본 발명은 이들 실시예에 한정되는 것이 아니다.Hereinafter, specific examples to which the present invention is applied will be described, but the present invention is not limited to these examples.

<실시예 1> &Lt; Example 1 >

실시예 1에서는, 먼저, 전해액으로서 이용하는 질산암모늄 수용액의 농도를 0.5 ㏖/L, pH를 3.5, 액온을 40℃로 조정하였다. pH는 전해액에 첨가하는 질산량에 의해 조정하였다. 전해액의 액량은 100 L로 하였다. In Example 1, the concentration of the ammonium nitrate aqueous solution used as the electrolyte was 0.5 mol / L, the pH was 3.5, and the liquid temperature was adjusted to 40 占 폚. The pH was adjusted by the amount of nitric acid added to the electrolytic solution. The liquid amount of the electrolytic solution was set to 100 L.

다음으로, 조정한 전해액을 이용하여, 수산화인듐의 전해를 행하였다. 양극에는, 순도 99.99%의 금속 인듐판을 사용하고, 음극에는 불용성 Ti/Pt 전극을 사용하였다. 전류 밀도는, 10 A/dm2로 하였다. 다음으로, 얻어진 수산화인듐 슬러리에 대해 여과와 세정을 반복한 후, 100℃, 15시간으로 건조를 행하여, 3.6 ㎏의 수산화인듐 분말을 얻었다. 전해에 의한 수산화인듐 분말의 정석(晶析) 효율은 100%였다. Next, electrolysis of indium hydroxide was performed using the adjusted electrolytic solution. A metal indium plate having a purity of 99.99% was used for the positive electrode, and an insoluble Ti / Pt electrode was used for the negative electrode. The current density was set to 10 A / dm &lt; 2 & gt ;. Next, the obtained indium hydroxide slurry was repeatedly subjected to filtration and washing, and then dried at 100 DEG C for 15 hours to obtain 3.6 kg of indium hydroxide powder. The crystallization efficiency of the indium hydroxide powder by electrolysis was 100%.

다음으로, 얻어진 수산화인듐 분말에 대해 X선 회절 측정(PANalytical사 제조, X'Pert-PRO)을 행하여, 각 결정면의 회절 피크 강도로부터 배향 지수를 평가하였다. 배향 지수는 Wilson식으로부터 구하였다.Next, the obtained indium hydroxide powder was subjected to X-ray diffraction measurement (X'Pert-PRO, manufactured by PANalytical Co., Ltd.), and the orientation index was evaluated from the diffraction peak intensity of each crystal plane. Orientation index was obtained from Wilson equation.

다음으로, 얻어진 수산화인듐 분말을 700℃에서 5시간 하소를 행하여, 산화인듐 분말을 얻었다. Next, the obtained indium hydroxide powder was calcined at 700 占 폚 for 5 hours to obtain indium oxide powder.

산화인듐 분말의 비표면적을 비표면적 측정 장치(macsorb1210: 가부시키가이샤 마운텍 제조)를 이용하여 BET값(기체 흡착법)으로서 측정하였다.The specific surface area of the indium oxide powder was measured as a BET value (gas adsorption method) using a specific surface area measuring device (macsorb 1210: manufactured by Matsutec Co.).

그 후, 얻어진 산화인듐 분말 967 g에 산화주석 분말 33 g을 혼합한 후, 콜드 프레스법에 의해 성형체를 얻고 대기압하, 1400℃, 30시간으로, 소결하여, 산화인듐주석의 소결체를 제작하였다. 소결체의 상대 밀도는 아르키메데스법에 의해 측정하였다. Thereafter, 337 g of the obtained indium oxide powder and 33 g of tin oxide powder were mixed, and then a compact was obtained by the cold press method and sintered at 1400 DEG C for 30 hours under atmospheric pressure to obtain a sintered body of indium tin oxide. The relative density of the sintered body was measured by the Archimedes method.

<실시예 2∼7 및 비교예 1∼9>&Lt; Examples 2 to 7 and Comparative Examples 1 to 9 >

실시예 2, 3 및 비교예 5, 6은, 실시예 1과 동일하게 하여 수산화인듐 분말을 제작하고, 수산화인듐 분말의 하소 온도를 표 2에 나타낸 바와 같이 조정하여 산화인듐 분말 및 소결체를 제작하였다. In Examples 2 and 3 and Comparative Examples 5 and 6, indium hydroxide powders were prepared in the same manner as in Example 1, and indium oxide powders and sintered bodies were prepared by adjusting the calcination temperature of indium hydroxide powder as shown in Table 2 .

실시예 4∼7 및 비교예 1∼4, 7∼9는, 전해액의 질산암모늄 농도, pH, 액온을 표 1에 나타낸 바와 같이, 수산화인듐 분말의 하소 온도를 표 2에 나타낸 바와 같이 조정한 것 이외에는 실시예 1과 동일하게 하여 수산화인듐 분말, 산화인듐 분말 및 소결체를 제작하였다. In Examples 4 to 7 and Comparative Examples 1 to 4 and 7 to 9, ammonium nitrate concentration, pH and liquid temperature of the electrolytic solution were adjusted as shown in Table 1, and the calcining temperature of the indium hydroxide powder was adjusted as shown in Table 2 In addition, indium hydroxide powder, indium oxide powder and sintered body were produced in the same manner as in Example 1.

이하의 표 1에, 수산화인듐 분말의 배향 지수 및 정석 효율을 나타내고, 표 2에 산화인듐 분말의 BET값, 소결체의 상대 밀도를 나타낸다. Table 1 below shows the orientation index and crystallization efficiency of the indium hydroxide powder, and Table 2 shows the BET value of the indium oxide powder and the relative density of the sintered body.

Figure pct00001
Figure pct00001

Figure pct00002
Figure pct00002

표 1, 2에 나타낸 결과로부터, 실시예 1∼7에서는, Wilson식으로부터 구한 (200)면 및 (400)면의 배향 지수가 각각 2.0 이상, (442)면의 배향 지수가 0.5 이하이고, 또한 (200)면의 배향 지수에 대한 (400)면의 배향 지수의 비가 1.5 이상인 결정성이 높은 수산화인듐 분말이 얻어졌다. 또한, 실시예 1∼7에서는, (220)면 및 (420)면의 회절 피크는 나타나지 않았다. From the results shown in Tables 1 and 2, it is understood that in Examples 1 to 7, the orientation indices of the (200) plane and the (400) plane obtained from the Wilson equation are 2.0 or more, the orientation index of the (442) A highly crystalline indium hydroxide powder having a ratio of the orientation index of the (400) plane to the orientation index of the (200) plane of 1.5 or more was obtained. Further, in Examples 1 to 7, the diffraction peaks of the (220) plane and the (420) plane did not appear.

또한, 실시예 1∼7에서는, 생성된 수산화인듐 분말을 사용하여, 600℃∼800℃의 온도 범위에서 하소함으로써, BET값이 10∼15 ㎡/g의 범위이고, D10이 0.2 ㎛ 이상, D90이 2.7 ㎛ 이하인 입도 분포가 좁은 산화인듐 분말이 얻어졌다. 실시예 1∼7은, 비교예와 비교하여 소결체의 상대 밀도가 매우 고밀도가 되었다.In Examples 1 to 7, the resulting indium hydroxide powder was calcined in a temperature range of 600 ° C to 800 ° C to have a BET value of 10 to 15 m 2 / g, a D 10 of 0.2 μm or more, a D90 An indium oxide powder having a particle size distribution of 2.7 탆 or less was obtained. In Examples 1 to 7, the relative density of the sintered body was very high as compared with the comparative example.

한편, 비교예 1에서는, 전해액의 pH를 2.0으로 한 것 이외에는, 실시예 1과 동일하게 하여 수산화인듐 분말을 제작하였다. 그 결과, 비교예 1에서는, 전해 공정에서 애노드에 메탈·인듐이 석출되고, 수산화인듐 분말을 얻을 수 없으며, 정석 효율이 0%였다.On the other hand, in Comparative Example 1, indium hydroxide powder was prepared in the same manner as in Example 1 except that the pH of the electrolytic solution was 2.0. As a result, in Comparative Example 1, metal-indium precipitated on the anode in the electrolytic process, indium hydroxide powder could not be obtained, and the crystallization efficiency was 0%.

한편, 비교예 2∼4에서는, 수산화인듐 분말에 있어서, 원하는 (200)면, (400)면 및 (442)면 이외의 (420)면의 회절 피크가 출현하고, 결정성에 흐트러짐이 발생하며, 응집성을 갖는 분말이 되었다. 비교예 2∼4에서는, 하소 온도 700℃에서 제작한 산화인듐 분말의 BET값이 10∼15 ㎡/g의 범위 내였으나, D10이 0.4 ㎛ 이상이고, D90이 4.2 ㎛ 이상이며, 입도 분포가 넓어졌다. 따라서, 비교예 2∼4에서는, 소결성이 저하되어, 소결체의 상대 밀도가 낮아졌다.On the other hand, in Comparative Examples 2 to 4, diffraction peaks of the (200) plane, the (400) plane and the (420) plane other than the (442) plane appeared in the indium hydroxide powder, It became a powder having coherency. In Comparative Examples 2 to 4, indium oxide powder prepared at a calcination temperature of 700 占 폚 had a BET value of 10 to 15 m &lt; 2 &gt; / g, D10 of 0.4 m or more, D90 of 4.2 m or more, lost. Therefore, in Comparative Examples 2 to 4, the sinterability was lowered and the relative density of the sintered body was lowered.

또한, 비교예 5에 나타낸 바와 같이, 수산화인듐 분말의 하소 온도 500℃의 경우에는, 산화인듐 분말의 BET값이 증가하고, 응집성을 갖는 분말이 되었다. 또한, 비교예 5에서도, D10이 0.4 ㎛이고, D90이 6.7 ㎛이며, 입도 분포가 넓어졌다. 비교예 6에서는, 하소 온도 930℃에서 제작한 산화인듐 분말의 BET값이 지나치게 낮아지고, D10이 0.5 ㎛이며, D90이 9.8 ㎛가 되어, 입도 분포가 넓어졌다. 이러한 비교예 5, 6에서는, 소결성이 저하되어, 소결체의 상대 밀도가 낮아졌다.In addition, as shown in Comparative Example 5, when the calcination temperature of the indium hydroxide powder was 500 DEG C, the BET value of the indium oxide powder was increased, and the powder became cohesive. Also in Comparative Example 5, D10 was 0.4 mu m, D90 was 6.7 mu m, and the particle size distribution was widened. In Comparative Example 6, the BET value of the indium oxide powder produced at the calcination temperature of 930 占 폚 became too low, D10 became 0.5 占 퐉, D90 became 9.8 占 퐉, and the particle size distribution became wider. In Comparative Examples 5 and 6, the sinterability was lowered, and the relative density of the sintered body was lowered.

또한, 비교예 7, 8에서는, 수산화인듐 분말에 있어서, 원하는 (200)면, (400)면 및 (442)면 이외의 면의 회절 피크가 출현하고, 결정성에 흐트러짐이 발생하며, 응집성을 갖는 분말이 되었다. 아울러, 비교예 7, 8에서는, 하소 온도 1100℃에서 제작한 산화인듐 분말의 BET값이 지나치게 낮아지고, D10이 0.5 ㎛, 0.3 ㎛이며, D90이 14.8 ㎛, 10.2 ㎛가 되어, 입도 분포가 넓어졌다. 이러한 비교예 7, 8에서는, 소결성이 저하되어, 소결체의 상대 밀도가 매우 낮아졌다.In Comparative Examples 7 and 8, diffraction peaks of the surfaces other than the desired (200), (400), and (442) planes appeared in the indium hydroxide powder, and the crystallinity was disturbed, Powder. In Comparative Examples 7 and 8, the BET value of the indium oxide powder produced at a calcining temperature of 1100 ° C was too low, D10 was 0.5 탆 and 0.3 탆, D90 was 14.8 탆 and 10.2 탆, lost. In Comparative Examples 7 and 8, the sinterability was lowered, and the relative density of the sintered body was extremely low.

또한, 비교예 9에서는, (200)면에 배향하지만, (400)면 및 (442)면에 배향하고 있지 않은 수산화인듐 분말이 얻어지고, 응집성을 갖는 분말이 되었다. 비교예 9에서는, 하소 온도 700℃에서 제작한 산화인듐 분말의 BET값은, 10∼15 ㎡/g의 범위 내였으나, D10이 0.4 ㎛이고, D90이 12.6 ㎛이며, 입도 분포가 넓고, 응집성을 갖는 분말이 되었다. 이러한 비교예 9에서는, 소결성이 저하되어, 소결체의 상대 밀도가 낮아졌다. In Comparative Example 9, indium hydroxide powder oriented on the (200) plane but not oriented on the (400) plane and the (442) plane was obtained, and a powder having cohesive properties was obtained. In Comparative Example 9, the BET value of the indium oxide powder produced at a calcining temperature of 700 占 폚 was in the range of 10 to 15 m2 / g, but D10 was 0.4 占 퐉, D90 was 12.6 占 퐉, the particle size distribution was wide, &Lt; / RTI &gt; In Comparative Example 9, the sinterability was lowered, and the relative density of the sintered body was lowered.

이상의 결과로부터, 인듐을 포함하는 양극을 이용하고, 전해액으로서 질산암모늄 수용액을 이용하며, 전해액의 pH를 2.5∼4.0, 액온을 20∼60℃의 범위가 되도록 제어하여 행한 전해 반응에 의해 수산화인듐 분말을 생성함으로써, (200)면, (400)면 및 (442)면에 배향하고, 결정성이 높으며, 입도 분포가 좁은 수산화인듐 분말이 얻어지는 것을 알 수 있다. 그리고, 그 수산화인듐 분말을 이용함으로써, 비표면적이 제어된 분산성이 좋은 산화인듐 분말을 얻을 수 있고, 그 산화인듐 분말을 이용함으로써 고밀도의 소결체가 얻어지는 것을 알 수 있다.From the above results, it was confirmed that by using an anode containing indium and using an ammonium nitrate aqueous solution as an electrolytic solution and controlling the pH of the electrolytic solution to be in the range of 2.5 to 4.0 and the liquid temperature in the range of 20 to 60 ° C, (400) plane and (442) plane, the indium hydroxide powder having a high crystallinity and a narrow particle size distribution can be obtained. By using the indium hydroxide powder, it is possible to obtain indium oxide powder whose specific surface area is controlled and dispersibility is good, and it can be seen that a high-density sintered body can be obtained by using the indium oxide powder.

Claims (2)

Wilson식으로부터 구한 (200)면 및 (400)면의 배향 지수가 각각 2.0 이상, (442)면의 배향 지수가 0.5 이하이고, 또한 상기 (200)면의 배향 지수에 대한 상기 (400)면의 배향 지수의 비가 1.5 이상이며, (220)면 및 (420)면의 회절 피크를 갖고 있지 않은 것을 특징으로 하는 수산화인듐 분말. The orientation indices of the (200) plane and the (400) plane obtained from the Wilson equation are 2.0 or more and the orientation index of the (442) plane is 0.5 or less, Wherein the ratio of orientation indices is not less than 1.5 and does not have diffraction peaks of (220) plane and (420) plane. BET값이 10∼15 ㎡/g이고, 입도 분포의 누적 입도 10% 직경(D10)이 0.2 ㎛ 이상, 누적 입도 90% 직경(D90)이 2.7 ㎛ 이하인 것을 특징으로 하는 산화인듐 분말.

Wherein the BET value is 10 to 15 m &lt; 2 &gt; / g, the cumulative particle size 10% diameter D10 of the particle size distribution is 0.2 m or more, and the cumulative particle size 90% diameter D90 is 2.7 m or less.

KR1020167007070A 2014-03-11 2014-12-22 Indium hydroxide powder and indium oxide powder KR102068832B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014047507A JP5786994B1 (en) 2014-03-11 2014-03-11 Indium hydroxide powder and indium oxide powder
JPJP-P-2014-047507 2014-03-11
PCT/JP2014/083893 WO2015136816A1 (en) 2014-03-11 2014-12-22 Indium hydroxide powder and indium oxide powder

Publications (2)

Publication Number Publication Date
KR20160131996A true KR20160131996A (en) 2016-11-16
KR102068832B1 KR102068832B1 (en) 2020-01-22

Family

ID=54071280

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020167007070A KR102068832B1 (en) 2014-03-11 2014-12-22 Indium hydroxide powder and indium oxide powder

Country Status (5)

Country Link
JP (1) JP5786994B1 (en)
KR (1) KR102068832B1 (en)
CN (1) CN105683089B (en)
TW (1) TWI634079B (en)
WO (1) WO2015136816A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107935026B (en) * 2017-11-24 2021-01-15 郑州大学 Method and device for preparing nano indium oxide by electrolysis
CN108793229A (en) * 2018-08-22 2018-11-13 先导薄膜材料(广东)有限公司 The preparation method of indium hydroxide

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1095615A (en) * 1996-06-20 1998-04-14 Mitsubishi Materials Corp Indium oxide powder for high density sintered compact
JP2829556B2 (en) 1992-12-09 1998-11-25 株式会社ジャパンエナジー Method for producing indium oxide powder
JP3314388B2 (en) 1991-04-26 2002-08-12 東ソー株式会社 Method for producing indium hydroxide, indium oxide and ITO sintered body
JP2002316818A (en) * 2002-01-25 2002-10-31 Tosoh Corp Hydroxide and oxide of indium
KR20100086516A (en) * 2008-06-10 2010-07-30 닛코 킨조쿠 가부시키가이샤 Sintered-oxide target for sputtering and process for producing the same
JP2013036105A (en) * 2011-08-10 2013-02-21 Jx Nippon Mining & Metals Corp Method of producing indium hydroxide and compound including indium hydroxide

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3254697B2 (en) * 1991-09-02 2002-02-12 東ソー株式会社 Indium oxide powder and method for producing the same
JP2736498B2 (en) * 1993-05-26 1998-04-02 株式会社ジャパンエナジー Method for producing indium oxide-tin oxide powder
JP3733599B2 (en) * 1993-08-11 2006-01-11 住友化学株式会社 Metal oxide powder and method for producing the same
JPH10204669A (en) * 1997-01-16 1998-08-04 Mitsubishi Materials Corp Production of indium oxide powder
JP5632340B2 (en) * 2011-08-05 2014-11-26 Jx日鉱日石金属株式会社 Electrolytic production apparatus and production method of indium hydroxide and compound containing indium hydroxide
CN104334771A (en) * 2012-05-31 2015-02-04 株式会社爱发科 Method for production of metal hydroxide and method for production of ITO sputtering target

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3314388B2 (en) 1991-04-26 2002-08-12 東ソー株式会社 Method for producing indium hydroxide, indium oxide and ITO sintered body
JP2829556B2 (en) 1992-12-09 1998-11-25 株式会社ジャパンエナジー Method for producing indium oxide powder
JPH1095615A (en) * 1996-06-20 1998-04-14 Mitsubishi Materials Corp Indium oxide powder for high density sintered compact
JP2002316818A (en) * 2002-01-25 2002-10-31 Tosoh Corp Hydroxide and oxide of indium
KR20100086516A (en) * 2008-06-10 2010-07-30 닛코 킨조쿠 가부시키가이샤 Sintered-oxide target for sputtering and process for producing the same
JP2013036105A (en) * 2011-08-10 2013-02-21 Jx Nippon Mining & Metals Corp Method of producing indium hydroxide and compound including indium hydroxide

Also Published As

Publication number Publication date
TWI634079B (en) 2018-09-01
CN105683089A (en) 2016-06-15
CN105683089B (en) 2017-11-07
KR102068832B1 (en) 2020-01-22
JP2015171960A (en) 2015-10-01
WO2015136816A1 (en) 2015-09-17
JP5786994B1 (en) 2015-09-30
TW201534563A (en) 2015-09-16

Similar Documents

Publication Publication Date Title
JP6090442B2 (en) Method for producing indium hydroxide powder and method for producing indium oxide powder
JP5949663B2 (en) Method for producing indium hydroxide powder, method for producing indium oxide powder, and sputtering target
JP4747286B2 (en) Fine tin oxide powder and its production method and use
JP5529421B2 (en) High purity calcium hydroxide powder, high purity calcium carbonate powder, high purity calcium oxide powder and methods for producing them
KR20160131996A (en) Indium hydroxide powder and indium oxide powder
JP5972907B2 (en) Method for producing gallium hydroxide and method for producing gallium oxide powder
JP6314904B2 (en) Method for producing indium hydroxide powder, method for producing indium oxide powder, and method for producing sputtering target
JP6048329B2 (en) Method for producing indium hydroxide powder and method for producing indium oxide powder
JP2015199628A (en) Method for producing indium hydroxide powder
JP6112058B2 (en) Method for producing indium hydroxide powder and method for producing indium oxide powder
JP6206382B2 (en) Method for producing indium hydroxide powder
JP6119622B2 (en) Method for producing indium hydroxide powder and cathode
JP6350311B2 (en) Method for producing indium oxide powder
JP5994524B2 (en) Method for producing metal hydroxide powder
WO2016084510A1 (en) Method for manufacturing tin hydroxide powder, and tin hydroxide powder
JP2007302485A (en) Indium oxide powder and its manufacturing method
JP2016037633A (en) Electrolytic device for indium hydroxide powder or tin hydroxide powder, method for producing indium hydroxide powder or tin hydroxide powder, and method for producing sputtering target
JP2014088599A (en) Manufacturing installation of metalhydroxide, manufacturing method of metalhydroxide, and sputtering target
JP2014091649A (en) Tin oxide powder having high compressibility, and method for producing the powder
JP2015021181A (en) Method for producing nickel hydroxide
JP6086053B2 (en) Method for producing indium hydroxide powder
JP6201195B2 (en) Electrolytic apparatus for indium hydroxide powder or tin hydroxide powder, method for producing indium hydroxide powder or tin hydroxide powder, and method for producing sputtering target
JP6040900B2 (en) Method for producing metal hydroxide

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant