KR102024965B1 - 정전척 및 정전척의 제조 방법 - Google Patents

정전척 및 정전척의 제조 방법 Download PDF

Info

Publication number
KR102024965B1
KR102024965B1 KR1020147031085A KR20147031085A KR102024965B1 KR 102024965 B1 KR102024965 B1 KR 102024965B1 KR 1020147031085 A KR1020147031085 A KR 1020147031085A KR 20147031085 A KR20147031085 A KR 20147031085A KR 102024965 B1 KR102024965 B1 KR 102024965B1
Authority
KR
South Korea
Prior art keywords
insulating layer
heater
conductive paste
holding side
wafer
Prior art date
Application number
KR1020147031085A
Other languages
English (en)
Other versions
KR20150013497A (ko
Inventor
료 야마사키
미츠하루 이나바
겐스케 다구치
Original Assignee
도카로 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도카로 가부시키가이샤 filed Critical 도카로 가부시키가이샤
Publication of KR20150013497A publication Critical patent/KR20150013497A/ko
Application granted granted Critical
Publication of KR102024965B1 publication Critical patent/KR102024965B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/01Selective coating, e.g. pattern coating, without pre-treatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N13/00Clutches or holding devices using electrostatic attraction, e.g. using Johnson-Rahbek effect

Abstract

(목적)
접착제를 사용한 경우에 있어서의 결점이 존재하지 않고, 그와 함께 설계 자유도가 높은 정전척 및 정전척의 제조 방법을 제공한다.
(수단)
척 본체를 구성하는 기재부 (2) 와, 기재부 (2) 의 표면 (2a) 에 형성된 용사 피막으로 이루어지는 제 1 절연층 (3) 과, 제 1 절연층 (3) 의 표면 (3a) 에 도전성 페이스트를 도포하여 형성된 도전체로 이루어지는 히터부 (4) 와, 히터부 (4) 를 덮도록 제 1 절연층 (3) 의 표면 (3a) 에 형성된 용사 피막으로 이루어지는 제 2 절연층 (5) 과, 제 2 절연층 (5) 의 표면 (5a) 에 용사하여 형성된 전극부 (6) 와, 전극부 (6) 를 덮도록 제 2 절연층 (5) 의 표면 (5a) 에 형성된 용사 피막으로 이루어지는 유전층 (7) 을 구비한 정전척 (1) 으로 하며, 접착제를 사용하지 않고, 히터부 (4) 의 체적 저항률을 낮게 하였다.

Description

정전척 및 정전척의 제조 방법{ELECTROSTATIC CHUCK AND METHOD OF MANUFACTURING ELECTROSTATIC CHUCK}
본 발명은 반도체의 제조 프로세스에 사용되는 반도체 제조 장치에 장착되는 정전척과 그 제조 방법에 관한 것이다.
최근, 반도체 제조 프로세스에서는, 드라이 에칭 등의 처리가 진공 혹은 감압하에서 실시되는 건식법으로 변화하고 있고, 동 프로세스에 있어서는, 패터닝시의 웨이퍼의 위치 결정 정밀도를 높이는 것이 중요해지고 있다. 그 때문에, 웨이퍼의 반송이나 고정시에 진공척 및 기계척을 채용하고 있었다. 그러나, 진공척을 채용했을 경우, 작은 압력차 때문에 흡착 효과가 적다는 등의 결점이 있고, 기계척을 채용했을 경우, 장치가 복잡해져 보수 점검에 시간을 요하는 등의 결점이 있었다. 그래서, 이들 결점을 보완하기 위해, 최근 정전기를 이용한 정전척이 널리 채용되고 있다.
정전척은 세라믹스 등의 절연성 부재 사이에 텅스텐 등으로 이루어지는 전극을 배치 형성하여 구성되어 있고, 당해 전극에 직류 전압을 인가하여 발생하는 쿨롱력 등에 의해, 웨이퍼를 흡착 유지하도록 되어 있다. 에칭시의 웨이퍼에는 플라즈마로부터의 입열 (入熱) 이 있기 때문에, 정전척의 접촉에 의한 열전도나 웨이퍼 이면으로의 냉각 가스의 도입 등에 의해 웨이퍼를 냉각시켜 온도를 일정하게 유지하도록 하고 있다.
그러나, 웨이퍼면 내에 있어서 플라즈마의 밀도의 상이, 냉각 가스의 흐름 분포의 상이가 존재하여, 웨이퍼의 면내 온도를 양호한 정밀도로 균일하게 유지하는 것은 곤란하다. 그 때문에, 정전척에 히터를 내장시킴으로써, 웨이퍼의 면내 온도가 균일해지도록 제어하고 있다. 예를 들어, 웨이퍼에 동심원상으로 온도 불균일이 발생되고 있는 경우에는, 그에 따라 히터를 분할 배치시키고, 각 히터를 개별적으로 제어함으로써 웨이퍼의 면내 온도차가 발생하지 않도록 하고 있다. 또한, 1 개의 챔버로 복수의 프로세스를 실시하는 멀티 프로세스의 경우에는, 정전척에 내장시킨 히터를 제어함으로써, 웨이퍼를 각 프로세스에 최적인 온도로 하고 있다.
예를 들어 특허문헌 1 에는, 두께의 편차가 소정 범위 내인 그린 시트에, 저항 발열체용의 도전 페이스트를 인쇄하고, 이어서, 다른 그린 시트를 적층하여 소성시키는 정전척이 기재되어 있다. 특허문헌 2 에는, 기재 상에 형성된 고저항층과, 이 고저항층 내에 도전체를 용사하여 형성한 복수의 히터와, 고저항층 내에 도전체를 용사하여 형성한 복수의 전극을 구비한 정전 흡착 장치가 기재되어 있다.
일본 공개특허공보 2001-274229호 일본 공개특허공보 2007-88411호
특허문헌 1 의 정전척에서는, 그린 시트를 소성한 소결 부재를, 냉각 수로를 내재하는 금속제 기재에 접착하기 위한 접착제가 필요하다. 접착제는 낮은 열전도성을 가지고 있기 때문에, 예를 들어 강온시의 리스폰스가 매우 낮고, 또한 접착제가 플라즈마에 노출되어 소모되기 때문에, 접착제가 소모된 부분은 열전도성이 저해되어 냉각할 수 없게 된다는 결점이 존재한다.
특허문헌 2 의 정전 흡착 장치에서는, 도전체를 용사하여 히터나 전극을 형성하고 있지만, 용사에 의한 히터에서는 대체로 체적 저항률이 높기 때문에, 배선 형상을 가능한 한 두껍고, 폭 넓게, 또한 짧게 하여 대전력에 대응시킬 필요가 있다. 히터는 필요한 영역에 남김없이 형성해야 하기 때문에, 자연히 긴 배선이 되어, 배선 형상을 보다 두껍고, 폭 넓게 하여 저항값을 낮춰야 한다. 그러나, 배선 형상을 두껍게 하면 그것을 덮는 세라믹 고저항층도 두꺼워지고, 기재와 용사에 의한 히터 및 세라믹 고저항층과의 열팽창률 차에 의해 세라믹 고저항층에 균열이나 박리가 생길 우려가 있다. 배선 형상을 폭 넓게 하면, 배선간 거리가 작아지기 때문에, 예를 들어 푸셔핀 구멍이나 냉각 가스 구멍을 형성하는 스페이스가 제한된다. 요컨대, 특허문헌 2 의 정전 흡착 장치와 같이, 도전체를 용사하여 히터나 전극을 형성했을 경우, 매우 설계 자유도가 낮아진다는 문제가 있다.
그래서, 본 발명은 상기 종래 기술의 문제점을 감안하여, 접착제를 사용한 경우에 있어서의 상기와 같은 결점이 존재하지 않고, 그와 함께 설계 자유도가 높은 정전척 및 정전척의 제조 방법을 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위해, 다음의 기술적 수단을 강구하였다.
본 발명의 정전척은 웨이퍼를 유지하기 위한 척 본체를 구성하는 기재부와, 상기 기재부의 웨이퍼 유지측에 형성된 용사 피막으로 이루어지는 복수의 절연층과, 상기 복수의 절연층 중 1 이상의 절연층의 웨이퍼 유지측의 표면에 도전성 페이스트를 도포하여 형성된 도전체로 이루어지는 히터부와, 상기 복수의 절연층 중 1 이상의 절연층의 웨이퍼 유지측의 표면에 용사하거나 또는 도전성 페이스트를 도포하여 형성된 전극부와, 상기 복수의 절연층의 웨이퍼 유지측에 형성된 용사 피막으로 이루어지는 유전층을 구비하고 있는 것을 특징으로 한다.
본 발명의 정전척에서는, 복수의 절연층, 및 유전층이 용사 피막으로 이루어짐과 함께, 전극부가 용사 또는 도전성 페이스트를 도포하여 형성되어 있기 때문에 접착제를 사용하지 않고, 기재부에 복수의 절연층, 유전층, 및 전극부를 형성할 수 있다. 히터부가, 절연층의 표면에 도전성 페이스트를 도포하여 형성된 도전체로 이루어지기 때문에 히터부의 체적 저항률을 낮게 할 수 있다.
본 발명의 정전척은, 웨이퍼를 유지하기 위한 척 본체를 구성하는 기재부와, 상기 기재부의 웨이퍼 유지측의 표면에 형성된 용사 피막으로 이루어지는 절연층과, 상기 절연층의 웨이퍼 유지측의 표면에 도전성 페이스트를 도포하여 형성된 도전체로 이루어지는 히터부와, 상기 절연층의 웨이퍼 유지측의 표면에 용사하거나 또는 도전성 페이스트를 도포하여 형성된 전극부와, 상기 절연층의 웨이퍼 유지측에 형성된 용사 피막으로 이루어지는 유전층을 구비하고 있는 것을 특징으로 한다.
본 발명의 정전척에서는, 절연층 및 유전층이 용사 피막으로 이루어짐과 함께, 전극부가 용사 또는 도전성 페이스트를 도포하여 형성되어 있기 때문에 접착제를 사용하지 않고, 기재부에 절연층, 유전층, 및 전극부를 형성할 수 있다. 도전체로 이루어지는 히터부가, 절연층의 표면에 도전성 페이스트를 도포하여 형성되어 있기 때문에 히터부의 체적 저항률을 낮게 할 수 있다.
상기 도전성 페이스트는 경화 후의 잔사량이 5 중량% 이하가 되는 것이 바람직하다. 잔사량이 적으면 도전체인 히터부와 절연층이나 유전층과의 밀착력의 저하를 방지할 수 있다.
상기 히터부는 5 ㎜ 이하의 선 폭으로 가늘고 긴 형상으로 배선되어 있는 것이 바람직하다. 5 ㎜ 이하인 선 폭의 히터부로 하면, 절연층이나 유전층의 밀착력의 저하를 방지할 수 있다.
상기 히터부가 형성되어 있는 절연층 표면의 표면 조도가 Ra 값으로 6 ㎛ 이하인 것이 바람직하다. 이 경우, 도전성 페이스트를 도포했을 때의 번짐을 없애어, 높은 정밀도로 히터부를 형성할 수 있다.
상기 용사 피막은, 산화물계 세라믹, 질화물계 세라믹, 및 불화물계 세라믹에서 선택되는 1 종 이상의 재료로 이루어지는 것이 바람직하다. 이 경우, 적절한 열전도성 및 높은 절연성을 구비한 절연층과, 높은 열전도성, 높은 유전성, 내플라즈마성 및 내마모성을 구비한 유전층으로 할 수 있다.
본 발명의 정전척의 제조 방법은, 척 본체를 구성하는 기재부의 웨이퍼 유지측에서 용사 재료를 용사하여 절연층을 형성하는 절연층 형성 공정과, 상기 절연층의 웨이퍼 유지측의 표면에 스크린 인쇄법, 잉크젯법, 및 디스펜서법 중 어느 것에 의해 도전성 페이스트를 도포하고, 도전체로 이루어지는 히터부를 형성하는 히터부 형성 공정과, 상기 절연층의 웨이퍼 유지측의 표면에 용사하거나 또는 스크린 인쇄법, 잉크젯법, 및 디스펜서법 중 어느 것에 의해 도전성 페이스트를 도포하여 전극부를 형성하는 전극부 형성 공정과, 상기 절연층의 웨이퍼 유지측에서 용사 재료를 용사하여 유전층을 형성하는 유전층 형성 공정을 구비하는 것을 특징으로 하는 것이다.
본 발명의 정전척의 제조 방법에 의하면, 절연층 형성 공정과 유전층 형성 공정에서 용사 재료를 용사하여 절연층 및 유전층이 형성되고, 히터부 형성 공정에서 절연층의 표면에 스크린 인쇄법, 잉크젯법, 디스펜서법 중 어느 것에 의해 도전성 페이스트를 도포하여, 도전체로 이루어지는 히터부가 형성되고, 전극부 형성 공정에서 절연층의 표면에 용사하거나 또는 스크린 인쇄법, 잉크젯법, 및 디스펜서법 중 어느 것에 의해 도전성 페이스트를 도포하여 전극부가 형성되기 때문에, 기재부에 접착제를 사용하지 않고 절연층, 유전층 및 전극부를 형성할 수 있고, 히터부의 체적 저항률도 낮게 할 수 있다.
상기와 같이, 본 발명에 의하면, 절연층 및 유전층이 용사 피막으로 이루어짐과 함께, 전극부가 용사 또는 도전성 페이스트를 도포하여 형성되어 있기 때문에 접착제를 사용하지 않고, 기재부에 절연층, 유전층 및 전극부를 형성할 수 있고, 히터부가 도전성 페이스트를 도포하여 형성된 도전체로 이루어지기 때문에 히터부의 체적 저항률을 낮게 할 수 있다. 따라서, 접착제를 사용한 경우에 있어서의 결점을 없앨 수 있고, 또한 설계 자유도를 높게 할 수 있다.
도 1 은 본 발명의 일 실시형태에 관련된 정전척이 진공 챔버 내에 설치된 상태를 나타내는 모식도이다.
도 2 는 정전척의 단면 모식도이다.
도 3 은 히터부를 나타내는 평면 모식도이다.
이하, 본 발명의 실시형태에 대해 도면을 참조하여 설명한다. 도 1 은 본 발명의 일 실시형태에 관련된 정전척 (1) 이 진공 챔버 (50) 내에 설치된 상태를 나타내는 모식도이다. 도 1 과 같이 진공 챔버 (50) 내에는, 웨이퍼 (51) 를 유지하기 위한 정전척 (1) 이 형성되어 있고, 도시되지 않은 반송 아암 등에 의해 웨이퍼 (51) 가 진공 챔버 (50) 의 안밖으로 출납되도록 되어 있다. 진공 챔버 (50) 에는 가스 도입 장치 (52) 나, 상부 전극 (53) 등이 설치되어 있다. 정전척 (1) 은 하부 전극도 겸하고 있고, 이 하부 전극 (정전척 (1)) 과 상부 전극 (53) 에 고주파 전원 (54) 이 접속되어 있다. 하부 전극 (1) 과 상부 전극 (53) 사이에 고주파를 가하면, 도입된 처리 가스가 플라즈마화되고, 발생된 플라즈마의 이온이 웨이퍼 (51) 에 끌어당겨짐으로써 에칭이 실시되고, 그 때, 웨이퍼 (51) 의 온도가 상승한다.
도 2 는 정전척 (1) 의 단면 모식도이다. 본 실시형태의 정전척 (1) 은 웨이퍼 (51) 를 유지하기 위한 척 본체를 구성하는 기재부 (2) 와, 이 기재부 (2) 의 웨이퍼 유지측의 표면 (2a) 에 형성된 제 1 절연층 (3) 과, 제 1 절연층 (3) 의 표면 (3a) 에 형성된 도전체로 이루어지는 히터부 (4) 와, 히터부 (4) 를 덮도록 제 1 절연층 (3) 의 표면 (3a) 에 형성된 제 2 절연층 (5) 과, 제 2 절연층 (5) 의 표면 (5a) 에 형성된 전극부 (6) 와, 전극부 (6) 를 덮도록 최외층에 형성된 유전층 (7) 을 구비하고 있다.
정전척 (1) 의 외측은 Al2O3 용사 피막으로 이루어지는 피복층 (8) 으로 피복되어 있어, 정전척 (1) 자체에 플라즈마의 영향이 미치지 않도록 하고 있다.
정전척 (1) 에는, 도 2 상하 방향으로 관통하는 가스 구멍 (9) 이 형성되어 있고, 이 가스 구멍 (9) 은 유전층 (7) 의 표면 (7a) 에 형성된 도시되지 않은 냉각 홈에 연결되어 있다. 예를 들어 헬륨 가스가 가스 구멍 (9) 을 통과하여 웨이퍼 (51) 와 정전척 (1) 사이에 도입된다. 진공 챔버 (50) 내는 감압되어 있기 때문에, 웨이퍼 (51) 로부터 정전척 (1) 으로의 열전도성이 낮다. 가스를 웨이퍼 (51) 와 정전척 (1) 사이에 도입함으로써, 웨이퍼 (51) 로부터 정전척 (1) 으로 열이 전도되고, 이것에 의해 웨이퍼 (51) 의 냉각 효과가 확보된다.
도전체로 이루어지는 히터부 (4) 는 통전에 의해 발열하도록 되어 있다. 이 히터부 (4) 에 전력을 보내기 위한 제 1 급전 핀 (10) 이 제 1 절연층 (3) 및 기재부 (2) 를 관통하여 당해 히터부 (4) 에 전기적으로 접속되어 있어, 당해 히터부 (4) 에 대한 출력이 조절된다. 전극부 (6) 에 전력을 보내기 위한 제 2 급전 핀 (11) 이 제 2 절연층 (5), 제 1 절연층 (3) 및 기재부 (2) 를 관통하여 당해 전극부 (6) 에 전기적으로 접속되어 있어, 당해 전극부 (6) 에 대한 전압의 인가가 조절된다. 기재부 (2) 중에는, 냉매를 통과시키는 냉각로 (12) 가 형성되어 있어, 당해 냉각로 (12) 에 통과되는 냉매에 의해 당해 기재부 (2) 가 냉각되도록 되어 있다.
본 실시형태의 기재부 (2) 는 알루미늄 합금으로 구성되어 있지만, 기재부 (2) 를 구성하는 재료는 한정되는 것은 아니고, 티탄 합금, 구리 합금, 스테인리스, 카본, AlN 세라믹 등의 세라믹류나, 혹은 Al2O3-Al 복합재 등의 복합재를 채용할 수 있다. 기재부 (2) 의 냉각로 (12) 에 흘리는 냉매의 온도는 -20 ∼ 50 ℃ 이다. 이 냉매의 온도는, 웨이퍼 (51) 를 냉각시키는 속도와 히터부 (4) 의 가온 능력에 따라 조정된다.
기재부 (2) 의 표면 (2a) 에 형성된 제 1 절연층 (3) 은 용사에 의해 형성된 Al2O3 용사 피막으로 이루어지고, 기재부 (2) 와 히터부 (4) 를 절연시키고 있다. 히터부 (4) 를 덮도록 제 1 절연층 (3) 의 표면 (3a) 에 형성된 제 2 절연층 (5) 은, 용사에 의해 형성된 Al2O3 용사 피막으로 이루어지고, 히터부 (4) 와 전극부 (6) 를 절연시키고 있다. 본 실시형태의 제 1 절연층 (3) 의 두께 (t1) 및 제 2 절연층 (5) 의 두께 (t2) 는 50 ∼ 400 ㎛ 이다. 제 1 절연층 (3) 및 제 2 절연층 (5) 의 두께나 소재를 변경함으로써, 당해 제 1 절연층 (3) 및 제 2 절연층 (5) 에 의한 발열 (拔熱) 효율을 제어할 수 있다.
제 1 절연층 (3) 의 두께 (t1) 및 제 2 절연층 (5) 의 두께 (t2) 를 얇게 하고, 소재를 열전도 계수가 높은 것으로 하면, 발열 효율을 높게 할 수 있다. 발열 효율이 높아지면, 웨이퍼 (51) 의 냉각 속도가 높아진다. 그 반면, 제 1 절연층 (3) 의 두께 (t1) 가 얇아짐으로써, 기재부 (2) 가 히터부 (4) 의 열을 빼앗기 쉬워지기 때문에, 히터부 (4) 를 고출력화할 필요가 있다. 제 1 절연층 (3) 의 두께 (t1) 및 제 2 절연층 (5) 의 두께 (t2) 를 두껍게 하고, 소재를 열전도 계수가 낮은 것으로 하면, 발열 효율을 낮게 할 수 있다. 낮은 열전도 계수를 갖는 대표적인 것으로서, PSZ (부분 안정화 지르코니아) 가 있다. 발열 효율을 낮추면 웨이퍼 (51) 의 냉각 속도가 낮아진다. 그 반면, 제 1 절연층 (3) 의 두께 (t1) 가 두꺼워진 것, 또는 소재가 열전도 계수가 낮은 것이 된 것에 의해, 기재부 (2) 가 히터부 (4) 의 열을 빼앗기 어려워지기 때문에, 히터부 (4) 를 고출력화할 필요가 없어진다. 예를 들어 웨이퍼 (51) 의 냉각 속도가 지나치게 큰 경우에는, 제 1 절연층 (3) 의 두께 (t1) 및 제 2 절연층 (5) 의 두께 (t2) 를 두껍게 하고, 소재를 열전도 계수가 낮은 것으로 하면 되고, 이 경우, 히터부 (4) 의 최대 출력을 낮출 수 있다.
제 2 절연층 (5) 의 표면 (5a) 에 형성된 전극부 (6) 는 용사에 의해 형성된 텅스텐 용사 피막으로 이루어진다. 전극부 (6) 에 전압이 인가됨으로써, 웨이퍼 (51) 가 정전척 (1) 에 흡착된다. 전극부 (6) 를 덮도록 제 2 절연층 (5) 의 표면 (5a) 에 형성된 유전층 (7) 은, 용사에 의해 형성된 Al2O3 용사 피막으로 이루어진다. 본 실시형태의 전극부 (6) 의 두께 (t3) 는 30 ∼ 100 ㎛ 이고, 유전층 (7) 의 두께 (t4) 는 50 ∼ 400 ㎛ 이다.
제 1 절연층 (3), 제 2 절연층 (5), 및 유전층 (7) 을 구성하는 Al2O3 용사 피막은, 각각 기부재 (2), 제 1 절연층 (3), 제 2 절연층 (5) 의 표면 (2a, 3a, 5a) 에, Al2O3 용사 분말을 대기 플라즈마 용사법으로 용사하여 형성된 것이다. 전극부 (6) 를 구성하는 텅스텐 용사 피막은, 제 2 절연층 (5) 의 표면 (5a) 에, 텅스텐 용사 분말을 대기 플라즈마 용사법으로 용사하여 형성한 것이다. Al2O3 용사 피막 및 텅스텐 용사 피막을 얻기 위한 용사법은, 대기 플라즈마 용사법에 한정되지 않고, 감압 플라즈마 용사법, 물 플라즈마 용사법, 고속 및 저속 프레임 용사법이어도 된다.
용사 분말로는 입경 5 ∼ 80 ㎛ 의 입도 범위인 것을 채용하고 있다. 그 이유는, 입경이 5 ㎛ 보다 작으면 분말의 유동성이 저하되어 안정적인 공급을 하지 못하여 피막의 두께가 불균일해지고, 입경이 80 ㎛ 를 초과하면 완전하게 용융되지 않은 상태로 성막되어 과도하게 다공질화되어 막질이 거칠어지기 때문이다.
제 1 절연층 (3), 제 2 절연층 (5), 전극부 (6), 및 유전층 (7) 을 구성하는 각 용사 피막의 두께 (t1, t2, t3, t4), 및 히터부 (4) 의 두께 (t5) 의 총합은 200 ∼ 1500 ㎛ 의 범위가 바람직하고, 보다 바람직하게는 300 ∼ 1000 ㎛ 의 범위이다. 두께가 200 ㎛ 미만에서는 당해 용사 피막의 균일성이 저하되어, 피막 기능을 충분히 발휘하지 못하고, 1500 ㎛ 를 초과하면 당해 용사 피막 내의 잔류 응력의 영향이 커져, 이것이 기계적 강도의 저하로 이어지기 때문이다.
상기 각 용사 피막은 다공질체이며, 그 평균 기공률은 5 ∼ 10 % 의 범위가 바람직하다. 평균 기공률은 용사법이나 용사 조건에 따라 변화한다. 5 % 보다 작은 기공률에서는, 각 용사 피막 내에 존재하는 잔류 응력의 영향이 커지고, 이것이 기계적 강도의 저하로 이어진다. 10 % 를 초과하는 기공률에서는, 반도체 제조 프로세스에 사용되는 각종 가스가, 각 용사 피막 내에 침입하기 쉬워져, 당해 각 용사 피막의 내구성이 저하된다.
본 실시형태에서는, 제 1 절연층 (3), 제 2 절연층 (5), 및 유전층 (7) 을 구성하는 각 용사 피막의 재료로서 Al2O3 을 채용하고 있지만, 다른 산화물계 세라믹, 질화물계 세라믹, 불화물계 세라믹, 탄화물계 세라믹, 붕화물계 세라믹이나 그들의 혼합물이어도 된다. 그 중에서도, 산화물계 세라믹, 질화물계 세라믹, 불화물계 세라믹 및 그들의 혼합물이 바람직하다.
산화물계 세라믹은, 플라즈마 에칭 프로세스에서 사용되는 O 계의 플라즈마 중에서 안정적이고, Cl 계의 플라즈마 중에서도 비교적 양호한 내플라즈마성을 나타낸다. 질화물계 세라믹은 고경도이기 때문에, 웨이퍼와의 마찰에 의한 손상이 적고, 마모분 등이 생기기 어렵다. 또, 비교적 열전도율이 높기 때문에, 처리 중인 웨이퍼의 온도를 제어하기 쉽다. 불화물계 세라믹은 F 계의 플라즈마 중에서 안정적이고, 우수한 내플라즈마성을 발휘할 수 있다.
다른 산화물계 세라믹의 구체예로는, TiO2, SiO2, Cr2O3, ZrO2, Y2O3, MgO, CaO 를 들 수 있다. 질화물계 세라믹으로는, TiN, TaN, AlN, BN, Si3N4, HfN, NbN, YN, ZrN, Mg3N2, Ca3N2 를 들 수 있다. 불화물계 세라믹으로는, LiF, CaF2, BaF2, YF3, AlF3, ZrF4, MgF2 를 들 수 있다.
탄화물계 세라믹으로는, TiC, WC, TaC, B4C, SiC, HfC, ZrC, VC, Cr3C2 를 들 수 있다. 붕화물계 세라믹으로는, TiB2, ZrB2, HfB2, VB2, TaB2, NbB2, W2B5, CrB2, LaB6 을 들 수 있다. 제 1 절연층 (3) 및 제 2 절연층 (5) 에 관해서는, 상기 중에서도 필요한 열전도성과 절연성을 양립시키는 재료가 특히 바람직하고, 유전층 (7) 에 관해서는, 상기 중에서도 열전도성 (유전층의 열전도율은 높은 것이 좋다), 유전성, 내플라즈마성, 및 내마모성을 겸비한 것이 특히 바람직하다.
도 3 은 히터부 (4) 를 나타내는 평면 모식도이다. 도전체로 이루어지는 히터부 (4) 는, 도전성 페이스트를 제 1 절연층 (3) 의 표면 (3a) 에 스크린 인쇄 에 의해 도포하여 형성된 것이다. 도전성 페이스트의 도포 방법은 스크린 인쇄에 한정되지 않고, 잉크젯법, 디스펜서법을 사용해도 된다. 스크린 인쇄, 잉크젯법, 및 디스펜서법 중 어느 것으로 도전성 페이스트를 도포하여 히터부 (4) 를 형성하면, 접착제를 사용하지 않고, 또한 간단한 조작으로 제 1 절연층 (3) 의 표면 (3a) 에 히터부 (4) 를 형성할 수 있다.
도전성 페이스트로서, 일반적으로는 은 분말 등의 금속 분말이나 탄소 분말 등의 도전체를, 알키드계 수지, 에폭시계 수지 등의 바인더에 분산한 것이 있지만, 본 실시형태에서는, 바인더를 거의 포함하지 않는 바인더리스 타입의 도전성 페이스트를 채용하고 있다. 이 도전성 페이스트에는, 경화 후의 잔사량이 바람직하게는 5 중량% 이하, 보다 바람직하게는 1 중량% 이하가 되는 것이 선택된다. 또한, 바인더리스 타입의 도전성 페이스트의 경화 후의 체적 저항률은, 예를 들어 4×10-6 (Ω㎝), 1×10-5 (Ω㎝) 이고, 바인더 타입의 도전성 페이스트의 경화 후의 체적 저항률은, 예를 들어 8×10-5 (Ω㎝), 2×10-5 (Ω㎝) 이며, 텅스텐 용사 피막의 체적 저항률은, 예를 들어 2×10-4 (Ω㎝) 이다.
경화 후의 잔사량이 많은 바인더 함유 타입의 도전성 페이스트로 히터부를 형성하면, 히터부 상에 용사했을 때 바인더가 타거나 혹은 용융된다. 그 결과, 히터부와 그 위에 용사된 용사 피막과의 밀착력이 저하되거나, 히터부의 저해되게 된다. 본 실시형태와 같이, 바인더를 거의 포함하지 않고, 경화 후의 잔사량이 매우 적은 바인더리스 타입의 도전성 페이스트를 사용하면, 히터부 (4) 와 그 위에 용사된 제 2 절연층 (5) 의 밀착력의 저하를 방지할 수 있어, 히터부 (4) 의 성능을 저해하는 경우도 없다.
경화 후의 잔사량이 적은 도전성 페이스트의 대부분은 금속 입자를 소성에 의해 융합시켜 도전체로 하는 것이지만, 입자경을 작게 하면, 그에 따라 비표면적이 커지므로, 입자경이 작은 것이 융합시키기 쉬워진다. 따라서, 보다 작은 입자경을 갖는 도전성 페이스트를 사용하면, 그만큼 낮은 소성 온도에서 히터부 (4) 를 형성할 수 있다. 본 실시형태에서 사용하고 있는 은 페이스트는, 물이나 유기 용제에 은의 나노 파우더를 계면활성제 등으로 분산시킨 것으로, 저온에서 분해되어 증발되기 때문에, 비교적 낮은 온도에서 소성할 수 있다.
도전성 페이스트는 경화 후의 잔사량이나 체적 저항률 이외에, 기부재 (2) 를 구성하는 재료에 따라 선택된다. 본 실시형태와 같이 기재부 (2) 가 알루미늄 합금으로 구성되어 있는 경우에는, 경화에 필요로하는 소성 온도가 바람직하게는 200 ℃ 이하, 보다 바람직하게는 150 ℃ 이하인 도전성 페이스트가 선택된다. 기재부 (2) 가 티탄 합금으로 구성되어 있는 경우에는, 소성 온도가 바람직하게는 300 ℃ 이하인 도전성 페이스트가 선택된다. 기부재 (2) 의 표면 (2a) 에 제 1 절연층 (3) 이 형성되고, 이 제 1 절연층 (3) 의 표면 (3a) 에 도전성 페이스트를 스크린 인쇄하게 되기 때문에, 도전성 페이스트의 소성 온도가 지나치게 높으면, 기부재 (2) 와 제 1 절연층 (3) 의 열팽창률의 차가 커져, 제 1 절연층 (3) 에 균열이 생기기 때문이다.
도전성 페이스트는 한정되는 것이 아니고, 예를 들어 금, 은, 백금, 팔라듐 등의 귀금속, 텅스텐, 몰리브덴, 니켈, 크롬, 철, 구리, 알루미늄, 티탄 등의 금속, 그들 합금으로 이루어지는 금속 입자가 사용된다. 실시형태에서는, 도전성 페이스트로서 은 페이스트를 채용하고 있고, 반도체 제조 프로세스의 처리 온도, 에칭 가스의 종류, 약액의 종류 등에 따라 최적인 것이 선택된다.
히터부 (4) 가 형성된 제 1 절연층 (3) 의 표면 (3a) 의 표면 조도는, Ra 값으로 6 ㎛ 이하가 바람직하고, Ra 값으로 3 ㎛ 이하가 보다 바람직하다. Ra 값으로 6 ㎛ 를 초과하면, 도전성 페이스트를 도포했을 때 번짐이 발생하여 히터부의 배선이 선명하지 않게 된다. 히터부의 단면적이 변화하기 때문에, 부분적으로 저항값이 크게 변화하여 이상 발열을 일으키게 된다. 또, 인접하는 히터부의 배선끼리가 단락될 가능성이 있다. 제 1 절연층 (3) 의 표면 (3a) 의 표면 조도를, Ra 값으로 6 ㎛ 이하로 함으로써, 도전성 페이스트를 도포했을 때의 번짐을 없애고, 높은 정밀도로 히터부 (4) 를 형성할 수 있다. 제 1 절연층 (3) 의 표면 (3a) 에 형성하는 제 2 절연층 (5) 의 양호한 밀착력을 얻기 위해서는, Ra 값으로 1 ∼ 3 ㎛ 의 표면 조도인 것이 바람직하다.
도 3 과 같이 히터부 (4) 는, 동심원상으로 내측 히터 (4u) 와 그 외측에 위치하는 외측 히터 (4s) 로 구성되어 있다. 히터부 (4) 의 구성은 한정되는 것이 아니고, 가열하는 영역에 따라 1 개의 히터로 구성해도 되고, 혹은 3 개 이상의 히터로 구성해도 된다. 1 개의 히터로 구성하는 경우, 예를 들어, 외측의 영역에 1 둘레만 형성하도록 해도 된다. 본 실시형태에서는, 내측 히터 (4u) 와 외측 히터 (4s) 를 각각 독립 제어함으로써, 정전척 (1) 의 내측의 영역과 외측의 영역을 서로 상이한 온도로 승온시킬 수 있다.
히터부 (4) 는, 웨이퍼 (51) 의 온도를 조정하기 위해 필요한 출력에 따라, 두께, 선 폭, 선 길이, 및 체적 저항률이 결정되어 소정의 저항값에 들어가도록 설계된다. 그러나 실제로는, 히터부 (4) 를 형성할 때의 편차가 존재하기 때문에, 설계대로의 저항값이 되지 않는 경우가 있다. 특히, 두께 및 선 폭은 중요하고, 국부적으로 두께나 선 폭이 커졌을 경우, 그 부분의 저항값이 낮아지기 때문에 발열하기 어려워져, 웨이퍼 (51) 에 온도가 낮은 부분이 생긴다.
그러한 경우에는, 히터부 (4) 를 형성한 후, 저항값이 낮아지는 부분을 검지하여 저항값이 소정의 범위에 들어가도록, 히터부 (4) 의 일부분을 깎아내어 두께나 선 폭을 수정하는 트리밍을 실시한다. 저항값이 낮은 부분을 검지하기 위해서는, 예를 들어 어느 구간마다 4 단자법으로 저항값을 계측하거나, 또는 히터부 (4) 에 통전시켜 발열 상태를 서모 카메라 등으로 확인하는 방법이 있다. 트리밍은 레이저 가공이나 기계적으로 깎거나 하는 것 등에 의해 실시한다.
실제로는, 가공량과 저항값의 변화는 선형적이지 않기 때문에, 저항값이 낮은 부분을 깎아 내는 것만으로는 각 부분의 저항값의 편차를 충분히 저감시키기는 어렵다. 트리밍을 보다 양호한 정밀도로 실시하기 위해서는, 트리밍 가공 중에 저항값이나 발열 상태의 변화를 감시하는 것이 좋다. 예를 들어, 어느 구간마다 4 단자법으로 저항값을 계측했을 때, 어느 부위를 몇 Ω 으로 트리밍하면 좋은지 알 수 있다. 이 부위의 저항값을 감시하면서 트리밍 가공을 진행하여 감시하고 있는 저항값이 원하는 저항값이 되었을 때 트리밍 가공을 종료한다. 다른 방법으로서, 정전척 내에 열확산판을 형성하여 온도 불균일을 저감시키도록 해도 된다.
히터부 (4) 를 형성하기 전에, 당해 히터부 (4) 에 전력을 보내는 제 1 급전 핀 (10) 을 기재부 (2) 및 제 1 절연층 (3) 에 미리 관통시켜 두고, 당해 제 1 급전 핀 (10) 의 상단면 (10a) 을 당해 제 1 절연층 (3) 의 표면 (3a) 에 노출시켜 둔다. 그 후, 제 1 절연층 (3) 의 표면 (3a) 에 히터부 (4) 를 스크린 인쇄함으로써, 제 1 급전 핀 (10) 과 히터부 (4) 가 전기적으로 접속된다. 전극부 (6) 의 경우도 동일하고, 당해 전극부 (6) 에 전력을 보내는 제 2 급전 핀 (11) 을 기재부 (2), 제 1 절연층 (3), 및 제 2 절연층 (5) 에 미리 관통시켜 두고, 당해 제 2 급전 핀 (11) 의 상단면 (11a) 을 당해 제 2 절연층 (5) 의 표면 (5a) 에 노출시켜 둔다. 그 후, 제 2 절연층 (5) 의 표면 (5a) 에 전극부 (6) 를 용사함으로써 제 2 급전 핀 (11) 과 전극부 (6) 가 전기적으로 접속된다.
내측 히터 (4u) 와 외측 히터 (4s) 는, 각각 2 ㎜ 의 선 폭 (d) 으로 가늘고 긴 형상으로 배선되어 있다. 내측 히터 (4u) 와 외측 히터 (4s) 의 선 폭 (d) 은 5 ㎜ 이하가 바람직하고, 2 ㎜ 이하가 보다 바람직하다. 제 2 절연층 (5) 의 히터부 (4) 에 대한 밀착력은 제 1 절연층 (3) 에 대한 밀착력보다 낮기 때문에, 히터부 (4) 의 선 폭 (d) 이 5 ㎜ 를 초과하고, 제 1 절연층 (3) 의 표면 (3a) 의 노출 범위가 적어지면 제 2 절연층 (5) 의 밀착력이 저하되기 때문이다.
각 히터 (4u, 4s) 의 선간 거리 (f) 는 1 ㎜ 이상이 바람직하고, 2 ㎜ 이상이 보다 바람직하다. 각 히터 (4u, 4s) 의 선간 거리 (f) 가 지나치게 작으면 단락되기 때문이다. 또, 제 2 절연층 (5) 의 히터부 (4) 에 대한 밀착력은, 제 1 절연층 (3) 에 대한 밀착력보다 낮기 때문에, 각 히터 (4u, 4s) 의 선간 거리 (f) 가 작고, 제 1 절연층 (3) 의 표면 (3a) 의 노출 범위가 적어지면, 제 2 절연층 (5) 의 밀착력이 저하되기 때문이다.
히터부 (4) 에 대한 출력의 조정은 사이리스터나 인버터 등이 사용되고, 원하는 승온 상태를 얻기 위해서, 예를 들어 100 kW/㎡ 정도의 전력이 당해 히터부 (4) 에 출력된다. 정전척 (1) 내의 소요 부위에 온도 센서를 내장시켜, 각 부위의 온도를 검지하거나, 웨이퍼 (51) 의 온도를 비접촉으로 검지함으로써, 히터부 (4) 를 피드백 제어해도 된다.
정전척 (1) 은, 다음 공정을 구비하는 정전척의 제조 방법에 의해 제조된다. 즉, 웨이퍼 (51) 를 유지하기 위한 척 본체를 구성하는 기재부 (2) 의 표면 (2a) 에, 용사 재료를 용사하여 제 1 절연층 (3) 및 제 2 절연층 (5) 을 형성하는 절연층 형성 공정과, 제 1 절연층 (3) 의 표면 (3a) 에 스크린 인쇄법, 잉크젯법, 및 디스펜서법 중 어느 것에 의해 도전성 페이스트를 도포하고, 도전체로 이루어지는 히터부 (4) 를 형성하는 히터부 형성 공정과, 제 2 절연층 (5) 의 표면 (5a) 에 용사 재료를 용사하여 전극부 (6) 를 형성하는 전극부 형성 공정과, 전극부 (6) 를 덮도록 제 2 절연층 (5) 의 표면 (5a) 에 용사 재료를 용사하여 유전층 (7) 을 형성하는 유전층 형성 공정을 구비하는 정전척의 제조 방법이다.
본 실시형태의 정전척 (1) 및 그 제조 방법에 의하면, 제 1 절연층 (3), 제 2 절연층 (5), 전극부 (6), 및 유전층 (7) 이 용사 피막으로 구성되어 있기 때문에, 접착제를 사용하지 않고 기재부 (2) 에 제 1 절연층 (3), 제 2 절연층 (5), 전극부 (6), 및 유전층 (7) 을 형성할 수 있다. 따라서, 접착제의 사용에 의한 리스폰스의 저하나, 플라즈마에 의한 소모에 의해 열전도성이 저해되어 냉각할 수 없게 된다는 문제를 없앨 수 있다. 그린 시트를 사용하여 정전척을 제작했을 경우, 유리 성분이나 소결 보조제의 존재에 의해 불순물이 많아지지만, 유리 성분이나 소결 보조제를 사용하지 않는 본 실시형태의 정전척 (1) 에서는, 불순물을 최대한 저감시킬 수 있다. 또, 정전척 (1) 을 대형화하는 경우에는, 그린 시트를 소성한 소결 부재를 사용하여 제작하는 것보다도 저비용으로 제작할 수 있다.
히터부를 용사에 의해 형성했을 경우, 체적 저항률이 커져, 배선을 가능한 한 두껍게 하고, 폭 넓게 하며, 또한 짧게 하여 대전력에 대응시킬 필요가 있는 데에 반해, 도전성 페이스트를 도포한 도전체로 히터부 (4) 를 형성하고 있기 때문에 히터부 (4) 의 체적 저항률이 낮아졌다. 체적 저항률이 낮기 때문에, 히터부 (4) 의 설계 자유도를 높게 할 수 있다. 이것에 의해, 히터부 (4) 의 배선을 길게 해도, 얇고, 폭이 좁은 형상으로 할 수 있고, 제 1 절연층 (3) 과 히터부 (4) 의 열팽창률의 차에 의한 당해 히터부 (4) 의 균열이나 박리를 방지할 수 있다. 히터부 (4) 의 배선을 폭 넓게 할 필요가 없기 때문에, 선간 거리 (f) 를 넓게 할 수 있고, 예를 들어 푸셔핀 구멍이나 냉각 가스 구멍을 형성하는 스페이스를 확보하기 쉽다. 또, 제 2 절연층 (5) 의 제 1 절연층 (3) 에 대한 충분한 밀착력을 확보할 수 있다. 또한, 용사에 의해 형성했을 경우보다 발열 상태의 편차를 적게 할 수 있어 웨이퍼 (51) 의 온도를 양호한 정밀도로 제어할 수 있다.
상기 실시형태는 예시로 제한적인 것은 아니다. 예를 들어 히터부와 전극부의 위치를 바꿔 넣어도 된다. 즉, 웨이퍼를 유지하기 위한 척 본체를 구성하는 기재부와, 이 기재부의 웨이퍼 유지측의 표면에 형성된 용사 피막으로 이루어지는 제 1 절연층과, 이 제 1 절연층의 웨이퍼 유지측의 표면에 용사하여 형성된 전극부와, 이 전극부를 덮도록 제 1 절연층의 웨이퍼 유지측의 표면에 형성된 용사 피막으로 이루어지는 제 2 절연층과, 이 제 2 절연층의 웨이퍼 유지측의 표면에 도전성 페이스트를 도포하여 형성된 도전체로 이루어지는 히터부와, 이 히터부를 덮도록 제 2 절연층의 웨이퍼 유지측의 표면에 형성된 용사 피막으로 이루어지는 유전층을 구비한 정전척이다.
히터부와 전극부를 동일한 층에 형성해도 된다. 즉, 웨이퍼를 유지하기 위한 척 본체를 구성하는 기재부와, 이 기재부의 웨이퍼 유지측의 표면에 형성된 용사 피막으로 이루어지는 절연층과, 이 절연층의 웨이퍼 유지측의 표면에 도전성 페이스트를 도포하여 형성된 도전체로 이루어지는 히터부와, 상기 절연층의 웨이퍼 유지측에 용사하여 형성된 전극부와, 이들 전극부 및 히터부를 덮도록 상기 절연층의 웨이퍼 유지측의 표면에 형성된 용사 피막으로 이루어지는 유전층을 구비한 정전척이다.
히터부가 전극부를 겸하도록 해도 된다. 즉, 웨이퍼를 유지하기 위한 척 본체를 구성하는 기재부와, 이 기재부의 웨이퍼 유지측의 표면에 형성된 용사 피막으로 이루어지는 절연층과, 이 절연층의 웨이퍼 유지측의 표면에 도전성 페이스트를 도포하여 형성된 도전체로 이루어지는 히터부 (전극부) 와, 이 히터부를 덮도록 상기 절연층의 웨이퍼 유지측의 표면에 형성된 용사 피막으로 이루어지는 유전층을 구비한 정전척이다.
상기 각 구성의 정전척에 있어서도, 절연층, 히터부, 전극부, 및 유전층은 상기 실시형태와 동일한 방법에 의해 형성되고, 접착제를 사용한 경우에 있어서의 결점이 존재하지 않으며, 그와 함께 설계 자유도가 높은 것으로 할 수 있다. 상기 실시형태에서는, 절연층 및 유전층으로 3 층 구조로 하고 있지만, 상기 구성과 같이 절연층 및 유전층으로 2 층 구조로 하거나, 혹은 4 층 이상의 구조로 하여 히터부나 전극부를 2 층 이상의 각 층에 형성해도 된다. 전극부, 급전 핀, 가스 구멍, 및 냉각로의 형태는, 반도체 제조 프로세스에 따라 적절히 변경할 수 있다. 웨이퍼가 접촉하는 유전층의 표면을 엠보스상으로 하여 흡착성을 제어해도 된다. 정전척으로 유지하는 대상물은, 어떠한 것이어도 되고, 웨이퍼 이외에 플랫 패널 디스플레이의 유리 기판 등을 들 수 있다.
전극부를, 히터부와 동일하게 도전성 페이스트에 의해 형성해도 된다. 이 경우의 전극부는, 도전성 페이스트를 스크린 인쇄, 잉크젯법, 또는 디스펜서법에 의해 도포하여 형성된다. 또, 정전척에 의한 정전 흡착의 방식은, 상기 각 실시형태의 쿨롱력을 이용한 것에 한정되지 않고, 예를 들어 그래디언트력이나 존슨·라벡력을 이용한 것이어도 된다.
실시예
이하, 실시예에 의해 본 발명을 보다 상세하게 설명한다. 또한, 본 발명은 이하의 실시예에 한정되는 것은 아니다. 실시예 1 ∼ 4 로서 상기 실시형태의 도 2 에 나타내는 정전척을 제작하고, 비교예 1 ∼ 8 로서 상기 실시형태의 도 2 에 나타내는 정전척 중 히터부를 도전성 페이스트를 도포하여 형성한 것과, 용사하여 형성한 것을 제작하고, 시공 가부의 판정, 내열 온도 시험, 5000 W 인가 시험을 실시하였다. 실시예 1 ∼ 4 및 비교예 1 ∼ 8 의 표면은, #400 연마 마무리로 하고, 히터는 1 채널, 5000 W 사양으로 하며, 기재는 φ300 의 알루미늄 합금으로 하고, 모두 트리밍 없음으로 하였다. 각 실시예 및 각 비교예의 제작 조건을 표 1 에 나타낸다.
5000 W 사양의 히터부를 만드는 경우의 막 두께의 계산예를 설명한다. 상업 전원의 전압은 200 V 이고, 따라서 전류값은 5000 ÷ 200 = 25 A 이다. 200 V 를 가하고 25 A 흘리기 위해서는, 히터부의 단자 사이의 저항값 (R) 은 200 ÷ 25 = 8 Ω 이 된다. 히터부를 φ300 의 기재 상에 선 폭 : 3 ㎜, 피치 6 ㎜ (선간 거리 3 ㎜) 로 동심원상으로 배치하면, 전체 길이 (L) 는 약 11310 ㎜ 가 되고, 다음 식에서 저항값 (R) 이 8 Ω 이 되도록 체적 저항률 (ρ) 에 따라 막 두께 (단면적 ÷ 선 폭) 를 결정한다.
단면적 = 체적 저항률 (ρ) × 전체 길이 (L) ÷ 저항값 (R)
내열 온도 시험은, 항온기에 정치 (靜置) 하고 (기재는 냉각하지 않음), 실온으로부터 2 ℃/분으로 승온시켰을 때, 피막 외관에 균열이 생기는 온도로 하였다. 5000 W 인가 시험은, 기재의 이면을 20 ℃ 로 냉각하면서, 히터부에 5000 W 의 전력을 투입하여, 10 분간 유지한다. 표 1 의 × 표시는 도중에 히터부가 타는 것에 의한 단선이나, 시험 전후에 히터부 전체의 저항값의 큰 변화, 또는 제 2 절연층 이후를 용사하여, 그 전후에 있어서의 저항값의 10 % 를 초과하는 변동을 나타낸다.
Figure 112014119762252-pct00006
결과를 표 2 에 나타낸다. 실시예에서는 모두 시공이 가능하고, 내열 온도는 180 ℃ 이며, 5000 W 인가 시험도 양호하였다. 이에 반해, 비교예에서는, 시공할 수 없는 경우가 많고, 시공할 수 있어도 내열 온도가 낮고, 5000 W 인가 시험에서도 저항값의 상승이 확인되었다.
Figure 112014106446640-pct00002
1 : 정전척
2 : 기부재
2a : 표면
3 : 제 1 절연층
3a : 표면
4 : 히터부
5 : 제 2 절연층
5a : 표면
6 : 전극부
7 : 유전층
9 : 가스 구멍
10 : 제 1 급전 핀
11 : 제 2 급전 핀
12 : 냉각로
50 : 진공 챔버
51 : 웨이퍼

Claims (7)

  1. 웨이퍼를 유지하기 위한 척 본체를 구성하는 기재부와,
    상기 기재부의 웨이퍼 유지측에 형성된 용사 피막으로 이루어지는 제 1 및 제 2 절연층과,
    상기 제 1 절연층의 웨이퍼 유지측의 표면에 도전성 페이스트를 도포하여 형성된 도전체로 이루어지는 히터부와,
    상기 제 2 절연층의 웨이퍼 유지측의 표면에 도전성 페이스트를 도포하여 형성된, 정전 흡착용의 전극부와,
    상기 제 2 절연층의 웨이퍼 유지측에 형성된 용사 피막으로 이루어지는 유전층을 구비하고,
    상기 도전성 페이스트는 경화 후의 잔사량이 5 중량% 이하가 되고,
    상기 히터부는, 5 ㎜ 이하의 선 폭으로 가늘고 긴 형상으로 배선되어 있는 것을 특징으로 하는 정전척.
  2. 웨이퍼를 유지하기 위한 척 본체를 구성하는 기재부와,
    상기 기재부의 웨이퍼 유지측의 표면에 형성된 용사 피막으로 이루어지는 절연층과,
    상기 절연층의 웨이퍼 유지측의 표면에 도전성 페이스트를 도포하여 형성된 도전체로 이루어지는 히터부와,
    상기 절연층의 웨이퍼 유지측의 표면에 도전성 페이스트를 도포하여 형성된, 정전 흡착용의 전극부와,
    상기 절연층의 웨이퍼 유지측에 형성된 용사 피막으로 이루어지는 유전층을 구비하고,
    상기 도전성 페이스트는 경화 후의 잔사량이 5 중량% 이하가 되고,
    상기 히터부는, 5 ㎜ 이하의 선 폭으로 가늘고 긴 형상으로 배선되어 있는 것을 특징으로 하는 정전척.
  3. 삭제
  4. 삭제
  5. 제 1 항 또는 제 2 항에 있어서,
    상기 히터부가 형성되어 있는 절연층 표면의 표면 조도가, Ra 값으로 6 ㎛ 이하인 것을 특징으로 하는 정전척.
  6. 제 1 항 또는 제 2 항에 있어서,
    상기 용사 피막은, 산화물계 세라믹, 질화물계 세라믹, 및 불화물계 세라믹에서 선택되는 1 종 이상의 재료로 이루어지는 것을 특징으로 하는 정전척.
  7. 척 본체를 구성하는 기재부의 웨이퍼 유지측에서 용사 재료를 용사하여 제 1 및 제 2 절연층을 형성하는 절연층 형성 공정과,
    상기 제 1 절연층의 웨이퍼 유지측의 표면에 스크린 인쇄법, 잉크젯법, 및 디스펜서법 중 어느 것에 의해 도전성 페이스트를 도포하여, 도전체로 이루어지는 히터부를 형성하는 히터부 형성 공정과,
    상기 제 2 절연층의 웨이퍼 유지측의 표면에 스크린 인쇄법, 잉크젯법, 및 디스펜서법 중 어느 것에 의해 도전성 페이스트를 도포하여, 정전 흡착용의 전극부를 형성하는 전극부 형성 공정과,
    상기 제 2 절연층의 웨이퍼 유지측에서 용사 재료를 용사하여 유전층을 형성하는 유전층 형성 공정을 구비하고,
    상기 도전성 페이스트는 경화 후의 잔사량이 5 중량% 이하가 되고,
    상기 히터부는, 5 ㎜ 이하의 선 폭으로 가늘고 긴 형상으로 배선되어 있는 것을 특징으로 하는 정전척의 제조 방법.
KR1020147031085A 2012-05-07 2013-03-22 정전척 및 정전척의 제조 방법 KR102024965B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2012-105583 2012-05-07
JP2012105583A JP6359236B2 (ja) 2012-05-07 2012-05-07 静電チャック
PCT/JP2013/058208 WO2013168471A1 (ja) 2012-05-07 2013-03-22 静電チャック及び静電チャックの製造方法

Publications (2)

Publication Number Publication Date
KR20150013497A KR20150013497A (ko) 2015-02-05
KR102024965B1 true KR102024965B1 (ko) 2019-09-24

Family

ID=49550528

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020147031085A KR102024965B1 (ko) 2012-05-07 2013-03-22 정전척 및 정전척의 제조 방법

Country Status (6)

Country Link
US (1) US9799545B2 (ko)
JP (1) JP6359236B2 (ko)
KR (1) KR102024965B1 (ko)
CN (1) CN104272450B (ko)
TW (1) TWI581361B (ko)
WO (1) WO2013168471A1 (ko)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201525889A (zh) * 2013-12-20 2015-07-01 King Lung Chin Ptc Co Ltd 電熱片製造、銷售之產品規格管理方法
JP6442296B2 (ja) * 2014-06-24 2018-12-19 東京エレクトロン株式会社 載置台及びプラズマ処理装置
KR102288349B1 (ko) * 2014-12-09 2021-08-11 삼성디스플레이 주식회사 정전 척 시스템과, 이를 이용한 유기 발광 디스플레이 장치의 제조 방법
JP5987966B2 (ja) * 2014-12-10 2016-09-07 Toto株式会社 静電チャックおよびウェーハ処理装置
JP6584286B2 (ja) * 2015-10-26 2019-10-02 日本発條株式会社 ヒータユニット
JP2018056333A (ja) * 2016-09-29 2018-04-05 日本発條株式会社 基板載置台、および基板載置台の作製方法
US11289355B2 (en) 2017-06-02 2022-03-29 Lam Research Corporation Electrostatic chuck for use in semiconductor processing
US10904996B2 (en) * 2017-09-20 2021-01-26 Applied Materials, Inc. Substrate support with electrically floating power supply
US10497667B2 (en) 2017-09-26 2019-12-03 Taiwan Semiconductor Manufacturing Co., Ltd. Apparatus for bond wave propagation control
KR102180070B1 (ko) 2017-10-31 2020-11-17 엘지디스플레이 주식회사 초미세 패턴 증착장치, 이를 이용한 초미세 패턴 증착방법 그리고 초미세 패턴 증착방법에 의해 제작된 전계발광표시장치
WO2019102794A1 (ja) * 2017-11-24 2019-05-31 トーカロ株式会社 発熱部材
US11086233B2 (en) 2018-03-20 2021-08-10 Lam Research Corporation Protective coating for electrostatic chucks
JP7027219B2 (ja) * 2018-03-28 2022-03-01 京セラ株式会社 試料保持具
US10555412B2 (en) 2018-05-10 2020-02-04 Applied Materials, Inc. Method of controlling ion energy distribution using a pulse generator with a current-return output stage
JP7180201B2 (ja) * 2018-08-21 2022-11-30 富士通株式会社 接合構造体及び接合構造体の製造方法
US11476145B2 (en) 2018-11-20 2022-10-18 Applied Materials, Inc. Automatic ESC bias compensation when using pulsed DC bias
JP7451540B2 (ja) 2019-01-22 2024-03-18 アプライド マテリアルズ インコーポレイテッド パルス状電圧波形を制御するためのフィードバックループ
US11508554B2 (en) 2019-01-24 2022-11-22 Applied Materials, Inc. High voltage filter assembly
CN111508883B (zh) * 2019-01-31 2024-02-13 台湾积体电路制造股份有限公司 静电吸盘及其制造方法
CN114080670A (zh) * 2019-06-28 2022-02-22 日本碍子株式会社 静电卡盘加热器
KR20210044074A (ko) * 2019-10-14 2021-04-22 세메스 주식회사 정전 척과 이를 구비하는 기판 처리 시스템 및 정전 척의 제조 방법
US11848176B2 (en) 2020-07-31 2023-12-19 Applied Materials, Inc. Plasma processing using pulsed-voltage and radio-frequency power
US11901157B2 (en) 2020-11-16 2024-02-13 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11798790B2 (en) 2020-11-16 2023-10-24 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11495470B1 (en) 2021-04-16 2022-11-08 Applied Materials, Inc. Method of enhancing etching selectivity using a pulsed plasma
US11791138B2 (en) 2021-05-12 2023-10-17 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11948780B2 (en) 2021-05-12 2024-04-02 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11967483B2 (en) 2021-06-02 2024-04-23 Applied Materials, Inc. Plasma excitation with ion energy control
US11810760B2 (en) 2021-06-16 2023-11-07 Applied Materials, Inc. Apparatus and method of ion current compensation
US11569066B2 (en) 2021-06-23 2023-01-31 Applied Materials, Inc. Pulsed voltage source for plasma processing applications
US11476090B1 (en) 2021-08-24 2022-10-18 Applied Materials, Inc. Voltage pulse time-domain multiplexing
CN114959547A (zh) * 2022-05-30 2022-08-30 苏州众芯联电子材料有限公司 提高静电卡盘的电介质层的致密性的工艺、静电卡盘的制备工艺、静电卡盘
US11972924B2 (en) 2022-06-08 2024-04-30 Applied Materials, Inc. Pulsed voltage source for plasma processing applications

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000031253A (ja) * 1998-07-10 2000-01-28 Komatsu Ltd 基板処理装置及び方法
US20030019518A1 (en) * 2001-05-15 2003-01-30 Koichi Shimizu Photovoltaic element and process for the production thereof
JP2006332068A (ja) * 2006-07-06 2006-12-07 Sumitomo Electric Ind Ltd セラミックスヒータおよびそれを搭載した半導体あるいは液晶製造装置
JP2009111005A (ja) * 2007-10-26 2009-05-21 Shin Etsu Chem Co Ltd 耐腐食性積層セラミックス部材

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3477062B2 (ja) * 1997-12-26 2003-12-10 京セラ株式会社 ウエハ加熱装置
JP2000082695A (ja) * 1998-05-14 2000-03-21 Sony Corp プラズマエッチング法及び半導体装置
JP2002057207A (ja) 2000-01-20 2002-02-22 Sumitomo Electric Ind Ltd 半導体製造装置用ウェハ保持体およびその製造方法ならびに半導体製造装置
JP2001274229A (ja) * 2000-03-24 2001-10-05 Ibiden Co Ltd 静電チャックの製造方法およびセラミックヒータの製造方法
JP2002009138A (ja) * 2000-06-21 2002-01-11 Mitsubishi Heavy Ind Ltd 静電チャックの製造方法および静電チャック
JP2005032842A (ja) * 2003-07-08 2005-02-03 Ibiden Co Ltd 電極構造およびセラミック接合体
JP2005063991A (ja) * 2003-08-08 2005-03-10 Sumitomo Electric Ind Ltd 半導体製造装置
US6946403B2 (en) * 2003-10-28 2005-09-20 Axcelis Technologies, Inc. Method of making a MEMS electrostatic chuck
JP2006140367A (ja) * 2004-11-15 2006-06-01 Sumitomo Electric Ind Ltd 半導体製造装置用加熱体およびこれを搭載した加熱装置
JP2007088411A (ja) 2005-06-28 2007-04-05 Hitachi High-Technologies Corp 静電吸着装置およびウエハ処理装置ならびにプラズマ処理方法
US7446284B2 (en) * 2005-12-21 2008-11-04 Momentive Performance Materials Inc. Etch resistant wafer processing apparatus and method for producing the same
JP5324029B2 (ja) * 2006-03-20 2013-10-23 東京エレクトロン株式会社 半導体加工装置用セラミック被覆部材
KR20100046909A (ko) * 2008-10-28 2010-05-07 주성엔지니어링(주) 정전 흡착 장치와 그의 제조방법
JP2010157559A (ja) * 2008-12-26 2010-07-15 Hitachi High-Technologies Corp プラズマ処置装置
US8637794B2 (en) * 2009-10-21 2014-01-28 Lam Research Corporation Heating plate with planar heating zones for semiconductor processing
JP5644161B2 (ja) * 2010-04-12 2014-12-24 住友電気工業株式会社 半導体保持用の静電チャックおよびその製造方法
EP3070062A1 (en) 2010-05-04 2016-09-21 E. I. du Pont de Nemours and Company Thick-film pastes containing lead- and tellurium-oxides, and their use in the manufacture of semiconductor devices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000031253A (ja) * 1998-07-10 2000-01-28 Komatsu Ltd 基板処理装置及び方法
US20030019518A1 (en) * 2001-05-15 2003-01-30 Koichi Shimizu Photovoltaic element and process for the production thereof
JP2006332068A (ja) * 2006-07-06 2006-12-07 Sumitomo Electric Ind Ltd セラミックスヒータおよびそれを搭載した半導体あるいは液晶製造装置
JP2009111005A (ja) * 2007-10-26 2009-05-21 Shin Etsu Chem Co Ltd 耐腐食性積層セラミックス部材

Also Published As

Publication number Publication date
KR20150013497A (ko) 2015-02-05
US9799545B2 (en) 2017-10-24
TW201347079A (zh) 2013-11-16
WO2013168471A1 (ja) 2013-11-14
JP2013235879A (ja) 2013-11-21
CN104272450A (zh) 2015-01-07
CN104272450B (zh) 2016-11-23
JP6359236B2 (ja) 2018-07-18
US20150116889A1 (en) 2015-04-30
TWI581361B (zh) 2017-05-01

Similar Documents

Publication Publication Date Title
KR102024965B1 (ko) 정전척 및 정전척의 제조 방법
US6534751B2 (en) Wafer heating apparatus and ceramic heater, and method for producing the same
KR20040068154A (ko) 세라믹 히터
KR20020092967A (ko) 세라믹 기판 및 그 제조 방법
KR102398922B1 (ko) 발열부재
US20040155025A1 (en) Ceramic heater
JP2006127883A (ja) ヒータ及びウェハ加熱装置
US20040016746A1 (en) Ceramic heater
JP2001253777A (ja) セラミック基板
WO2002042241A1 (fr) Corps fritte de nitrure d'aluminium, procede de production d'un corps fritte de nitrure d'aluminium, substrat ceramique et procede de production d'un substrat ceramique
JP4025497B2 (ja) ウエハ加熱装置
JP2012009337A (ja) セラミックスヒータ
JP3771795B2 (ja) ウエハ加熱装置
JP2001267381A (ja) 半導体製造・検査装置
JP6618159B2 (ja) 発熱部材
JP2001135684A (ja) ウエハプローバ装置
EP1175127A1 (en) Ceramic heater
JP4789790B2 (ja) ウェハ支持部材
JP4809171B2 (ja) ウエハ加熱装置
JP2003347177A (ja) ウェハ支持部材
JP2001085143A (ja) セラミックヒータ
JP2005019899A (ja) セラミックヒータおよびこれを用いたウエハ加熱装置
JP2002319476A (ja) セラミックヒータ
JP2001135682A (ja) ウエハプローバおよびウエハプローバに使用されるセラミック基板
JP2014186872A (ja) セラミックヒータ

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant