KR101947059B1 - 비수전해액 전지용 전해액 및 리튬 비수전해액 전지 - Google Patents

비수전해액 전지용 전해액 및 리튬 비수전해액 전지 Download PDF

Info

Publication number
KR101947059B1
KR101947059B1 KR1020177013591A KR20177013591A KR101947059B1 KR 101947059 B1 KR101947059 B1 KR 101947059B1 KR 1020177013591 A KR1020177013591 A KR 1020177013591A KR 20177013591 A KR20177013591 A KR 20177013591A KR 101947059 B1 KR101947059 B1 KR 101947059B1
Authority
KR
South Korea
Prior art keywords
lithium
electrolyte
oxalato
carbonate
acidic compound
Prior art date
Application number
KR1020177013591A
Other languages
English (en)
Other versions
KR20170068595A (ko
Inventor
히토시 오무로
쇼이치 츠지오카
Original Assignee
샌트랄 글래스 컴퍼니 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 샌트랄 글래스 컴퍼니 리미티드 filed Critical 샌트랄 글래스 컴퍼니 리미티드
Publication of KR20170068595A publication Critical patent/KR20170068595A/ko
Application granted granted Critical
Publication of KR101947059B1 publication Critical patent/KR101947059B1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • Y02E60/122
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명의 비수전해액 전지용 전해액은, 비수유기용매와, 용질로서 적어도 헥사플루오로인산 리튬을 함유하는 비수전해액 전지용 전해액에 있어서, 인 함유 산성 화합물을, 비수전해액 전지용 전해액 중에 10~1000질량ppm 함유하고, 디플루오로인산염을 0.01질량%~10.0질량% 더 함유하는 것을 특징으로 하는 비수전해액 전지용 전해액을 이용한다. 상기 인 함유 산성 화합물이, HPF6, HPO2F2, H2PO3F, H3PO4로 이루어지는 군으로부터 선택되는 적어도 하나의 화합물인 것이 바람직하다. 당해 전해액의 사용에 의해, 고온 환경하에서 충방전을 반복해도 방전 용량을 높게 유지할 수 있는 리튬 비수전해액 전지를 제공할 수 있다.

Description

비수전해액 전지용 전해액 및 리튬 비수전해액 전지{ELECTROLYTE FOR NON-AQUEOUS ELECTROLYTE BATTERY AND NON-AQUEOUS ELECTROLYTE LITHIUM BATTERY}
본 발명은, 리튬 비수전해액 전지에 이용되는 전해액 등에 관한 것이다.
최근, 정보 관련 기기, 통신 기기, 즉 퍼스널 컴퓨터, 비디오 카메라, 디지털 스틸 카메라, 휴대전화 등의 소형, 고에너지 밀도 용도를 위한 축전 시스템이나 전기 자동차, 하이브리드차, 연료 전지차의 보조 전원, 전력 저장 등의 대형, 파워 용도를 위한 축전 시스템이 주목을 모으고 있다.
축전 시스템의 하나의 후보로서 리튬 이온 전지, 리튬 전지, 리튬 이온 커패시터 등의 리튬 비수전해액 전지가 왕성하게 개발되고 있다. 리튬 비수전해액 전지용 전해액으로서는, 환상(環狀) 카보네이트나, 쇄상(鎖狀) 카보네이트, 에테르 등의 용매에 LiPF6 등의 함불소 전해질을 용해한 비수전해액이, 고전압 및 고용량의 전지를 얻는데 바람직한 점에서 잘 이용되고 있다. 그러나, 이러한 비수전해액을 이용하는 리튬 비수전해액 전지는, 사이클 특성, 출력 특성을 비롯한 전지 특성에 있어서 반드시 만족할 수 있는 것은 아니다.
현재 실용화되고 있는 리튬 비수전해액 전지는, 60℃를 초과하는 환경 온도에서는, 충방전 시의 전극 표면에서의 전해액의 분해가 촉진되어, 전지 수명이 극단적으로 짧아지는 등 현저한 전지 특성의 저하를 일으키는 경우가 있었다. 특히 전기 자동차, 하이브리드차, 연료 전지차의 보조 전원, 가정용 전력 저장 시스템 등에 사용되는 전지는, 대용량 고출력이기 때문에 충방전 시의 발열이 크고, 또한 옥외에서 사용되기 때문에 하계에 있어서는 환경 온도가 높아지기 쉬워, 전지의 환경 온도를 60℃ 이하로 유지하기 위해 냉각 기구를 설치하고 있었다. 냉각 기구도 전지의 에너지에 의해 작동되기 때문에, 냉각 기구에 사용하는 에너지를 줄이거나, 냉각 기구 자체를 불필요하게 할 수 있도록, 사용 가능한 환경 온도를 60℃보다 높게 할 수 있고, 예를 들면 80℃ 정도의 고온 환경하에서 충방전을 반복해도 전지 특성의 열화가 적은 리튬 비수전해액 전지용 전해액이 요망되고 있다.
특허 문헌 1에서는, LiPF6 등의 함불소 전해질을 용해한 비수전해액에 디플루오로인산 리튬을 첨가하면, 첫 충방전 시에, 전극 표면에서 디플루오로인산 리튬이 전극과 반응하여, 양질인 피막이 정, 부극 상에 형성되기 때문에, 막 형성 후의 전해액 용매의 반응이 억제되어, 60℃에서 20일간 보존 후의 전지의 방전 용량의 유지에 효과가 있는 것이 기재되어 있다. 또한, 특허 문헌 2에서는, LiPF6을 포함하는 전해액에, 디플루오로인산염을 첨가함으로써, 60℃의 환경하에서 충방전을 반복한 후의 출력이 향상되는 것이 기재되어 있다. 그러나, 디플루오로인산 리튬의 첨가는 확실히 사이클 특성의 향상에 유효하지만, 80℃ 정도의 고온 환경하에서의 충분한 사이클 특성을 얻는 것에는 이르고 있지 않았다.
또한, 비특허 문헌 1에는, 리튬 이온 전지(리튬 이차 전지)용의 전해질염으로서 사용되는 LiPF6은, 흡습에 의해 분해되어, HF, POF3, H[OPOF2], H2[O2POF], H3[PO4] 등을 생성하는 것이 기재되고, 이들 산분(酸分)이 전지 특성에 악영향을 주는 것이 개시되어 있다.
일본 공개특허 특개평11-67270호(특허 제3439085호)공보 일본 공개특허 특개평2004-031079호(특허 제4233819호)공보
모모타 쿠니타카, 「전지 기술」, 일본전기화학회, Vol.8(1996), p.108~117
본 발명은, 고온 환경하에서 충방전을 반복해도 방전 용량을 높게 유지할 수 있는 비수전해액 전지용 전해액 및 리튬 비수전해액 전지를 제공하는 것을 목적으로 한다.
본 발명자들은, 이러한 문제를 감안하여 예의 검토한 결과, 비수유기용매와, 용질로서 적어도 헥사플루오로인산 리튬을 함유하는 비수전해액 전지용 전해액에 있어서, 종래는 정극 활물질 등의 전지 재료를 열화시킨다고 생각되고 있었던 산성 화합물 중, 인 함유 산성 화합물을 특정한 농도 범위로 함유시키고, 첨가제로서 디플루오로인산염을 더 함유시킴으로써, 고온 환경하에 있어서의 사이클 특성을 향상시킨다고 하는 효과를 발견하여, 본 발명에 이르렀다.
즉 본 발명은, 비수유기용매와, 용질로서 적어도 헥사플루오로인산 리튬을 함유하는 비수전해액 전지용 전해액에 있어서, 인 함유 산성 화합물을, 비수전해액 전지용 전해액 중에 10~1000질량ppm 함유하고, 디플루오로인산염을 0.01~10.0질량% 더 함유하는 것을 특징으로 하는 비수전해액 전지용 전해액을 제공한다.
상기 인 함유 산성 화합물이, HPF6, HPO2F2, H2PO3F, H3PO4로부터 선택되는 적어도 하나의 화합물인 것이 바람직하다. 또한, 전해액 중의 불화수소의 함유량은 10질량ppm 미만인 것이 바람직하다.
또한, 상기 비수전해액 전지용 전해액 중에, 부극 피막 형성 첨가제로서, 디플루오로비스(옥살라토)인산 리튬, 디플루오로(옥살라토)붕산 리튬, 트리스(옥살라토)인산 리튬, 테트라플루오로(옥살라토)인산 리튬, 디플루오로비스(옥살라토)인산 나트륨, 디플루오로비스(옥살라토)인산 칼륨, 비닐렌카보네이트, 비닐에틸렌카보네이트, 에티닐에틸렌카보네이트, 플루오로에틸렌카보네이트, 디메틸비닐렌카보네이트로부터 선택되는 적어도 하나의 화합물, 정극 보호 첨가제로서, 프로판술톤, 1,3-프로펜술톤, 메틸렌메탄디술포네이트, 디메틸렌메탄디술포네이트, 트리메틸렌메탄디술포네이트로부터 선택되는 적어도 하나의 화합물, 과충전 방지 첨가제로서, 시클로헥실벤젠, tert-부틸벤젠, tert-아밀벤젠, 비페닐, o-테르페닐, 4-플루오로비페닐, 플루오로벤젠, 2,4-디플루오로벤젠, 디플루오로아니솔로부터 선택되는 적어도 하나의 화합물로 이루어지는 군으로부터 선택되는 적어도 하나의 화합물을 함유해도 된다.
또한, 본 발명은, 적어도 정극과, 부극과, 상기의 비수전해액 전지용 전해액을 구비하는 것을 특징으로 하는 리튬 비수전해액 전지를 제공하는 것이다.
본 발명에 의해, 고온 환경하에서 충방전을 반복해도 방전 용량을 높게 유지할 수 있는 비수전해액 전지용 전해액 및 리튬 비수전해액 전지를 얻을 수 있다.
이하의 실시 형태에 있어서의 각 구성 및 그들 조합은 예이며, 본 발명의 취지로부터 일탈하지 않는 범위 내에서, 구성의 부가, 생략, 치환 및 그 밖의 변경이 가능하다. 또한, 본 발명은 실시 형태에 의해 한정되는 것은 아니고, 특허 청구범위에 의해서만 한정된다.
<비수전해액 전지용 전해액>
본 발명의 비수전해액 전지용 전해액은, 인 함유 산성 화합물(이후, 간단히 「산성 화합물이라고 기재하는 경우가 있음」)과, 디플루오로인산염과, 용질 및 이것을 용해하는 비수유기용매를 함유한다.
<산성 화합물>
본 발명의 비수전해액 전지용 전해액에 이용하는 인 함유 산성 화합물은, HPF6, HPO2F2, H2PO3F, H3PO4로부터 선택되는 적어도 하나의 화합물이 바람직하고, 산성 화합물의 함유량은, 비수전해액 전지용 전해액에 대하여 10질량ppm 이상, 바람직하게는 30질량ppm 이상, 더 바람직하게는 50질량ppm 이상이며, 또한, 1000질량ppm 이하, 바람직하게는 800질량ppm 이하, 더 바람직하게는 500질량ppm 이하의 범위이다. 10질량ppm을 하회하면 고온 환경하에 있어서의 사이클 특성 향상의 효과가 충분히 얻어지지 않는 경우가 있고, 1000질량ppm을 초과하면, 정극 활물질 등의 전지 재료를 열화시켜, 사이클 특성에 악영향이 발생하는 경우가 있다. 또한, 불화수소는 정극 활물질 등의 전지 재료를 현저하게 열화시키기 때문에 바람직하지 않아, 본 발명의 비수전해액 중에는 실질적으로 불화수소가 함유되지 않는다. 실질적으로 함유되지 않는다는 것은, 비수전해액 중의 불화수소의 농도가, 10질량ppm 미만인 것을 의미하고, 바람직하게는 8질량ppm 미만이며, 보다 바람직하게는 5질량ppm 미만이다.
<산성 화합물을 함유시키는 방법>
비수전해액 전지용 전해액에 산성 화합물을 함유시키기 위해서는, 산성 화합물을 비수전해액 전지용 전해액에 직접 가해도 된다. 또한, HPF6, HPO2F2, H2PO3F, H3PO4로부터 선택되는 적어도 하나의 화합물을 함유시키는 경우에는, 직접 가해도 되지만, LiPF6을 포함하는 비수유기용매에, 미량의 수분(예를 들면, 1~1000질량ppm의 수분)을 가함으로써, LiPF6을 가수분해시켜 인 함유 산성 화합물을 생성시킨 비수유기용매를, 비수전해액 전지용 전해액에 가해도 된다. 이 경우, 불화수소도 생성되기 때문에, 비수전해액 전지용 전해액에 가하기 전에, LiPF6을 가수분해시켜 인 함유 산성 화합물을 생성시킨 비수유기용매로부터 불화수소를 탈기 등에 의해 제거할 필요가 있다.
<비수전해액 전지용 전해액 중의 산성 화합물의 정량 방법>
중화 적정에 의해, 비수전해액 전지용 전해액 중의 전체 유리산(遊離酸)량을 측정할 수 있다. 19F-NMR로 비수전해액 전지용 전해액 중의 HF를 정량하고, 전체 유리산량에서 감산함으로써, HF 이외의 산성 화합물 함유량을 정량할 수 있다.
또한, HPO2F2, H2PO3F는 19F-NMR로 각각 정량할 수 있다. 본건 특허의 출원 전에 간행된 다양한 문헌에 기재되는 HF, HPO2F2, H2PO3F의 19F-NMR의 값(ppm)이, 이하와 같이 나타나 있으며, 각 물질의 NMR 피크의 면적으로부터, 각 물질의 함유량을 정량할 수 있다.
HF:-201.0
HPO2F2:-86.2, -86.0, -85.6
H2PO3F:-74.3, -74.0
또한, HPO2F2, H2PO3F, H3PO4에 대해서는 이온 크로마토그래피를 이용하여, 비수전해액 전지용 전해액 중에 포함되는 각각의 아니온의 함유량을 측정함으로써 정량할 수 있다.
<디플루오로인산염>
디플루오로인산염으로서는, 디플루오로인산의 리튬염, 나트륨염, 칼륨염, 4급 알킬암모늄염을 들 수 있다. 4급 알킬암모늄 이온으로서는, 특별히 한정되지 않지만, 예를 들면 트리메틸프로필암모늄 이온이나, 1-부틸-1-메틸피롤리디늄 이온을 들 수 있다. 그 중에서도, 리튬 비수전해질 전지에 이용할 때에는, 디플루오로인산 리튬을 이용하는 것이 바람직하다.
디플루오로인산염의 함유량은, 비수전해액 전지용 전해액에 대하여 하한은, 0.01질량% 이상, 바람직하게는 0.03질량% 이상, 더 바람직하게는 0.05질량% 이상이며, 또한, 상한은 10.0질량% 이하, 바람직하게는 3.0질량% 이하, 더 바람직하게는 2.0질량% 이하의 범위이다. 0.01질량%를 하회하면 비수전해액 전지의 사이클 특성을 향상시키는 효과가 충분히 얻어지지 않고, 한편, 10.0질량%를 초과하면 비수전해액 전지용 전해액의 점도가 상승하여, 이온 전도도를 저하시켜, 내부 저항을 증가시킨다.
본 발명의 비수전해액 전지용 전해액에 있어서, 일정량의 산성 화합물과 디플루오로인산염이 공존함으로써, 고온 환경하의 사이클 특성이 향상되는 이유는 명백하지는 않지만, 아래와 같이 생각된다. 또한, 본 발명은 하기 작용 원리에 한정되는 것은 아니다.
전해액에 디플루오로인산염을 함유시키면, 첫 충방전 시에 전극 표면에서 디플루오로인산염과 전해액 용매가 전극과 반응하여, 디플루오로인산염과 용매의 분해물이 전극에 피막을 형성하기 때문에, 막 형성 후의 전해액 용매의 반응이 억제되어, 사이클 특성이 향상되는 것이 알려져 있다.
여기서, 특정량의 산성 화합물을 공존시키면, 디플루오로인산염과 전극의 반응을 촉진함으로써, 디플루오로인산염을 단독으로 함유했을 때보다, 고온 환경하에서 열화되기 어려운 양질의 피막이 전극에 형성되어 있다고 생각된다. 여기서, 산성 화합물로서 HF를 공존시키면, 정극 활물질 등의 전지 재료를 현저하게 열화시키기 때문에 바람직하지 못하다.
<용질>
본 발명의 비수전해액 전지용 전해액에 이용하는 용질은, 적어도 헥사플루오로인산 리튬(LiPF6)이 이용되지만, 필요에 따라 다른 리튬염을 본 발명의 효과를 손상시키지 않는 범위에서, 임의의 양으로 함유시킬 수 있다. 다른 리튬염의 구체예로서는, LiBF4, LiClO4, LiAsF6, LiSbF6, LiCF3SO3, LiN(SO2CF3)2, LiN(SO2C2F5)2, LiN(SO2CF3) (SO2C4F9), LiC(SO2CF3)3, LiPF3(C3F7)3, LiB(CF3)4, LiBF3(C2F5) 등을 들 수 있다. 이들 용질은, LiPF6에 가하여, 1종류를 단독으로 이용해도 되고, 2종류 이상을 용도에 맞춰 임의의 조합, 비율로 혼합하여 이용해도 된다.
적어도 LiPF6을 포함하는 이들 용질의 농도에 대해서는, 특별히 제한은 없지만, 하한은 0.5mol/L 이상, 바람직하게는 0.7mol/L 이상, 더 바람직하게는 0.9mol/L 이상이며, 또한, 상한은 2.5mol/L 이하, 바람직하게는 2.2mol/L 이하, 더 바람직하게는 2.0mol/L 이하의 범위이다. 0.5mol/L를 하회하면 이온 전도도가 저하됨으로써 비수전해액 전지의 사이클 특성, 출력 특성이 저하되고, 한편, 2.5mol/L를 초과하면 비수전해액 전지용 전해액의 점도가 상승함으로써 이온 전도도를 저하시켜, 비수전해액 전지 사이클 특성, 출력 특성을 저하시킬 우려가 있다.
<비수유기용매>
비수유기용매로서는, 본 발명의 용질, 산성 화합물 및 디플루오로인산염을 용해할 수 있는 비프로톤성의 용매이면 특별히 한정되는 것은 아니고, 예를 들면, 카보네이트류, 에스테르류, 에테르류, 락톤류, 니트릴류, 이미드류, 술폰류 등을 사용할 수 있다. 또한, 단일의 용매뿐만 아니라, 2종류 이상의 혼합 용매여도 된다. 구체예로서는, 에틸메틸카보네이트, 디메틸카보네이트, 디에틸카보네이트, 메틸프로필카보네이트, 에틸프로필카보네이트, 메틸부틸카보네이트, 에틸렌카보네이트, 프로필렌카보네이트, 부틸렌카보네이트, 아세트산메틸, 아세트산에틸, 프로피온산메틸, 프로피온산에틸, 디에틸에테르, 아세토니트릴, 프로피오니트릴, 테트라히드로푸란, 2-메틸테트라히드로푸란, 푸란, 테트라히드로피란, 1,3-디옥산, 1,4-디옥산, 디부틸에테르, 디이소프로필에테르, 1,2-디메톡시에탄, N,N-디메틸포름아미드, 디메틸술폭시드, 술포란, γ-부티로락톤, 및 γ-발레로락톤 등을 들 수 있다.
또한, 비수유기용매가, 환상 카보네이트 및 쇄상 카보네이트로 이루어지는 군으로부터 선택되는 적어도 1종을 함유하는 것이 바람직하다. 환상 카보네이트의 예로서는, 에틸렌카보네이트, 프로필렌카보네이트를 들 수 있고, 쇄상 카보네이트의 예로서는, 에틸메틸카보네이트, 디메틸카보네이트, 디에틸카보네이트, 메틸프로필카보네이트를 들 수 있다.
<다른 첨가제>
본 발명의 비수전해액 전지용 전해액은, 특정량의 산성 화합물과, 디플루오로인산염, 및 용질을 함유하지만, 본 발명의 요지를 손상시키지 않는 한에 있어서, 본 발명의 비수전해액 전지용 전해액에 일반적으로 이용되는 그 밖의 첨가제를 임의의 비율로 첨가해도 된다. 구체예로서는, 첫 회의 충전 시에 환원되어 부극의 표면 상에 피막을 형성할 수 있는 부극 피막 형성 첨가제, 첫 회의 충전 시에 정극 상에 피막을 형성하여 보호하는 정극 보호 첨가제, 과충전 시에 환원되어 반응을 스톱시키는 과충전 방지 첨가제 등을 들 수 있다.
부극 피막 형성 첨가제로서는, 디플루오로비스(옥살라토)인산 리튬, 디플루오로(옥살라토)붕산 리튬, 트리스(옥살라토)인산 리튬, 테트라플루오로(옥살라토)인산 리튬, 디플루오로비스(옥살라토)인산 나트륨, 디플루오로비스(옥살라토)인산 칼륨, 비닐렌카보네이트, 비닐에틸렌카보네이트, 에티닐에틸렌카보네이트, 플루오로에틸렌카보네이트, 디메틸비닐렌카보네이트 등을 들 수 있다.
정극 보호 첨가제로서는, 프로판술톤, 1,3-프로펜술톤, 메틸렌메탄디술포네이트, 디메틸렌메탄디술포네이트, 트리메틸렌메탄디술포네이트 등을 들 수 있다.
과충전 방지 첨가제로서는, 시클로헥실벤젠, tert-부틸벤젠, tert-아밀벤젠, 비페닐, o-테르페닐, 4-플루오로비페닐, 플루오로벤젠, 2,4-디플루오로벤젠, 디플루오로아니솔 등을 들 수 있다.
<리튬 비수전해액 전지>
이어서 본 발명의 리튬 비수전해액 전지의 구성에 대하여 설명한다. 본 발명의 리튬 비수전해액 전지는, 상기의 본 발명의 비수전해액 전지용 전해액을 이용하는 것이 특징이며, 그 밖의 구성 부재에는 일반의 리튬 비수전해액 전지에 사용되고 있는 것이 이용된다. 즉, 리튬의 흡장 및 방출이 가능한 정극 및 부극, 집전체, 세퍼레이터, 용기 등으로 이루어진다.
부극 재료로서는, 특별히 한정되지 않지만, 리튬 금속, 리튬 금속과 다른 금속의 합금, 또는 금속간 화합물이나 다양한 탄소 재료(인조 흑연, 천연 흑연 등), 금속 산화물, 금속 질화물, 주석(단체(單體)), 주석 화합물, 규소(단체), 규소 화합물, 활성탄, 도전성 폴리머 등이 이용된다. 탄소 재료란, 예를 들면, 이흑연화 탄소나, (002)면의 면 간격이 0.37nm 이상의 난흑연화 탄소(하드 카본)나, (002)면의 면 간격이 0.34nm 이하의 흑연 등이다. 보다 구체적으로는, 열분해성 탄소, 코크스류, 유리상 탄소 섬유, 유기 고분자 화합물 소성체, 활성탄 혹은 카본 블랙류 등이 있다. 이 중, 코크스류에는 피치 코크스, 니들 코크스 혹은 석유 코크스 등이 포함된다. 유기 고분자 화합물 소성체란, 페놀 수지나 푸란 수지 등을 적당한 온도로 소성하여 탄소화한 것을 말한다. 탄소 재료는, 리튬의 흡장 및 방출에 따르는 결정 구조의 변화가 매우 적기 때문에, 높은 에너지 밀도가 얻어짐과 함께 우수한 사이클 특성이 얻어지므로 바람직하다. 또한, 탄소 재료의 형상은, 섬유상, 구상, 입상 혹은 인편상 중 어느 것이어도 된다. 또한 비정질 탄소나 비정질 탄소를 표면에 피복한 흑연 재료는, 재료 표면과 전해액과의 반응성이 낮아지기 때문에, 보다 바람직하다.
정극 재료로서는, 특별히 한정되지 않지만, 예를 들면, LiCoO2, LiNiO2, LiMnO2, LiMn2O4 등의 리튬 함유 천이 금속 복합 산화물, 그들 리튬 함유 천이 금속 복합 산화물의 천이 금속이 복수 혼합된 것, 그들 리튬 함유 천이 금속 복합 산화물의 천이 금속의 일부가 다른 금속으로 치환된 것, TiO2, V2O5, MoO3 등의 산화물, TiS2, FeS 등의 황화물, 혹은 폴리아세틸렌, 폴리파라페닐렌, 폴리아닐린, 및 폴리피롤 등의 도전성 고분자, 활성탄, 라디칼을 발생시키는 폴리머, 카본 재료 등이 사용된다.
정극이나 부극 재료에는, 도전재로서 아세틸렌 블랙, 케첸 블랙, 탄소 섬유, 흑연, 결착제로서 폴리테트라플루오로에틸렌, 폴리불화비닐리덴, SBR 수지, 폴리이미드, 아라미드 수지, 폴리아크릴산 등, 점도 조정제로서 CMC가 가해져, 시트 형상으로 성형됨으로써 전극 시트로 할 수 있다.
정극과 부극의 접촉을 방지하기 위한 세퍼레이터로서는, 폴리프로필렌, 폴리에틸렌, 종이, 유리 섬유 등으로 만들어진 부직포나 다공질 시트가 사용된다.
이상의 각 요소로부터 코인 형상, 원통 형상, 각형, 알루미늄 라미네이트 시트형 등의 형상의 리튬 비수전해액 전지를 조립할 수 있다.
실시예
이하, 실시예에 의해 본 발명을 상세하게 설명하지만, 본 발명은 이들 실시 양태에 한정되지 않는다.
[실시예 1]
에틸렌카보네이트와 에틸메틸카보네이트의 체적비 1:2의 혼합 용매 중에 용질로서 LiPF6이 1.2mol/L, 디플루오로인산 리튬이 1.0질량%, 산성 화합물로서 HPF6이 20질량ppm 함유되도록 비수전해액 전지용 전해액을 조제했다. 여기서, HPF6은 60질량%의 에틸메틸카보네이트 용액을 이용했다. 19F-NMR로, 이 전해액 중의 불화수소의 농도가 10질량ppm 미만인 것을 확인했다. 또한, 후술의 실시예 2~24, 비교예 1~4, 비교예 6~16에 있어서도 마찬가지로 HF 농도가 10질량ppm 미만인 것을 확인했다.
이 전해액을 이용하여 LiCoO2를 정극 재료, 흑연을 부극 재료로서 셀을 제작하고, 실제로 전지의 충방전 시험을 실시했다. 시험용 셀은 아래와 같이 제작했다.
LiCoO2 분말 90중량부에, 바인더로서 5중량부의 폴리불화비닐리덴(PVDF), 도전재로서 아세틸렌 블랙을 5중량부 혼합하고, N-메틸피롤리돈을 더 첨가하여, 페이스트상(狀)으로 했다. 이 페이스트를 알루미늄박 상에 도포하여, 건조시킴으로써, 시험용 정극체로 했다. 또한, 흑연 분말 90중량부에, 바인더로서 10중량부의 폴리불화비닐리덴(PVDF)을 혼합하고, N-메틸피롤리돈을 더 첨가하여, 슬러리상으로 했다. 이 슬러리를 구리박 상에 도포하여, 150℃에서 12시간 건조시킴으로써, 시험용 부극체로 했다. 그리고, 셀룰로오스계 세퍼레이터에 전해액을 스며들게 하여, CR2032형의 코인 셀에 장착하여, 시험용 1.6mAh셀을 조립했다.
이상과 같은 방법으로 제작한 셀을 이용하여 80℃의 환경 온도에서 충방전 시험을 실시했다. 충방전 레이트는 3C로 행하고, 충전은, 4.2V에 도달한 후, 1시간 4.2V를 유지, 방전은, 3.0V까지 행하여, 충방전 사이클을 반복했다. 그리고, 500사이클 후의 방전 용량 유지율로 셀의 열화의 상태를 평가했다. 용량 유지율은 초기의 방전 용량에 대한 500사이클 후의 방전 용량의 백분율로 나타난다.
[실시예 2]
상기 실시예 1에 있어서 HPF6 농도를 200질량ppm으로 한 것 이외는 동일하게 하여 충방전 시험을 실시했다.
[실시예 3]
상기 실시예 1에 있어서 HPF6 농도를 900질량ppm으로 한 것 이외는 동일하게 하여 충방전 시험을 실시했다.
[실시예 4]
상기 실시예 1에 있어서 산성 화합물을 HPO2F2로 한 것 이외는 동일하게 하여 충방전 시험을 실시했다.
[실시예 5]
상기 실시예 1에 있어서 산성 화합물을 HPO2F2로 한 것, 농도를 200질량ppm으로 한 것 이외는 동일하게 하여 충방전 시험을 실시했다.
[실시예 6]
상기 실시예 1에 있어서 산성 화합물을 HPO2F2로 한 것, 농도를 900질량ppm으로 한 것 이외는 동일하게 하여 충방전 시험을 실시했다.
[실시예 7]
상기 실시예 1에 있어서 산성 화합물을 H2PO3F로 한 것 이외는 동일하게 하여 충방전 시험을 실시했다.
[실시예 8]
상기 실시예 1에 있어서 산성 화합물을 H2PO3F로 한 것, 농도를 200질량ppm으로 한 것 이외는 동일하게 하여 충방전 시험을 실시했다.
[실시예 9]
상기 실시예 1에 있어서 산성 화합물을 H2PO3F로 한 것, 농도를 900질량ppm으로 한 것 이외는 동일하게 하여 충방전 시험을 실시했다.
[실시예 10]
상기 실시예 1에 있어서 산성 화합물을 H3PO4로 한 것 이외는 동일하게 하여 충방전 시험을 실시했다.
[실시예 11]
상기 실시예 1에 있어서 산성 화합물을 H3PO4로 한 것, 농도를 200질량ppm으로 한 것 이외는 동일하게 하여 충방전 시험을 실시했다.
[실시예 12]
상기 실시예 1에 있어서 산성 화합물을 H3PO4로 한 것, 농도를 900질량ppm으로 한 것 이외는 동일하게 하여 충방전 시험을 실시했다.
[실시예 13]
상기 실시예 1에 있어서 디플루오로비스(옥살라토)인산 리튬을 0.5질량% 더 첨가하고, 산성 화합물인 HPF6의 농도를 200질량ppm으로 한 것 이외는 동일하게 하여 충방전 시험을 실시했다.
[실시예 14]
상기 실시예 1에 있어서 디플루오로(옥살라토)붕산 리튬을 1질량% 더 첨가하고, 산성 화합물인 HPF6의 농도를 200질량ppm으로 한 것 이외는 동일하게 하여 충방전 시험을 실시했다.
[실시예 15]
상기 실시예 1에 있어서 디플루오로인산 리튬 농도를 0.5질량%로 하고, 비스(옥살라토)붕산 리튬을 0.03질량% 더 첨가한 것, 산성 화합물인 HPF6의 농도를 200질량ppm으로 한 것 이외는 동일하게 하여 충방전 시험을 실시했다.
[실시예 16]
상기 실시예 1에 있어서 디플루오로인산 리튬 농도를 0.5질량%로 하고, 트리스(옥살라토)인산 리튬을 0.05질량% 더 첨가한 것, 산성 화합물인 HPF6의 농도를 200질량ppm으로 한 것 이외는 동일하게 하여 충방전 시험을 실시했다.
[실시예 17]
상기 실시예 1에 있어서 테트라플루오로(옥살라토)인산 리튬을 0.5질량% 더 첨가하고, 산성 화합물인 HPF6의 농도를 200질량ppm으로 한 것 이외는 동일하게 하여 충방전 시험을 실시했다.
[실시예 18]
상기 실시예 1에 있어서 비닐렌카보네이트를 1질량% 더 첨가하고, 산성 화합물인 HPF6의 농도를 200질량ppm으로 한 것 이외는 동일하게 하여 충방전 시험을 실시했다.
[실시예 19]
상기 실시예 1에 있어서 tert-아밀벤젠을 1질량% 더 첨가하고, 산성 화합물인 HPF6의 농도를 200질량ppm으로 한 것 이외는 동일하게 하여 충방전 시험을 실시했다.
[실시예 20]
상기 실시예 1에 있어서 1,3-프로펜술톤을 1질량% 더 첨가하고, 산성 화합물인 HPF6의 농도를 200질량ppm으로 한 것 이외는 동일하게 하여 충방전 시험을 실시했다.
[실시예 21]
상기 실시예 1에 있어서 메틸렌메탄디술포네이트를 1질량% 더 첨가하고, 산성 화합물인 HPF6의 농도를 200질량ppm으로 한 것 이외는 동일하게 하여 충방전 시험을 실시했다.
[실시예 22]
상기 실시예 1에 있어서 디플루오로인산 리튬 농도를 0.01질량%로 하고, 산성 화합물인 HPF6의 농도를 200질량ppm으로 한 것 이외는 동일하게 하여 충방전 시험을 실시했다.
[실시예 23]
상기 실시예 1에 있어서 디플루오로인산 리튬 농도를 10질량%로 하고, 산성 화합물인 HPF6의 농도를 200질량ppm으로 한 것 이외는 동일하게 하여 충방전 시험을 실시했다.
[실시예 24]
30질량%의 LiPF6을 포함하는 에틸메틸카보네이트 용액에 수분을 100질량ppm 첨가하여, 실온에서 1일 방치했다. 그 후, 실온에서, 압력을 절대압으로 0.06~0.08MPa로 감압한 상태에서 5시간 유지하여, HF를 제거했다. 이 LiPF6 용액을 이용하여, 에틸렌카보네이트와 에틸메틸카보네이트의 체적비 1:2의 혼합 용매 중에 용질로서 LiPF6이 1.2mol/L, 디플루오로인산 리튬이 1.0질량%가 되도록 전해액을 조제했다. 이 전해액에 포함되는 전체 유리산량을 중화 적정에 의해 측정한 바, HPF6으로 환산하여 213질량ppm이었다. 또한, 19F-NMR로 불화수소의 농도를 측정한 바 3질량ppm이었다. 이 점에서, 이 전해액에 포함되는, LiPF6의 가수 분해에 의해 발생한 인 함유 산성 화합물은 HPF6으로 환산하여 191질량ppm이었다. 이 전해액을 이용한 것 이외에는 상기 실시예 1과 동일하게 하여 충방전 시험을 실시했다.
[비교예 1]
상기 실시예 1에 있어서 디플루오로인산 리튬을 전해액에 가하지 않은 것, 산성 화합물인 HPF6을 전해액에 가하지 않은 것 이외는 동일하게 하여 충방전 시험을 실시했다.
[비교예 2]
상기 실시예 1에 있어서 디플루오로인산 리튬을 전해액에 가하지 않은 것, 산성 화합물인 HPF6의 농도를 200질량ppm으로 한 것 이외는 동일하게 하여 충방전 시험을 실시했다.
[비교예 3]
상기 실시예 1에 있어서 산성 화합물인 HPF6을 전해액에 가하지 않은 것 이외는 동일하게 하여 충방전 시험을 실시했다.
[비교예 4]
상기 실시예 1에 있어서 산성 화합물인 HPF6의 농도를 1200질량ppm으로 한 것 이외는 동일하게 하여 충방전 시험을 실시했다.
[비교예 5]
상기 실시예 1에 있어서, HPF6 대신에 HF를 농도 100질량ppm이 되도록 첨가한 것 이외는 동일하게 하여 충방전 시험을 실시했다.
[비교예 6]
상기 실시예 13에 있어서 산성 화합물인 HPF6을 전해액에 가하지 않은 것 이외는 동일하게 하여 충방전 시험을 실시했다.
[비교예 7]
상기 실시예 14에 있어서 산성 화합물인 HPF6을 전해액에 가하지 않은 것 이외는 동일하게 하여 충방전 시험을 실시했다.
[비교예 8]
상기 실시예 15에 있어서 산성 화합물인 HPF6을 전해액에 가하지 않은 것 이외는 동일하게 하여 충방전 시험을 실시했다.
[비교예 9]
상기 실시예 16에 있어서 산성 화합물인 HPF6을 전해액에 가하지 않은 것 이외는 동일하게 하여 충방전 시험을 실시했다.
[비교예 10]
상기 실시예 17에 있어서 산성 화합물인 HPF6을 전해액에 가하지 않은 것 이외는 동일하게 하여 충방전 시험을 실시했다.
[비교예 11]
상기 실시예 18에 있어서 산성 화합물인 HPF6을 전해액에 가하지 않은 것 이외는 동일하게 하여 충방전 시험을 실시했다.
[비교예 12]
상기 실시예 19에 있어서 산성 화합물인 HPF6을 전해액에 가하지 않은 것 이외는 동일하게 하여 충방전 시험을 실시했다.
[비교예 13]
상기 실시예 20에 있어서 산성 화합물인 HPF6을 전해액에 가하지 않은 것 이외는 동일하게 하여 충방전 시험을 실시했다.
[비교예 14]
상기 실시예 21에 있어서 산성 화합물인 HPF6을 전해액에 가하지 않은 것 이외는 동일하게 하여 충방전 시험을 실시했다.
[비교예 15]
상기 실시예 22에 있어서 산성 화합물인 HPF6을 전해액에 가하지 않은 것 이외는 동일하게 하여 충방전 시험을 실시했다.
[비교예 16]
상기 실시예 23에 있어서 산성 화합물인 HPF6을 전해액에 가하지 않은 것 이외는 동일하게 하여 충방전 시험을 실시했다.
실시예 1~24의 결과를 표 1, 비교예 1~16의 결과를 표 2에 나타낸다.
Figure 112017047708277-pct00001
Figure 112017047708277-pct00002
이상의 결과를 비교하면, 디플루오로인산 리튬과, 인 함유 산성 화합물을 특정한 농도 범위로 병용하는 실시예 1~12에서는, 디플루오로인산 리튬을 단독으로 사용하는 비교예 3보다, 80℃의 고온 환경하에 있어서의 사이클 시험 후의 용량 유지율이 우수한 것을 알 수 있다. 또한, 디플루오로인산 리튬을 병용하지 않고, 산성 화합물을 단독으로 사용하는 비교예 2에서는, 용량 유지율이 낮아지는 것을 알 수 있다. 한편, HF를 100질량ppm 포함하는 비교예 5에서는, 비교예 3보다 용량 유지율이 악화했다.
또한, 디플루오로비스(옥살라토)인산 리튬, 디플루오로(옥살라토)붕산 리튬, 비스(옥살라토)붕산 리튬, 트리스(옥살라토)인산 리튬, 테트라플루오로(옥살라토)인산 리튬, 비닐렌카보네이트, tert-아밀벤젠, 1,3-프로펜술톤, 메틸렌메탄디술포네이트를 그 밖의 첨가제로서 포함하는 실시예 13~21에서는, 산성 화합물을 포함하지 않는 비교예 6~14에 비해, 용량 유지율이 향상되고 있다.
이 점에서, 인 함유 산성 화합물을 디플루오로인산염과 특정의 농도 범위로 병용함으로써, 디플루오로인산염을 단독으로 사용하는 것 보다 고온 환경하에 있어서의 사이클 특성이 향상된다고 하는 획기적인 효과가 얻어졌다.

Claims (5)

  1. 비수유기용매와, 용질로서 적어도 헥사플루오로인산 리튬을 함유하는 비수전해액 전지용 전해액에 있어서,
    인 함유 산성 화합물을, 비수전해액 전지용 전해액 중에 10~1000질량ppm 함유하고, 디플루오로인산염을 0.01~10.0질량% 더 함유하며,
    상기 인 함유 산성 화합물이, HPF6이고,
    상기 비수전해액 전지용 전해액 중의 불화수소의 함유량이 10질량ppm 미만인 것을 특징으로 하는 비수전해액 전지용 전해액.
  2. 제 1 항에 있어서,
    추가로, 상기 비수전해액 전지용 전해액 중에,
    부극 피막 형성 첨가제로서, 디플루오로비스(옥살라토)인산 리튬, 디플루오로(옥살라토)붕산 리튬, 트리스(옥살라토)인산 리튬, 테트라플루오로(옥살라토)인산 리튬, 디플루오로비스(옥살라토)인산 나트륨, 디플루오로비스(옥살라토)인산 칼륨, 비닐렌카보네이트, 비닐에틸렌카보네이트, 에티닐에틸렌카보네이트, 플루오로에틸렌카보네이트, 디메틸비닐렌카보네이트로부터 선택되는 적어도 하나의 화합물,
    정극 보호 첨가제로서, 프로판술톤, 1,3-프로펜술톤, 메틸렌메탄디술포네이트, 디메틸렌메탄디술포네이트, 트리메틸렌메탄디술포네이트로부터 선택되는 적어도 하나의 화합물,
    과충전 방지 첨가제로서, 시클로헥실벤젠, tert-부틸벤젠, tert-아밀벤젠, 비페닐, o-테르페닐, 4-플루오로비페닐, 플루오로벤젠, 2,4-디플루오로벤젠, 디플루오로아니솔로부터 선택되는 적어도 하나의 화합물로 이루어지는 군으로부터 선택되는 적어도 하나의 화합물을 함유하는 것을 특징으로 하는 비수전해액 전지용 전해액.
  3. 적어도 정극과, 부극과, 제 1 항 또는 제 2 항에 기재된 비수전해액 전지용 전해액을 구비하는 것을 특징으로 하는 리튬 비수전해액 전지.
  4. 삭제
  5. 삭제
KR1020177013591A 2014-11-19 2015-09-17 비수전해액 전지용 전해액 및 리튬 비수전해액 전지 KR101947059B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014234152A JP6520064B2 (ja) 2014-11-19 2014-11-19 非水電解液電池用電解液及びリチウム非水電解液電池
JPJP-P-2014-234152 2014-11-19
PCT/JP2015/076383 WO2016080063A1 (ja) 2014-11-19 2015-09-17 非水電解液電池用電解液及びリチウム非水電解液電池

Publications (2)

Publication Number Publication Date
KR20170068595A KR20170068595A (ko) 2017-06-19
KR101947059B1 true KR101947059B1 (ko) 2019-02-12

Family

ID=56013623

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020177013591A KR101947059B1 (ko) 2014-11-19 2015-09-17 비수전해액 전지용 전해액 및 리튬 비수전해액 전지

Country Status (7)

Country Link
US (1) US10270132B2 (ko)
EP (1) EP3223355B1 (ko)
JP (1) JP6520064B2 (ko)
KR (1) KR101947059B1 (ko)
CN (1) CN107004903B (ko)
TW (1) TWI581481B (ko)
WO (1) WO2016080063A1 (ko)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6520064B2 (ja) 2014-11-19 2019-05-29 セントラル硝子株式会社 非水電解液電池用電解液及びリチウム非水電解液電池
JP6731155B2 (ja) * 2017-01-20 2020-07-29 トヨタ自動車株式会社 非水電解質二次電池
JP6871008B2 (ja) * 2017-02-13 2021-05-12 積水化学工業株式会社 リチウムイオン二次電池用電解質及びそれを用いたリチウムイオン二次電池用電解液並びにリチウムイオン二次電池
JP2018156761A (ja) * 2017-03-16 2018-10-04 三井化学株式会社 電池用非水電解液及びリチウム二次電池
KR102264735B1 (ko) 2017-09-21 2021-06-15 주식회사 엘지에너지솔루션 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2019093853A1 (ko) * 2017-11-13 2019-05-16 주식회사 엘지화학 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
KR102242252B1 (ko) * 2017-11-13 2021-04-21 주식회사 엘지화학 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
HUE065126T2 (hu) 2018-07-02 2024-05-28 Lg Energy Solution Ltd Lítium szekunder akkumulátor javított magas hõmérsékleti jellemzõkkel
CN109449486A (zh) * 2018-10-15 2019-03-08 苏州大学 一种电解液添加剂的应用
US12009481B2 (en) * 2020-01-28 2024-06-11 StoreDot Ltd. Electrolytes for fast charging lithium ion batteries having four-carbon chain esters as linear components
JP2021166244A (ja) * 2020-04-07 2021-10-14 太陽誘電株式会社 電気化学デバイス用電解液および電気化学デバイス
CN114075246A (zh) * 2020-08-18 2022-02-22 恒大新能源技术(深圳)有限公司 双草酸磷酸盐的制备方法、双草酸磷酸盐衍生物及其制备方法、电解质盐
CN112713308A (zh) * 2020-12-28 2021-04-27 远景动力技术(江苏)有限公司 一种非水电解液及基于其的锂离子电池
CN112687956A (zh) * 2020-12-28 2021-04-20 远景动力技术(江苏)有限公司 锂电池的非水电解液及基于其的锂离子电池
WO2022252055A1 (zh) * 2021-05-31 2022-12-08 宁德新能源科技有限公司 一种电化学装置和电子装置
CN116581387B (zh) * 2023-07-11 2023-11-24 宁德时代新能源科技股份有限公司 电解液、电池和用电设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008222484A (ja) * 2007-03-12 2008-09-25 Central Glass Co Ltd ジフルオロリン酸リチウムの製造方法及びこれを用いた非水電解液電池
JP2014132576A (ja) * 2009-08-21 2014-07-17 Mitsubishi Chemicals Corp ジフルオロリン酸塩組成物及びそれからなる非水系電解液用添加剤、並びにそれを用いた二次電池用非水系電解液及び非水系電解液二次電池

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2987397B2 (ja) * 1995-12-14 1999-12-06 セントラル硝子株式会社 ヘキサフルオロリン酸リチウムの製造方法
JP3034202B2 (ja) * 1996-09-19 2000-04-17 セントラル硝子株式会社 リチウム電池用電解液及びその精製方法並びにそれを用いたリチウム電池
CA2193119C (en) * 1995-12-14 2001-01-30 Shouichi Tsujioka Electrolytic solution for lithium cell and method for producing same
JP3439085B2 (ja) 1997-08-21 2003-08-25 三洋電機株式会社 非水系電解液二次電池
US6200701B1 (en) 1999-01-25 2001-03-13 Wilson Greatbatch Ltd. Phosphonate additives for nonaqueous electrolyte in rechargeable cells
US6495285B2 (en) * 1999-01-25 2002-12-17 Wilson Greatbatch Ltd. Phosphonate additives for nonaqueous electrolyte in rechargeable electrochemical cells
CA2298792C (en) 1999-06-02 2004-04-27 Wilson Greatbatch Ltd. Phosphonate additives for nonaqueous electrolyte in rechargeable cells
JP4233819B2 (ja) 2002-06-25 2009-03-04 三菱化学株式会社 非水電解液二次電池
JP5408112B2 (ja) * 2003-04-18 2014-02-05 三菱化学株式会社 ジフルオロリン酸塩の製造方法、二次電池用非水系電解液及び非水系電解液二次電池
JP4952186B2 (ja) * 2005-10-20 2012-06-13 三菱化学株式会社 二次電池用非水系電解液及びそれを用いた二次電池
JP4972922B2 (ja) 2005-12-14 2012-07-11 セントラル硝子株式会社 非水電解液電池用電解液及び非水電解液電池
JP5239119B2 (ja) * 2005-12-26 2013-07-17 セントラル硝子株式会社 非水電解液電池用電解液及び非水電解液電池
KR101412899B1 (ko) * 2010-02-12 2014-06-26 미쓰비시 가가꾸 가부시키가이샤 비수계 전해액 및 비수계 전해액 2 차 전지
JP5463957B2 (ja) * 2010-03-02 2014-04-09 ソニー株式会社 非水電解液および電池
WO2012016924A1 (en) * 2010-08-04 2012-02-09 Solvay Sa Manufacture of lipo2f2 from pof3 or pf5
JP6113521B2 (ja) * 2012-02-27 2017-04-12 株式会社東芝 非水電解質電池および電池パック
KR102030347B1 (ko) * 2012-06-19 2019-11-18 에스케이이노베이션 주식회사 첨가제를 포함하는 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
JP6226643B2 (ja) * 2012-08-28 2017-11-08 関東電化工業株式会社 ジフルオロリン酸リチウムの製造方法
WO2014129823A1 (ko) * 2013-02-20 2014-08-28 주식회사 엘지화학 리튬 이차 전지용 전해액 첨가제, 상기 전해액 첨가제를 포함하는 비수성 전해액 및 리튬 이차 전지
JP6520064B2 (ja) 2014-11-19 2019-05-29 セントラル硝子株式会社 非水電解液電池用電解液及びリチウム非水電解液電池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008222484A (ja) * 2007-03-12 2008-09-25 Central Glass Co Ltd ジフルオロリン酸リチウムの製造方法及びこれを用いた非水電解液電池
JP2014132576A (ja) * 2009-08-21 2014-07-17 Mitsubishi Chemicals Corp ジフルオロリン酸塩組成物及びそれからなる非水系電解液用添加剤、並びにそれを用いた二次電池用非水系電解液及び非水系電解液二次電池

Also Published As

Publication number Publication date
TW201622225A (zh) 2016-06-16
CN107004903A (zh) 2017-08-01
US10270132B2 (en) 2019-04-23
JP2016100100A (ja) 2016-05-30
TWI581481B (zh) 2017-05-01
CN107004903B (zh) 2020-11-06
EP3223355B1 (en) 2019-05-01
JP6520064B2 (ja) 2019-05-29
WO2016080063A1 (ja) 2016-05-26
US20170317384A1 (en) 2017-11-02
EP3223355A1 (en) 2017-09-27
KR20170068595A (ko) 2017-06-19
EP3223355A4 (en) 2018-05-30

Similar Documents

Publication Publication Date Title
KR101947059B1 (ko) 비수전해액 전지용 전해액 및 리튬 비수전해액 전지
US10847838B2 (en) Electrolyte solution for non-aqueous electrolytic solution battery and non-aqueous electrolyte solution battery using same
KR101445283B1 (ko) 비수전해액 전지용 전해액 및 이것을 사용하는 비수전해액 전지
KR101636427B1 (ko) 비수 전해액 전지용 전해액 및 비수 전해액 전지
JP4450550B2 (ja) 非水電解液およびそれを用いた二次電池
JP2019057356A (ja) 非水電解液電池用電解液、及びこれを用いた非水電解液電池
JP6607689B2 (ja) 電池用非水電解液、及びリチウム二次電池
KR102498456B1 (ko) 비수전해액 전지용 전해액 및 그것을 사용한 비수전해액 전지
KR20200053565A (ko) 비수전해액용 첨가제, 비수전해액, 및 비수전해액 전지
JP2016131059A (ja) 非水電解液電池用電解液、及びこれを用いた非水電解液電池
JP2016015214A (ja) 非水電解液電池用電解液、及びこれを用いた非水電解液電池
CN105009346A (zh) 用于锂二次电池的电解液及包含其的锂二次电池
CN117954689A (zh) 非水电解液电池用电解液和使用其的非水电解液电池
EP3965205A1 (en) Non-aqueous electrolyte solution
EP3965204A1 (en) Nonaqueous electrolyte solution

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
E902 Notification of reason for refusal
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant