KR101947863B1 - 자가 습윤 막 전극 유닛 및 상기 유닛을 포함하는 연료 전지 - Google Patents

자가 습윤 막 전극 유닛 및 상기 유닛을 포함하는 연료 전지 Download PDF

Info

Publication number
KR101947863B1
KR101947863B1 KR1020157033631A KR20157033631A KR101947863B1 KR 101947863 B1 KR101947863 B1 KR 101947863B1 KR 1020157033631 A KR1020157033631 A KR 1020157033631A KR 20157033631 A KR20157033631 A KR 20157033631A KR 101947863 B1 KR101947863 B1 KR 101947863B1
Authority
KR
South Korea
Prior art keywords
cathode
layer
anode
membrane
gas diffusion
Prior art date
Application number
KR1020157033631A
Other languages
English (en)
Other versions
KR20160008205A (ko
Inventor
게롤드 훼브너
한네스 숄츠
Original Assignee
아우디 아게
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아우디 아게 filed Critical 아우디 아게
Publication of KR20160008205A publication Critical patent/KR20160008205A/ko
Application granted granted Critical
Publication of KR101947863B1 publication Critical patent/KR101947863B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04291Arrangements for managing water in solid electrolyte fuel cell systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/861Porous electrodes with a gradient in the porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8636Inert electrodes with catalytic activity, e.g. for fuel cells with a gradient in another property than porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1053Polymer electrolyte composites, mixtures or blends consisting of layers of polymers with at least one layer being ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1067Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • Y02E60/521

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Composite Materials (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

본 발명은 막 전극 유닛(12) 및 상기 유닛을 포함하는 연료 전지(100)에 관한 것이다. 막 전극 유닛(12)은 고분자 전해질 막(PEM;20), PEM(20)의 양측면에 접촉하는 2개의 촉매 전극(30, 31), 즉 애노드(30)와 캐소드(31) 및, 전극(30, 31)에 양측면으로 직접 또는 간접적으로 결합하는 2개의 기체 확산층(40, 41), 즉 애노드측 기체 확산층(40)과 캐소드측 기체 확산층(41)을 포함하고, 적어도 하나의 기체 확산층(40, 41)은 선택적으로 PEM(20)을 향하는 미세다공 층(46, 47)을 포함할 수 있다. 애노드측 기체 확산층(40)/애노드측 미세다공 층(46)/애노드(30)/PEM(20)/캐소드(31)/캐소드측 미세다공 층(47)/캐소드측 기체 확산층(41)을 포함하는 층 시퀀스에, 적어도 2개의 상기 구성 요소들의 상대적 소수성 및/또는 적어도 하나의 상기 구성 요소 내에서 소수성 변화 및/또는 적어도 하나의 상기 구성 요소들의 다공 크기 및/또는 다공성을 포함하는 상대적 다공 구조 및/또는 적어도 하나의 상기 구성 요소 내에서 다공 구조의 변화가 제공된다. 또한 PEM(20)만이 지지 구조(23)에 도포된 층(21, 22)으로 인한, 예를 들어 2개의 고분자층(21, 22)의 이온기의 상이한 농도에 의한 소수성 변화를 가질 수도 있다. 전술한 배치는 패시브한 전달의 구조적 지원을 통해 전지 내 수분 밸런스를 개선한다.

Description

자가 습윤 막 전극 유닛 및 상기 유닛을 포함하는 연료 전지{SELF-WETTING MEMBRANE ELECTRODE UNIT AND FUEL CELL HAVING SUCH A UNIT}
본 발명은 개선된 수분 밸런스를 갖는 연료 전지를 위한 막 전극 유닛 및 적어도 하나의 상기 막 전극 유닛을 포함하는 연료 전지에 관한 것이다.
연료 전지들은 전기 에너지를 발생시키기 위해 산화제, 예를 들어 산소와 연료, 예를 들어 수소의 화학적 반응을 이용한다. 연료 전지는 구성 요소로서 소위 막 전극 유닛(MEA;membrane electrode assembly)을 포함하고, 상기 막 전극 유닛은 이온 전도성 고분자 전해질 막을 포함하고, 상기 막은 2개의 촉매 전극, 예를 들어 애노드와 캐소드에 의해 샌드위치 방식으로 접촉된다. 전극에 일반적으로 기체 확산층(GDL; gas diffusion layer)이 결합하고, 상기 층들은 전극으로 작동 가스의 균일한 공급을 위해 이용된다. 일반적으로 연료 전지는 스택 내에 배치된 다수의 막 전극 유닛에 의해 형성되고, 그것의 전기 출력들은 가산된다. 또한 MEA들은 바이폴라 플레이트(bipolar plates)와 교대로 적층되고, 상기 바이폴라 플레이트는 작동 가스의 공급 및 냉각 또는 열 방출에 이용된다. 연료 전지의 작동 시 연료, 특히 수소 H2는 애노드에 공급되고, 거기에서 전자의 방출 하에 양성자 H+로 H2의 산화 반응이 이루어진다. 반응 챔버들을 기밀방식으로 서로 분리하여 전기 절연하는 막에 의해 애노드 챔버로부터 캐소드 챔버 내로 물 결합된 또는 물을 포함하지 않은 전달이 이루어진다. 애노드에서 방출된 전자들은 전기 라인을 통해 캐소드에 공급된다. 또한 캐소드에 산소 또는 산소 함유 혼합물, 예컨대 공기가 공급되므로, 전자의 흡수 하에 O2에서 O2 -로 환원이 이루어진다. 동시에 캐소드 챔버에서 이러한 산소 이온들은 물 형성 하에 막을 통해 운반된 양성자와 반응한다.
널리 보급된 연료 전지 기술은 막 자체가 고분자 전해질로 이루어진 고분자 전해질 막(PEM)에 기초한다. 술폰화 폴리테트라플루오르에틸렌 공중합체, 예를 들어 상표명 Nafion®로 알려진 제품으로 이루어진 막들이 보급되어 있고, 상기 제품은 페르플루오르알킬비닐에테르의 술포닐산플루오라이드-유도체와 테트라플루오르에틸렌으로 이루어진 공중합체이다. 상기 막의 전해질 전도는 수화된 양성자에 의해 이루어지고, 따라서 양성자 전도성을 위한 조건은 액상 물의 존재이다. 이로 인해 이러한 연료 전지의 작동 시 작동 가스, 특히 애노드 연료의 습윤을 필요로 한다. 연료 전지의 작동 가스의 습윤은 주로 연료 전지 전방에 접속된 외부 습윤기에 의해 이루어지지만, 상기 습윤기는 시스템 비용을 상당히 증가시킨다. 또한 다공성 바이폴라 플레이트(UTC), 연료 전지 스택 내 주변 채널 또는 개별 MEA들 사이에 삽입된 밀봉부 내의 홈을 통해 물 재순환을 실시하는 것이 공개되어 있다. 그러나 이러한 해결 방법은 국부적인 물 교환만을 야기하고 및/또는 막 전극 유닛의 활성 면에 바람직하지 않게 작용하고 이로 인해 추가 면이 필요하다. 부분적으로는 추가 교환면이 막을 불균일하게 습윤시키고 민감한 막을 손상시킬 수 있는 기계적 응력을 야기한다. 활성 영역 외부에 위치한 기계적 지지층의 박리가 이루어질 수도 있다. 막의 습윤 외에 다른 한편으로는 캐소드에 생성되는 반응수는, 다공성 전극- 및 기체 확산층이 막히는 것을 저지하기 위해 계속해서 배출되는 것이 고려되어야 한다.
DE 10 2007 014 046 B4호는 주요면을 따라 막과 접촉하는 2개의 촉매층들 중 적어도 하나의 촉매층이 촉매 코팅이 얇아진 또는 촉매 코팅이 없는 영역을 포함하는 MEA를 기술한다. 감소한 또는 생략된 촉매 반응으로 인해 상기 위치에서 막을 통한 삼투성 물 전달이 중단되므로, 이 경우 여기에서 확산과 관련된 반대 방향으로 물 전달만이 이루어지고, 막 내부의 물의 미세 순환만이 이루어져야 한다.
DE 10 2007 025 207 A1호는 전해질 함침된 막에 기반하는 HT-고분자 전해질 막 연료 전지를 위한 기체 확산 전극을 기술한다. 기체 확산층 위에 배치된 다공성 촉매층이 소수성 물질, 예를 들어 흑연 또는 할로겐화 폴리올레핀(예를 들어 PTFE)을 포함하고, 이 경우 소수성 물질의 농도와 소수성은 GDL의 방향으로 증가할 수 있다. 물이 전해질을 막 또는 촉매층으로부터 제거할 수 있기 전에, 이러한 방식으로 저온에서 액체로 생성되는 생성수의 GDL을 통한 외부로 배출이 가속화되어야 한다.
촉매층에 추가하여 GDL 및/또는 GDL과 촉매층 사이에 위치한 미세다공 층(MPL)도 소수성 물질을 포함할 수도 있다.
DE 699 33 301 T2호는 연료 전지를 위한 외부 습윤기를 기술하고, 상기 습윤기는 고분자 전해질 막, 예를 들어 Nafion®-막을 포함하고, 상기 막의 양측면은 예를 들어 PTFE로 이루어진 다공성 소수성 물질의 층과 접촉한다. 막은 캐소드에 제공될 건조한 공기 유동으로 연료 전지의 습윤한 캐소드 배출 가스의 물을 전달하는데 이용된다.
US 5,998,058호는 연료 전지를 위한 기체 확산층을 기술하고, 상기 기체 확산층은 소수성 코팅을 포함하는 다공과 친수성 코팅을 포함하는 다공을 갖는다. 소수성 및 친수성 다공들은 통계적으로 전체 GDL-기판 위에 분포 배치된다.
연료 전지의 수분 밸런스의 개선을 위해 DE 103 40 834 A1호는, 고분자 전해질 막과 촉매층 사이에 각각 친수성 물질의, 촉매를 포함하지 않는 다공성 응결층을 배치하는 것을 제안한다. 응결층은 촉매층보다 작은 다공 크기와 작은 친수성을 갖는다. 응결층은 생성수의 응결을 촉진하여 막의 습윤을 지원해야 한다.
WO 2005/069839 A2호에 애노드측 및 캐소드측 기체 확산층들이 각각 친수성 기판을 포함하는 연료 전지가 공개되어 있다. 또한 캐소드측 기체 확산층과 캐소드 전극 사이에 추가 소수성 층이 배치된다.
본 발명의 과제는, 반응 가스의 외부 습윤 공정이 감소하거나 완전히 불필요한 자가 습윤 막 전극 유닛을 제공하는 것이다.
상기 과제는 독립 청구항의 특징을 포함하는 막 전극 유닛 및 연료 전지에 의해 해결된다.
본 발명에 따른 막 전극 유닛은 고분자 전해질 막, 고분자 전해질 막의 양측면에 접촉하는 2개의 촉매 전극, 즉 애느드와 캐소드 및, 전극에 양측면으로 직접 또는 간접적으로 결합하는 2개의 기체 확산층(GDL), 즉 애노드측 기체 확산층과 캐소드측 기체 확산층을 포함한다. 선택적으로 하나 또는 2개의 GDL은 고분자 전해질 막을 향하는 미세다공 층(MPL; microporous layer)을 포함할 수 있다. 본 발명에 따라, 애노드측 기체 확산층/애노드측 미세다공 층/애노드/고분자 전해질 막/캐소드/캐소드측 미세다공 층/캐소드측 기체 확산층을 포함하는 층 시퀀스에서,
- 적어도 2개의 상기 구성 요소들의 상대적 소수성 및/또는 적어도 하나의 상기 구성 요소 내에서 소수성 변화 및/또는
- 적어도 2개의 상기 구성 요소들의 다공성 및/또는 다공 크기를 포함하는 상대적 다공 구조 및/또는 적어도 하나의 상기 구성 요소 내에서 다공 구조의 변화는, 고분자 전해질 막을 통한 물의 전달이 촉진되도록 형성된다.
본 발명에 따라 이로써 EMA의 하나 이상의 구성 요소의 소수성 및/또는 다공 구조의 적절한 선택에 의해 고분자 전해질 막을 통해 물의 패시브한 전달 및 상기 막의 자동 습윤이 가능해진다. 이로써 MEA의 활성 면 내에서 물 재순환이 이루어진다. 따라서 물 교환을 위한 추가 면이 요구되지 않으므로, MEA 및 연료 전지 스택의 콤팩트한 형성이 가능해진다. 또한 활성 막 면 내에서 물의 교환은 불균일한 습윤으로 인한 민감한 고분자 전해질 막 내부의 기계적 응력 위험을 감소시킨다. 또한 활성 영역 외부에 위치한 기계적 지지층의 박리 위험도 감소하는데, 그 이유는 적층된 지지층 외부에서 물 교환이 이루어지기 때문이다. 이로써 MEA의 수명이 연장된다.
바람직하게 상기 층시퀀스 내의 소수성 및/또는 다공 구조는, 고분자 전해질 막을 통해 캐소드측으로부터 애노드측으로 물의 전달이 촉진되도록 형성된다. 연료 전지 반응에 의해 물이 주로 캐소드측에 생성되기 때문에, 이러한 실시예는 동시에 캐소드측으로부터 생성수의 배출을 실행하고 따라서 상기 캐소드측에서 바람직하지 않은 범람을 방지한다. 그러나 반대의, 즉 애노드측으로부터 캐소드측으로 물 전달도 소정의 막 습윤을 야기한다.
본 발명과 관련해서 "소수성"이란, 극성 물질, 특히 물을 물리치는 물질의 특성, 즉 소수성 물질의 표면과 물 사이에 가능한 한 작은 접촉면을 형성하는 성향이다. 이 경우 물질의 극성이 감소할수록 소수성은 증가한다. 물질의 "소수성"은 물질의 평탄한 표면 위에서 물방울의 접촉각에 의해 수량화되고, 이 경우 적어도 90˚의 접촉각을 갖는 물질들을 소수성이라고 한다. 물질의 표면 위에서 물방울을 형성하는 각도를 접촉각이라고 하고, 이 경우 물방을 가장자리에 접선 방식으로 접촉하는 직선과 접촉면 사이의 접촉각이 측정된다. 또한 접촉각이 작을수록, 물질의 소수성은 더 작아지고(즉 더 친수성이고 더 극성이고), 물질의 소수성이 증가함에 따라 접촉각은 커진다. 이 경우 "원소 A가 원소 B보다 더 소수성이다"와 같은 표현은 상대적 표시일 뿐이고, 원소 A가 접촉각 ≥ 90°를 갖는다는 소수성의 의미로 파악될 수 없다. 또한 소수성에 해당하는 규정은 친수성의 특성에 의해 이루어질 수 있는 것으로 파악되고, 이 경우 친수성은 소수성과 반대로 변화한다.
"다공성"이란 이 경우 체적- 또는 질량 단위 당 공동부의 크기이다. "다공 크기"는 그와 달리 평균 다공 크기 또는 평균 다공 직경이다.
바람직하게는 상대적 소수성, 즉 MEA의 2개 이상의 구성 요소들의 소수성의 비 및/또는 적어도 하나의 구성 요소 내에서 소수성 변화, 즉 상기 구성 요소의 상이한 층 깊이 사이의 소수성의 비는, 캐소드측 기체 확산층의 방향으로 소수성이 증가하도록 형성된다. 동일한 규정이 친수성에 관련되고, 상기 친수성은 본 발명에 따라 애노드측 기체 확산층의 방향으로 증가한다. 따라서 캐소드측은 비교적 소수성으로 형성되는 한편, 애노드측은 비교적 덜 소수성이고 또는 비교적 친수성이다. 이로 인해 막을 통한 캐소드측에 생성되는 생성수의 제거와 배출 및 애노드 측에서 물 흡수가 이루어짐으로써, 상기 막은 자동 습윤된다. 대안으로서 물 전달이 반대 방향으로, 즉 애노드측으로부터 캐소드측으로 이루어져야 하는 경우에, 상대적 소수성 및/또는 소수성 변화는 정확히 역으로 선택될 수 있고, 따라서 애노드측 기체 확산층을 향해 소수성이 증가한다.
바람직하게는 대안으로서 또는 추가로 다공성 및/또는 다공 크기는, 캐소드측 기체 확산층의 방향으로 마찬가지로 증가하도록 선택된다. 애노드의 방향으로 점점 더 다공 감소 또는 협소화가 이루어짐에 따라 모세관 효과가 증대되어 애노드의 방향으로 패시브한 물 전달이 이루어진다. 대안으로서 애노드로부터 캐소드로 반대의 물 전달이 이루어져야 하는 경우에, 다공성 및/또는 다공 크기는 정확히 반대로 선택될 수 있고, 즉 따라서 애노드측 기체 확산층의 방향으로 증가한다.
소수성 및 다공 구조의 본 발명에 따른 형성의 조치들은 서로 보강되어 특히 바람직하게 조합될 수 있다.
본 발명의 특히 바람직한 실시예에서 애노드측 기체 확산층, 애노드측 미세다공 층, 애노드 및 고분자 전해질 막의 애노드측을 포함하는 애노드측 구성 요소들 중 적어도 하나의 구성 요소의 소수성은 캐소드측 기체 확산층, 캐소드측 미세 다공성층, 캐소드 및 고분자 전해질 막의 캐소드측을 포함하는 상응하는 캐소드측 구성 요소의 소수성보다 작다. 예를 들어 애노드는 캐소드보다 작은 소수성을 가질 수 있고 및/또는 애노드측 GDL은 캐소드측 GDL보다 작은 소수성을 갖는다. 애노드측 구성 요소와 캐소드측 구성 요소의 다공 크기 및/또는 다공성에도 상응하게 적용된다.
본 발명의 바람직한 실시예에 따라 고분자 전해질 막은 적어도 2개의 막 층을 포함하고, 이 경우 애노드측 막 층의 소수성 및/또는 다공 크기 및/또는 다공성은 캐소드측 막 층의 소수성, 다공 크기 또는 다공성보다 작다. 이로 인해 막의 캐소드측으로부터 막의 애노드측으로 물의 패시브한 전달이 촉진된다. 선택적으로 막은 그것의 안정화를 위해 특히 중앙에 배치된 다공성 지지층을 가질 수 있다.
바람직하게는 고분자 전해질 막의 적어도 2개의 층의 상이한 소수성은 막 층들의 고분자 전해질 물질의 이온기의 상이한 농도에 의해 및/또는 고분자 전해질 물질에 혼합된 비이온, 특히 소수성 물질의 상이한 농도에 의해 제공된다. 예를 들어 애노드측 막 층의 고분자 전해질 물질에 어떤 것도 혼합되지 않거나 캐소드측 막 층보다 낮은 농도의 소수성 물질, 예를 들어 PTFE가 혼합된다. 이로 인해 동시에 캐소드측 막 층의 소수성은 다른 막 층에 비해 커지고, 애노드측에서 고분자 물질의 이온기의 농도가 증가한다.
막 층들의 상이한 다공성은 간단하게, 막 제조 시 고분자 물질에 상이한 농도의 화학적 또는 물리적 발포제가 첨가됨으로써 달성될 수 있고, 상기 발포제는 탈리되어 다공 형성을 야기한다. 또한 발포제의 더 높은 농도는 더 높은 다공성을 야기한다. 다공 크기는 그와 달리 막 층들의 제조 동안에 발포 형성 조건에 의해, 특히 발포 형성 중에 압력 구배와 온도의 선택에 의해 조절될 수 있다. 그러나 물론, 어떠한 경우에도 다공 구조는, 모세관력에 의해 막이 캐소드로부터 애노드로 물 배출을 가능하게 하지만, 기체 절연되도록 선택되어야 한다.
또한 전극은 본 발명에 따라 변경된 소수성 및/또는 다공 크기 및/또는 다공성을 가질 수 있다. 실시예에 따라 캐소드는 애노드에 비해 더 높은 소수성 및/또는 다공 크기 및/또는 다공성을 갖고, 이로 인해 애노드의 방향으로 물 전달이 지원된다.
본 발명의 다른 실시예에 따라 캐소드는 적어도 2개의 층을 포함하고, 이 경우 막을 향하는 캐소드의 층의 소수성, 다공 크기 및/또는 다공성은 막으로부터 떨어져 있는 층의 소수성, 다공 크기 및/또는 다공성보다 작다. 이로써 해당 생성수는 캐소드의 GDL-측으로부터 막 측면의 방향으로 전달된다. 마찬가지로 애노드도 2개 이상의 층을 포함할 수 있고, 이 경우 막을 향한 층의 소수성, 다공 크기 및/또는 다공성은 막으로부터 떨어져 있는 층의 소수성, 다공 크기 및/또는 다공성보다 크다. 이로 인해 막 측면으로부터 애노드측 GDL을 향해 물 전달이 촉진된다.
전극의 단층 또는 다층 형성과 무관하게 바람직하게, 애노드 및/또는 캐소드 또는 이들의 개별 층들의 소수성은 적절한 소수성을 가진 고분자 결합제를 사용함으로써 및/또는 고분자 결합제에 혼합된 비이온, 특히 소수성 물질의 가변 량에 의해 조절된다. 일반적으로 연료 전지의 전극은 막 또는 GDL의 촉매 코팅의 형태로 구현된다. 또한 촉매 코팅은 전기 전도성 담체 구조, 예를 들어 흑연과 같은 탄소계 물질을 포함하고, 상기 물질은 촉매 물질, 예를 들어 귀금속을 미세하게 분포된 형태로 담지한다. 이러한 분말 구조의 결합을 위해 일반적으로 고분자 결합제가 사용되고, 상기 결합제는 예를 들어 고분자 전해질 막을 구성하는 것과 동일한 고분자 물질일 수 있다. 그러한 경우에 전극의 소수성은 막과 관련해서 전술한 것과 동일한 방식으로 조절될 수 있다. 고분자 결합제의 개질에 대한 대안으로서 또는 추가로 촉매 전극층들의 담체 물질도, 예를 들어 개질된 흑연이 촉매 담체로서 또는 대안 물질로서 사용됨으로써 개질될 수 있고, 또는 상이한 소수성의 촉매 물질들이 사용된다.
본 발명의 바람직한 실시예에서 기체 확산층은 본 발명에 따른 방식으로 그 소수성 및/또는 다공성 및/또는 다공 크기와 관련해서 개질된다. 전극과 관련해서도 이와 유사하게 설명된 것처럼 이 경우에도 바람직한 실시예에서 캐소드측 GDL 및/또는 그 미세다공 층(MPL)은 애노드측 GDL보다 높은 소수성, 다공성 및/또는 다공 크기를 갖는다. 이러한 조치에 대한 대안으로서 또는 추가로 GDL 및/또는 그 미세다공 층 내의 소수성, 다공성 및/또는 다공 크기의 적절한 구배가 주어질 수 있다.
본 발명의 바람직한 실시예에서, GDL 및/또는 그것의 MPL의 소수성은 GDL 및/또는 미세다공 층의 기판이 적절한 소수성의 재료로 코팅됨으로써 주어진다. 대안으로서 소수성은 적절한 소수성의 물질로 이루어진 GDL 및/또는 그것의 미세다공 층의 적절한 소수성의 기판을 선택함으로써 간단하게 조절될 수 있다. MPL의 소수성은 따라서 상응하는 소수성을 갖는 고분자 결합제를 사용함으로써 조절될 수도 있다.
또한 본 발명은 적어도 하나의 본 발명에 따른 막 전극 유닛, 특히 이러한 다수의 MEA의 스택을 포함하는 연료 전지에 관한 것이다.
본 발명은 계속해서 실시예에서 관련 도면을 참고로 설명된다.
도 1은 선행기술에 따른 연료 전지의 개별 전지를 개략적으로 도시한 단면도.
도 2는 본 발명에 따른 고분자 전해질 막을 개략적으로 도시한 단면도.
도 3은 제 1 실시예에 따라 본 발명에 따른 전극을 포함하는 막 전극 유닛을 개략적으로 도시한 단면도.
도 4는 제 2 실시예에 따라 본 발명에 따른 전극을 포함하는 막 전극 유닛을 개략적으로 도시한 단면도.
도 5는 제 1 실시예에 따라 본 발명에 따른 애노드측 및 캐소드측 기체 확산층을 개략적으로 도시한 단면도.
도 6은 제 2 실시예에 따라 본 발명에 따른 애노드측 및 캐소드측 기체 확산층을 개략적으로 도시한 단면도.
도 7은 제 3 실시예에 따라 본 발명에 따른 애노드측 및 캐소드측 기체 확산층을 개략적으로 도시한 단면도.
도 8은 본 발명의 실시예에 따른 연료 전지의 개별 전지들을 개략적으로 도시한 단면도.
도 1은 여기에서 전체적으로 도면부호 100으로 도시된 연료 전지의 기본적인 구성을 도시하고, 그 중에서 여기에는 하나의 연료 전지(10)만이 도시된다.
개별 전지들(10)은 막 전극 유닛(MEA;12)을 포함한다. MEA(12)는 고분자 전해질 막(20)을 포함한다. 이 경우 바람직하게는 이온 반복 유닛, 즉 이오노머를 가진 고분자 물질로 이루어진 막이고, 상기 고분자 물질의 양성자 전도성은 수화된 양성자에 의해 이루어지므로, PEM(20)은 습윤되어야 한다. 일반적으로, 그러나 필수적이진 않지만, 술폰화 폴리테트라플루오르에틸렌 공중합체, 예를 들어 Nafion®으로 공개된 제품이 사용되고, 상기 제품은 페르플루오르알킬비닐에테르의 술포닐산플루오라이드-유도체와 테트라플루오르에틸렌으로 이루어진 공중합체이다.
PEM(20)의 양측면에서 상기 PEM은 2개의 전극(30, 31)에 의해, 즉 애노드(30) 및 캐소드(31)로서 작용하는 전극에 의해 접촉된다. 전극(30, 31)은 일반적으로 소위 반응 전극이고, 상기 전극은 전기 전도성 담체 물질 및 그 위에 증착된 촉매 물질을 포함한다. 담체 물질로서 탄소계 물질, 예를 들어 흑연이 보편적으로 사용된다. 촉매 물질로서 특히 귀금속, 예를 들어 백금 또는 이와 같은 것이 고려된다. 이러한 분말 조성물, 즉 흑연에 담지된 백금의 형성을 위해 일반적으로 고분자 결합제가 사용되고, 이 경우 예를 들어 PEM(20)에서와 동일한 물질이 사용될 수 있다. 결합제에 의해 전극(30, 31)을 구성하는 촉매층의 결합된 다공 구조가 얻어진다.
애노드(30)와 캐소드(31)의 2개의 외부면에 각각 다공성 기체 확산층(40 또는 41)이 결합한다. GDL의 과제는, 작동 가스의 균일한 분배 및 전극(30, 31)에 상기 가스의 공급 및 소모되지 않은 작동 가스와 생성수의 배출을 실행하는 것이다. 따라서 GDL은 전기 전도성 기판 물질로, 적어도 흑연으로 제조되고, 따라서 전극(30, 31)의 필수적인 전기적 접속을 제공한다. 때때로 GDL(40, 41)은 또한 미세다공 층(MPL)을 포함하고, 상기 층은 전극(30, 31)에 접촉한다(도시되지 않음).
촉매층으로서 형성된 전극(30, 31)은 주로 GDL(40, 41) 또는 그것의 MPL 상에 코팅으로서 제공된다. 이러한 경우에 기체 확산 전극이라고 한다. 대안으로서 전극(30, 31)의 촉매층들은 PEM(20)의 코팅으로서 제공되고, 이 경우 이러한 촉매 코팅된 막은 CCM(cataylst coated membrane)이라고 한다. MEA(12)의 구조의 양측면은 각각의 바이폴라 플레이트(50)에 의해 둘러싸인다. 각각의 바이폴라 플레이트(50)는 양측면이 개방된 채널(52, 54)을 포함하고, 이 경우 하나의 측면의 채널들은 애노드측 작동 물질 채널(52)로서 작용하고, 다른 측면의 채널들은 캐소드측 작동 물질 채널(54)로서 작용한다. 또한 각각의 바이폴라 플레이트(50)는 폐쇄된 채널(56)을 포함하고, 상기 채널들은 열 방출을 위한 냉각제 채널로서 이용된다. 바이폴라 플레이트(50)는 일반적으로 전기 전도성 물질, 예를 들어 특수강으로 제조된다.
일반적으로 각각 하나의 MES(12)와 바이폴라 플레이트(50; 또는 2개의 바이폴라 플레이트의 2개의 기능 절반부)를 포함하는 다수의 개별 전지(10)는 하나의 스택 내에 배치되므로, 개별 전지(10)의 전력은 가산된다. 이 경우 각각의 MEA(12)는 바이폴라 플레이트(50)와 교대된다.
이러한 연료 전지(100)의 작동 시 도 1 좌측에 도시된 바이폴라 플레이트(50)의 애노드측 작동 물질 채널(52)을 통해 연료, 이 경우 수소(H2)가 MEA(12)의 애노드측에 공급된다. 수소는 애노드측 GDL(40)의 채널 구조를 통해 확산되고, 이로써 애노드(30)의 촉매 반응 중심에 도달한다. 여기에서 수소는 전자의 방출 하에 반응하여 양성자 H+를 형성한다. 양성자는 막(20)을 통해 캐소드(31)로 이동하는 한편, 전자들은 외부 회로를 통해 캐소드(31)에 공급된다. 캐소드측에 캐소드측 작동 물질 채널(54)을 통해 일반적으로 산소(O2), 주로 공기를 포함하는 산화제가 제공된다. 산소는 캐소드측 GDL(41)을 지나 캐소드(31)를 향해 확산되고, 거기에서 산소는 제공된 양성자 및 외부 회로를 통해 제공된 전자와 반응하여 물 H2O를 형성한다. 반응하지 않은 작동 물질 및 생성된 생성수는 바이폴라 플레이트(50)의 해당 채널(52 또는 54))을 통해 배출되고, 이 경우 소비되지 않은 연료는 일반적으로 재순환된다.
PEM(20)은 그것의 양성자 전도성을 위해 물을 필요로 하기 때문에, 상기 PEM의 지속적인 습윤이 보장되어야 한다. 이는 전술한 선행기술에서 주로 전방에 접속된 외부 습윤기에 의해 이루어지고, 상기 습윤기는 작동 물질, 일반적으로 캐소드에 공급된 공기를 습윤시킨다. 선행기술에서 다른 일반적인 습윤 조치는 물 전달을 위한 PEM(20)의 특정한 영역의 형성이고, 그러나 상기 영역은 연료 전지 반응을 위해 이용되지 않는다.
본 발명은 그와 달리, MEA(12)의 적어도 개별 구성 요소의 소수성 및/또는 다공성 및/또는 다공 크기가, 고분자 전해질 막(20)을 통해 바람직하게 캐소드측으로부터 애노드측으로 물 전달이 이루어지도록 구성되는 것을 제안한다. 이 경우 애노드측 GDL(40), 애노드(30), PEM(20), 캐소드(31) 및/또는 캐소드측 GDL(41)은 상응하게 계속해서 실시예에서 설명되는 바와 같이 개질될 수 있다. 개별 구성 요소 및 그 기능과 관련해서 달리 명시되지 않으면, 이들은 도 1과 관련해서 언급된 특성에 상응할 수 있다. 본 발명은 계속해서 바람직한 실시예를 참고로 설명되고, 따라서 고분자 전해질 막(20)을 통해 캐소드측으로부터 애노드측으로 물 전달이 이루어진다.
도 2는 본 발명의 바람직한 실시예에 따른 고분자 전해질 막(20)을 도시한다. PEM(20)은 적어도 애노드측 막 층(21)과 캐소드측 막 층(22)을 포함하는 다층 구조를 갖는다. 선택적으로 또한 2개의 막 층(21, 221) 사이에 기계적으로 안정화하는 지지층(23)이 제공될 수 있고 및/또는 다수의 애노드측 및 캐소드측 막 층들이 제공될 수 있다. 예를 들어 지지층(23)은 고분자의 다공성 구조, 예를 들어 팽창 폴리테트라플루오르에틸렌(ePTFE)으로 이루어진다.
2개의 막 층들(21, 22)은 이 실시예에서, 상이한 소수성과 동시에 이온기의 상이한 밀도(상이한 IEC = ion exchange capacity 또는 EW = equivalent weight)를 갖는 점에서 다르다. 특히 캐소드측 막 층(22)의 소수성은 애노드측 막 층(21)의 소수성보다 크고, 반대로 애노드측 층(21)의 이온기의 농도는 캐소드측 층(22)의 이온기의 농도보다 높다. 또한, 단계적인 이온 농도 또는 소수성을 갖는 2개 이상의 고분자 층이 제공되는 것이 고려될 수 있다. 막(20)의 본 발명에 따른 이러한 실시예는, 캐소드측에 생성되는 생성수가 자동으로 PEM(20)을 통해서 애노드로 전달 및 막(20)의 지속적인 자가 조절식 습윤이 보장되게 한다. 2개의 층(21, 22)의 이온기의 상이한 소수성과 농도는 바람직하게 이온기의 상이한 농도를 갖는 상이한 고분자의 이용에 의해 구현된다.
도 2에 도시된 PEM(20)의 제조는 예를 들어, 유기 또는 수성 용매 중 이온기의 비교적 높은 농도를 갖는 제 1 고분자 전해질의 용액이 제공됨으로써 이루어질 수 있다. 이러한 용액은 막 드로잉 장치에서 컨베이어 벨트에 위치 설정된 지지층(23) 위에 예를 들어 닥터블레이드로 도포된다. 후속해서 구조는 컨베이어 벨트에 의해 건조 스테이지를 통해 이동되고, 거기에서 용매는 증발되고 막 층(21)의 형성이 이루어진다. 다음 제조 단계에서 이온기의 더 높은 농도와 더 작은 소수성을 갖는 다른 고분자 전해질의 용액이 제조되고, 지지층(23)의 다른 측면에 도포되어 건조되고, 이 경우 캐소드측 고분자층(22)이 형성된다. 지지층(23)이 사용되지 않는 경우, 개별 고분자 전해질 층(21, 22)이 직접 연달아 제조되고, 이 경우 각각 먼저 건조된 이전 층 위에 다음 층의 도포가 이루어진다.
다른 실시예에서 막 층들(21, 22)은 또한 상이한 다공성 및/또는 다공 크기를 갖는 점에서 다르므로, 다공성 구배는 모세관력에 의해 캐소드로부터 애노드로 물 배출을 가능하게 한다. 특히 애노드측 고분자층은 캐소드측 고분자층(22)보다 작은 다공성 및/또는 작은 평균 다공 직경을 갖는다. 다공성은 간단하게 제조 방법에서 고분자 용액에 화학적 또는 물리적 발포제의 혼합에 의해 이루어질 수 있고, 상기 발포제는 건조 단계에서 가스를 방출하고, 상기 가스는 다공 형성을 야기한다.
도 3은 고분자 전해질 막(20)의 양측면에 접촉하는 본 발명에 따른 2개의 전극, 즉 애노드(30)와 캐소드(31)를 포함하는 고분자 전해질 막(20)의 구조를 도시한다. 전극들(30, 31)은 선행기술에서처럼 전기 전도성 담체 물질, 예를 들어 흑연 및 그 위에 증착된 촉매 작용 물질, 예를 들어 백금으로 형성되고, 고분자 결합제에 의해 경화된다. 도 3에서 전극(30, 31)의 촉매층들이 PEM(20)에 코팅된다(CCM). 대안으로서 촉매층들은 GDL에 도포될 수도 있고, 이로 인해 기체 확산 전극이 얻어질 수 있다. 2개의 전극(30, 31)은, 상이한 소수성 및/또는 다공 구조를 가지는 점에서 서로 다르다. 특히 캐소드(31)는 애노드(30)보다 높은 소수성 및/또는 높은 다공성 및/또는 다공 크기를 갖는다.
도 2에 도시된 PEM(20)의 경우처럼 적절한 소수성을 갖는 상이한 고분자 결합제가 사용됨으로써 전극(30, 31)의 상이한 소수성이 설명될 수도 있다. 대안으로서 2개의 전극에 동일한 고분자 결합제, 예를 들어 Nafion®이 사용될 수 있고, 상이한 소수성은 혼합된 소수성 물질, 예를 들어 PTFE의 상이한 함량에 의해 조절될 수 있다. 대안으로서 상이한 소수성은 상이한 촉매 담체를 사용함으로써 얻어질 수 있다. 예를 들어 상이한 습윤 거동을 갖는, 작용기에 의해 개질된 흑연이 촉매 담체로서 사용될 수 있고, 이 경우 예컨대 술폰화 흑연이 애노드(30)의 측면에서 사용될 수 있고 및/또는 플루오르화 흑연이 캐소드(31)의 측면에서 사용된다. 적절하게 개질된 흑연은 시중에서 구할 수 있다(예를 Cabbot로부터). 또한, 흑연 대신 상응하는 소수성 또는 친수성을 갖는 다른 물질들, 예컨대 세라믹계 또는 전기 전도성 금속 산화물계 물질들을 사용하는 것이 고려될 수 있다. 이러한 물질들은 경우에 따라서 다른 코팅 또는 결합제를 필요로 하고, 이로써 노화 거동이 더 개선된다. 또 다른 대안예에 따라 애노드(30)와 캐소드(31)의 상이한 습윤 거동은 상이한 표면 에너지를 갖는 상이한 촉매 물질을 사용함으로써 제공될 수 있다. 예를 들어 백금은 적절한 습윤 거동을 갖는 합금 촉매로 대체될 수 있다.
구체적인 실시예에서 알코올(Du Pont 2020) 중 Nafion용액은 흑연 함침된 Pt-촉매(60% Pt/케첸(Ketjen))와 혼합되었다. 혼합물은 PTFE에 미세 분말 또는 (예를 들어 Constable사의 이소프로판올 중) 용액으로서 첨가되었고, 이 경우 상이한 PTFE-함량을 갖는 상이한 용액들이 제조되었다. PTFE 대 Nafion 비는 페이스트의 추후 소수성을 결정하고, 이 경우 더 높은 PTFE 함량은 더 높은 소수성을 야기한다. 얻어진 페이스트는 초음파 세척조(ultrasonic bath)에서 완전히 혼합되고, 닥터 블레이드를 이용한 코팅 방법으로 차례로 막(20) 위에 도포된다. 후속해서 건조 캐비넷 내에서 용매가 제거되었고, 이 경우 도 3에 도시된 바와 같이 촉매층(30, 31) 및 촉매 코팅된 막(CCM)이 얻어졌다.
도 4는 PEM(20) 상의 본 발명에 따라 개질된 전극(30, 31)의 다른 실시예를 도시한다. 이 실시예에서 애노드(30)는 2개의 층(32, 33)을 포함하고, 이 경우 막(20)을 향한 층(33)의 소수성 및/또는 다공 크기 및/또는 다공성은 PEM(20)으로부터 떨어져 있는 층(32)의 소수성 및/또는 다공 크기 및/또는 다공성보다 크다. 마찬가지로 캐소드도 2개의 층(34, 35)을 포함하고, 이 경우 막(20)을 향한 층(34)의 소수성 및/또는 다공성 및/또는 다공 크기는 막(20)으로부터 떨어져 있는 층(35)의 소수성 및/또는 다공 크기 및/또는 다공성보다 작다. 이로 인해 층(32)으로부터 층(33, 34)을 지나 층(35)까지 증가하는 소수성 구배가 형성된다. 다공성 또는 다공 크기에도 동일하게 적용된다. 소수성- 또는 다공성 구배에 의해 막(20)을 통해 캐소드(31) 측면으로부터 애노드(30)를 향한 물 흐름이 제공된다. 층들(32, 34) 및 층들(33, 35)이 각각 동일하면, 즉 캐소드(30) 또는 애노드(31) 내에만 상응하는 소수성 구배 및/또는 다공성 구배가 주어지면, 기본적으로 동일한 효과가 달성될 수도 있다.
도 3 및 도 4에 도시된 실시예에서 촉매층들(30, 31)의 층 두께는 바람직하게 2 내지 20 ㎛이다.
도 5에 본 발명에 따른 애노드측 기체 확산층(40)과 캐소드측 GDL(41)이 도시된다. 2개의 GDL(40, 41)은, 캐소드측 GDL(41)은 애노드측 GDL(40)보다 높은 소수성, 다공성 및/또는 다공 크기를 가지는 점에서 서로 다르다. 이로써 캐소드측 GDL(41)은 물을 배출하는 효과를 갖고, 애노드측 GDL(40)은 물을 재순환하는 효과를 갖는다.
2개의 GDL(40, 41)의 상이한 소수성은 소수성 또는 덜 소수성(또는 친수성) 고분자로 GDL 기판을 상이하게 코팅함으로써 이루어질 수 있다. 대안으로서 상이한 소수성은 상이한 기판 물질을 사용함으로써 이루어질 수 있다. 전극(30, 31)의 담체 물질과 관련해서 이와 유사하게 설명된 바와 같이, 이 경우에도 GDL의 일반적인, 흑연계 기판 물질들은 대체 물질로 대체될 수 있고, 상기 대체 물질은 소정의 소수성을 갖는다. 예를 들어 이 경우에도 세라믹계 또는 도전성 금속 산화물계 물질들이 사용될 수 있다. 현재 일반적인 흑연계 GDL-기판 및 대안 기판 물질들은 상이한 다공성에 따라 시중에서 구매 가능하다.
도 6은 본 발명에 따른 GDL의 대안 실시예를 도시한다. 이 실시예에서 GDL(40, 41)은 각각 미세다공 층(MPL; 46 또는 47)을 포함하고, 상기 층들은 결합된 상태에서 전극(30 또는 31)과 접촉한다. 이 실시예에서 2개의 MPL(46, 47)은, 상이한 소수성, 다공성 및/또는 다공 크기를 갖는 점에서 서로 다르다. 또한 캐소드측 MPL(47)의 소수성 및/또는 다공성 및/또는 다공 크기는 애노드측 MPL(46)의 소수성 및/또는 다공성 및/또는 다공 크기보다 크다. 이 실시예에 의해서도 애노드측 MPL(46)은 수분 보지 효과를 갖고, 캐소드측 GDL은 수분 방출 효과를 갖는다. 도 6의 GDL-층들(40, 41)은 이 실시예에서 동일한 특성을 갖지만, 대안으로서 도 5에 도시된 바와 같이 층들의 소수성, 다공성 및/또는 다공 크기는 서로 상이할 수 있다.
MPL(46, 47)은 일반적으로 전극(30, 31)의 촉매층과 유사한 방법 및 유사한 물질에 의해 제조되고, 이 경우 그러나 촉매 물질은 사용되지 않는다. 이로써 일반적으로 주로 흑연계의 담채 물질이 용매에 침전되고, 적절한 고분자 결합제가 첨가된다. 얻어진 페이스트 또는 현탁액은 닥터 블레이드를 이용한 코팅 방법, 실크 스크린 방법 또는 분무 방법에 의해 GDL-층(40, 41) 위에 도포되고 건조된다. 상이한 소수성은 따라서 이 경우에도 상이한 소수성 고분자 결합제를 사용함으로써 또는 상이한 양의 소수성 물질을 혼합함으로써 달성될 수 있다.
구체적인 실시예에서 알코올(Du Pont 2020) 중 고분자 Nafion®의 용액은 흑연 분말(예를 들어 Ketchen Black International사의 Ketchen Black 또는 XC-72 또는 E-HSAG 400)과 혼합되었다. 혼합물에 PTFE 분말 또는 이소프로판올 중 PFTE-현탁액(Fa.Constable)이 첨가되었다. PTFE 대 Nafion® 비는 MPL의 추후 소수성에 의해 결정된다. 페이스트는 예를 들어 초음파 세척조에서 혼합 후에, 닥터 블레이드를 이용한 코팅 방법으로 GDL-기판(40 또는 41) 위에 도포되었다. 후속해서 건조 캐비넷 내의 용매는 배출되었고, 이 경우 매우 검은 전기 전도성 층이 남겨졌다. 캐소드측 MPL(47)은 더 높은 PTFE-함량을 갖고, 이로써 발수 효과가 얻어졌다. 다른 측면에서 애노드측 MPL(47) 내의 더 높은 함량의 Nafion®은 물을 저장하는 효과를 야기하였다. 이렇게 얻어진 MPL의 층 두께는 일반적으로 4 내지 30 ㎛이다.
MPL(46, 47)의 소정의 다공성은 제조 방법에서 페이스트 또는 현탁액에 물리적 또는 화학적 발포제의 첨가에 의해 제공될 수 있다. 예를 들어 탄산암모늄이 화학적 다공 형성제로서 사용될 수 있고, 상기 다공 형성제는 건조 캐비넷에서 가열 시 분해되어 발포를 야기한다.
도 7은 기체 확산층(40, 41)의 본 발명에 따른 다른 실시예를 도시하고, 상기 층들은 이 실시예에서도 미세다공 층(46, 47)을 포함한다. GDL(40, 41)은, GDL-기판이 각각 층별로 구성되고 이 실시예에서 각각 2개의 층(42, 43 또는 44, 45)을 갖는 점에서 도 6에 도시된 실시예와 상이하다. 이로 인해 각각의 개별 GDL(40, 41) 내에, 선택된 도면에서 각각 좌측으로부터 우측으로 증가하는 소수성 구배 및/또는 다공성 구배 및/또는 다공 크기의 구배가 형성된다.
본 발명과 관련해서, 고분자 전해질 막(20), 전극(30, 31) 및 기체 확산층(40, 41)을 포함하는 개별 구성 요소들의 본 발명에 따른 개질은 바람직하게 서로 조합될 수 있다.
도 8은 전술한 다양한 조치들의 조합을 포함하는 본 발명에 따른 연료 전지의 예를 도시한다. 특히 연료 전지(100)는 막 전극 유닛(12)을 포함하고, 상기 유닛은 도 2에 따른 다층 고분자 전해질 막(20), 도 3에 따른 본 발명에 따른 애노드(30)와 캐소드(31) 및 해당하는 MPLS(46, 47)을 가진 도 6에 따른 애노드측 GDL(40)과 캐소드측 GDL(41)을 포함하는 막 전극 유닛(12)을 구비한다. 나머지 모든 기능들은 도 1과 관련해서 설명된 것에 부합한다.
본 발명에 따른 연료 전지(100)는 PEM(20)을 통해 캐소드측으로부터 애노드측으로 연료 전지(100)의 작동 시 생성되는 생성수의 자동 전달을 제공하고, 이로써 막(20)은 계속해서 자동으로 습윤된다. 자가 습윤 MEA(12)는 연료 전지 시스템을 현저히 간단하게 하는데, 그 이유는 외부 습윤의 필요성이 생략되기 때문이다. 동시에 작동 가스의 수분 함량의 변동 시 개선된 작동 안정성이 달성된다. 막 전극 유닛(12)의 활성 면 내에서 물 재순환이 이루어지기 때문에, 연료 전지 스택의 콤팩트한 구조가 가능해진다. 선행기술에서 대안 컨셉으로 제안된 바와 같이, 활성 면의 외부에서 수분 교환을 가능하게 하는 물 재순환을 위한 추가 면은 여기에서 필요하지 않다. 또한 활성 면 내에서 수분 밸런스에 의해 막과 전극의 기계적 부하가 매우 낮게 유지된다.
100 연료 전지
10 개별 전지
12 막 전극 유닛(MEA)
20 고분자 전해질 막(PEM)
21 애노드측 막 층
22 캐소드측 막 층
23 지지층
30 애노드
31 캐소드
32 제 1 애노드층
33 제 2 애노드층
34 제 1 캐소드층
35 제 2 캐소드층
40 애노드측 기체 확산층(GDL)
41 캐소드측 기체 확산층(GDL)
42 제 1 애노드측 GDL-층
43 제 2 애노드측 GDL-층
44 제 1 캐소드측 GDL-층
45 제 2 캐소드측 GDL-층
46 애노드측 미세다공 층(MPL)
47 캐소드측 미세다공 층(MPL)
50 바이폴라 플레이트
52 애노드측 작동 물질 채널
54 캐소드측 작동 물질 채널
56 냉각제 채널

Claims (11)

  1. 연료 전지(100)를 위한 막 전극 유닛(12)으로서,
    고분자 전해질 막(PEM;20),
    PEM(20)의 양측면으로 접촉하는 2개의 촉매 전극(30, 31), 즉 애노드(30)와 캐소드(31) 및,
    상기 전극(30, 31)에 양측으로 직접 또는 간접적으로 결합하는 2개의 기체 확산층(40, 41), 즉 애노드측 기체 확산층(40)과 캐소드측 기체 확산층(41)을 포함하고,
    상기 2개의 기체 확산층(40, 41)은 PEM(20)을 향하는 미세다공 층(46, 47)을 포함하며,
    애노드측 기체 확산층(40)/애노드측 미세다공 층(46)/애노드(30)/고분자 전해질 막(20)/캐소드(31)/캐소드측 미세다공 층(47)/캐소드측 기체 확산층(41)을 포함하는 층 시퀀스에서,
    - 상기 구성 요소들 중 적어도 2개의 상대적 소수성 또는 상기 구성 요소들 중 적어도 하나 내에서의 소수성 변화 또는
    - 상기 구성 요소들 중 적어도 2개의 다공성 또는 다공 크기를 포함하는 상대적 다공 구조 또는 상기 구성 요소들 중 적어도 하나 내에서의 다공 구조의 변화는,
    상기 고분자 전해질 막(20)을 통한 물의 전달이 촉진되도록 형성되고,
    상대적 다공성 또는 다공 크기 또는 이들의 변화는, 상기 캐소드측 또는 애노드측의 기체 확산층(40, 41)의 방향으로 다공성 또는 다공 크기가 증가하도록 형성되는 것을 특징으로 하는 막 전극 유닛.
  2. 제1항에 있어서, 층 시퀀스에서 소수성 또는 다공 구조는, 상기 고분자 전해질 막(20)을 통해 캐소드측으로부터 애노드측으로 물의 전달이 촉진되도록 형성되는 것을 특징으로 하는 막 전극 유닛.
  3. 제1항 또는 제2항에 있어서, 상대적 소수성 또는 소수성 변화는, 상기 캐소드측 기체 확산층(41)의 방향으로 소수성이 증가하도록 형성되는 것을 특징으로 하는 막 전극 유닛.
  4. 제1항 또는 제2항에 있어서, 애노드측 기체 확산층(40), 애노드측 미세다공 층(46), 애노드(30) 및 고분자 전해질 막(20)의 애노드측을 포함하는 애노드측 구성 요소들 중 적어도 하나의 구성 요소의 소수성 또는 다공성 또는 다공 크기는 캐소드측 기체 확산층(41), 캐소드측 미세다공 층(47), 캐소드(31) 및 고분자 전해질 막(20)의 캐소드측을 포함하는 상응하는 캐소드측 구성 요소의 소수성, 다공성 또는 다공 크기보다 작은 것을 특징으로 하는 막 전극 유닛.
  5. 제1항 또는 제2항에 있어서, 고분자 전해질 막(20)은 적어도 2개의 막 층(21, 22)을 포함하고, 애노드측 막 층(21)의 소수성 또는 다공 크기 또는 다공성은 캐소드측 막 층(22)의 소수성 또는 다공 크기 또는 다공성보다 작은 것을 특징으로 하는 막 전극 유닛.
  6. 제5항에 있어서, 적어도 2개의 막 층들(21, 22)의 상이한 소수성은 상기 막 층들(21, 22)의 고분자 전해질 물질의 이온기의 상이한 농도에 의해 또는 고분자 전해질 물질에 혼합된 비이온 물질의 상이한 농도에 의해 제공되는 것을 특징으로 하는 막 전극 유닛.
  7. 제1항 또는 제2항에 있어서, 캐소드(31)는 적어도 2개의 층(34, 35)을 포함하고, 상기 고분자 전해질 막(20)을 향하는 층(34)의 소수성 또는 다공 크기 또는 다공성은 상기 고분자 전해질 막(20)으로부터 떨어져 있는 층(35)의 소수성 또는 다공 크기 또는 다공성보다 작거나, 또는 애노드(30)는 적어도 2개의 층(32, 33)을 포함하고, 상기 고분자 전해질 막(20)을 향한 층(33)의 소수성 또는 다공 크기 또는 다공성은 상기 고분자 전해질 막(20)으로부터 떨어져 있는 층(32)의 소수성 또는 다공 크기 또는 다공성보다 큰 것을 특징으로 하는 막 전극 유닛.
  8. 제1항 또는 제2항에 있어서, 상기 애노드(30) 또는 상기 캐소드(31) 또는 이들의 층(32, 33, 34, 35)의 소수성은 소수성을 가진 고분자 결합제를 사용함으로써 또는 고분자 결합제에 혼합된 비이온 물질의 양에 의해 조절되는 것을 특징으로 하는 막 전극 유닛.
  9. 제1항 또는 제2항에 있어서, 상기 기체 확산층(40, 41) 또는 그것의 미세다공 층들(46, 47)의 소수성은 상기 기체 확산층(40, 41)의 기판 또는 상기 층의 미세다공 층(46, 47)을 소수성의 물질로 코팅함으로써 또는 소수성의 물질로 이루어진 상기 기체 확산층(40, 41) 또는 상기 확산층의 미세 다공층(46, 47)의 기판을 선택함으로써 조절되는 것을 특징으로 하는 막 전극 유닛.
  10. 제1항 또는 제2항에 따른 적어도 하나의 막 전극 유닛(12)을 포함하는 연료 전지(100).
  11. 삭제
KR1020157033631A 2013-04-30 2014-03-17 자가 습윤 막 전극 유닛 및 상기 유닛을 포함하는 연료 전지 KR101947863B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102013207900.1 2013-04-30
DE102013207900.1A DE102013207900A1 (de) 2013-04-30 2013-04-30 Membran-Elektroden-Einheit und Brennstoffzelle mit einer solchen
PCT/EP2014/055253 WO2014177318A1 (de) 2013-04-30 2014-03-17 Selbstbefeuchtende membran-elektroden-einheit und brennstoffzelle mit einer solchen

Publications (2)

Publication Number Publication Date
KR20160008205A KR20160008205A (ko) 2016-01-21
KR101947863B1 true KR101947863B1 (ko) 2019-02-13

Family

ID=50280408

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020157033631A KR101947863B1 (ko) 2013-04-30 2014-03-17 자가 습윤 막 전극 유닛 및 상기 유닛을 포함하는 연료 전지

Country Status (5)

Country Link
US (1) US9911992B2 (ko)
JP (1) JP6408562B2 (ko)
KR (1) KR101947863B1 (ko)
DE (1) DE102013207900A1 (ko)
WO (1) WO2014177318A1 (ko)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10697007B2 (en) 2014-06-27 2020-06-30 The Regents Of The University Of California PCR-activated sorting (PAS)
WO2016149168A1 (en) 2015-03-13 2016-09-22 Stc.Unm Design of smart-meas for high power fuel cells
DE102016102088A1 (de) 2016-02-05 2017-08-10 Volkswagen Ag Membran, Membran-Elektroden-Einheit, Brennstoffzelle und Verfahren zur Herstellung einer Membran
WO2018235108A1 (en) * 2017-06-19 2018-12-27 Politecnico Di Milano LOCALLY MODIFIED MODIFIED PEM COMPONENTS OPTIMIZED FOR IMPROVED DURABILITY
CN107369838B (zh) * 2017-06-23 2020-09-22 华南理工大学 一种用于直接甲醇燃料电池的免热压复合电极及其制备方法
DE102018200687A1 (de) * 2018-01-17 2019-07-18 Audi Ag Kaskadierter Brennstoffzellenstapel und Brennstoffzellensystem
CN108461788B (zh) * 2018-03-08 2020-09-11 东莞众创新能源科技有限公司 氢氧燃料电池用膜电极及其制备方法,及氢氧燃料电池
EP3830316A1 (de) * 2018-07-27 2021-06-09 Hoeller Electrolyzer GmbH Verfahren zum herstellen einer porösen transportschicht für eine elektrochemische zelle
DE102018213148A1 (de) * 2018-08-07 2020-02-13 Audi Ag Schichtaufbau für eine Brennstoffzelle und Verfahren zur Herstellung eines solchen Schichtaufbaus
CN111129554A (zh) * 2019-12-24 2020-05-08 中国科学院青岛生物能源与过程研究所 一种梯度疏水膜电极及其制备方法
CN111082089B (zh) * 2019-12-31 2023-08-15 一汽解放汽车有限公司 一种流道沟槽和脊表面为异种涂层的金属双极板及其制备方法
DE102020102390A1 (de) * 2020-01-31 2021-08-05 Audi Aktiengesellschaft Brennstoffzelle und Brennstoffzellensystem
DE102020117884A1 (de) * 2020-07-07 2022-01-13 Schaeffler Technologies AG & Co. KG Elektrolysezelle, sowie Elektrolyseur
CN112133931A (zh) * 2020-09-24 2020-12-25 安徽明天氢能科技股份有限公司 质子交换膜燃料电池气体扩散层双层微孔层的制备方法
DE102020127463A1 (de) * 2020-10-19 2022-04-21 Audi Aktiengesellschaft Verfahren zur Herstellung eines funktionalisiert strukturierten Aufbaus für eine Brennstoffzelle und Membranelektrodenanordnung
CN112909278B (zh) * 2021-01-21 2022-09-20 上海神力科技有限公司 一种燃料电池用气体扩散层的制备方法
CN112952149B (zh) * 2021-01-29 2022-10-04 上海神力科技有限公司 一种燃料电池电堆活化方法
CN113241448B (zh) * 2021-05-17 2023-03-21 中南大学 一种质子交换膜燃料电池梯度微孔气体扩散层及其制备方法
CN114050276A (zh) * 2021-09-27 2022-02-15 深圳市贝特瑞新能源技术研究院有限公司 燃料电池膜电极及其制备方法、燃料电池
CN114976162A (zh) * 2022-07-22 2022-08-30 上海明天观谛氢能科技有限公司 一种燃料电池膜电极及其制备方法
CN115074775A (zh) * 2022-07-22 2022-09-20 北京化工大学 一种一体化复合膜及其制备方法和在碱性水解制氢中的应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367655A (ja) * 2001-06-11 2002-12-20 Toyota Motor Corp 燃料電池
JP2007200855A (ja) * 2005-12-27 2007-08-09 Nissan Motor Co Ltd 膜電極接合体、および、これを用いた燃料電池

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1291603B1 (it) * 1997-04-18 1999-01-11 De Nora Spa Elettrodi a diffusione gassosa per cella a combustibile a membrana polimerica
US5998058A (en) 1998-04-29 1999-12-07 International Fuel Cells Corporation Porous support layer for an electrochemical cell
US6048383A (en) 1998-10-08 2000-04-11 International Fuel Cells, L.L.C. Mass transfer composite membrane for a fuel cell power plant
US7282293B2 (en) * 2003-04-15 2007-10-16 Mti Microfuel Cells Inc. Passive water management techniques in direct methanol fuel cells
DE10340834B4 (de) 2003-09-04 2018-12-06 Daimler Ag Membran-Elektroden-Anordnung für eine Brennstoffzelle
JP2005149727A (ja) * 2003-11-11 2005-06-09 Nec Tokin Corp 膜電極接合体およびその製造方法ならびにそれを用いたダイレクト型燃料電池
US7923172B2 (en) * 2003-11-14 2011-04-12 Basf Fuel Cell Gmbh Structures for gas diffusion materials and methods for their fabrication
US7087330B2 (en) 2004-01-22 2006-08-08 Utc Fuel Cells, Llc Storing water in substrates for frozen, boot-strap start of fuel cells
US7704629B2 (en) * 2007-01-22 2010-04-27 Panasonic Corporation Direct oxidation fuel cells with improved cathode gas diffusion media for low air stoichiometry operation
DE102007014046B4 (de) 2007-03-23 2011-07-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 80686 Brennstoffzelle sowie Verfahren zu deren Herstellung
JP2008293705A (ja) * 2007-05-22 2008-12-04 Toshiba Corp 膜電極接合体および燃料電池
DE102007025207A1 (de) 2007-05-30 2008-12-04 Volkswagen Ag Gasdiffusionselektrode und diese enthaltende Membran-Elektroden-Einheit für eine Brennstoffzelle
DE102007031280A1 (de) * 2007-07-05 2009-01-08 Volkswagen Ag Gasdiffusionselektrode und diese enthaltende Membran-Elektroden-Einheit für eine Brennstoffzelle
US20100028736A1 (en) 2008-08-01 2010-02-04 Georgia Tech Research Corporation Hybrid Ionomer Electrochemical Devices
US20120202135A1 (en) * 2009-09-03 2012-08-09 E.I. Du Pont De Nemours And Company Improved catalyst coated membranes having composite, thin membranes and thin cathodes for use in direct methanol fuel cells
JP5987440B2 (ja) * 2011-06-17 2016-09-07 日産自動車株式会社 燃料電池用微細多孔質層シート及びその製造方法
DE102012011441A1 (de) * 2011-07-02 2013-01-03 Volkswagen Aktiengesellschaft Membran-Elektroden-Einheit für eine Brennstoffzelle
US20120141910A1 (en) * 2012-02-10 2012-06-07 Clearedge Power, Inc. Multiple Membrane Layers in a Fuel Cell Membrane-Electrode Assembly

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367655A (ja) * 2001-06-11 2002-12-20 Toyota Motor Corp 燃料電池
JP2007200855A (ja) * 2005-12-27 2007-08-09 Nissan Motor Co Ltd 膜電極接合体、および、これを用いた燃料電池

Also Published As

Publication number Publication date
WO2014177318A1 (de) 2014-11-06
US20160064755A1 (en) 2016-03-03
DE102013207900A1 (de) 2014-10-30
JP2016520971A (ja) 2016-07-14
JP6408562B2 (ja) 2018-10-17
US9911992B2 (en) 2018-03-06
KR20160008205A (ko) 2016-01-21

Similar Documents

Publication Publication Date Title
KR101947863B1 (ko) 자가 습윤 막 전극 유닛 및 상기 유닛을 포함하는 연료 전지
US8263207B2 (en) Gas diffusion layer, manufacturing apparatus and manufacturing method thereof
KR100474941B1 (ko) 가스확산전극 및 이것을 사용한 연료전지
US8257872B2 (en) Alkaline membrane fuel cells and apparatus and methods for supplying water thereto
JP5074685B2 (ja) 燃料電池用カソード電極とその製造方法,燃料電池用カソード電極を含む膜−電極接合体,及びこの膜−電極接合体を含む燃料電池システム
US8323848B2 (en) Membrane-electrode assembly for fuel cell, preparation method, and fuel cell comprising the same
US20070202382A1 (en) Solid Electrolyte Fuel Cell
JPH0652871A (ja) 固体高分子型燃料電池
WO2007074616A1 (ja) 膜電極接合体、および、これを用いた燃料電池
US7807314B2 (en) Membrane electrode assembly for use in solid polymer electrolyte fuel cell
JP2007250279A (ja) 固体高分子型燃料電池用膜電極構造体
KR100599805B1 (ko) 연료 전지용 막/전극 어셈블리 및 이를 포함하는 연료전지 시스템
US10873097B2 (en) Electrode for fuel cell, membrane electrode complex body for fuel cell, and fuel cell
US20070202389A1 (en) Membrane electrode structure for polymer electrolyte fuel cell
KR100645832B1 (ko) 고분자 전해질형 연료전지용 막전극접합체, 그 제조방법 및상기 막전극접합체를 포함하는 연료전지
JP2005025974A (ja) 高分子型燃料電池とその製造方法
KR20060001628A (ko) 연료전지용 고분자 전해질막 및 그 제조방법
Scott Membrane electrode assemblies for polymer electrolyte membrane fuel cells
JP4320482B2 (ja) 燃料電池用電極およびその製造方法
JP6356436B2 (ja) 電解質膜・電極構造体
JP2018014338A (ja) 電解質膜・電極構造体の製造方法
KR20080045457A (ko) 연료 전지용 막-전극 어셈블리, 이의 제조방법 및 이를포함하는 연료 전지 시스템

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant