JPH11322335A - Gallium oxide and its production - Google Patents

Gallium oxide and its production

Info

Publication number
JPH11322335A
JPH11322335A JP12877198A JP12877198A JPH11322335A JP H11322335 A JPH11322335 A JP H11322335A JP 12877198 A JP12877198 A JP 12877198A JP 12877198 A JP12877198 A JP 12877198A JP H11322335 A JPH11322335 A JP H11322335A
Authority
JP
Japan
Prior art keywords
gallium
oxide powder
gallium oxide
particle size
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12877198A
Other languages
Japanese (ja)
Other versions
JP2950324B1 (en
Inventor
Hiromi Mochida
裕美 持田
Michihiro Tanaka
道広 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP12877198A priority Critical patent/JP2950324B1/en
Application granted granted Critical
Publication of JP2950324B1 publication Critical patent/JP2950324B1/en
Publication of JPH11322335A publication Critical patent/JPH11322335A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gallium oxide powder for obtaining sintered compacts having high filling rates, and to provide a method for producing the same. SOLUTION: This method for producing gallium oxide powder comprises dissolving metal gallium in nitric acid, neutralizing the obtained gallium solution with ammonium ion in the presence of oxalic acid, washing the deposited gallium hydroxide and subsequently calcining the washed gallium hydroxide. The gallium oxide powder is obtained by the method, has a specific surface area (BET value) of 5-10 m<2> /g and contains 99% (based on volume) of particles in the range of 0.1-10 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ターゲット材などの製
造原料として有用な、シャープな粒径分布を有する酸化
ガリウム粉末およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gallium oxide powder having a sharp particle size distribution, which is useful as a raw material for producing a target material or the like, and a method for producing the same.

【0002】[0002]

【従来の技術】酸化ガリウム(Ga23)は、蛍光体原
料、レーザーダイオード、ガリウム−ヒ素半導体の製造
原料などに用いられる。また、最近では、ガリウムをド
ープした酸化亜鉛薄膜が、比較的高温でも優れた安定性
・導電性を示すことが見出されており、太陽電池やプラ
ズマディスプレイ等に用いる透明導電膜としての用途が
開発されつつある。このような用途では、酸化ガリウム
を含有するターゲット材が用いられるが、ターゲット材
の製造には、高充填性を達成し得るシャープな粒径分布
を有する酸化ガリウム粉末が必要となる。
2. Description of the Related Art Gallium oxide (Ga 2 O 3 ) is used as a raw material for a phosphor, a laser diode, and a raw material for producing a gallium-arsenic semiconductor. Recently, it has been discovered that gallium-doped zinc oxide thin films exhibit excellent stability and conductivity even at relatively high temperatures, and have been used as transparent conductive films for solar cells and plasma displays. Is being developed. In such an application, a target material containing gallium oxide is used. However, the production of the target material requires gallium oxide powder having a sharp particle size distribution capable of achieving high filling properties.

【0003】従来、酸化ガリウム粉末の製造方法として
は、金属ガリウムを硝酸に溶解し、得られた硝酸ガリウ
ム溶液にアンモニア水を添加することにより、水酸化ガ
リウムを沈殿として回収し、これをカ焼して酸化ガリウ
ム粉末を得る方法が知られている。また、硝酸アンモニ
ウム溶液を電解液とし、金属ガリウムを陽極として電気
分解することにより、電解槽中に沈殿する水酸化ガリウ
ムを回収し、これをカ焼して酸化ガリウム粉末を得る方
法も検討されている。
Conventionally, as a method for producing gallium oxide powder, gallium hydroxide is recovered as a precipitate by dissolving gallium metal in nitric acid and adding aqueous ammonia to the resulting gallium nitrate solution. There is known a method for obtaining gallium oxide powder. Further, a method of recovering gallium hydroxide precipitated in an electrolytic cell by electrolysis using an ammonium nitrate solution as an electrolytic solution and metal gallium as an anode, and calcining this to obtain a gallium oxide powder is also being studied. .

【0004】しかし、上述の中和法による酸化ガリウム
粉末は、粒度が不揃いで粒度分布の分散が大きいため高
充填率の焼結体を得ることが難しい。また、電解法で
は、均一な酸化ガリウム粉末を得るための条件設定が困
難であり、高充填率が要求されるターゲット材の製造に
用いるのは難しい。
However, the gallium oxide powder obtained by the above-described neutralization method has an irregular particle size and a large particle size distribution, so that it is difficult to obtain a sintered body having a high filling factor. Further, in the electrolytic method, it is difficult to set conditions for obtaining a uniform gallium oxide powder, and it is difficult to use the method for manufacturing a target material that requires a high filling rate.

【0005】[0005]

【発明が解決しようとする課題】したがって、本発明
は、従来法では実現の難しい高充填率の焼結体を得るた
めの酸化ガリウム粉末およびその製造方法を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a gallium oxide powder for obtaining a sintered body having a high filling ratio, which is difficult to realize by the conventional method, and a method for producing the same.

【0006】[0006]

【課題解決の手段】本出願人は、中和法において、シュ
ウ酸の存在下、特定の条件で中和を進行させることによ
り、粒度分布のシャープな酸化ガリウム粉末が得られる
こと、当該粉末を用いることにより高充填率の焼結体が
得られることを見出し本発明を完成するに至った。すな
わち、本発明は、以下のガリウム粉末およびその製造方
法を提供する。 (1)比表面積(BET値)が3〜10m2/gであり、0.1〜
10μmの範囲に粒子の99%(体積基準)が含まれる
酸化ガリウム粉末。 (2)50%累積粒径(体積基準)が1〜10μmの範
囲内の値である前記1に記載の酸化ガリウム粉末。 (3)金属ガリウムを硝酸に溶解してガリウム溶液と
し、アンモニウムイオンを添加して中和することにより
水酸化ガリウムを析出させ、濾別、洗浄後、カ焼して酸
化ガリウム粉末を製造する方法であって、前記中和反応
をシュウ酸の存在下に進行させることを特徴とする酸化
ガリウム粉末の製造方法。 (4)ガリウムイオン1モルに対し、0.2〜2.5モル
のシュウ酸を添加する前記3に記載の酸化ガリウム粉末
の製造方法。
The applicant of the present invention has found that in the neutralization method, gallium oxide powder having a sharp particle size distribution can be obtained by promoting neutralization under specific conditions in the presence of oxalic acid. It has been found that a sintered body having a high filling rate can be obtained by using the same, and the present invention has been completed. That is, the present invention provides the following gallium powder and a method for producing the same. (1) Specific surface area (BET value) is 3 to 10 m 2 / g,
Gallium oxide powder containing 99% (by volume) of particles in a range of 10 μm. (2) The gallium oxide powder as described in (1) above, wherein the 50% cumulative particle size (by volume) is a value within a range of 1 to 10 μm. (3) A method of producing gallium oxide powder by dissolving metallic gallium in nitric acid to form a gallium solution, adding ammonium ions and neutralizing to precipitate gallium hydroxide, filtering, washing and calcining. A method for producing a gallium oxide powder, wherein the neutralization reaction proceeds in the presence of oxalic acid. (4) The method for producing gallium oxide powder as described in (3) above, wherein 0.2 to 2.5 mol of oxalic acid is added to 1 mol of gallium ions.

【0007】[0007]

【発明の実施の形態】(I)酸化ガリウム粉末 本発明の酸化ガリウム粉末は、比表面積(BET値)が3
〜10m2/gであって、0.1〜10μmの範囲に粒子の
99%(体積基準)が含まれる酸化ガリウム粉末である。
さらに50%累積粒径(体積基準)が1〜10μm、好
ましくは1〜7μm、より好ましくは1〜3μmの範囲
内の値となる酸化ガリウム粉末である。本発明の酸化ガ
リウム粉末は、以上のように、シャープな粒度分布を有
するので、圧粉体として焼結したときに高い充填率を実
現することが可能である。具体的には理論密度に対して
99%以上を達成することが可能であり、ターゲット材
の製造原料として極めて有用である。本発明の酸化ガリ
ウム粉末は、以下の方法により製造される。
BEST MODE FOR CARRYING OUT THE INVENTION (I) Gallium oxide powder The gallium oxide powder of the present invention has a specific surface area (BET value) of 3
It is a gallium oxide powder containing 10% to 10 m 2 / g and 99% (by volume) of particles in a range of 0.1 to 10 μm.
Further, the gallium oxide powder has a 50% cumulative particle size (by volume) within a range of 1 to 10 μm, preferably 1 to 7 μm, and more preferably 1 to 3 μm. Since the gallium oxide powder of the present invention has a sharp particle size distribution as described above, it is possible to realize a high filling rate when sintered as a green compact. Specifically, it can achieve 99% or more of the theoretical density, and is extremely useful as a raw material for producing a target material. The gallium oxide powder of the present invention is produced by the following method.

【0008】(II)酸化ガリウム粉末の製造方法 本発明の酸化ガリウムの製造方法は、図1に模式的に示
すように、(i)金属ガリウムを酸に溶解してガリウム溶
液を調整する工程、(ii)得られた溶液にシュウ酸を添加
し特定の条件下で中和することにより水酸化ガリウムを
析出させる工程、(iii)得られた水酸化ガリウムを回収
・洗浄する工程、および(iv)水酸化ガリウムをカ焼して
酸化物とする工程を含む。
(II) Method for Producing Gallium Oxide Powder The method for producing gallium oxide of the present invention comprises the steps of (i) dissolving metal gallium in an acid to prepare a gallium solution, as schematically shown in FIG. (ii) adding oxalic acid to the obtained solution and neutralizing it under specific conditions to precipitate gallium hydroxide, (iii) recovering and washing the obtained gallium hydroxide, and (iv) ) Calcining gallium hydroxide to form an oxide.

【0009】(i)第1工程(ガリウム溶液の調製) 本発明で原料として用いる金属ガリウムは、目的とする
酸化ガリウムの用途に応じた純度を有するものであれば
よい。通常は99.9%以上、好ましくは99.99%以
上、より好ましくは99.999%以上の純度を有する
金属ガリウムを用いる。ガリウムは硝酸を用いて溶解す
る。ガリウムは硫酸、塩酸などの他の鉱酸にも溶解する
が、これらの酸を用いた場合には、得られる酸化ガリウ
ム中に硫酸根、塩素が残留し好ましくない。硝酸濃度は
特に限定されないが、好ましくは10〜65重量%
(1.5〜14N)程度であればよい。濃度が低すぎる
と溶解速度が遅い。溶解は、加熱下、好ましくは40℃
以上で行なう。硝酸へのガリウムの溶解は発熱反応であ
るが、液温を高めることにより迅速かつ高濃度での溶解
が可能となる。
(I) First Step (Preparation of Gallium Solution) The metal gallium used as a raw material in the present invention may be one having a purity according to the intended use of gallium oxide. Usually, metal gallium having a purity of 99.9% or more, preferably 99.99% or more, more preferably 99.999% or more is used. Gallium is dissolved using nitric acid. Gallium also dissolves in other mineral acids such as sulfuric acid and hydrochloric acid, but when these acids are used, sulfate groups and chlorine remain in the obtained gallium oxide, which is not preferable. The nitric acid concentration is not particularly limited, but is preferably 10 to 65% by weight.
(1.5 to 14N). If the concentration is too low, the dissolution rate is low. Dissolution is performed under heating, preferably at 40 ° C.
This is done above. Dissolution of gallium in nitric acid is an exothermic reaction, but by increasing the liquid temperature, dissolution can be rapidly and at a high concentration.

【0010】(ii)第2工程(水酸化物の析出) 第1工程で得られた溶液は濾過し、濃度を調整した後、
シュウ酸を添加し、特定範囲のpH条件下で加温するこ
とにより水酸化ガリウムを析出させる。シュウ酸を添加
するに先立ち、好ましくは溶液を希釈してガリウムイオ
ンの濃度を調整する。ガリウムイオンの液中濃度として
2〜4モル/L程度が好ましい。2モル/L未満でも反応
は進行するが、効率が悪い。4モル/Lを超える高濃度と
した場合には中和段階で得られる粒子が粗大なものとな
りやすい。
(Ii) Second Step (Precipitation of Hydroxide) The solution obtained in the first step is filtered, and after adjusting the concentration,
Gallium hydroxide is precipitated by adding oxalic acid and heating under a specific range of pH conditions. Prior to adding oxalic acid, the concentration of gallium ions is preferably adjusted by diluting the solution. The concentration of gallium ions in the liquid is preferably about 2 to 4 mol / L. The reaction proceeds with less than 2 mol / L, but the efficiency is low. If the concentration is higher than 4 mol / L, the particles obtained in the neutralization step tend to be coarse.

【0011】次いで、シュウ酸を添加する。シュウ酸を
添加することによりシュウ酸ガリウムの微結晶が生成す
るため、次の中和段階で水酸化ガリウム粒子の凝集が抑
制され、粒度分布の狭い水酸化ガリウム粉末が得られる
こととなる。シュウ酸はガリウムイオン1モルに対し、
好ましくは0.2〜2.5モルの範囲で添加する。0.2
モル未満ではシュウ酸添加の効果が十分に得られない。
2.5モルを超える量を用いても効果の改善はなくコス
トが高くなる。しかも、過剰なシュウ酸を添加すると却
って粒子が粗大化する。より好ましくはガリウムイオン
1モルに対し0.5〜2.0モルのシュウ酸を添加する。
Next, oxalic acid is added. By adding oxalic acid, gallium oxalate microcrystals are generated, so that aggregation of gallium hydroxide particles is suppressed in the next neutralization step, and gallium hydroxide powder having a narrow particle size distribution is obtained. Oxalic acid is used per mole of gallium ion.
Preferably, it is added in the range of 0.2 to 2.5 mol. 0.2
If the amount is less than mole, the effect of adding oxalic acid cannot be sufficiently obtained.
Use of an amount exceeding 2.5 mol does not improve the effect and increases the cost. Moreover, when excessive oxalic acid is added, the particles are rather coarsened. More preferably, 0.5 to 2.0 mol of oxalic acid is added to 1 mol of gallium ions.

【0012】次に、塩基を添加して液性を調整する。好
ましくはpH2〜5の範囲が適当である。pH2未満で
は水酸化ガリウムが十分に析出しない。pH5を超える
と粒度分布の制御が困難になる。より好ましくはpH3
〜4の範囲とする。添加する塩基は、アンモニア水ある
いは、炭酸水素アンモニウムなど酸性条件下でアンモニ
アを生じる塩である。アンモニア水を用いる場合、その
濃度は、好ましくは5〜20重量%、より好ましくは1
0〜15重量%程度である。アンモニア濃度がこれより
低過ぎると水酸化ガリウムが十分に生成しない。またア
ンモニア濃度が高過ぎると、アンモニアを添加した際
に、添加部分において水酸化物への転換が急激に進行
し、粒度分布の制御が困難になる。炭酸水素アンモニウ
ムなどのアンモニウム塩を用いる場合も上記に準じて濃
度を調節すればよい。
Next, a liquid is adjusted by adding a base. Preferably, the range of pH 2 to 5 is appropriate. If the pH is less than 2, gallium hydroxide does not sufficiently precipitate. If the pH exceeds 5, it becomes difficult to control the particle size distribution. More preferably pH 3
~ 4. The base to be added is a salt that generates ammonia under acidic conditions such as aqueous ammonia or ammonium hydrogen carbonate. When using ammonia water, its concentration is preferably 5 to 20% by weight, more preferably 1 to 20% by weight.
It is about 0 to 15% by weight. If the ammonia concentration is too low, gallium hydroxide will not be generated sufficiently. On the other hand, if the ammonia concentration is too high, when ammonia is added, the conversion to hydroxide proceeds rapidly in the added portion, making it difficult to control the particle size distribution. When using an ammonium salt such as ammonium hydrogen carbonate, the concentration may be adjusted according to the above.

【0013】アンモニアの添加速度は、NH4OH換算
で好ましくは0.1〜10g/minであればよい。アンモニ
アの添加速度が高すぎるとアンモニア濃度が高すぎる場
合と同様の問題が生じる。低すぎると効率が悪い。より
好ましくは1〜5g/minの範囲とする。アンモニアの添
加は、30〜70℃の範囲で行うのが好ましい。30℃
未満では粒子の成長が不十分で粒度分布のバラツキが大
きくなる。一方、70℃を超えると粒成長が進みすぎて
所定の粒径の粉末を得ることが難しくなる。より好まし
くは40〜60℃の範囲とする。
The rate of addition of ammonia is preferably 0.1 to 10 g / min in terms of NH 4 OH. If the rate of adding ammonia is too high, the same problem as in the case where the ammonia concentration is too high occurs. Too low is inefficient. More preferably, it is in the range of 1 to 5 g / min. The addition of ammonia is preferably performed in the range of 30 to 70 ° C. 30 ° C
If it is less than 1, the growth of the particles is insufficient, and the variation in the particle size distribution becomes large. On the other hand, when the temperature exceeds 70 ° C., the grain growth proceeds excessively, and it becomes difficult to obtain a powder having a predetermined particle size. It is more preferably in the range of 40 to 60 ° C.

【0014】(iii)第3工程(水酸化物の洗浄) 上記工程を経て得た水酸化物を濾別し、水およびアルコ
ールなどにより洗浄する。洗浄は慣用の方法により行え
ばよいが、固液比を1:20〜1:80、望ましくは
1:40〜1:60程度の範囲として複数回(純度を重
視する場合は4回程度)、繰り返すことが好ましい。水
洗後、エタノールでさらに洗浄して粒子間に存在する水
分を除く。
(Iii) Third Step (Washing of Hydroxide) The hydroxide obtained through the above steps is separated by filtration and washed with water and alcohol. The washing may be carried out by a conventional method, but the solid-liquid ratio is set to a range of 1:20 to 1:80, preferably about 1:40 to 1:60, and a plurality of times (about four times when importance is attached to purity). It is preferred to repeat. After washing with water, it is further washed with ethanol to remove water present between the particles.

【0015】(iv)第4工程(酸化物の調製) 得られた水酸化物沈殿は、乾燥後、カ焼することにより
酸化物に転換する。カ焼工程は、真空中、大気中、酸素
ガス中等の雰囲気で、通常、500〜1200℃の温度
範囲で行なう。500℃未満では酸化物への転換が十分
に進行しないおそれがある。1200℃を超えての加熱
は、粒子の凝集などをもたらし好ましくない。経済性お
よび得られる粉末の物性を考慮すると、大気中、700
〜1000℃の範囲でカ焼することが好ましい。カ焼
は、加熱温度にもよるが通常は1〜5時間程度であれば
よい。
(Iv) Fourth Step (Preparation of Oxide) The obtained hydroxide precipitate is converted to an oxide by drying and calcining. The calcining step is performed in an atmosphere such as in a vacuum, in the air, or in an oxygen gas, usually at a temperature in the range of 500 to 1200 ° C. If the temperature is lower than 500 ° C., conversion to oxide may not proceed sufficiently. Heating at more than 1200 ° C. is not preferable because it causes aggregation of particles and the like. Considering the economics and the physical properties of the resulting powder,
It is preferable to calcine in the range of -1000 ° C. The calcination is usually performed for about 1 to 5 hours, depending on the heating temperature.

【0016】[0016]

【実施例】以下、実施例および比較例により本発明を具
体的に示す。なお、以下の例において、比表面積および
粒度分布の測定は次の方法により行なった。 (i)比表面積:試料粉末を室温にて30分間脱気した
後、比表面積測定計(QUANTACHROME製AUTOSORB-1MP)を
用いてBET3点法により測定した。 (ii)粒度分布:レーザー式粒度分布測定装置(LEED & N
ORTHRUP製マイクロトラックFRA)により二次粒子の粒度
分布を求めた。
The present invention will be specifically described below with reference to examples and comparative examples. In the following examples, the specific surface area and particle size distribution were measured by the following methods. (i) Specific surface area: The sample powder was degassed at room temperature for 30 minutes, and then measured by a BET three-point method using a specific surface area meter (AUTOSORB-1MP manufactured by QUANTACHROME). (ii) Particle size distribution: Laser type particle size distribution analyzer (LEED & N
The particle size distribution of the secondary particles was determined using ORTHRUP Microtrac FRA).

【0017】実施例1〜3 純度99.99%の金属ガリウム65gを11N(52
%)硝酸に溶解し、純水にて濃度を調節し、2.2モル/
Lの硝酸ガリウム水溶液0.42Lを調製した。十分に撹
拌しながら、0.5モル/L(実施例1)、1モル/L(実
施例2)および3モル/L(実施例3)のシュウ酸水溶液
0.5Lを添加し、しかる後、液温を40℃に保ち12重
量%のアンモニア水を10mL/minの割合で10分間にわ
たって添加した。得られた液を濾過し、分離した沈殿を
固液比が1:40になる割合の純水に投じ加圧濾過する
過程を4回繰り返し、さらにエタノールを用いて洗浄し
た。かくして得られた水酸化ガリウムを110℃で乾燥
し、大気中930℃で3時間加熱することにより酸化ガ
リウム約82gを得た。これらの実施例1〜3で得られ
た酸化ガリウムの比表面積および粒度分布の測定結果を
表1に示す。また、実施例2で得られた粉末のヒストグ
ラムを図2に、そのSEM写真を図3に示す。
Examples 1 to 3 65 g of metal gallium having a purity of 99.99% was added to 11N (52
%) Dissolve in nitric acid, adjust the concentration with pure water, 2.2 mol /
0.42 L of aqueous L gallium nitrate solution was prepared. With sufficient stirring, 0.5 L of an aqueous oxalic acid solution of 0.5 mol / L (Example 1), 1 mol / L (Example 2) and 3 mol / L (Example 3) are added. While maintaining the liquid temperature at 40 ° C., 12% by weight aqueous ammonia was added at a rate of 10 mL / min for 10 minutes. The obtained liquid was filtered, the separated precipitate was poured into pure water having a solid-liquid ratio of 1:40, and the process of pressure filtration was repeated four times, followed by washing with ethanol. The gallium hydroxide thus obtained was dried at 110 ° C. and heated in air at 930 ° C. for 3 hours to obtain about 82 g of gallium oxide. Table 1 shows the measurement results of the specific surface area and the particle size distribution of gallium oxide obtained in Examples 1 to 3. FIG. 2 shows a histogram of the powder obtained in Example 2, and FIG. 3 shows an SEM photograph thereof.

【0018】[0018]

【表1】 [Table 1]

【0019】実施例4〜5 中和時の液温を変更したほかは実施例2と同様にして水
酸化ガリウム沈殿を生成し、これを同様に洗浄、乾燥、
カ焼して酸化ガリウム粉末を調製した。これらの酸化ガ
リウムの比表面積および粒度分布も併せて表1に示す。
Examples 4-5 Gallium hydroxide precipitates were formed in the same manner as in Example 2 except that the liquid temperature during neutralization was changed.
Gallium oxide powder was prepared by calcining. Table 1 also shows the specific surface area and particle size distribution of these gallium oxides.

【0020】比較例1〜2 添加するシュウ酸濃度を変更したほかは実施例2と同様
にして水酸化ガリウム沈殿を生成し、これを同様に洗
浄、乾燥、カ焼して酸化ガリウム粉末を得た。これらの
酸化ガリウムの比表面積および粒度分布を表1に併せて
示す。また、比較例1で得られた粉末のSEM写真を図4
に示す。
Comparative Examples 1 and 2 A gallium hydroxide precipitate was formed in the same manner as in Example 2 except that the concentration of oxalic acid added was changed, and this was washed, dried and calcined in the same manner to obtain a gallium oxide powder. Was. Table 1 also shows the specific surface area and particle size distribution of these gallium oxides. FIG. 4 shows an SEM photograph of the powder obtained in Comparative Example 1.
Shown in

【0021】これらの例に示すように、本発明に従いシ
ュウ酸を添加した状態で中和を行なった場合には、シャ
ープな粒度分布を有する酸化ガリウム粉末が概ね球状の
二次粒子として得られるのに対し、シュウ酸添加を行わ
ないか添加量が不十分な場合(比較例1)には、針状の粗
大結晶となり粒度分布の広がりも大きくなる。また、シ
ュウ酸添加量が過剰な場合(比較例2)にも粒子の粗大化
あるいは粒度分布が広がる傾向が観察される。
As shown in these examples, when neutralization is performed with oxalic acid added according to the present invention, gallium oxide powder having a sharp particle size distribution is obtained as substantially spherical secondary particles. On the other hand, when oxalic acid was not added or the amount of oxalic acid was insufficient (Comparative Example 1), needle-like coarse crystals were formed, and the spread of the particle size distribution became large. Also, when the amount of oxalic acid added is excessive (Comparative Example 2), a tendency is observed that the particles are coarsened or the particle size distribution is widened.

【0022】比較例3〜4(参考) 表1に示す通り、比較例1〜2においてさらに中和時の
液温を変更して酸化ガリウム粉末を調製した。これらの
酸化ガリウムの比表面積および粒度分布も併せて表1に
示す。比較例1と3、あるいは比較例2と4を対比すれ
ば理解されるように、中和時の液温が高くなると、最終
的に得られる酸化ガリウム粉末の比表面積は小さく、二
次粒子の平均粒径は大きくなる。すなわち、粒子の粗大
化の傾向が見られる。これに対し、本願発明の範囲内で
シュウ酸を添加した場合には(例えば、実施例4、2、
5)、中和時の液温を高めることにより生成する粒子の
比表面積(BET値)が小さくなる傾向は同じである
が、二次粒子の平均粒径は特定の温度範囲(シュウ酸濃
度1.0mol/Lの例では40℃付近)で最小となる。すな
わち、中和温度の調整により二次粒子の凝集を抑えるこ
とが可能となり、焼結体を得るのに適した酸化ガリウム
粉末が得られる。
Comparative Examples 3 and 4 (Reference) As shown in Table 1, gallium oxide powder was prepared by further changing the liquid temperature during neutralization in Comparative Examples 1 and 2. Table 1 also shows the specific surface area and particle size distribution of these gallium oxides. As can be understood by comparing Comparative Examples 1 and 3 or Comparative Examples 2 and 4, when the liquid temperature at the time of neutralization increases, the specific surface area of the finally obtained gallium oxide powder is small, and The average particle size increases. That is, there is a tendency for the particles to be coarse. On the other hand, when oxalic acid is added within the scope of the present invention (for example, Examples 4, 2,
5) While the specific surface area (BET value) of the particles produced by increasing the liquid temperature during neutralization tends to decrease, the average particle size of the secondary particles is in a specific temperature range (oxalic acid concentration of 1). (At around 40 ° C. in the case of 0.0 mol / L). That is, by adjusting the neutralization temperature, aggregation of the secondary particles can be suppressed, and gallium oxide powder suitable for obtaining a sintered body can be obtained.

【0023】比較例4 金属ガリウムを溶解するための酸を14N硫酸に変更し
たほかは実施例2と同様にして酸化ガリウムの製造を試
みたところ、最終的に得られた酸化ガリウム中には0.
3重量%の硫酸根の検出された(なお、上記の各実施例
による酸化ガリウムでは酸根の残留は認められなかっ
た。)。
Comparative Example 4 Production of gallium oxide was attempted in the same manner as in Example 2 except that the acid for dissolving metal gallium was changed to 14N sulfuric acid. .
3% by weight of a sulfate group was detected (in the gallium oxide according to each of the above examples, no residual acid group was observed).

【0024】ターゲット材の調製 実施例1〜5、比較例1、2、4および5で得られた酸
化ガリウム粉末90gを用い、これに、酸化スズ粉末
(一次粒子のBET比表面積:6.9m2/g、平均二次粒子
径:10μm)10gをそれぞれ混合して、均一に撹拌
し、得られた粉末を1.5T/cm2の加圧下に板状に成形
し、さらに1600℃の温度下で500kg/cm2の熱間プ
レス焼成を2時間かけて行ない、ターゲット用の焼結体
を得た。この焼結体の密度と理論密度の比を表2に示
す。これらの例に示されるように、シャープな粒度分布
を有する本発明の酸化ガリウム粉末では高充填率のター
ゲット材の製造に有用である。
Preparation of Target Material 90 g of the gallium oxide powder obtained in Examples 1 to 5 and Comparative Examples 1, 2, 4 and 5 was used, and tin oxide powder (BET specific surface area of primary particles: 6.9 m) 2 / g, average secondary particle diameter: 10 μm), and mixed uniformly, and the resulting powder was molded into a plate under a pressure of 1.5 T / cm 2 , and further heated to a temperature of 1600 ° C. Then, hot press firing at 500 kg / cm 2 was performed over 2 hours to obtain a sintered body for a target. Table 2 shows the ratio between the density of the sintered body and the theoretical density. As shown in these examples, the gallium oxide powder of the present invention having a sharp particle size distribution is useful for producing a target material having a high filling rate.

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【発明の効果】本発明に従いシュウ酸の存在下に中和反
応を行なって得られる酸化ガリウムは粒度分布がシャー
プである。このため、高充填率のターゲット材製造原料
として極めて有用である。
According to the present invention, gallium oxide obtained by performing a neutralization reaction in the presence of oxalic acid has a sharp particle size distribution. Therefore, it is extremely useful as a raw material for producing a target material having a high filling rate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明による酸化ガリウムの製造工程の概略
を示す流れ図。
FIG. 1 is a flowchart showing an outline of a production process of gallium oxide according to the present invention.

【図2】 本発明に従いシュウ酸存在下に中和を行なっ
て得られる酸化ガリウム粉末の粒度分布を示すグラフ。
FIG. 2 is a graph showing the particle size distribution of gallium oxide powder obtained by performing neutralization in the presence of oxalic acid according to the present invention.

【図3】 本発明に従いシュウ酸存在下に中和を行なっ
て得られる酸化ガリウム粉末の粒子状態を示す顕微鏡写
真。
FIG. 3 is a micrograph showing the particle state of gallium oxide powder obtained by neutralization in the presence of oxalic acid according to the present invention.

【図4】 比較例による酸化ガリウム粉末の粒子状態を
示す顕微鏡写真。
FIG. 4 is a micrograph showing a particle state of a gallium oxide powder according to a comparative example.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成10年5月13日[Submission date] May 13, 1998

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図3[Correction target item name] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図3】 FIG. 3

【手続補正2】[Procedure amendment 2]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図4[Correction target item name] Fig. 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図4】 ─────────────────────────────────────────────────────
FIG. 4 ────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年5月13日[Submission date] May 13, 1999

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0018[Correction target item name] 0018

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0018】[0018]

【表1】 [Table 1]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0023[Correction target item name] 0023

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0023】比較例5 金属ガリウムを溶解するための酸を14N硫酸に変更し
たほかは実施例2と同様にして酸化ガリウムの製造を試
みたところ、最終的に得られた酸化ガリウム中には0.
3重量%の硫酸根の検出された(なお、上記の各実施例
による酸化ガリウムでは酸根の残留は認められなかっ
た。)。
Comparative Example 5 Production of gallium oxide was attempted in the same manner as in Example 2 except that the acid for dissolving metal gallium was changed to 14N sulfuric acid. .
3% by weight of a sulfate group was detected (in the gallium oxide according to each of the above examples, no residual acid group was observed).

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0024[Correction target item name] 0024

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0024】ターゲット材の調製 実施例1〜5、比較例1、2、およびで得られた酸
化ガリウム粉末90gを用い、これに、酸化スズ粉末
(一次粒子のBET比表面積:6.9m2/g、平均二次粒子
径:10μm)10gをそれぞれ混合して、均一に撹拌
し、得られた粉末を1.5T/cm2の加圧下に板状に成形
し、さらに1600℃の温度下で500kg/cm2の熱間プ
レス焼成を2時間かけて行ない、ターゲット用の焼結体
を得た。この焼結体の密度と理論密度の比を表2に示
す。これらの例に示されるように、シャープな粒度分布
を有する本発明の酸化ガリウム粉末では高充填率のター
ゲット材の製造に有用である。
Preparation of Target Material 90 g of the gallium oxide powder obtained in Examples 1 to 5 and Comparative Examples 1, 2, 3 and 4 was used, and tin oxide powder (BET specific surface area of primary particles: 6.9 m) was added thereto. 2 / g, average secondary particle diameter: 10 μm), and mixed uniformly, and the resulting powder was molded into a plate under a pressure of 1.5 T / cm 2 , and further heated to a temperature of 1600 ° C. Then, hot press firing at 500 kg / cm 2 was performed over 2 hours to obtain a sintered body for a target. Table 2 shows the ratio between the density of the sintered body and the theoretical density. As shown in these examples, the gallium oxide powder of the present invention having a sharp particle size distribution is useful for producing a target material having a high filling rate.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0025[Correction target item name] 0025

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0025】[0025]

【表2】 [Table 2]

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 比表面積(BET値)が3〜10m2/gであ
り、0.1〜10μmの範囲に粒子の99%(体積基
準)が含まれる酸化ガリウム粉末。
1. A gallium oxide powder having a specific surface area (BET value) of 3 to 10 m 2 / g and containing 99% (by volume) of particles in a range of 0.1 to 10 μm.
【請求項2】 50%累積粒径(体積基準)が1〜10
μmの範囲内の値である請求項1に記載の酸化ガリウム
粉末。
2. A 50% cumulative particle size (by volume) of 1 to 10
The gallium oxide powder according to claim 1, having a value in a range of µm.
【請求項3】 金属ガリウムを硝酸に溶解してガリウム
溶液とし、アンモニウムイオンを添加して中和すること
により水酸化ガリウムを析出させ、濾別、洗浄後、カ焼
して酸化ガリウム粉末を製造する方法であって、前記中
和反応をシュウ酸の存在下に進行させることを特徴とす
る酸化ガリウム粉末の製造方法。
3. Gallium hydroxide is precipitated by dissolving gallium metal in nitric acid to form a gallium solution, adding ammonium ions and neutralizing to precipitate gallium hydroxide, filtering, washing and calcining to produce gallium oxide powder. A method for producing a gallium oxide powder, wherein the neutralization reaction proceeds in the presence of oxalic acid.
【請求項4】 ガリウムイオン1モルに対し、0.2〜
2.5モルのシュウ酸を添加する請求項3に記載の酸化
ガリウム粉末の製造方法。
4. 0.2 to 2 moles of gallium ions.
The method for producing gallium oxide powder according to claim 3, wherein 2.5 mol of oxalic acid is added.
JP12877198A 1998-05-12 1998-05-12 Gallium oxide and method for producing the same Expired - Fee Related JP2950324B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12877198A JP2950324B1 (en) 1998-05-12 1998-05-12 Gallium oxide and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12877198A JP2950324B1 (en) 1998-05-12 1998-05-12 Gallium oxide and method for producing the same

Publications (2)

Publication Number Publication Date
JP2950324B1 JP2950324B1 (en) 1999-09-20
JPH11322335A true JPH11322335A (en) 1999-11-24

Family

ID=14993073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12877198A Expired - Fee Related JP2950324B1 (en) 1998-05-12 1998-05-12 Gallium oxide and method for producing the same

Country Status (1)

Country Link
JP (1) JP2950324B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2096188A1 (en) 2006-12-13 2009-09-02 Idemitsu Kosan Co., Ltd. Sputtering target and oxide semiconductor film
JP2011213508A (en) * 2010-03-31 2011-10-27 Mitsui Mining & Smelting Co Ltd Gallium oxide powder
JP2011213507A (en) * 2010-03-31 2011-10-27 Mitsui Mining & Smelting Co Ltd Gallium oxide powder
JP2012076977A (en) * 2010-10-06 2012-04-19 Mitsui Mining & Smelting Co Ltd Gallium oxide powder
JP2012162440A (en) * 2011-02-09 2012-08-30 Mitsui Mining & Smelting Co Ltd Gallium oxide powder
JPWO2010140548A1 (en) * 2009-06-05 2012-11-15 Jx日鉱日石金属株式会社 Oxide sintered body, manufacturing method thereof, and raw material powder for manufacturing oxide sintered body
KR101473716B1 (en) * 2013-08-23 2014-12-26 (주)티에스엠 Manufacturing method of gallium oxide of high purity spherical for minimalize of loss of gallium and high purity spherical gallium oxide therefrom
JPWO2013103034A1 (en) * 2012-01-06 2015-05-11 Jx日鉱日石金属株式会社 Method for producing gallium hydroxide, method for producing gallium oxide powder, gallium oxide powder, sintered body of the gallium oxide, and sputtering target comprising the sintered body
JP2020066567A (en) * 2018-10-26 2020-04-30 株式会社アルバック Manufacturing method of gallium oxide powder

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2096188A1 (en) 2006-12-13 2009-09-02 Idemitsu Kosan Co., Ltd. Sputtering target and oxide semiconductor film
US8784700B2 (en) 2006-12-13 2014-07-22 Idemitsu Kosan Co., Ltd. Sputtering target and oxide semiconductor film
JP5822198B2 (en) * 2009-06-05 2015-11-24 Jx日鉱日石金属株式会社 Oxide sintered body, manufacturing method thereof, and raw material powder for manufacturing oxide sintered body
US9663405B2 (en) 2009-06-05 2017-05-30 Jx Nippon Mining & Metals Corporation Oxide sintered compact, its production method, and raw material powder for producing oxide sintered compact
JPWO2010140548A1 (en) * 2009-06-05 2012-11-15 Jx日鉱日石金属株式会社 Oxide sintered body, manufacturing method thereof, and raw material powder for manufacturing oxide sintered body
JP2016216354A (en) * 2009-06-05 2016-12-22 Jx金属株式会社 Oxide sintered compact, production method therefor and raw material powder for producing oxide sintered compact
JP2015006984A (en) * 2009-06-05 2015-01-15 Jx日鉱日石金属株式会社 Oxide sintered body, method for producing the same and raw material powder for producing oxide sintered body
TWI550110B (en) * 2009-06-05 2016-09-21 Jx Nippon Mining & Metals Corp An oxide sintered body, a method for producing the same, and a raw material powder for producing an oxide sintered body
JP2011213508A (en) * 2010-03-31 2011-10-27 Mitsui Mining & Smelting Co Ltd Gallium oxide powder
JP2011213507A (en) * 2010-03-31 2011-10-27 Mitsui Mining & Smelting Co Ltd Gallium oxide powder
JP2012076977A (en) * 2010-10-06 2012-04-19 Mitsui Mining & Smelting Co Ltd Gallium oxide powder
JP2012162440A (en) * 2011-02-09 2012-08-30 Mitsui Mining & Smelting Co Ltd Gallium oxide powder
JPWO2013103034A1 (en) * 2012-01-06 2015-05-11 Jx日鉱日石金属株式会社 Method for producing gallium hydroxide, method for producing gallium oxide powder, gallium oxide powder, sintered body of the gallium oxide, and sputtering target comprising the sintered body
KR101473716B1 (en) * 2013-08-23 2014-12-26 (주)티에스엠 Manufacturing method of gallium oxide of high purity spherical for minimalize of loss of gallium and high purity spherical gallium oxide therefrom
JP2020066567A (en) * 2018-10-26 2020-04-30 株式会社アルバック Manufacturing method of gallium oxide powder

Also Published As

Publication number Publication date
JP2950324B1 (en) 1999-09-20

Similar Documents

Publication Publication Date Title
JP5087790B2 (en) Method for producing aluminum-containing nickel hydroxide particles
JP6599249B2 (en) Positive electrode active material precursor for lithium ion battery, positive electrode active material for lithium ion battery, method for producing positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
KR20060102277A (en) Method of producing copper powder and copper powder
CN106558695A (en) A kind of nickel cobalt aluminum complex hydroxide, nickel cobalt aluminium composite oxide and preparation method thereof
EP2840068B1 (en) Manganese (iii, iv)-tetraoxide particles and method for their production
CN108405881A (en) A kind of preparation method of high pure spherical ruthenium powder
CN112239223B (en) Preparation method of rare earth oxide powder with large specific surface area
JP2950324B1 (en) Gallium oxide and method for producing the same
CN110629288A (en) Method for preparing whisker-shaped gadolinium aluminate powder material by hydrothermal technology
JP4747286B2 (en) Fine tin oxide powder and its production method and use
JP2011116608A (en) Method for producing nickel cobalt aluminum multiple oxide
JP2003206137A (en) Partially stabilized or stabilized zirconia fine powder, precursor thereof and production method therefor
CN110422884A (en) Preparation method of doped lithium ferrite
JPH11292549A (en) Cobalt hydroxide and its production
JP3173440B2 (en) Method for producing tin oxide powder
JP2004010375A (en) Processes for preparing tricobalt tetraoxide and lithium cobaltate
JP4729700B2 (en) Dy-doped nano ceria-based sintered body
JPH1017324A (en) Production of indium oxide power
JPH1179745A (en) Production of indium oxide powder for ito target
JP5786994B1 (en) Indium hydroxide powder and indium oxide powder
CN112723331A (en) Preparation method of high-purity nanometer neodymium phosphate powder
JP4178485B2 (en) Gallium oxide powder for sputtering target and method for producing the same
JP4185197B2 (en) Method for producing bismuth (III) oxide
CN114408987B (en) Nickel-cobalt-manganese precursor, ternary cathode material and preparation method thereof
JP5979041B2 (en) Method for producing nickel powder

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990608

LAPS Cancellation because of no payment of annual fees