KR102051191B1 - 결정 구조 제어 방법 및 열처리 방법 - Google Patents

결정 구조 제어 방법 및 열처리 방법 Download PDF

Info

Publication number
KR102051191B1
KR102051191B1 KR1020170171321A KR20170171321A KR102051191B1 KR 102051191 B1 KR102051191 B1 KR 102051191B1 KR 1020170171321 A KR1020170171321 A KR 1020170171321A KR 20170171321 A KR20170171321 A KR 20170171321A KR 102051191 B1 KR102051191 B1 KR 102051191B1
Authority
KR
South Korea
Prior art keywords
substrate
flash
thin film
film
crystal structure
Prior art date
Application number
KR1020170171321A
Other languages
English (en)
Other versions
KR20180083790A (ko
Inventor
히카루 가와라자키
아키쓰구 우에다
Original Assignee
가부시키가이샤 스크린 홀딩스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 스크린 홀딩스 filed Critical 가부시키가이샤 스크린 홀딩스
Publication of KR20180083790A publication Critical patent/KR20180083790A/ko
Application granted granted Critical
Publication of KR102051191B1 publication Critical patent/KR102051191B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/02Heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02672Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using crystallisation enhancing elements
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/02Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02142Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing silicon and at least one metal element, e.g. metal silicate based insulators or metal silicon oxynitrides
    • H01L21/02148Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing silicon and at least one metal element, e.g. metal silicate based insulators or metal silicon oxynitrides the material containing hafnium, e.g. HfSiOx or HfSiON
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02181Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing hafnium, e.g. HfO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02345Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • H01L21/2686Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation using incoherent radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28185Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the gate insulator and before the formation of the definitive gate conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/6719Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the processing chambers, e.g. modular processing chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68707Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a robot blade, or gripped by a gripper for conveyance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/6875Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a plurality of individual support members, e.g. support posts or protrusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a coating or a hardness or a material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • H01L31/182Special manufacturing methods for polycrystalline Si, e.g. Si ribbon, poly Si ingots, thin films of polycrystalline Si
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28194Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Robotics (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

[과제]기판 상에 성막된 박막에 출현하는 결정 구조를 조정할 수 있는 결정 구조 제어 방법 및 열처리 방법을 제공한다.
[해결 수단]기판(W)의 표면에는, 계면층막(101)을 사이에 끼고 하프니아막(102)이 성막되어 있다. 하프니아막(102)이 형성된 기판(W)을 예비 가열한 후, 당해 기판(W)의 표면에 조사 시간이 매우 짧고 강도가 강한 플래시광을 조사함으로써, 기판(W)의 표면만이 순간적으로 가열되어 급격하게 열팽창한다. 이 순간, 기판(W)의 표면에는 큰 압축 응력이 작용함과 더불어, 이면에는 인장 응력이 작용한다. 하프니아막(102)을 가열함과 동시에 당해 하프니아막(102)에 강한 압축 응력을 작용시킴으로써, 하프니아막(102)의 결정 구조 중에 존재하는 입방정 구조의 비율을 높게 하고, 하프니아막(102)에 출현하는 결정 구조를 조정할 수 있다.

Description

결정 구조 제어 방법 및 열처리 방법{CRYSTAL STRUCTURE CONTROL METHOD AND HEAT TREATMENT METHOD}
본 발명은, 반도체 웨이퍼 등의 박판형 정밀 전자 기판(이하, 단지 「기판」이라고 칭한다)의 표면에 형성된 박막의 결정 구조를 제어하는 결정 구조 제어 방법 및 열처리 방법에 관한 것이다.
전계 효과 트랜지스터(FET)의 게이트 절연막으로서, 종래 일반적이었던 이산화규소(SiO2)보다 비유전률이 높은 재료(고유전율 재료)를 이용한 고유전율막(High-k막)의 적용이 검토되고 있다(예를 들면, 특허 문헌 1). 고유전율막은, 게이트 절연막의 박막화의 진전에 따라 리크 전류가 증대하는 문제를 해결하기 위해, 게이트 전극에 금속을 이용한 메탈 게이트 전극과 함께 새로운 스택 구조로서 개발이 진행되고 있는 것이다.
일본국 특허공개 2011-77421호 공보
고유전율 재료로서는, 하프늄계의 재료가 유망시되고 있고, 하프니아(산화 하프늄:HfO2)는 유력 후보 중 하나이다. 하프니아의 결정 구조는, 상온 상압에서는 단사정 구조(Monoclinic 구조)이다. 고유전율 재료로서는, 비유전률이 높은 것이 바람직하고, 단사정 구조의 하프니아보다 입방정 구조(Cubic 구조)의 하프니아의 쪽이 비유전률이 높은 것이 알려져 있다. 이 때문에, 입방정 구조의 하프니아로 형성된 고유전율막의 개발이 강하게 요구되고 있다.
본 발명은, 상기 과제를 감안하여 이루어진 것이며, 기판 상에 성막된 박막에 출현하는 결정 구조를 조정할 수 있는 결정 구조 제어 방법 및 열처리 방법을 제공하는 것을 목적으로 한다.
상기 과제를 해결하기 위해, 청구항 1의 발명은, 기판의 표면에 형성된 박막의 결정 구조를 제어하는 결정 구조 제어 방법에 있어서, 기판의 표면에 박막을 성막하는 성막 공정과, 상기 기판의 표면에 플래시 램프로부터 플래시광을 조사하여 상기 박막을 가열함과 더불어 상기 박막에 압축 응력을 작용시키는 플래시 가열 공정을 구비하는 것을 특징으로 한다.
또, 청구항 2의 발명은, 청구항 1의 발명에 따른 결정 구조 제어 방법에 있어서, 상기 플래시 가열 공정에서는, 상기 플래시광의 조사 시간을 조정함으로써 상기 박막에 작용하는 압축 응력을 변화시키는 것을 특징으로 한다.
또, 청구항 3의 발명은, 청구항 1 또는 청구항 2의 발명에 따른 결정 구조 제어 방법에 있어서, 상기 플래시 가열 공정의 전에, 상기 기판을 소정의 예비 가열 온도로 가열하는 예비 가열 공정을 더 구비하는 것을 특징으로 한다.
또, 청구항 4의 발명은, 그 표면에 박막을 형성한 기판을 가열하여 당해 박막의 결정 구조를 제어하는 열처리 방법에 있어서, 상기 기판의 표면에 플래시 램프로부터 플래시광을 조사하여 상기 박막을 가열함과 더불어 상기 박막에 압축 응력을 작용시키는 것을 특징으로 한다.
청구항 1 내지 청구항 4의 발명에 의하면, 박막이 형성된 기판의 표면에 플래시 램프로부터 플래시광을 조사하여 당해 박막을 가열함과 더불어 당해 박막에 압축 응력을 작용시키기 때문에, 결정의 충전율이 높아지도록, 기판 상에 성막된 박막에 출현하는 결정 구조를 조정할 수 있다.
특히, 청구항 2의 발명에 의하면, 플래시광의 조사 시간을 조정함으로써 박막에 작용하는 압축 응력을 변화시키기 때문에, 기판 상에 성막된 박막에 출현하는 결정 구조를 적절히 조정할 수 있다.
도 1은, 본 발명에 따른 결정 구조 제어 방법에 사용하는 열처리 장치의 구성을 나타내는 종단면도이다.
도 2는, 유지부의 전체 외관을 나타내는 사시도이다.
도 3은, 서셉터의 평면도이다.
도 4는, 서셉터의 단면도이다.
도 5는, 이재 기구의 평면도이다.
도 6은, 이재 기구의 측면도이다.
도 7은, 복수의 할로겐 램프의 배치를 나타내는 평면도이다.
도 8은, 플래시 램프의 구동 회로를 나타내는 도면이다.
도 9는, 표면에 하프니아의 박막을 형성한 기판을 나타내는 도면이다.
도 10은 플래시광 조사시의 기판의 거동을 나타내는 도면이다.
도 11은, 플래시 가열 후의 하프니아막의 X선 회절 패턴을 나타내는 도면이다.
이하, 도면을 참조하면서 본 발명의 실시의 형태에 대해 상세하게 설명한다.
우선, 본 발명에 따른 결정 구조 제어 방법을 실시할 때에 필요로 되는 열처리를 실행하는 열처리 장치에 대해 설명한다. 도 1은, 본 발명에 따른 결정 구조 제어 방법에 사용하는 열처리 장치(1)의 구성을 나타내는 종단면도이다. 도 1의 열처리 장치(1)는, 원판형상의 기판(W)에 대해서 플래시광 조사를 행함으로써 그 기판(W)을 가열하는 플래시 램프 어닐링 장치이다. 처리 대상이 되는 기판(W)의 사이즈는 특별히 한정되는 것은 아니지만, 예를 들면 φ300㎜나 φ450㎜이다. 또한, 도 1 및 이후의 각 도면에 있어서는, 이해의 용이를 위해, 필요에 따라서 각부의 치수나 수를 과장 또는 간략화하여 그리고 있다.
열처리 장치(1)는, 기판(W)을 수용하는 챔버(6)와, 복수의 플래시 램프(FL)를 내장하는 플래시 가열부(5)와, 복수의 할로겐 램프(HL)를 내장하는 할로겐 가열부(4)를 구비한다. 챔버(6)의 상측에 플래시 가열부(5)가 설치됨과 더불어, 하측에 할로겐 가열부(4)가 설치되어 있다. 또, 열처리 장치(1)는, 챔버(6)의 내부에, 기판(W)을 수평 자세로 유지하는 유지부(7)와, 유지부(7)와 장치 외부의 사이에서 기판(W)의 수도(受渡)를 행하는 이재 기구(10)를 구비한다. 또한, 열처리 장치(1)는, 할로겐 가열부(4), 플래시 가열부(5) 및 챔버(6)에 설치된 각 동작 기구를 제어하여 기판(W)의 열처리를 실행시키는 제어부(3)를 구비한다.
챔버(6)는, 통형의 챔버 측부(61)의 상하에 석영제의 챔버창을 장착하여 구성되어 있다. 챔버 측부(61)는 상하가 개구된 개략 통형상을 갖고 있고, 상측 개구에는 상측 챔버창(63)이 장착되어 폐색되고, 하측 개구에는 하측 챔버창(64)이 장착되어 폐색되어 있다. 챔버(6)의 천정부를 구성하는 상측 챔버창(63)은, 석영에 의해 형성된 원판형상 부재이며, 플래시 가열부(5)로부터 출사된 플래시광을 챔버(6) 내에 투과하는 석영창으로서 기능한다. 또, 챔버(6)의 바닥부를 구성하는 하측 챔버창(64)도, 석영에 의해 형성된 원판형상 부재이며, 할로겐 가열부(4)로부터의 광을 챔버(6) 내에 투과하는 석영창으로서 기능한다.
또, 챔버 측부(61)의 내측의 벽면의 상부에는 반사 링(68)이 장착되고, 하부에는 반사 링(69)이 장착되어 있다. 반사 링(68, 69)은 모두 원환형으로 형성되어 있다. 상측의 반사 링(68)은, 챔버 측부(61)의 상측으로부터 끼워넣음으로써 장착된다. 한편, 하측의 반사 링(69)은, 챔버 측부(61)의 하측으로부터 끼워넣어 도시를 생략한 나사로 고정시킴으로써 장착된다. 즉, 반사 링(68, 69)은 모두 탈착 가능하게 챔버 측부(61)에 장착되는 것이다. 챔버(6)의 내측 공간, 즉 상측 챔버창(63), 하측 챔버창(64), 챔버 측부(61) 및 반사 링(68, 69)에 의해 둘러싸이는 공간이 열처리 공간(65)으로서 규정된다.
챔버 측부(61)에 반사 링(68, 69)이 장착됨으로써, 챔버(6)의 내벽면에 오목부(62)가 형성된다. 즉, 챔버 측부(61)의 내벽면 중 반사 링(68, 69)이 장착되어 있지 않은 중앙 부분과, 반사 링(68)의 하단면과, 반사 링(69)의 상단면으로 둘러싸인 오목부(62)가 형성된다. 오목부(62)는, 챔버(6)의 내벽면에 수평 방향을 따라서 원환형으로 형성되고, 기판(W)을 유지하는 유지부(7)를 위요한다. 챔버 측부(61) 및 반사 링(68, 69)은, 강도와 내열성이 뛰어난 금속재료(예를 들면, 스테인리스 스틸)로 형성되어 있다.
또, 챔버 측부(61)에는, 챔버(6)에 대해서 기판(W)의 반입 및 반출을 행하기 위한 반송 개구부(로구(爐口))(66)가 설치되어 있다. 반송 개구부(66)는, 게이트 밸브(185)에 의해 개폐 가능으로 되어 있다. 반송 개구부(66)는 오목부(62)의 외주면에 연통 접속되어 있다. 이 때문에, 게이트 밸브(185)가 반송 개구부(66)를 개방하고 있을 때에는, 반송 개구부(66)로부터 오목부(62)를 통과하여 열처리 공간(65)으로의 기판(W)의 반입 및 열처리 공간(65)으로부터의 기판(W)의 반출을 행할 수 있다. 또, 게이트 밸브(185)가 반송 개구부(66)를 폐쇄하면 챔버(6) 내의 열처리 공간(65)이 밀폐 공간이 된다.
또, 챔버(6)의 내벽 상부에는 열처리 공간(65)에 처리 가스를 공급하는 가스 공급 구멍(81)이 설치되어 있다. 가스 공급 구멍(81)은, 오목부(62)보다 상측 위치에 설치되어 있고, 반사 링(68)에 설치되고 있어도 된다. 가스 공급 구멍(81)은 챔버(6)의 측벽 내부에 원환형으로 형성된 완충 공간(82)을 통해 가스 공급관(83)에 연통 접속되어 있다. 가스 공급관(83)은 처리 가스 공급원(85)에 접속되어 있다. 또, 가스 공급관(83)의 경로 도중에는 밸브(84)가 삽입되어 있다. 밸브(84)가 개방되면, 처리 가스 공급원(85)으로부터 완충 공간(82)에 처리 가스가 송급된다. 완충 공간(82)에 유입된 처리 가스는, 가스 공급 구멍(81)보다 유체 저항이 작은 완충 공간(82) 내를 퍼지도록 흘러 가스 공급 구멍(81)으로부터 열처리 공간(65) 내로 공급된다. 처리 가스로서는, 예를 들면 질소(N2) 등의 불활성 가스, 또는, 수소(H2), 암모니아(NH3) 등의 반응성 가스, 혹은 그들을 혼합한 혼합 가스를 이용할 수 있다(본 실시 형태에서는 질소 가스).
한편, 챔버(6)의 내벽 하부에는 열처리 공간(65) 내의 기체를 배기하는 가스 배기 구멍(86)이 설치되어 있다. 가스 배기 구멍(86)은, 오목부(62)보다 하측 위치에 설치되어 있고, 반사 링(69)에 설치되고 있어도 된다. 가스 배기 구멍(86)은 챔버(6)의 측벽 내부에 원환형으로 형성된 완충 공간(87)을 통해 가스 배기관(88)에 연통 접속되어 있다. 가스 배기관(88)은 배기부(190)에 접속되어 있다. 또, 가스 배기관(88)의 경로 도중에는 밸브(89)가 삽입되어 있다. 밸브(89)가 개방되면, 열처리 공간(65)의 기체가 가스 배기 구멍(86)으로부터 완충 공간(87)을 거쳐 가스 배기관(88)으로 배출된다. 또한, 가스 공급 구멍(81) 및 가스 배기 구멍(86)은, 챔버(6)의 둘레 방향을 따라서 복수 설치되어 있어도 되고, 슬릿형의 것이어도 된다. 또, 처리 가스 공급원(85) 및 배기부(190)는, 열처리 장치(1)에 설치된 기구여도 되고, 열처리 장치(1)가 설치되는 공장의 유틸리티여도 된다.
또, 반송 개구부(66)의 선단에도 열처리 공간(65) 내의 기체를 배출하는 가스 배기관(191)이 접속되어 있다. 가스 배기관(191)은 밸브(192)를 통해 배기부(190)에 접속되어 있다. 밸브(192)를 개방함으로써, 반송 개구부(66)를 통해 챔버(6) 내의 기체가 배기된다.
도 2는, 유지부(7)의 전체 외관을 나타내는 사시도이다. 유지부(7)는, 기대 링(71), 연결부(72) 및 서셉터(74)를 구비하여 구성된다. 기대 링(71), 연결부(72) 및 서셉터(74)는 모두 석영으로 형성되어 있다. 즉, 유지부(7)의 전체가 석영으로 형성되어 있다.
기대 링(71)은 원환형상으로부터 일부가 결락한 원호형상의 석영 부재이다. 이 결락 부분은, 후술하는 이재 기구(10)의 이재 암(11)과 기대 링(71)의 간섭을 막기 위해 설치되어 있다. 기대 링(71)은 오목부(62)의 저면에 올려짐으로, 챔버(6)의 벽면에 지지되게 된다(도 1 참조). 기대 링(71)의 상면에, 그 원환형상의 둘레 방향을 따라서 복수의 연결부(72)(본 실시 형태에서는 4개)가 세워져 설치된다. 연결부(72)도 석영의 부재이며, 용접에 의해 기대 링(71)에 고착된다.
서셉터(74)는 기대 링(71)에 설치된 4개의 연결부(72)에 의해 지지된다. 도 3은, 서셉터(74)의 평면도이다. 또, 도 4는, 서셉터(74)의 단면도이다. 서셉터(74)는, 유지 플레이트(75), 가이드 링(76) 및 복수의 기판 지지 핀(77)을 구비한다. 유지 플레이트(75)는, 석영으로 형성된 대략 원형의 평판형 부재이다. 유지 플레이트(75)의 직경은 기판(W)의 직경보다 크다. 즉, 유지 플레이트(75)는, 기판(W)보다 큰 평면 사이즈를 갖는다.
유지 플레이트(75)의 상면 주연부에 가이드 링(76)이 설치되어 있다. 가이드 링(76)은, 기판(W)의 직경보다 큰 내경을 갖는 원환형상의 부재이다. 예를 들면, 기판(W)의 직경이 φ300㎜인 경우, 가이드 링(76)의 내경은 φ320㎜이다. 가이드 링(76)의 내주는, 유지 플레이트(75)로부터 상방을 향해 넓어지는 테이퍼면으로 되어 있다. 가이드 링(76)은, 유지 플레이트(75)와 같은 석영으로 형성된다. 가이드 링(76)은, 유지 플레이트(75)의 상면에 용착하도록 해도 되고, 별도 가공한 핀 등에 의해 유지 플레이트(75)에 고정하도록 해도 된다. 혹은, 유지 플레이트(75)와 가이드 링(76)을 일체의 부재로서 가공하도록 해도 된다.
유지 플레이트(75)의 상면 중 가이드 링(76)보다 내측의 영역이 기판(W)을 유지하는 평면형의 유지면(75a)이 된다. 유지 플레이트(75)의 유지면(75a)에는, 복수의 기판 지지 핀(77)이 세워져 설치되어 있다. 본 실시 형태에 있어서는, 유지면(75a)의 외주원(가이드 링(76)의 내주원)과 동심원인 둘레 상을 따라서 30°마다 12개의 기판 지지 핀(77)이 세워져 설치되어 있다. 12개의 기판 지지 핀(77)을 배치한 원의 지름(대향하는 기판 지지 핀(77)간의 거리)은 기판(W)의 지름보다 작고, 기판(W)의 지름이 φ300㎜이면 φ270㎜~φ280㎜(본 실시 형태에서는 φ270㎜)이다. 각각의 기판 지지 핀(77)은 석영으로 형성되어 있다. 복수의 기판 지지 핀(77)은, 유지 플레이트(75)의 상면에 용접에 의해 설치하도록 해도 되고, 유지 플레이트(75)와 일체로 가공하도록 해도 된다.
도 2로 돌아와, 기대 링(71)에 세워져 설치된 4개의 연결부(72)와 서셉터(74)의 유지 플레이트(75)의 주연부가 용접에 의해 고착된다. 즉, 서셉터(74)와 기대 링(71)은 연결부(72)에 의해 고정적으로 연결되어 있다. 이러한 유지부(7)의 기대 링(71)이 챔버(6)의 벽면에 지지됨으로써, 유지부(7)가 챔버(6)에 장착된다. 유지부(7)가 챔버(6)에 장착된 상태에 있어서는, 서셉터(74)의 유지 플레이트(75)는 수평 자세(법선이 연직 방향과 일치하는 자세)가 된다. 즉, 유지 플레이트(75)의 유지면(75a)은 수평면이 된다.
챔버(6)에 반입된 기판(W)은, 챔버(6)에 장착된 유지부(7)의 서셉터(74) 상에 수평 자세로 올려져 유지된다. 이때, 기판(W)은 유지 플레이트(75) 상에 세워져 설치된 12개의 기판 지지 핀(77)에 의해 지지되어 서셉터(74)에 유지된다. 보다 엄밀하게는, 12개의 기판 지지 핀(77)의 상단부가 기판(W)의 하면에 접촉하여 당해 기판(W)을 지지한다. 12개의 기판 지지 핀(77)의 높이(기판 지지 핀(77)의 상단부터 유지 플레이트(75)의 유지면(75a)까지의 거리)는 균일하기 때문에, 12개의 기판 지지 핀(77)에 의해 기판(W)을 수평 자세로 지지할 수 있다.
또, 기판(W)은 복수의 기판 지지 핀(77)에 의해 유지 플레이트(75)의 유지면(75a)으로부터 소정의 간격을 두고 지지되게 된다. 기판 지지 핀(77)의 높이보다 가이드 링(76)의 두께의 쪽이 크다. 따라서, 복수의 기판 지지 핀(77)에 의해 지지된 기판(W)의 수평 방향의 위치 편차는 가이드 링(76)에 의해 방지된다.
또, 도 2 및 도 3에 나타내는 바와 같이, 서셉터(74)의 유지 플레이트(75)에는, 상하를 관통하여 개구부(78)가 형성되어 있다. 개구부(78)는, 방사 온도계(120)(도 1 참조)가 서셉터(74)에 유지된 기판(W)의 하면으로부터 방사되는 방사광(적외광)을 수광하기 위해 설치되어 있다. 즉, 방사 온도계(120)가 개구부(78)를 통해 서셉터(74)에 유지된 기판(W)의 하면으로부터 방사된 광을 수광하고, 별도 설치된 디텍터에 의해 그 기판(W)의 온도가 측정된다. 또한, 서셉터(74)의 유지 플레이트(75)에는, 후술하는 이재 기구(10)의 리프트 핀(12)이 기판(W)의 수도를 위해 관통하는 4개의 관통 구멍(79)이 뚫어 설치되어 있다.
도 5는, 이재 기구(10)의 평면도이다. 또, 도 6은, 이재 기구(10)의 측면도이다. 이재 기구(10)는, 2개의 이재 암(11)을 구비한다. 이재 암(11)은, 대체로 원환형의 오목부(62)를 따르는 원호형상으로 되어 있다. 각각의 이재 암(11)에는 2개의 리프트 핀(12)이 세워져 설치되어 있다. 각 이재 암(11)은 수평 이동 기구(13)에 의해 회동 가능하게 되어 있다. 수평 이동 기구(13)는, 한 쌍의 이재 암(11)을 유지부(7)에 대해서 기판(W)의 이재를 행하는 이재 동작 위치(도 5의 실선 위치)와 유지부(7)에 유지된 기판(W)과 평면에서 볼때 겹치지 않는 퇴피 위치(도 5의 2점 쇄선 위치)의 사이에서 수평 이동시킨다. 수평 이동 기구(13)로서는, 개별의 모터에 의해 각 이재 암(11)을 각각 회동시키는 것이어도 되고, 링크 기구를 이용하여 1개의 모터에 의해 한 쌍의 이재 암(11)을 연동시켜 회동시키는 것이어도 된다.
또, 한 쌍의 이재 암(11)은, 승강 기구(14)에 의해 수평 이동 기구(13)와 함께 승강 이동된다. 승강 기구(14)가 한 쌍의 이재 암(11)을 이재 동작 위치에서 상승시키면, 합계 4개의 리프트 핀(12)이 서셉터(74)에 뚫어 설치된 관통 구멍(79)(도 2, 3 참조)을 통과하고, 리프트 핀(12)의 상단이 서셉터(74)의 상면으로부터 돌출된다. 한편, 승강 기구(14)가 한 쌍의 이재 암(11)을 이재 동작 위치에서 하강시켜 리프트 핀(12)을 관통 구멍(79)으로부터 빼내고, 수평 이동 기구(13)가 한 쌍의 이재 암(11)을 열도록 이동시키면 각 이재 암(11)이 퇴피 위치로 이동한다. 한 쌍의 이재 암(11)의 퇴피 위치는, 유지부(7)의 기대 링(71)의 바로 위이다. 기대 링(71)은 오목부(62)의 저면에 올려져 있기 때문에, 이재 암(11)의 퇴피 위치는 오목부(62)의 내측이 된다. 또한, 이재 기구(10)의 구동부(수평 이동 기구(13) 및 승강 기구(14))가 설치되어 있는 부위의 근방에도 도시를 생략한 배기 기구가 설치되어 있고, 이재 기구(10)의 구동부 주변의 분위기가 챔버(6)의 외부에 배출되도록 구성되어 있다.
도 1로 돌아와, 챔버(6)의 상방에 설치된 플래시 가열부(5)는, 케이스(51)의 내측에, 복수 개(본 실시 형태에서는 30개)의 크세논 플래시 램프(FL)로 이루어지는 광원과, 그 광원의 상방을 덮도록 설치된 리플렉터(52)를 구비하여 구성된다. 또, 플래시 가열부(5)의 케이스(51)의 저부에는 램프광 방사창(53)이 장착되어 있다. 플래시 가열부(5)의 바닥부를 구성하는 램프광 방사창(53)은, 석영에 의해 형성된 판형의 석영창이다. 플래시 가열부(5)가 챔버(6)의 상방에 설치됨으로써, 램프광 방사창(53)이 상측 챔버창(63)과 상대향하게 된다. 플래시 램프(FL)는 챔버(6)의 상방으로부터 램프광 방사창(53) 및 상측 챔버창(63)을 통해 열처리 공간(65)에 플래시광을 조사한다.
복수의 플래시 램프(FL)는, 각각이 장척의 원통형상을 갖는 봉형 램프이며, 각각의 길이 방향이 유지부(7)에 유지되는 기판(W)의 주면을 따라서(즉 수평 방향을 따라서) 서로 평행이 되도록 평면형으로 배열되어 있다. 따라서, 플래시 램프(FL)의 배열에 의해 형성되는 평면도 수평면이다.
도 8은, 플래시 램프(FL)의 구동 회로를 나타내는 도면이다. 이 도면에 나타내는 바와 같이, 콘덴서(93)와, 코일(94)과, 플래시 램프(FL)와, IGBT(절연 게이트 바이폴러 트랜지스터)(96)가 직렬로 접속되어 있다. 또, 도 8에 나타내는 바와 같이, 제어부(3)는, 펄스 발생기(31) 및 파형 설정부(32)를 구비함과 더불어, 입력부(33)에 접속되어 있다. 입력부(33)로서는, 키보드, 마우스, 터치 패널 등의 여러 가지의 공지의 입력 기기를 채용할 수 있다. 입력부(33)로부터의 입력 내용에 의거하여 파형 설정부(32)가 펄스 신호의 파형을 설정하고, 그 파형에 따라서 펄스 발생기(31)가 펄스 신호를 발생한다.
플래시 램프(FL)는, 그 내부에 크세논 가스가 봉입되고, 그 양단부에 양극 및 음극이 설치된 봉형의 유리관(방전관)(92)과, 상기 유리관(92)의 외주면 상에 부설된 트리거 전극(91)을 구비한다. 콘덴서(93)에는, 전원 유닛(95)에 의해 소정의 전압이 인가되고, 그 인가 전압(충전 전압)에 따른 전하가 충전된다. 또, 트리거 전극(91)에는 트리거 회로(97)로부터 고전압을 인가할 수 있다. 트리거 회로(97)가 트리거 전극(91)에 전압을 인가하는 타이밍은 제어부(3)에 의해 제어된다.
IGBT(96)는, 게이트부에 MOSFET(Metal Oxide Semiconductor Field effect transistor)를 설치한 바이폴러 트랜지스터이며, 대전력을 취급하는데 적합한 스위칭 소자이다. IGBT(96)의 게이트에는 제어부(3)의 펄스 발생기(31)로부터 펄스 신호가 인가된다. IGBT(96)의 게이트에 소정치 이상의 전압(High의 전압)이 인가되면 IGBT(96)가 온 상태가 되고, 소정치 미만의 전압(Low의 전압)이 인가되면 IGBT(96)가 오프 상태가 된다. 이와 같이 하여, 플래시 램프(FL)를 포함하는 구동 회로는 IGBT(96)에 의해 온 오프된다. IGBT(96)가 온 오프함으로써 플래시 램프(FL)와 대응하는 콘덴서(93)와의 접속이 단속되고, 플래시 램프(FL)에 흐르는 전류가 온 오프 제어된다.
콘덴서(93)가 충전된 상태로 IGBT(96)가 온 상태가 되어 유리관(92)의 양단 전극에 고전압이 인가되었다고 해도, 크세논 가스는 전기적으로는 절연체이므로, 통상의 상태에서는 유리관(92) 내에 전기는 흐르지 않는다. 그러나, 트리거 회로(97)가 트리거 전극(91)에 고전압을 인가하여 절연을 파괴한 경우에는 양단 전극간의 방전에 의해 유리관(92) 내에 전류가 순식간에 흐르고, 그때의 크세논의 원자 혹은 분자의 여기에 의해 광이 방출된다.
도 8에 나타내는 구동 회로는, 플래시 가열부(5)에 설치된 복수의 플래시 램프(FL)의 각각에 개별적으로 설치되어 있다. 본 실시 형태에서는, 30개의 플래시 램프(FL)가 평면형으로 배열되어 있기 때문에, 그들에 대응하여 도 8에 나타내는 바와 같이 구동 회로가 30개 설치되어 있다. 따라서, 30개의 플래시 램프(FL)의 각각에 흐르는 전류가 대응하는 IGBT(96)에 의해 개별적으로 온 오프 제어되게 된다.
또, 리플렉터(52)는, 복수의 플래시 램프(FL)의 상방에 그들 전체를 덮도록 설치되어 있다. 리플렉터(52)의 기본적인 기능은, 복수의 플래시 램프(FL)로부터 출사된 플래시광을 열처리 공간(65)의 측에 반사한다는 것이다. 리플렉터(52)는 알루미늄 합금판으로 형성되어 있고, 그 표면(플래시 램프(FL)에 면하는 측의 면)은 블러스트 처리에 의해 조면화 가공이 실시되어 있다.
챔버(6)의 하방에 설치된 할로겐 가열부(4)는, 케이스(41)의 내측에 복수개(본 실시 형태에서는 40개)의 할로겐 램프(HL)를 내장하고 있다. 할로겐 가열부(4)는, 복수의 할로겐 램프(HL)에 의해 챔버(6)의 하방으로부터 하측 챔버창(64)을 통해 열처리 공간(65)에의 광조사를 행하여 기판(W)을 가열하는 광조사부이다.
도 7은, 복수의 할로겐 램프(HL)의 배치를 나타내는 평면도이다. 40개의 할로겐 램프(HL)는 상하 2단으로 나누어 배치되어 있다. 유지부(7)에 가까운 상단에 20개의 할로겐 램프(HL)가 설치됨과 더불어, 상단보다 유지부(7)로부터 먼 하단에도 20개의 할로겐 램프(HL)가 설치되어 있다. 각 할로겐 램프(HL)는, 장척의 원통형상을 갖는 봉형 램프이다. 상단, 하단과 함께 20개의 할로겐 램프(HL)는, 각각의 길이 방향이 유지부(7)에 유지되는 기판(W)의 주면을 따라(즉 수평 방향을 따라) 서로 평행이 되도록 배열되어 있다. 따라서, 상단, 하단과 함께 할로겐 램프(HL)의 배열에 의해 형성되는 평면은 수평면이다.
또, 도 7에 나타내는 바와 같이, 상단, 하단과 함께 유지부(7)에 유지되는 기판(W)의 중앙부에 대향하는 영역보다 주연부에 대향하는 영역에 있어서의 할로겐 램프(HL)의 설치 밀도가 높게 되어 있다. 즉, 상하단과 함께, 램프 배열의 중앙부보다 주연부의 쪽이 할로겐 램프(HL)의 설치 피치가 짧다. 이 때문에, 할로겐 가열부(4)로부터의 광조사에 의한 가열시에 온도 저하가 발생하기 쉬운 기판(W)의 주연부에 의해 많은 광량의 조사를 행할 수 있다.
또, 상단의 할로겐 램프(HL)로 이루어지는 램프군과 하단의 할로겐 램프(HL)로 이루어지는 램프군이 격자형으로 교차하도록 배열되어 있다. 즉, 상단에 배치된 20개의 할로겐 램프(HL)의 길이 방향과 하단에 배치된 20개의 할로겐 램프(HL)의 길이 방향이 서로 직교하도록 합계 40개의 할로겐 램프(HL)가 설치되어 있다.
할로겐 램프(HL)는, 유리관 내부에 설치된 필라멘트에 통전함으로써 필라멘트를 백열화시켜 발광시키는 필라멘트 방식의 광원이다. 유리관의 내부에는, 질소나 아르곤 등의 불활성 가스에 할로겐 원소(옥소, 취소 등)를 미량 도입한 기체가 봉입되어 있다. 할로겐 원소를 도입함으로써, 필라멘트의 파손을 억제하면서 필라멘트의 온도를 고온으로 설정하는 것이 가능해진다. 따라서, 할로겐 램프(HL)는, 통상의 백열전구에 비해 수명이 길고 또한 강한 광을 연속적으로 조사할 수 있다는 특성을 갖는다. 즉, 할로겐 램프(HL)는 적어도 1초 이상 연속해서 발광하는 연속 점등 램프이다. 또, 할로겐 램프(HL)는 봉형 램프이기 때문에 수명이 길고, 할로겐 램프(HL)를 수평 방향을 따라 배치함으로써 상방의 기판(W)에의 방사 효율이 뛰어난 것이 된다.
또, 할로겐 가열부(4)의 케이스(41) 내에도, 2단의 할로겐 램프(HL)의 하측에 리플렉터(43)가 설치되어 있다(도 1). 리플렉터(43)는, 복수의 할로겐 램프(HL)로부터 출사된 광을 열처리 공간(65)의 측에 반사한다.
제어부(3)는, 열처리 장치(1)에 설치된 상기의 여러 가지의 동작 기구를 제어한다. 제어부(3)의 하드웨어로서의 구성은 일반적인 컴퓨터와 같다. 즉, 제어부(3)는, 각종 연산 처리를 행하는 회로인 CPU, 기본 프로그램을 기억하는 독출 전용의 메모리인 ROM, 각종 정보를 기억하는 읽고 쓰기 가능한 메모리인 RAM 및 제어용 소프트웨어나 데이터 등을 기억해 두는 자기 디스크를 구비하고 있다. 제어부(3)의 CPU가 소정의 처리 프로그램을 실행함으로써 열처리 장치(1)에 있어서의 처리가 진행한다. 또, 도 8에 나타낸 바와 같이, 제어부(3)는, 펄스 발생기(31) 및 파형 설정부(32)를 구비한다. 상술과 같이, 입력부(33)로부터의 입력 내용에 의거하여, 파형 설정부(32)가 펄스 신호의 파형을 설정하고, 그에 따라 펄스 발생기(31)가 IGBT(96)의 게이트에 펄스 신호를 출력한다.
상기의 구성 이외에도 열처리 장치(1)는, 기판(W)의 열처리시에 할로겐 램프(HL) 및 플래시 램프(FL)로부터 발생하는 열에너지에 의한 할로겐 가열부(4), 플래시 가열부(5) 및 챔버(6)의 과잉의 온도 상승을 방지하기 위해, 여러가지 냉각용 구조를 구비하고 있다. 예를 들면, 챔버(6)의 벽체에는 수랭관(도시 생략)이 설치되어 있다. 또, 할로겐 가열부(4) 및 플래시 가열부(5)는, 내부에 기체류를 형성하여 배열하는 공냉 구조로 되어 있다. 또, 상측 챔버창(63)과 램프광 방사창(53)의 간극에도 공기가 공급되고, 플래시 가열부(5) 및 상측 챔버창(63)을 냉각한다.
다음에, 본 발명에 따른 결정 구조 제어 방법에 대해 설명한다. 우선, 기판(W)의 표면에 하프니아(HfO2)의 박막을 성막한다. 도 9는, 표면에 하프니아의 박막을 형성한 기판(W)을 나타내는 도면이다. 기판(W)은, 예를 들면 원판형상의 실리콘의 반도체 웨이퍼이다. 그 기판(W)의 표면에 하프니아의 박막의 하지가 되는 이산화 규소(SiO2)의 계면층막(101)을 열산화법 등의 수법에 의해 성막한다. 계면층막(101)의 막두께는, 예를 들면 0.8㎚이다.
계면층막(101) 상에 하프니아의 박막(102)(이하, 하프니아막(102)으로 한다)을 성막한다. 하프니아막(102)은, 예를 들면 ALD(Atomic Layer Deposition)법에 의해 고유전율 재료인 하프니아를 계면층막(101) 상에 퇴적시킴으로써 성막된다. 계면층막(101) 상에 퇴적되는 하프니아막(102)의 막두께는, 예를 들면 3㎚이다. 하프니아막(102)의 형성 수법은 ALD로 한정되는 것은 아니며, 예를 들면 MOCVD(Metal Organic Chemical Vapor Deposition) 등의 공지의 수법을 채용할 수 있다.
성막된 직후의 하프니아막(102)은, 특정의 결정 구조를 갖고 있지 않고, 비정질에 가까운 상태이다. 전계 효과 트랜지스터의 고유전율 게이트 절연막으로서 하프니아의 박막이 형성된 경우에는, 전형적으로는 성막 후 열처리(PDA:Post Deposition Annealing)를 함으로써 하프니아의 박막이 결정 구조를 갖게 된다.
본 실시 형태에 있어서는, 표면에 하프니아막(102)이 형성된 기판(W)에 대해서 열처리 장치(1)를 이용하여 플래시광을 조사하여 플래시 가열을 행하고 있다. 이하, 열처리 장치(1)에 의한 기판(W)의 처리에 대해 설명한다. 이하에 설명하는 열처리 장치(1)의 처리 순서는, 제어부(3)가 열처리 장치(1)의 각 동작 기구를 제어함으로써 진행한다.
우선, 게이트 밸브(185)가 열리고 반송 개구부(66)가 개방되고, 장치 외부의 반송 로봇에 의해 반송 개구부(66)를 통해 하프니아막(102)이 형성된 기판(W)이 챔버(6) 내의 열처리 공간(65)에 반입된다. 이때에, 챔버(6) 내에 질소 가스를 계속 공급함으로써 반송 개구부(66)로부터 질소 가스류를 유출시키고, 장치 외부의 분위기가 챔버(6) 내에 유입하는 것을 최소한으로 억제하도록 해도 된다. 반송 로봇에 의해 반입된 기판(W)은 유지부(7)의 직상 위치까지 진출하여 정지한다. 그리고, 이재 기구(10)의 한 쌍의 이재 암(11)이 퇴피 위치로부터 이재 동작 위치로 수평 이동하여 상승함으로써, 리프트 핀(12)이 관통 구멍(79)을 통과하여 서셉터(74)의 유지 플레이트(75)의 상면으로부터 돌출하여 기판(W)을 수취한다. 이때, 리프트 핀(12)은 기판 지지 핀(77)의 상단보다 상방에까지 상승한다.
기판(W)이 리프트 핀(12)에 올려진 후, 반송 로봇이 열처리 공간(65)으로부터 퇴출하고, 게이트 밸브(185)에 의해 반송 개구부(66)가 폐쇄된다. 그리고, 한 쌍의 이재 암(11)이 하강함으로써, 기판(W)은 이재 기구(10)로부터 유지부(7)의 서셉터(74)에 수도되어 수평 자세로 하방으로부터 유지된다. 기판(W)은, 유지 플레이트(75) 상에 세워져 설치된 복수의 기판 지지 핀(77)에 의해 지지되어 서셉터(74)에 유지된다. 또, 기판(W)은, 하프니아막(102)이 형성된 표면을 상면으로 하여 유지부(7)에 유지된다. 복수의 기판 지지 핀(77)에 의해 지지된 기판(W)의 이면(표면과는 반대측의 주면)과 유지 플레이트(75)의 유지면(75a)의 사이에는 소정의 간격이 형성된다. 서셉터(74)의 하방에까지 하강한 한 쌍의 이재 암(11)은 수평 이동 기구(13)에 의해 퇴피 위치, 즉 오목부(62)의 내측으로 퇴피한다.
또, 게이트 밸브(185)에 의해 반송 개구부(66)가 폐쇄되어 열처리 공간(65)이 밀폐 공간이 된 후, 챔버(6) 내의 분위기 조정이 행해진다. 구체적으로는 밸브(84)가 개방되어 가스 공급 구멍(81)으로부터 열처리 공간(65)에 처리 가스가 공급된다. 본 실시 형태에서는, 처리 가스로서 질소 가스(N2)가 챔버(6) 내의 열처리 공간(65)에 공급된다. 또, 밸브(89)가 개방되어 가스 배기 구멍(86)으로부터 챔버(6) 내의 기체가 배기된다. 이로 인해, 챔버(6) 내의 열처리 공간(65)의 상부로부터 공급된 처리 가스가 하방으로 흘러 열처리 공간(65)의 하부로부터 배기되고, 열처리 공간(65)이 질소 분위기로 치환된다. 또, 밸브(192)가 개방됨으로써, 반송 개구부(66)로부터도 챔버(6) 내의 기체가 배기된다. 또한, 도시가 생략된 배기 기구에 의해 이재 기구(10)의 구동부 주변의 분위기도 배기된다.
챔버(6) 내가 질소 분위기로 치환되고, 기판(W)이 유지부(7)의 서셉터(74)에 의해 수평 자세로 하방으로부터 유지된 후, 할로겐 가열부(4)의 40개의 할로겐 램프(HL)가 일제히 점등되어 기판(W)의 예비 가열(어시스트 가열)이 개시된다. 할로겐 램프(HL)로부터 출사된 할로겐광은, 석영으로 형성된 하측 챔버창(64) 및 서셉터(74)를 투과하여 기판(W)의 이면으로부터 조사된다. 할로겐 램프(HL)로부터의 광조사를 받음으로써 기판(W)이 예비 가열되어 온도가 상승한다. 또한, 이재 기구(10)의 이재 암(11)은 오목부(62)의 내측으로 퇴피되어 있기 때문에, 할로겐 램프(HL)에 의한 가열의 장해가 되지 않는다.
할로겐 램프(HL)에 의한 예비 가열을 행할 때는, 기판(W)의 온도가 방사 온도계(120)에 의해 측정되고 있다. 즉, 서셉터(74)에 유지된 기판(W)의 이면으로부터 개구부(78)를 통해 방사된 적외광을 방사 온도계(120)가 수광하여 승온 중의 기판 온도를 측정한다. 측정된 기판(W)의 온도는 제어부(3)에 전달된다. 제어부(3)는, 할로겐 램프(HL)로부터의 광조사에 의해 승온하는 기판(W)의 온도가 소정의 예비 가열 온도(T1)에 도달했는지의 여부를 감시하면서, 할로겐 램프(HL)의 출력을 제어한다. 즉, 제어부(3)는, 방사 온도계(120)에 의한 측정치에 의거하여, 기판(W)의 온도가 예비 가열 온도(T1)가 되도록 할로겐 램프(HL)의 출력을 피드백 제어한다. 본 실시 형태에서는, 예비 가열 온도(T1)는 500℃로 하고 있다.
기판(W)의 온도가 예비 가열 온도(T1)에 도달한 후, 제어부(3)는 기판(W)을 그 예비 가열 온도(T1)로 잠시 유지한다. 구체적으로는, 방사 온도계(120)에 의해 측정되는 기판(W)의 온도가 예비 가열 온도(T1)에 도달한 시점에서 제어부(3)가 할로겐 램프(HL)의 출력을 조정하고, 기판(W)의 온도를 거의 예비 가열 온도(T1)로 유지하고 있다.
이러한 할로겐 램프(HL)에 의한 예비 가열을 행함으로써, 기판(W)의 전체를 예비 가열 온도(T1)로 균일하게 승온하고 있다. 할로겐 램프(HL)에 의한 예비 가열의 단계에 있어서는, 보다 방열이 발생하기 쉬운 기판(W)의 주연부의 온도가 중앙부보다 저하하는 경향이 있지만, 할로겐 가열부(4)에 있어서의 할로겐 램프(HL)의 설치 밀도는, 기판(W)의 중앙부에 대향하는 영역보다 주연부에 대향하는 영역의 쪽이 높게 되어 있다. 이 때문에, 방열이 발생하기 쉬운 기판(W)의 주연부에 조사되는 광량이 많아지고, 예비 가열 단계에 있어서의 기판(W)의 면내 온도 분포를 균일한 것으로 할 수 있다.
기판(W)의 온도가 예비 가열 온도(T1)에 도달하여 소정 시간이 경과한 시점에서 플래시 가열부(5)의 플래시 램프(FL)로부터 기판(W)의 표면에 플래시광 조사를 행한다. 플래시 램프(FL)가 플래시광 조사를 행할 때에는, 미리 전원 유닛(95)에 의해 콘덴서(93)에 전하를 축적해 둔다. 그리고, 콘덴서(93)에 전하가 축적된 상태에서, 제어부(3)의 펄스 발생기(31)로부터 IGBT(96)에 펄스 신호를 출력하여 IGBT(96)를 온 오프 구동한다.
펄스 신호의 파형은, 펄스폭의 시간(온 시간)과 펄스 간격의 시간(오프 시간)을 파라미터로 하여 순차적으로 설정한 레시피를 입력부(33)로부터 입력함으로써 규정할 수 있다. 이러한 레시피를 오퍼레이터가 입력부(33)로부터 제어부(3)에 입력하면, 그에 따라 제어부(3)의 파형 설정부(32)는 온 오프를 반복하는 펄스 파형을 설정한다. 그리고, 파형 설정부(32)에 의해 설정된 펄스 파형을 따라 펄스 발생기(31)가 펄스 신호를 출력한다. 그 결과, IGBT(96)의 게이트에는 설정된 파형의 펄스 신호가 인가되고, IGBT(96)의 온 오프 구동이 제어되게 된다. 구체적으로는, IGBT(96)의 게이트에 입력되는 펄스 신호가 온일 때에는 IGBT(96)가 온 상태가 되고, 펄스 신호가 오프일 때에는 IGBT(96)가 오프 상태가 된다.
또, 펄스 발생기(31)로부터 출력하는 펄스 신호가 온이 되는 타이밍과 동기 하여 제어부(3)가 트리거 회로(97)를 제어하여 트리거 전극(91)에 고전압(트리거 전압)을 인가한다. 콘덴서(93)에 전하가 축적된 상태에서 IGBT(96)의 게이트에 펄스 신호가 입력되고, 또한, 그 펄스 신호가 온이 되는 타이밍과 동기하여 트리거 전극(91)에 고전압이 인가됨으로써, 펄스 신호가 온일 때에는 유리관(92) 내의 양단 전극간에서 반드시 전류가 흐르고, 그때의 크세논의 원자 혹은 분자의 여기에 의해 광이 방출된다.
이와 같이 하여 플래시 가열부(5)의 30개의 플래시 램프(FL)가 발광하고, 유지부(7)에 유지된 기판(W)의 표면에 플래시광이 조사된다. 여기서, IGBT(96)를 사용하지 않고 플래시 램프(FL)를 발광시킨 경우에는, 콘덴서(93)에 축적되어 있던 전하가 1회의 발광으로 소비되고, 플래시 램프(FL)로부터의 출력 파형은 폭이 0.1밀리초 내지 10밀리초 정도의 단순한 싱글 펄스가 된다. 이에 대해서, 본 실시의 형태에서는, 회로 중에 스위칭 소자인 IGBT(96)를 접속하여 그 게이트에 펄스 신호를 출력함으로써, 콘덴서(93)로부터 플래시 램프(FL)에의 전하의 공급을 IGBT(96)에 의해 단속하여 플래시 램프(FL)에 흐르는 전류를 온 오프 제어하고 있다. 그 결과, 이른바 플래시 램프(FL)의 발광이 초퍼 제어되게 되고, 콘덴서(93)에 축적된 전하가 분할하여 소비되고, 매우 짧은 시간 동안 플래시 램프(FL)가 점멸을 반복한다. 또한, 회로를 흐르는 전류값이 완전히 "0"이 되기 전에 다음의 펄스가 IGBT(96)의 게이트에 인가되어 전류값이 재차 증가하기 때문에, 플래시 램프(FL)가 점멸을 반복하고 있는 동안도 발광 출력이 완전히 "0"이 되는 것은 아니다.
IGBT(96)에 의해 플래시 램프(FL)에 흐르는 전류를 온 오프 제어함으로써, 플래시 램프(FL)의 발광 패턴(발광 출력의 시간 파형)을 자유롭게 규정할 수 있고, 발광 시간 및 발광 강도를 자유롭게 조정할 수 있다. IGBT(96)의 온 오프 구동의 패턴은, 입력부(33)로부터 입력하는 펄스폭의 시간과 펄스 간격의 시간에 의해 규정된다. 즉, 플래시 램프(FL)의 구동 회로에 IGBT(96)를 설치함으로써, 입력부(33)로부터 입력하는 펄스폭의 시간과 펄스 간격의 시간을 적절히 설정하는 것만으로, 플래시 램프(FL)의 발광 패턴을 자유롭게 규정할 수 있는 것이다.
구체적으로는, 예를 들면, 입력부(33)로부터 입력하는 펄스 간격의 시간에 대한 펄스폭의 시간의 비율을 크게 하면, 플래시 램프(FL)에 흐르는 전류가 증대하여 발광 강도가 강해진다. 반대로, 입력부(33)로부터 입력하는 펄스 간격의 시간에 대한 펄스폭의 시간의 비율을 작게 하면, 플래시 램프(FL)에 흐르는 전류가 감소하여 발광 강도가 약해진다. 또, 입력부(33)로부터 입력하는 펄스 간격의 시간과 펄스폭의 시간의 비율을 적절히 조정하면, 플래시 램프(FL)의 발광 강도가 일정하게 유지된다. 또한, 입력부(33)로부터 입력하는 펄스폭의 시간과 펄스 간격의 시간의 조합의 총시간을 길게 함으로써, 플래시 램프(FL)에 비교적 장시간에 걸쳐 전류가 계속 흐르게 되고, 플래시 램프(FL)의 발광 시간이 길어진다. 플래시 램프(FL)의 발광 시간은 0.1밀리초~100밀리초의 사이로 설정되고, 본 실시 형태에 있어서는 1.4밀리초가 된다.
이와 같이 하여 플래시 램프(FL)로부터 기판(W)의 표면에 1.4밀리초의 조사 시간으로 플래시광이 조사되어 기판(W)의 플래시 가열이 행해진다. 조사 시간 1.4밀리초의 매우 짧고 강도가 강한 플래시광이 조사됨으로써 하프니아막(102)을 포함하는 기판(W)의 표면이 순간적으로 처리 온도(T2)에까지 승온한다. 플래시광 조사에 의해 기판(W)의 표면이 도달하는 최고 온도(피크 온도)인 처리 온도(T2)는 900℃ 이상이며, 본 실시 형태에서는 1100℃이다. 플래시 가열에서는, 플래시광의 조사 시간이 100밀리초 이하의 매우 단시간이기 때문에, 기판(W)의 표면 온도는 순간적으로 처리 온도(T2)로까지 승온한 후, 바로 예비 가열 온도(T1) 근방으로까지 강온한다.
도 10은, 플래시광 조사시의 기판(W)의 거동을 나타내는 도면이다. 조사 시간이 매우 짧고 강도가 강한 플래시광이 조사됨으로써, 하프니아막(102)을 포함하는 기판(W)의 표면은 순간적으로 처리 온도(T2)(1100℃)로까지 승온되는 한편으로 기판(W)의 이면은 예비 가열 온도(T1)(500℃)로부터 거의 승온하지 않는다. 즉, 순간적으로 기판(W)의 표면으로부터 이면을 향해 급격한 온도 구배가 발생한다. 그 결과, 기판(W)의 표면에만 급격한 열팽창이 발생하고, 이면은 거의 열팽창하지 않기 때문에, 도 10에 나타내는 바와 같이, 기판(W)이 표면을 볼록면으로 하도록 순간적으로 젖혀진다. 이 순간, 본 실시 형태의 플래시광 조사의 조건에서는 기판(W)의 표면에는 최대 570MPa의 압축 응력이 작용함과 더불어, 기판(W)의 이면에는 최대 140MPa의 인장 응력이 작용한다.
그러면, 기판(W)의 표면에 형성된 하프니아막(102)은 플래시광 조사에 의해 처리 온도(T2)로 가열되면서 최대 570MPa의 압축 응력을 받게 된다. 처리 온도(T2)로 가열된 하프니아막(102)에 압축 응력이 작용하면, 하프니아막(102)이 결정 구조를 갖게 된다.
여기서, 종래의 성막 후 열처리(PDA)와 같이 하프니아막(102)을 RTA(Rapid Thermal Annealing)에 의해 가열해도 하프니아막(102)은 결정 구조를 갖는다. RTA는, 할로겐 램프 등의 연속 점등 램프로부터의 광조사에 의해 초단위의 승온 시간으로 가열 대상물을 목표 온도로까지 승온하는 열처리 기술이다. RTA도 일반적으로는 급속 가열을 행하는 열처리 기술이지만, 밀리초 단위로 가열 대상물을 목표 온도로까지 승온하는 플래시 램프 어닐링(FLA:Flash Lamp Annealing)과 비교하면 그 승온 속도는 매우 느리다. 이 때문에, RTA에 의해 하프니아막(102)을 가열한 경우에는, 상술한 플래시광 조사시와 같은 압축 응력은 발생하지 않고, 단지 하프니아막(102)이 가열될 뿐이다.
도 11은, 플래시 가열 후의 하프니아막(102)의 X선 회절 패턴을 나타내는 도이다. 이 도면에는 비교예로서 RTA에 의해 가열한 하프니아막(102)의 X선 회절 패턴을 점선으로 나타내고 있다. 또, 도 11에 있어서, "c"라고 부여한 것은 입방정 구조(Cubic 구조)의 피크이며, "m"이라고 부여한 것은 단사정 구조(Monoclinic 구조)의 피크이다.
플래시광 조사에 의해 가열한 하프니아막(102)도 RTA에 의해 가열한 하프니아막(102)도 입방정 구조와 단사정 구조가 혼재한 결정 구조를 갖는다. 그런데, 도 11에 나타내는 바와 같이, RTA에 의해 가열한 하프니아막(102)에는 단사정 구조의 강한 피크가 나타나 있는데 반해, 플래시광 조사에 의해 가열한 하프니아막(102)에는 입방정 구조의 강한 피크가 출현하고 있다. 이것은, 플래시광 조사에 의해 가열한 하프니아막(102)은, RTA에 의해 가열한 하프니아막(102)과 비교하여, 결정 구조 중에 존재하는 입방정 구조의 비율이 높아져 있는 것을 나타내고 있다.
이와 같이 결정 구조 중에 존재하는 입방정 구조의 비율이 높아진 것은, RTA에서는 단지 하프니아막(102)을 가열할 뿐인데 반해, 플래시광 조사를 행하면 하프니아막(102)을 가열함과 동시에 당해 하프니아막(102)에 강한 압축 응력을 작용시키고 있는 것에 의한 것으로 생각된다. 즉, 플래시광 조사에 의해 하프니아막(102)을 가열함과 동시에 당해 하프니아막(102)에 강한 압축 응력을 작용시킴으로써, 하프니아막(102)의 케미컬 포텐셜이 변화하고, RTA로 가열한 경우와 비교하여, 보다 충전율이 높은 입방정 구조의 비율이 높아진 것이다. 전계 효과 트랜지스터의 고유전율 게이트 절연막으로서 하프니아막(102)을 사용하는 경우에는, 입방정 구조의 비율이 높은 쪽이 바람직하다.
플래시 가열 처리가 종료한 후, 소정 시간 경과 후에 할로겐 램프(HL)가 소등한다. 이로 인해, 기판(W)이 예비 가열 온도(T1)로부터 급속히 강온한다. 강온 중의 기판(W)의 온도는 방사 온도계(120)에 의해 측정되고, 그 측정 결과는 제어부(3)에 전달된다. 제어부(3)는, 방사 온도계(120)의 측정 결과보다 기판(W)의 온도가 소정 온도까지 강온했는지의 여부를 감시한다. 그리고, 기판(W)의 온도가 소정 이하로까지 강온한 후, 이재 기구(10)의 한 쌍의 이재 암(11)이 다시 퇴피 위치부터 이재 동작 위치로 수평 이동하여 상승함으로써, 리프트 핀(12)이 서셉터(74)의 상면으로부터 돌출하여 열처리 후의 기판(W)을 서셉터(74)로부터 수취한다. 계속해서, 게이트 밸브(185)에 의해 폐쇄되어 있던 반송 개구부(66)가 개방되고, 리프트 핀(12) 상에 올려진 기판(W)이 장치 외부의 반송 로봇에 의해 반출되고, 열처리 장치(1)에 있어서의 기판(W)의 처리가 완료한다.
본 실시 형태에 있어서는, 표면에 하프니아막(102)이 형성된 기판(W)을 소정의 예비 가열 온도(T1)로 가열한 후, 그 기판(W)에 플래시광을 조사하여 플래시 가열을 행하고 있다. 조사 시간이 매우 짧고 강도가 강한 플래시광을 조사함으로써, 하프니아막(102)을 포함하는 기판(W)의 표면만을 순간적으로 가열하고, 하프니아막(102)을 처리 온도(T2)로 가열함과 동시에 당해 하프니아막(102)에 강한 압축 응력을 작용시키고 있다. 그 결과, RTA에 의해 단지 하프니아막(102)을 가열했을 뿐인 경우와 비교하여, 열처리 후의 하프니아막(102)의 결정 구조 중에 존재하는 입방정 구조의 비율을 높게 할 수 있다. 즉, 기판(W)의 표면에 플래시 램프(FL)로부터 플래시광을 조사하여 하프니아막(102)을 가열함과 더불어 당해 하프니아막(102)에 압축 응력을 작용시킴으로써, 기판(W) 상에 성막된 하프니아막(102)에 출현하는 결정 구조를 조정할 수 있는 것이다.
플래시광 조사에 의해 하프니아막(102)을 가열함과 더불어 당해 하프니아막(102)에 강한 압축 응력을 작용시키면, 충전율이 높은 입방정 구조의 비율이 높아지는 것이지만, 그 정도는 작용하는 압축 응력의 크기에 의존하고 있다. 작용하는 압축 응력이 커질수록, 충전율이 높은 입방정 구조의 비율이 높아진다. 한편, 하프니아막(102)에 작용하는 압축 응력의 크기는, 기판(W) 표면에 조사되는 플래시광의 조사 시간에 의존하고 있다. 플래시광의 조사 시간이 짧아질수록, 기판(W)의 표면으로부터 이면으로의 열전도량이 작아져 온도 구배가 커지고, 하프니아막(102)에 작용하는 압축 응력이 커진다. 본 실시 형태에서는, 플래시 램프(FL)의 구동 회로에 IGBT(96)를 설치하고 있고, 입력부(33)로부터 입력하는 펄스폭의 시간과 펄스 간격의 시간의 조합의 총시간에 따라, 플래시광의 조사 시간을 조정할 수 있다. 즉, 입력부(33)로부터 입력하는 펄스폭의 시간과 펄스 간격의 시간의 조합의 총시간에 의해, 플래시광의 조사 시간을 조정함으로써, 하프니아막(102)에 작용하는 압축 응력의 크기를 변화시켜 충전율이 높은 입방정 구조의 비율을 제어할 수 있는 것이다. 플래시광의 조사 시간을 짧게 할수록, 하프니아막(102)에 작용하는 압축 응력이 커지고, 하프니아막(102)의 결정 구조 중에 존재하는 입방정 구조의 비율을 높게 할 수 있다.
이상, 본 발명의 실시의 형태에 대해 설명했지만, 이 발명은 그 취지를 일탈하지 않는 한에 있어서 상술한 것 이외로 여러 가지의 변경을 행하는 것이 가능하다. 예를 들면, 상기 실시 형태에 있어서는, 표면에 하프니아막(102)을 형성한 기판(W)에 플래시광을 조사하고 있었지만, 이것으로 한정되는 것이 아니라, 표면에 다른 재료의 박막을 형성한 기판(W)에 플래시광을 조사하여 당해 박막의 결정 구조를 제어하도록 해도 된다. 예를 들면, 표면에 실리콘 나이트라이드의 박막이 형성된 기판(W)에 플래시광을 조사하여 당해 박막의 결정 구조를 제어하도록 해도 된다. 실리콘 나이트라이드의 결정 구조를 조정하면, 실리콘 나이트라이드의 에칭 레이트를 변화시킬 수 있다. 또, 표면에 이산화 규소의 박막이 형성된 기판(W)에 플래시광을 조사하여 당해 박막의 결정 구조를 제어하도록 해도 된다.
집약하면, 표면에 박막을 형성한 기판(W)의 표면에 플래시 램프(FL)로부터 플래시광을 조사하여 당해 박막을 가열함과 더불어 당해 박막에 압축 응력을 작용시키는 것이면 된다. 플래시광 조사에 의해 박막을 가열함과 더불어 당해 박막에 압축 응력을 작용시킴으로써, 결정의 충전율이 높아지도록, 박막에 출현하는 결정 구조를 조정할 수 있다.
또, 기판(W)의 예비 가열 온도(T1), 처리 온도(T2) 및 플래시 램프(FL)의 플래시광 조사 시간은 상기 실시 형태의 예로 한정되는 것이 아니라, 적절한 것으로 할 수 있다. 플래시광 조사 시간뿐만 아니라, 예비 가열 온도(T1) 및 처리 온도(T2)에 의해서도 하프니아막(102)에 작용하는 압축 응력을 변화시킬 수 있다.
또, 상기 실시 형태에 있어서는, 플래시 가열부(5)에 30개의 플래시 램프(FL)를 구비하도록 하고 있었지만, 이것으로 한정되는 것이 아니라, 플래시 램프(FL)의 개수는 임의의 수로 할 수 있다. 또, 플래시 램프(FL)는 크세논 플래시 램프로 한정되는 것이 아니라, 크립톤 플래시 램프여도 된다. 또, 할로겐 가열부(4)에 구비하는 할로겐 램프(HL)의 개수도 40개로 한정되는 것이 아니라, 임의의 수로 할 수 있다.
또, 상기 실시 형태에 있어서는, 1초 이상 연속해서 발광하는 연속 점등 램프로서 필라멘트형의 할로겐 램프(HL)에 의해, 기판(W)의 전체를 예비 가열 온도(T1)까지 가열하도록 하고 있었지만, 이것으로 한정되는 것이 아니라, 할로겐 램프(HL)를 대신하여 같은 연속 점등 램프로서 방전형의 크세논 아크 램프 등의 아크 램프를 이용하여, 기판(W)을 동일하게 가열하도록 해도 된다.
1: 열처리 장치 3: 제어부
4: 할로겐 가열부 5: 플래시 가열부
6: 챔버 7: 유지부
65: 열처리 공간 74: 서셉터
75: 유지 플레이트 77: 기판 지지 핀
93: 콘덴서 95: 전원 유닛
96: IGBT 101: 계면층막
102: 하프니아막 120: 방사 온도계
FL: 플래시 램프 HL: 할로겐 램프
W: 기판

Claims (4)

  1. 기판의 표면에 형성된 박막의 결정 구조를 제어하는 결정 구조 제어 방법으로서,
    기판의 표면에 박막을 성막하는 성막 공정과,
    상기 기판의 표면에 플래시 램프로부터 플래시광을 조사하여 상기 박막을 가열함과 더불어 상기 박막에 압축 응력을 작용시키는 플래시 가열 공정을 구비하며,
    상기 플래시 가열 공정에서는, 상기 플래시광의 조사 시간을 조정함으로써, 상기 박막 내의 결정의 충전율이 높아지도록 상기 박막에 작용하는 압축 응력을 변화시키는 것을 특징으로 하는 결정 구조 제어 방법.
  2. 삭제
  3. 청구항 1에 있어서,
    상기 플래시 가열 공정의 전에, 상기 기판을 소정의 예비 가열 온도로 가열하는 예비 가열 공정을 더 구비하는 것을 특징으로 하는 결정 구조 제어 방법.
  4. 그 표면에 박막을 형성한 기판을 가열하여 당해 박막의 결정 구조를 제어하는 열처리 방법으로서,
    상기 기판의 표면에 플래시 램프로부터 플래시광을 조사하여 상기 박막을 가열함과 더불어 상기 박막에 압축 응력을 작용시키며,
    상기 플래시광의 조사 시간을 조정함으로써, 상기 박막 내의 결정의 충전율이 높아지도록 상기 박막에 작용하는 압축 응력을 변화시키는 것을 특징으로 하는 열처리 방법.
KR1020170171321A 2017-01-13 2017-12-13 결정 구조 제어 방법 및 열처리 방법 KR102051191B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2017-003795 2017-01-13
JP2017003795A JP6841666B2 (ja) 2017-01-13 2017-01-13 結晶構造制御方法および熱処理方法

Publications (2)

Publication Number Publication Date
KR20180083790A KR20180083790A (ko) 2018-07-23
KR102051191B1 true KR102051191B1 (ko) 2019-12-02

Family

ID=62838802

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170171321A KR102051191B1 (ko) 2017-01-13 2017-12-13 결정 구조 제어 방법 및 열처리 방법

Country Status (4)

Country Link
US (1) US20180202071A1 (ko)
JP (1) JP6841666B2 (ko)
KR (1) KR102051191B1 (ko)
TW (1) TWI650802B (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6847610B2 (ja) * 2016-09-14 2021-03-24 株式会社Screenホールディングス 熱処理装置
JP2022017022A (ja) * 2020-07-13 2022-01-25 ウシオ電機株式会社 光加熱装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130157431A1 (en) * 2011-12-20 2013-06-20 Taiwan Semiconductor Manufacturing Company, Ltd. Structure and method for thermal treatment with epitaxial sicp thermal stability improvement
JP2016127194A (ja) * 2015-01-07 2016-07-11 株式会社Screenホールディングス 熱処理方法および熱処理装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4299959B2 (ja) * 2000-08-14 2009-07-22 株式会社東芝 半導体装置の製造方法
JP2005072045A (ja) * 2003-08-26 2005-03-17 Toshiba Corp 半導体装置およびその製造方法
US20060260545A1 (en) * 2005-05-17 2006-11-23 Kartik Ramaswamy Low temperature absorption layer deposition and high speed optical annealing system
JP2007287860A (ja) * 2006-04-14 2007-11-01 Toshiba Corp 半導体装置の製造方法
JP4177857B2 (ja) * 2006-04-28 2008-11-05 株式会社東芝 半導体装置およびその製造方法
JP4552973B2 (ja) * 2007-06-08 2010-09-29 セイコーエプソン株式会社 半導体装置の製造方法
DE102008059501B4 (de) * 2008-11-28 2012-09-20 Advanced Micro Devices, Inc. Technik zur Verbesserung des Dotierstoffprofils und der Kanalleitfähigkeit durch Millisekunden-Ausheizprozesse
KR100996188B1 (ko) * 2008-12-31 2010-11-24 주식회사 하이닉스반도체 반도체 장치 제조방법
JP5401244B2 (ja) 2009-10-01 2014-01-29 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
WO2011101931A1 (ja) * 2010-02-17 2011-08-25 パナソニック株式会社 半導体装置及びその製造方法
JP5618063B2 (ja) * 2010-07-28 2014-11-05 独立行政法人産業技術総合研究所 半導体装置及びその製造方法
TWI435391B (zh) * 2010-09-16 2014-04-21 Dainippon Screen Mfg 閃光熱處理裝置
JP2012212835A (ja) * 2011-03-31 2012-11-01 Ushio Inc アモルファスシリコンの結晶化方法
JP2013084902A (ja) * 2011-09-26 2013-05-09 Dainippon Screen Mfg Co Ltd 熱処理方法および熱処理装置
US9012277B2 (en) * 2012-01-09 2015-04-21 Globalfoundries Inc. In situ doping and diffusionless annealing of embedded stressor regions in PMOS and NMOS devices
JP6067524B2 (ja) * 2013-09-25 2017-01-25 株式会社東芝 半導体装置および誘電体膜
US9741576B2 (en) * 2015-08-26 2017-08-22 SCREEN Holdings Co., Ltd. Light irradiation type heat treatment method and heat treatment apparatus
US10121683B2 (en) * 2015-08-26 2018-11-06 SCREEN Holdings Co., Ltd. Light-irradiation heat treatment method and heat treatment apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130157431A1 (en) * 2011-12-20 2013-06-20 Taiwan Semiconductor Manufacturing Company, Ltd. Structure and method for thermal treatment with epitaxial sicp thermal stability improvement
JP2016127194A (ja) * 2015-01-07 2016-07-11 株式会社Screenホールディングス 熱処理方法および熱処理装置

Also Published As

Publication number Publication date
KR20180083790A (ko) 2018-07-23
US20180202071A1 (en) 2018-07-19
TW201826346A (zh) 2018-07-16
TWI650802B (zh) 2019-02-11
JP2018113382A (ja) 2018-07-19
JP6841666B2 (ja) 2021-03-10

Similar Documents

Publication Publication Date Title
JP5955658B2 (ja) 熱処理方法および熱処理装置
JP6539568B2 (ja) 熱処理方法および熱処理装置
JP5507274B2 (ja) 熱処理方法および熱処理装置
TWI698933B (zh) 熱處理方法及熱處理裝置
KR101380436B1 (ko) 열처리방법
CN107591319B (zh) 半导体装置的制造方法
KR102035904B1 (ko) 도펀트 도입 방법 및 열처리 방법
JP6598630B2 (ja) 熱処理方法
KR102033829B1 (ko) 도펀트 도입 방법 및 열처리 방법
JP5507227B2 (ja) 熱処理方法および熱処理装置
KR102051191B1 (ko) 결정 구조 제어 방법 및 열처리 방법
US11908703B2 (en) Light irradiation type heat treatment method
JP6839940B2 (ja) 熱処理方法
JP2017092099A (ja) 熱処理方法および熱処理装置
JP2016181641A (ja) 熱処理装置
US20220172951A1 (en) Heat treatment method and heat treatment apparatus
JP6814855B2 (ja) 熱処理方法
JP2018018873A (ja) 熱処理方法
JP6945703B2 (ja) ドーパント導入方法および熱処理方法
JP2018101760A (ja) 熱処理方法
JP6791693B2 (ja) 熱処理装置
JP2019068107A (ja) 熱処理方法およびゲート形成方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant