KR101923770B1 - 엔진 구동식 공기 조화 장치 - Google Patents

엔진 구동식 공기 조화 장치 Download PDF

Info

Publication number
KR101923770B1
KR101923770B1 KR1020160082374A KR20160082374A KR101923770B1 KR 101923770 B1 KR101923770 B1 KR 101923770B1 KR 1020160082374 A KR1020160082374 A KR 1020160082374A KR 20160082374 A KR20160082374 A KR 20160082374A KR 101923770 B1 KR101923770 B1 KR 101923770B1
Authority
KR
South Korea
Prior art keywords
refrigerant
heat exchanger
outdoor heat
flow rate
pipe
Prior art date
Application number
KR1020160082374A
Other languages
English (en)
Other versions
KR20170026110A (ko
Inventor
도모히데 니시카와
Original Assignee
아이신세이끼가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아이신세이끼가부시끼가이샤 filed Critical 아이신세이끼가부시끼가이샤
Publication of KR20170026110A publication Critical patent/KR20170026110A/ko
Application granted granted Critical
Publication of KR101923770B1 publication Critical patent/KR101923770B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00885Controlling the flow of heating or cooling liquid, e.g. valves or pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/04Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant
    • B60H1/08Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant from cooling liquid of the plant from other radiator than main radiator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3222Cooling devices using compression characterised by the compressor driving arrangements, e.g. clutches, transmissions or multiple drives
    • F25B41/003
    • F25B41/046
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2327/00Refrigeration system using an engine for driving a compressor
    • F25B2327/001Refrigeration system using an engine for driving a compressor of the internal combustion type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2101Temperatures in a bypass

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

비용 상승을 초래하는 일 없이, 저온 난방 운전 시에 있어서의 실외 열교환기 내에서의 냉매의 정체를 효과적으로 억제할 수 있는 엔진 구동식 공기 조화 장치를 제공하는 것이다.
엔진 구동식 공기 조화 장치(1)에 구비되는 제어 장치(40)는, 난방 운전 시에 서브 열교환기(16)를 흐른 냉매가 실외 열교환기(14)에 유입됨으로써 실외 열교환기(14)에 냉매가 정체한다고 예측되는 조건인 정체 조건이 성립되었을 때, 중간 배관(34)으로부터 실외 열교환기(14)에 유입되는 냉매의 유량이 증가하도록 제1 유량 조정 밸브(15b)를 제어한다.

Description

엔진 구동식 공기 조화 장치{ENGINE DRIVE TYPE AIR CONDITIONER}
본 발명은, 엔진 구동식 공기 조화 장치에 관한 것이다.
구동원으로서 엔진을 사용하는 엔진 구동식 공기 조화 장치는, 엔진의 폐열을 냉매 회로 내의 냉매에 전달하도록 구성할 수 있다. 엔진의 폐열을 냉매에 전달시키기 위해, 엔진 구동식 공기 조화 장치의 냉매 회로 중에는 서브 열교환기가 설치된다. 이 서브 열교환기에서 냉매 회로 중의 냉매와 엔진의 폐열, 예를 들어 엔진을 냉각한 냉각수를 열교환시킴으로써, 엔진의 폐열이 냉매 회로 중의 냉매에 전달된다.
이러한 서브 열교환기는, 특히, 난방 운전 시에 있어서, 그 효과를 발휘한다. 난방 운전 시에는, 실외 열교환기에서는 충분히 외기로부터 냉매에 열을 부여할 수 없는 경우가 발생한다. 그러한 경우에 서브 열교환기에서 냉매에 열을 부여함으로써, 효율적인 난방 운전을 계속할 수 있다.
그러나, 외기 온도가 극단적으로 낮을 때, 예를 들어 외기 온도가 -20℃ 이하일 때에 있어서의 난방 운전 시, 즉, 저온 난방 운전 시에는, 실외 열교환기를 흐르는 냉매가 외기에 냉각되므로, 실외 열교환기를 유출한 냉매의 압력은, 서브 열교환기를 유출한 냉매의 압력(서브 열교환기 출구 압력)에 대해 매우 낮아진다. 이 경우, 서브 열교환기를 유출한 냉매가 실외 열교환기로 유입되는 경우가 있다. 이 현상을, 냉매의 역류라고 칭한다.
냉매의 역류에 의해 서브 열교환기로부터 실외 열교환기로 냉매가 유입되면, 유입된 냉매가 실외 열교환기에서 냉각되어 액화되어, 실외 열교환기 내에 체류한다. 이러한 냉매의 체류를, 냉매의 정체라고 한다.
실외 열교환기에 냉매가 정체된 경우, 냉매 회로 내를 흐르는 냉매량이 감소하므로, 원하는 공조 능력이 발휘되지 않는다. 또한, 실외 열교환기에 냉매가 정체되어 있을 때, 공조 부하의 증대에 의해 실외 열교환기에 대량의 냉매가 유입된 경우, 실외 열교환기에서 완전히 증발되지 않는 대량의 액 냉매가 단숨에 어큐뮬레이터에 도입된다. 대량의 액 냉매가 단숨에 어큐뮬레이터에 도입된 경우, 압축기의 흡입 측에 있어서의 냉매의 과열도(흡입 과열도)가 저하되고, 액 냉매가 압축기에 흡입되어, 압축기가 액 압축을 일으킬 우려가 있다. 따라서, 서브 열교환기로부터 실외 열교환기로의 역류 현상, 및 그것에 기인한 실외 열교환 내에서의 냉매의 정체는, 발생하지 않는 것이 좋다.
특허문헌 1은, 실외 열교환기의 냉매 입구 측 및 냉매 출구 측에 각각 개폐 밸브를 설치하여, 저온 난방 운전 시에 이들 개폐 밸브가 폐쇄되도록 구성된 엔진 구동식 공기 조화 장치를 개시한다. 이것에 의하면, 저온 난방 운전 시에 실외 열교환기의 냉매 입구 측 및 냉매 출구 측에 설치된 개폐 밸브를 폐쇄함으로써, 서브 열교환기로부터 실외 열교환기로의 냉매의 역류가 방지된다. 또한, 특허문헌 2는, 실외 열교환기의 냉매 출구 측에 역지 밸브를 설치한 엔진 구동식 공기 조화 장치를 개시한다. 이것에 의하면, 역지 밸브의 존재에 의해, 저온 난방 운전 시에 있어서의 서브 열교환기로부터 실외 열교환로의 냉매의 역류가 방지된다.
일본 특허 공개 제2005-16805호 공보 일본 특허 공개 제2005-283025호 공보
특허문헌 1 및 특허문헌 2에 기재된 엔진 구동식 공기 조화 장치에 의하면, 저온 난방 운전 시에 있어서의 실외 열교환기로의 냉매의 역류를 방지하는 목적만을 위해, 실외 열교환기의 냉매 입구 측 및 냉매 출구 측에 개폐 밸브가 설치되거나, 혹은 실외 열교환기의 냉매 출구 측에 역지 밸브가 설치된다. 즉, 정체 발생 방지 전용의 밸브 수단이 필요하다. 이로 인해, 정체 발생 방지 전용의 밸브 수단에 필요로 하는 비용 분만큼 엔진 구동식 공기 조화기의 비용 상승을 초래한다. 특히, 발생 빈도가 제한되는 저온 난방 운전 시만을 위해 이들 밸브를 설치하게 되면, 예를 들어 한랭지 이외의 지역에 설치된 엔진 구동식 공기 조화 장치에서는 거의 이들 밸브가 기능하고 있지 않은 경우도 발생할 수 있으므로, 이들 밸브 수단을 설치하는 것에 의한 비용 대비 효과가 작다.
본 발명은, 비용 상승을 초래하는 일 없이, 저온 난방 운전 시에 있어서의 서브 열교환기로부터 실외 열교환기로의 냉매의 역류 현상 및 그것에 의한 실외 열교환기 내에서의 냉매의 정체의 발생을 효과적으로 억제할 수 있는 엔진 구동식 공기 조화 장치를 제공하는 것을 목적으로 한다.
본 발명은, 구동력을 발생하는 엔진(10)과, 냉매를 흡입하는 흡입구(11a) 및 냉매를 토출하는 토출구(11b)를 갖고, 엔진의 구동력에 의해 작동함으로써, 흡입구로부터 냉매를 흡입하고, 흡입한 냉매를 압축하고, 압축한 냉매를 토출구로부터 토출하는 압축기(11)와, 압축기의 토출구에 제1 냉매 배관(31, 32)을 통해 접속되고, 난방 운전 시에 제1 냉매 배관으로부터 유입된 냉매와 실내 공기를 열교환시키는 실내 열교환기(22)와, 실내 열교환기에 제2 냉매 배관(34)을 통해 접속되고, 난방 운전 시에 제2 냉매 배관으로부터 유입된 냉매와 외기를 열교환시키는 실외 열교환기(14)와, 실외 열교환기에 제3 냉매 배관(33, 35)을 통해 접속되고, 난방 운전 시에 제3 냉매 배관으로부터 유입된 냉매를 기액 분리하는 어큐뮬레이터(19)와, 어큐뮬레이터와 압축기의 흡입구를 접속하는 제4 냉매 배관(36)과, 제2 냉매 배관을 흐르는 냉매가 실외 열교환기를 바이패스하도록 제2 냉매 배관과 제3 냉매 배관을 접속하는 바이패스 배관(37)과, 바이패스 배관에 개재 장착되고, 바이패스 배관을 흐르는 냉매와 엔진의 폐열을 열교환시키는 서브 열교환기(16)와, 제2 냉매 배관에 개재 장착되고, 난방 운전 시에 제2 냉매 배관으로부터 실외 열교환기로 흐르는 냉매의 유량을 조정 가능한 제1 유량 조정 밸브(15b)와, 제1 유량 조정 밸브를 제어하는 제어 장치(40)를 구비하고, 제어 장치는, 난방 운전 시에 서브 열교환기를 흐른 냉매가 실외 열교환기에 유입됨으로써 실외 열교환기에 냉매가 정체한다고 예측되는 조건인 정체 조건이 성립되었을 때, 제2 냉매 배관으로부터 실외 열교환기에 유입되는 냉매의 유량이 증가하도록 제1 유량 조정 밸브를 제어하는, 엔진 구동식 공기 조화 장치(1)를 제공한다.
본 발명에 관한 엔진 구동식 공기 조화 장치에 의하면, 저온 난방 운전 시에 서브 열교환기를 흐른 냉매가 실외 열교환기에 유입되는 역류 현상이 일어나 실외 열교환기 내에 냉매가 정체한다고 예측되는 정체 조건이 성립되었을 때, 제2 냉매 배관으로부터 실외 열교환기에 유입되는 냉매의 유량, 즉, 난방 운전 시에 있어서 실외 열교환기를 정규의 방향으로 흐르는 냉매의 양이 증가하도록 제2 냉매 배관에 개재 장착된 제1 유량 조정 밸브가 제어된다. 이와 같이 하여 실외 열교환기 내를 정규의 방향으로 흐르는 냉매 유량을 증가시키면, 서브 열교환기 측으로부터 역류한 냉매가 실외 열교환기 내에 유입되려고 해도, 정규의 흐름에 밀려, 실외 열교환기 내로 진입할 수 없다. 이와 같이 하여 역류에 의한 냉매의 실외 열교환기로의 진입이 방지 혹은 억제되므로, 실외 열교환기 내에서의 냉매의 정체의 발생이 방지되거나, 혹은 실외 열교환기 내에 정체되는 냉매량을 저감시킬 수 있다. 또한, 실외 열교환기에 유입되는 냉매를 증가시킴으로써, 이미 실외 열교환기 내에 정체되어 버린 냉매가 실외 열교환기로부터 압출된다. 이로 인해 실외 열교환기 내에서의 냉매의 정체를 해소시킬 수도 있다.
이와 같이, 본 발명에 따르면, 저온 난방 운전 시에 실외 열교환기 내에서의 냉매의 정체의 발생이 우려될 때, 제1 유량 조정 밸브를 제어하여 실외 열교환기를 흐르는 냉매 유량을 증가시킴으로써, 정체의 발생이 방지되거나, 혹은 정체량이 저감된다. 또한, 제1 유량 조정 밸브는, 정체의 발생 방지를 위해서만 제어되는 것은 아니며, 예를 들어 공조 부하 등에 의해서도 제어된다. 즉, 제1 유량 조정 밸브는, 실외 열교환기 내에서의 냉매의 정체 발생 방지 전용의 밸브 수단은 아니다. 따라서, 정체 발생 방지 전용의 밸브 수단을 설치하는 것에 의한 비용 상승을 초래하는 일 없이, 저온 난방 운전 시에 있어서의 역류 현상 및 그것에 의한 실외 열교환기 내에서의 냉매의 정체를 효과적으로 억제할 수 있다.
또한, 본 발명은 구동력을 발생하는 엔진(10)과, 냉매를 흡입하는 흡입구(11a) 및 냉매를 토출하는 토출구(11b)를 갖고, 엔진의 구동력에 의해 작동함으로써, 흡입구로부터 냉매를 흡입하고, 흡입한 냉매를 압축하고, 압축한 냉매를 토출구로부터 토출하는 압축기(11)와, 압축기의 토출구에 제1 냉매 배관(31, 32)을 통해 접속되고, 난방 운전 시에 제1 냉매 배관으로부터 유입된 냉매와 실내 공기를 열교환시키는 실내 열교환기(22)와, 실내 열교환기에 제2 냉매 배관(34)을 통해 접속되고, 난방 운전 시에 제2 냉매 배관으로부터 유입된 냉매와 외기를 열교환시키는 실외 열교환기(14)와, 실외 열교환기에 제3 냉매 배관(33, 35)을 통해 접속되고, 난방 운전 시에 제3 냉매 배관으로부터 유입된 냉매를 기액 분리하는 어큐뮬레이터(19)와, 어큐뮬레이터와 압축기의 흡입구를 접속하는 제4 냉매 배관(36)과, 제2 냉매 배관을 흐르는 냉매가 실외 열교환기를 바이패스하도록 제2 냉매 배관과 제3 냉매 배관을 접속하는 바이패스 배관(37)과, 바이패스 배관에 개재 장착되고, 바이패스 배관을 흐르는 냉매와 엔진의 폐열을 열교환시키는 서브 열교환기(16)와, 바이패스 배관에 개재 장착되고, 바이패스 배관을 흐르는 냉매의 유량을 조정 가능한 제2 유량 조정 밸브(17)와, 제2 유량 조정 밸브를 제어하는 제어 장치(40)를 구비하고, 제어 장치는, 난방 운전 시에 서브 열교환기를 흐른 냉매가 실외 열교환기에 유입됨으로써 실외 열교환기에 냉매가 정체한다고 예측되는 조건인 정체 조건이 성립되었을 때, 서브 열교환기에 유입되는 냉매의 유량이 감소하도록 제2 유량 조정 밸브를 제어하는, 엔진 구동식 공기 조화 장치(1)를 제공한다.
본 발명에 관한 엔진 구동식 공기 조화 장치에 의하면, 저온 난방 운전 시에 서브 열교환기를 흐른 냉매가 실외 열교환기에 유입되는 역류 현상이 일어나 실외 열교환기 내에 냉매가 정체한다고 예측되는 정체 조건이 성립되었을 때, 서브 열교환기에 유입되는 냉매의 유량이 감소하도록 바이패스 배관에 개재 장착된 제2 유량 조정 밸브가 제어된다. 이와 같이 하여 서브 열교환기에 유입되는 냉매량을 감소시키면, 서브 열교환기 측으로부터 역류하여 실외 열교환기 내에 유입하려고 하는 냉매의 유량이 감소한다. 혹은, 서브 열교환기로부터 유출된 냉매의 유량 감소에 의해 냉매의 역류가 방지된다. 이로 인해, 냉매의 역류에 의해 실외 열교환기에 정체되는 냉매량이 감소되거나, 혹은 정체의 발생이 방지된다. 또한, 제2 유량 조정 밸브는, 정체의 발생 방지를 위해서만 제어되는 것은 아니며, 예를 들어 서브 열교환기에서의 열교환이 효율적인 공조 운전에 기여하는지 여부에 의해서도 제어된다. 즉, 제2 유량 조정 밸브는, 실외 열교환기 내에서의 냉매의 정체 발생 방지 전용의 밸브 수단은 아니다. 따라서, 정체의 발생의 방지 전용의 밸브 수단을 설치하는 것에 의한 비용 상승을 초래하는 일 없이, 저온 난방 운전 시에 있어서의 역류 현상 및 그것에 의한 실외 열교환기 내에서의 냉매의 정체를 효과적으로 억제할 수 있다.
또한, 본 발명은, 구동력을 발생하는 엔진(10)과, 냉매를 흡입하는 흡입구(11a) 및 냉매를 토출하는 토출구(11b)를 갖고, 엔진의 구동력에 의해 작동함으로써, 흡입구로부터 냉매를 흡입하고, 흡입한 냉매를 압축하고, 압축한 냉매를 토출구로부터 토출하는 압축기(11)와, 압축기의 토출구에 제1 냉매 배관(31, 32)을 통해 접속되고, 난방 운전 시에 제1 냉매 배관으로부터 유입된 냉매와 실내 공기를 열교환시키는 실내 열교환기(22)와, 실내 열교환기에 제2 냉매 배관(34)을 통해 접속되고, 난방 운전 시에 제2 냉매 배관으로부터 유입된 냉매와 외기를 열교환시키는 실외 열교환기(14)와, 실외 열교환기에 제3 냉매 배관(33, 35)을 통해 접속되고, 난방 운전 시에 제3 냉매 배관으로부터 유입된 냉매를 기액 분리하는 어큐뮬레이터(19)와, 어큐뮬레이터와 압축기의 흡입구를 접속하는 제4 냉매 배관(36)과, 제2 냉매 배관을 흐르는 냉매가 실외 열교환기를 바이패스하도록 제2 냉매 배관과 제3 냉매 배관을 접속하는 바이패스 배관(37)과, 바이패스 배관에 개재 장착되고, 바이패스 배관을 흐르는 냉매와 엔진의 폐열을 열교환시키는 서브 열교환기(16)와, 제2 냉매 배관에 개재 장착되고, 난방 운전 시에 제2 냉매 배관으로부터 실외 열교환기로 흐르는 냉매의 유량을 조정 가능한 제1 유량 조정 밸브(15b)와, 바이패스 배관에 개재 장착되고, 바이패스 배관을 흐르는 냉매의 유량을 조정 가능한 제2 유량 조정 밸브(17)와, 제1 유량 조정 밸브 및 제2 유량 조정 밸브를 제어하는 제어 장치(40)를 구비하고, 제어 장치는, 난방 운전 시에 서브 열교환기를 흐른 냉매가 실외 열교환기에 유입됨으로써 실외 열교환기에 냉매가 정체한다고 예측되는 조건인 정체 조건이 성립되었을 때이며, 제1 유량 조정 밸브의 개방도가 미리 정해진 개방도(Nth-Astp) 이하인 경우에, 제1 유량 조정 밸브의 개방도가 증가하도록 제1 유량 조정 밸브를 제어하고, 정체 조건이 성립되었을 때이며, 제1 유량 조정 밸브의 개방도가 미리 정해진 개방도보다 클 때, 제2 유량 조정 밸브의 개방도가 감소하도록 제2 유량 조정 밸브를 제어하는, 엔진 구동식 공기 조화 장치(1)를 제공한다.
본 발명에 관한 엔진 구동식 공기 조화 장치에 의하면, 저온 난방 운전 시에 서브 열교환기를 흐른 냉매가 실외 열교환기에 유입되는 역류 현상이 일어나 실외 열교환기 내에 냉매가 정체한다고 예측되는 정체 조건이 성립되었을 때이며, 제2 냉매 배관에 개재 장착된 제1 유량 조정 밸브의 개방도가 미리 정해진 개방도 이하인 경우에는, 제2 냉매 배관으로부터 실외 열교환기에 유입되는 냉매의 유량이 증가하도록 제1 유량 조정 밸브가 제어된다. 이에 의해, 서브 열교환기로부터 실외 열교환기로의 냉매의 역류 및 그것에 의한 실외 열교환기 내에서의 냉매의 정체를 방지 혹은 억제할 수 있다. 즉, 제1 유량 조정 밸브 개방도가 미리 정해진 개방도 이상에 도달할 때까지는, 제1 유량 조정 밸브의 개방도를 제어함으로써 냉매의 정체가 방지 혹은 억제된다. 이로 인해, 정체의 방지 혹은 억제를 위해, 서브 열교환기에 흐르는 냉매의 유량을 저감시키지 않아도 된다. 따라서, 실외 열교환기에서의 냉매의 정체를 방지 혹은 억제하면서, 서브 열교환기에서 냉매에 충분히 열을 계속 부여하여 효율적인 난방 운전을 계속할 수 있다. 또한, 제1 유량 조정 밸브의 개방도가 미리 정해진 개방도보다 커져도 여전히 정체 조건이 성립되어 있는 경우(즉, 정체가 개선되지 않는 경우)에 제2 유량 조정 밸브의 개방도를 감소시킴으로써, 제1 유량 조정 밸브의 개방도가 소정의 개방도에 도달해 있는 경우에 있어서도 실외 열교환기로의 냉매의 정체를 방지 혹은 억제할 수 있다.
본 발명에 있어서, 정체 조건은, 실외 열교환기가 증발기로서 기능하는 난방 시이며, 또한 제2 냉매 배관으로부터 실외 열교환기에 유입되는 냉매의 온도 (T1)이 외기 온도 (T3)보다 낮은 경우, 실외 열교환기로부터 유출되어 제3 냉매 배관을 흐르는 냉매의 온도 (T2)가 외기 온도보다 낮은 경우, 및 제4 냉매 배관을 흐르는 냉매의 압력 (PL)로부터 환산되는 냉매의 포화 가스 온도 (Ts)가 외기 온도보다 낮은 경우 중 어느 하나이면 된다. 상기 3가지의 조건 중 어느 하나가 성립되었을 때에는, 실외 열교환기가 외기에 대해 방열하는 상태라고 할 수 있다. 실외 열교환기가 외기에 대해 방열하는 상태인 경우, 서브 열교환기로부터 역류한 냉매가 실외 열교환기에 정체될 가능성이 높다. 따라서, 그러한 경우에 실외 열교환기를 흐르는 냉매의 유량을 증가시키거나, 혹은 서브 열교환기를 흐르는 냉매의 유량을 감소시킴으로써, 실외 열교환기 내에서의 냉매의 정체를 효과적으로 방지 혹은 억제할 수 있다.
도 1은 본 실시 형태에 관한 공기 조화 장치의 개략 구성을 도시하는 도면.
도 2는 제어 장치가 실행하는 제1 실시 형태에 관한 제1 정체 방지 제어 처리의 흐름을 나타내는 흐름도.
도 3은 제어 장치가 실행하는 제2 실시 형태에 관한 제2 정체 방지 제어 처리의 흐름을 나타내는 흐름도.
도 4는 제어 장치가 실행하는 제3 실시 형태에 관한 제3 정체 방지 제어 처리의 흐름을 나타내는 흐름도.
이하, 본 발명의 실시 형태에 대해 도면을 참조하여 설명한다. 도 1은, 본 실시 형태에 관한 엔진 구동식 공기 조화 장치의 개략 구성을 도시하는 도면이다. 도 1에 도시하는 바와 같이, 본 실시 형태에 관한 엔진 구동식 공기 조화 장치(1)는, 실외기(1a) 및 실내기(1b)를 구비한다. 실외기(1a)는 실외에 설치되고, 실내기(1b)는 실내에 설치된다.
실외기(1a)는, 엔진(10)과, 압축기(11)와, 오일 세퍼레이터(12)와, 사방 밸브(13)와, 실외 열교환기(14)와, 제1 유량 조정 밸브(15b)와, 서브 열교환기(16)와, 제2 유량 조정 밸브(17)와, 과냉각 코일(18)과, 어큐뮬레이터(19)와, 제어 장치(40)를 구비한다. 또한, 실내기(1b)는, 실내 측 전자 팽창 밸브(21)와, 실내 열교환기(22)를 구비한다. 이들 구성 요소가, 냉매 배관에 의해 접속된다.
엔진(10)은, 예를 들어 LPG 등의 기체 연료를 연소시킴으로써 구동력을 발생한다. 또한, 기체 연료 대신에, 가솔린 등의 액체 연료, 혹은 고체 연료를 사용할 수도 있다. 또한, 엔진(10)의 내부에 냉각수 통로(10a)가 형성되어 있고, 이 냉각수 통로(10a)는 냉각수가 충전된 냉각수 회로(70)에 접속된다. 냉각수 회로(70)에 냉각수 펌프(71)가 개재 장착된다. 냉각수 펌프(71)가 구동됨으로써, 냉각수 회로(70) 내를 냉각수가 흐른다. 냉각수 회로(70) 내를 흐르는 냉각수는 엔진(10) 내의 냉각수 통로(10a)에 공급되어, 냉각수 통로(10a) 내를 흐른다. 냉각수 통로(10a) 내를 냉각수가 흐름으로써, 엔진(10)이 냉각된다. 또한, 냉각수 회로(70)는, 후술하는 서브 열교환기(16)에 접속된다.
압축기(11)는 엔진(10)에 접속되어 있고, 엔진(10)의 구동력을 받아 작동한다. 압축기(11)는 흡입구(11a) 및 토출구(11b)를 갖는다. 압축기(11)가 작동하면, 압축기(11)는 흡입구(11a)로부터 냉매 가스를 흡입하고, 내부에서 냉매 가스를 압축하고, 압축한 냉매 가스를 토출구(11b)로부터 토출한다. 또한, 도 1에는 2대의 압축기가 도시되어 있지만, 1개의 실외기(1a)에 구비되는 압축기의 개수는 1개여도 되고, 3개 이상이어도 된다.
압축기(11)의 토출구(11b)는 토출 배관(31)의 일단부에 접속된다. 토출 배관(31)의 도중에 오일 세퍼레이터(12)가 개재 장착된다. 오일 세퍼레이터(12)는, 압축기(11)의 토출구(11b)로부터 토출된 오일을 회수한다. 회수된 오일은 압축기(11)의 흡입구(11a) 측으로 복귀된다.
토출 배관(31)의 타단부에 사방 밸브(13)가 접속된다. 사방 밸브(13)는, 제1 포트(13a), 제2 포트(13b), 제3 포트(13c) 및 제4 포트(13d)를 갖는다. 압축기(11)의 토출구(11b)는, 사방 밸브(13)의 제1 포트(13a)에 토출 배관(31)을 통해 접속된다. 사방 밸브(13)의 제2 포트(13b)에는 실내기 측 배관(32)을 통해 실내에 설치된 실내 열교환기(22)가 접속된다. 사방 밸브(13)의 제3 포트(13c)에는 실외기 측 배관(33)을 통해 실외 열교환기(14)가 접속된다. 그리고, 사방 밸브(13)의 제4 포트(13d)에는, 어큐뮬레이터 입구 배관(35)을 통해 어큐뮬레이터(19)가 접속된다.
사방 밸브(13)는, 제1 포트(13a)가 제2 포트(13b)에 연통됨과 함께 제3 포트(13c)가 제4 포트(13d)에 연통되는 난방 시 전환 상태와, 제1 포트(13a)가 제3 포트(13c)에 연통됨과 함께 제2 포트(13b)가 제4 포트(13d)에 연통되는 냉방 시 전환 상태를, 선택적으로 실현할 수 있도록 구성된다. 엔진 구동식 공기 조화 장치(1)가 난방 운전할 때에는, 사방 밸브(13)의 전환 상태가 난방 시 전환 상태로 되고, 엔진 구동식 공기 조화 장치(1)가 냉방 운전할 때에는, 사방 밸브(13)의 전환 상태가 냉방 시 전환 상태로 된다.
사방 밸브(13)의 전환 상태가 난방 시 전환 상태일 때, 사방 밸브(13)의 제1 포트(13a)에 토출 배관(31)을 통해 접속되어 있는 압축기(11)의 토출구(11b)와, 사방 밸브(13)의 제2 포트(13b)에 실내기 측 배관(32)을 통해 접속되어 있는 실내 열교환기(22)가 접속된다. 즉, 실내 열교환기(22)는, 난방 운전 시에는, 토출 배관(31) 및 실내기 측 배관(32)을 통해, 압축기(11)의 토출구(11b)에 접속된다. 토출 배관(31) 및 실내기 측 배관(32)이, 본 발명의 제1 냉매 배관에 상당한다.
또한, 사방 밸브(13)의 전환 상태가 난방 시 전환 상태일 때, 사방 밸브(13)의 제3 포트(13c)에 실외기 측 배관(33)을 통해 접속되어 있는 실외 열교환기(14)와, 사방 밸브(13)의 제4 포트(13d)에 어큐뮬레이터 입구 배관(35)을 통해 접속되어 있는 어큐뮬레이터(19)가 접속된다. 즉, 실외 열교환기(14)는, 난방 운전 시에는, 실외기 측 배관(33) 및 어큐뮬레이터 입구 배관(35)을 통해, 어큐뮬레이터(19)에 접속된다. 실외기 측 배관(33) 및 어큐뮬레이터 입구 배관(35)이, 본 발명의 제3 냉매 배관에 상당한다.
실외기 측 배관(33)을 통해 사방 밸브(13)의 제3 포트(13c)에 접속된 실외 열교환기(14)는, 그 내부를 유통하는 냉매와 외기를 열교환시킨다. 실외 열교환기(14)는, 중간 배관(34)을 통해 실내 열교환기(22)에 접속된다. 이 중간 배관(34)이, 본 발명의 제2 냉매 배관에 상당한다. 실내 열교환기(22)는, 그 내부를 유통하는 냉매와 실내 공기를 열교환시킨다. 또한, 중간 배관(34)의 도중에는, 과냉각 코일(18)이 개재 장착된다. 과냉각 코일(18)은, 내부를 통과하는 냉매를 과냉각시킨다.
중간 배관(34)의 위치 A로부터 위치 B까지의 사이의 부분은, 2개의 배관(배관 L1, 배관 L2)으로 분기되어 있다. 배관 L1에는 일 방향 밸브(15a)가 개재 장착되고, 배관 L2에는 제1 유량 조정 밸브(15b)가 개재 장착된다. 냉방 운전 시에는 냉매는 배관 L1을 흐르고, 난방 운전 시에는 냉매는 배관 L2를 흐른다. 제1 유량 조정 밸브(15b)는, 그곳을 흐르는 냉매를 팽창시킨다. 또한, 제1 유량 조정 밸브(15b)의 개방도는 조정 가능하다. 제1 유량 조정 밸브(15b)의 개방도를 조정함으로써, 중간 배관(34)을 흐르는 냉매의 유량이 조정된다.
어큐뮬레이터 입구 배관(35)을 통해 사방 밸브(13)의 제4 포트(13d)에 접속된 어큐뮬레이터(19)는, 또한 어큐뮬레이터 출구 배관(36)을 통해 압축기(11)의 흡입구(11a)에 접속된다. 이 어큐뮬레이터(19)는, 어큐뮬레이터 입구 배관(35) 측으로부터 냉매를 도입하고, 도입한 냉매를 기액 분리한다. 어큐뮬레이터(19) 내에서 액 냉매와 분리된 가스 냉매가, 어큐뮬레이터 출구 배관(36)을 경유하여 압축기(11)의 흡입구(11a)에 공급된다. 어큐뮬레이터 출구 배관(36)이, 본 발명의 제4 냉매 배관에 상당한다.
또한, 중간 배관(34)(제2 배관)과 어큐뮬레이터 입구 배관(35)(제3 냉매 배관)이 바이패스 배관(37)에 의해 접속된다. 이 바이패스 배관(37)에는, 제2 유량 조정 밸브(17) 및 서브 열교환기(16)가 개재 장착된다. 제2 유량 조정 밸브(17)의 개방도는 조정 가능하다. 제2 유량 조정 밸브(17)의 개방도를 조정함으로써, 바이패스 배관(37)을 흐르는 냉매의 유량이 조정된다.
서브 열교환기(16)는, 예를 들어 내관 및 외관을 구비하는 이중관식 열교환기이며, 내관이 바이패스 배관(37)에 접속되고, 외관이 엔진(10)에 접속된 냉각수 회로(70)에 접속된다. 따라서, 이 서브 열교환기(16)에 의해, 내관을 흐르는 냉매와 외관을 흐르는 냉각수(엔진 폐열)가 열교환된다. 또한, 외관을 흐르는 냉각수는 엔진(10)으로부터 열을 빼앗음으로써 가열되어 있다. 따라서, 이 서브 열교환기(16)에서, 바이패스 배관(37)을 흐르는 냉매가 냉각수에 의해 가열된다.
또한, 토출 배관(31)과 어큐뮬레이터 입구 배관(35)이 핫 가스 바이패스 배관(39)에 의해 접속된다. 이 핫 가스 바이패스 배관(39)에 핫 가스 바이패스 개폐 밸브(62)가 개재 장착된다.
또한, 제어 장치(40)는, CPU, ROM, RAM 등으로 이루어지는 마이크로컴퓨터를 주요 구성으로 하고, 적어도, 압축기(11)의 구동, 사방 밸브(13)의 전환 동작, 핫 가스 바이패스 개폐 밸브(62)의 개폐 동작, 제1 유량 조정 밸브(15b)의 개방도 및 제2 유량 조정 밸브(17)의 개방도를 제어한다.
또한, 냉매 회로의 각 처에 온도 센서 및 압력 센서가 장착된다. 이들 각종 센서 중, 제1 온도 센서(51)는 중간 배관(34)에 장착되어 있고, 난방 시에 중간 배관(34)으로부터 실외 열교환기(14)에 유입되는 냉매의 온도, 즉, 실외 열교환기 입구 온도 T1(냉매액 온도)을 검출한다. 제2 온도 센서(52)는, 실외기 측 배관(33)에 장착되어 있고, 난방 시에 실외 열교환기(14)로부터 실외기 측 배관(33)으로 유출되는 냉매의 온도, 즉, 실외 열교환기 출구 온도 T2(냉매 가스 온도)를 검출한다. 제3 온도 센서(53)는, 실외기(1a)의 하우징 등에 장착되어 있고, 외기 온도 T3을 검출한다. 제4 온도 센서(54)는, 토출 배관(31)에 장착되어 있고, 압축기(11)로부터 토출된 냉매의 온도(토출 온도)를 검출한다. 제5 온도 센서(55)는, 어큐뮬레이터 출구 배관(36)에 장착되어 있고, 압축기(11)에 흡입되는 냉매의 온도 T4(흡입 온도)를 검출한다. 또한, 제6 온도 센서(56)는 바이패스 배관(37)에 장착되어 있고, 서브 열교환기(16)를 유출한 냉매의 온도, 즉, 서브 열교환기 출구 온도 T5를 검출한다. 흡입 압력 센서(57)는, 어큐뮬레이터 출구 배관(36)에 장착되어 있고, 압축기(11)의 흡입구(11a)로 통하는 어큐뮬레이터 출구 배관(36) 내의 압력, 즉, 압축기(11)의 흡입구(11a) 측의 냉매 압력(흡입 압력) PL을 검출한다. 각 센서에 의해 검출된 온도 정보 혹은 압력 정보는, 제어 장치(40)에 입력된다.
다음으로, 상기 구성의 엔진 구동식 공기 조화 장치(1)의 공조 동작에 대해 설명한다. 본 실시 형태에 관한 엔진 구동식 공기 조화 장치(1)는, 공조 모드가 난방 모드인지 냉방 모드인지를 유저가 리모콘 등을 조작함으로써 설정할 수 있도록 되어 있다. 또한, 엔진 구동식 공기 조화 장치(1)의 공조 모드가 난방 모드일 때, 사방 밸브(13)의 전환 상태가 난방 시 전환 상태로 되도록, 제어 장치(40)가 사방 밸브(13)의 전환 동작을 제어한다. 또한, 엔진 구동식 공기 조화 장치(1)의 공조 모드가 냉방 모드일 때, 사방 밸브(13)의 전환 상태가 냉방 시 전환 상태로 되도록, 제어 장치(40)가 사방 밸브(13)의 전환 동작을 제어한다. 또한, 도 1에 있어서, 냉방 운전 시(냉방 모드에 의한 운전 시)에 있어서의 냉매의 흐름이 실선의 화살표로 나타내어지고, 난방 운전 시(난방 모드에 의한 운전 시)에 있어서의 냉매의 흐름이 점선의 화살표로 나타내어진다.
먼저, 난방 운전에 대해 설명한다. 엔진(10)의 구동에 의해 압축기(11)가 작동하면, 압축기(11)는, 어큐뮬레이터 출구 배관(36) 내의 저압 가스 냉매를 흡입구(11a)로부터 흡입함과 함께 흡입한 저압 가스 냉매를 압축하여 고온 고압 가스 냉매를 생성한다. 그리고, 생성된 고온 고압 가스 냉매를 토출구(11b)로부터 토출한다. 토출구(11b)로부터 토출된 고온 고압 가스 냉매는 토출 배관(31)을 흐른다.
토출 배관(31)의 도중에 오일 세퍼레이터(12)가 개재 장착되어 있다. 이 오일 세퍼레이터(12)에 의해, 토출 배관(31)을 흐르는 냉매 중에 혼입된 오일이 회수된다. 또한, 토출 배관(31)의 도중에는 핫 가스 바이패스 배관(39)이 접속되어 있다. 핫 가스 바이패스 배관(39)에 개재 장착된 핫 가스 바이패스 개폐 밸브(62)는, 엔진 구동식 공기 조화 장치(1)의 운전 중에, 예를 들어 냉매 회로 내의 냉매 압력이 지나치게 높을 때에 개방되도록, 제어 장치(40)에 의해 그 개폐 동작이 제어된다. 핫 가스 바이패스 개폐 밸브(62)가 개방되어 있는 경우, 토출 배관(31) 내의 일부의 가스 냉매는 핫 가스 바이패스 배관(39)을 흘러 어큐뮬레이터 입구 배관(35)에 이르고, 다시 어큐뮬레이터 입구 배관(35)으로부터 어큐뮬레이터(19)에 도입된다. 핫 가스 바이패스 개폐 밸브(62)가 폐쇄되어 있는 경우, 토출 배관(31) 내의 가스 냉매는 사방 밸브(13)의 제1 포트(13a)로 들어간다.
사방 밸브(13)는, 엔진 구동식 공기 조화 장치(1)의 공조 모드가 난방 모드일 때에는 난방 시 전환 상태로 되도록 제어 장치(40)에 의해 그 전환 동작이 제어되어 있으므로, 난방 운전 시에는, 사방 밸브(13)의 제1 포트(13a)가 제2 포트(13b)에 연통된다. 그로 인해 토출 배관(31)으로부터 사방 밸브(13)의 제1 포트(13a)로 들어간 고온 고압 가스 냉매는, 제2 포트(13b)로부터 사방 밸브(13)를 유출하여 실내기 측 배관(32)으로 흐른다. 실내기 측 배관(32) 내의 냉매는, 실내기(1b) 측의 실내 열교환기(22)에 유입된다. 실내 열교환기(22)에 유입된 고온 고압 가스 냉매는 실내 열교환기(22) 내를 유통하는 동안에 실내에 열을 토출하여 응축한다. 즉, 난방 운전 시에는 실내 열교환기(22)가 응축기로서 기능한다. 이때 고온 고압 가스 냉매로부터 토출된 열에 의해 실내 공기가 데워져, 실내가 난방된다.
실내 공기에 열을 토출하여 응축된 냉매는 일부 액화되어, 실내 열교환기(22)로부터 중간 배관(34)으로 유출된다. 그리고, 중간 배관(34)의 도중에 개재 장착된 실내 측 전자 팽창 밸브(21)에서 팽창됨으로써 중압화된다. 그 후, 실외기(1a) 측의 과냉각 코일(18)을 통과함으로써 과냉각된다. 과냉각 코일(18)을 유출한 냉매의 일부는, 중간 배관(34)에 접속되어 있는 바이패스 배관(37)을 흐른다. 그리고, 바이패스 배관(37)에 설치되어 있는 서브 열교환기(16)로 들어가, 이 서브 열교환기(16)에 의해 엔진 냉각수와 열교환된다. 또한, 바이패스 배관(37)에 개재 장착된 제2 유량 조정 밸브(17)에 의해, 바이패스 배관(37)에 설치되어 있는 서브 열교환기(16)에 유입되는 냉매의 유량이 조정된다. 서브 열교환기(16)에서 열교환된 냉매는, 바이패스 배관(37)으로부터 어큐뮬레이터 입구 배관(35)을 흘러 어큐뮬레이터(19)에 도입된다.
한편, 중간 배관(34)으로부터 바이패스 배관(37)으로 흐르지 않은 냉매는, 중간 배관(34)의 배관 L2를 흘러, 배관 L2에 개재 장착된 제1 유량 조정 밸브(15b)를 통과한다. 이 제1 유량 조정 밸브(15b)에 의해 냉매가 팽창되어 저압화됨과 함께, 중간 배관(34)으로부터 실외 열교환기(14)에 유입되는 냉매의 유량이 조정된다. 제1 유량 조정 밸브(15b)를 통과한 냉매는, 실외 열교환기(14)에 유입된다. 실외 열교환기(14)에 유입된 냉매는 실외 열교환기(14) 내를 유통하는 동안에 외기의 열을 빼앗아 증발한다. 즉, 난방 운전 시에는 실외 열교환기(14)가 증발기로서 기능한다.
외기의 열을 빼앗아 증발한 냉매는 일부 기화되어 실외 열교환기(14)로부터 실외기 측 배관(33)으로 유출되고, 그 후, 사방 밸브(13)의 제3 포트(13c)로 들어간다. 공조 모드가 난방 모드일 때에는, 사방 밸브(13)의 제3 포트(13c)가 제4 포트(13d)에 연통되어 있으므로, 실외기 측 배관(33)으로부터 사방 밸브(13)의 제3 포트(13c)로 들어간 냉매는 제4 포트(13d)로부터 사방 밸브(13)를 유출하여 어큐뮬레이터 입구 배관(35)을 흐른다. 어큐뮬레이터 입구 배관(35)을 흐른 냉매는 어큐뮬레이터(19)에 도입된다. 어큐뮬레이터(19)에서는 도입된 냉매가 기액 분리되고, 액 냉매와 분리된 저온 저압의 가스 냉매가 어큐뮬레이터 출구 배관(36)으로 유출된다. 그리고, 어큐뮬레이터 출구 배관(36) 내의 가스 냉매가 압축기(11)의 흡입구(11a)로 귀환한다. 이러한 냉매의 순환 사이클이 반복됨으로써, 실내 난방이 계속된다.
다음으로, 냉방 운전에 대해 설명한다. 압축기(11)가 작동하면, 압축기(11)의 토출구(11b)로부터 토출 배관(31)에 고온 고압 가스 냉매가 토출된다. 고온 고압 가스 냉매는 토출 배관(31)을 흘러, 오일 세퍼레이터(12)를 경유하여 사방 밸브(13)의 제1 포트(13a)로 들어간다.
사방 밸브(13)는, 공기 조화 장치의 공조 모드가 냉방 모드일 때에는 냉방 시 전환 상태로 되도록 제어 장치(40)에 의해 그 전환 동작이 제어되어 있으므로, 냉방 운전 시에는, 사방 밸브(13)의 제1 포트(13a)가 제3 포트(13c)에 연통된다. 그로 인해 토출 배관(31)으로부터 사방 밸브(13)의 제1 포트(13a)로 들어간 고온 고압 가스 냉매는, 제3 포트(13c)로부터 사방 밸브(13)를 유출하여 실외기 측 배관(33)으로 흐른다. 실외기 측 배관(33)으로 흐른 고온 고압 가스 냉매는 실외 열교환기(14)에 유입된다. 실외 열교환기(14)에 유입된 냉매는 실외 열교환기(14) 내를 유통하는 동안에 외기에 열을 토출하여 응축된다. 즉, 냉방 운전 시에는 실외 열교환기(14)가 응축기로서 기능한다.
외기에 열을 토출하여 응축된 냉매는 일부 액화되어, 실외 열교환기(14)로부터 중간 배관(34)으로 유출된다. 중간 배관(34)으로 유출된 액 냉매(혹은 기액 2상 냉매)는 배관 L1을 통과한다. 그 후, 일부의 냉매가 바이패스 배관(37)을 흘러, 바이패스 배관(37)에 설치되어 있는 서브 열교환기(16)에서 열교환된다. 서브 열교환기(16)에서 열교환된 냉매는, 바이패스 배관(37)으로부터 어큐뮬레이터 입구 배관(35)을 흘러 어큐뮬레이터(19)에 도입된다. 또한, 냉방 운전 시에 서브 열교환기(16)에 냉매를 흐르게 할 필요가 없는 경우에는, 바이패스 배관(37)에 개재 장착되어 있는 제2 유량 조정 밸브(17)를 폐쇄해 두면 된다.
바이패스 배관(37)을 흐르지 않은 냉매는, 중간 배관(34)에 개재 장착되어 있는 과냉각 코일(18)을 통과하고, 그 후, 실내기(1b) 측의 실내 측 전자 팽창 밸브(21)를 통과한다. 이 실내 측 전자 팽창 밸브(21)에서 냉매가 팽창됨으로써 증발하기 쉽도록 저압화된다. 그 후, 냉매는 실내 열교환기(22)로 유입된다. 실내 열교환기(22)로 유입된 냉매는 실내 열교환기(22) 내를 유통하는 동안에 실내 공기의 열을 빼앗아 증발한다. 즉, 실내 열교환기(22)는 냉방 운전 시에 증발기로서 기능한다. 이때 냉매가 실내 공기의 열을 빼앗음으로써 실내 공기가 냉각되어, 실내가 냉방된다.
실내 공기의 열을 빼앗아 증발한 냉매는 일부 기화되어, 실내 열교환기(22)로부터 실내기 측 배관(32)으로 유출되어 사방 밸브(13)를 향한다. 그리고, 사방 밸브(13)의 제2 포트(13b)로 들어간다. 공조 모드가 냉방 모드일 때에는, 사방 밸브(13)의 제2 포트(13b)가 제4 포트(13d)에 연통되어 있으므로, 실내기 측 배관(32)으로부터 사방 밸브(13)의 제2 포트(13b)로 들어간 냉매는, 제4 포트(13d)로부터 사방 밸브(13)를 유출하여 어큐뮬레이터 입구 배관(35)으로 유입된다. 어큐뮬레이터 입구 배관(35)을 흐른 냉매는 어큐뮬레이터(19)에 도입된다. 어큐뮬레이터(19)에서는 도입된 냉매가 기액 분리되고, 분리된 저온 저압의 가스 냉매가 어큐뮬레이터 출구 배관(36)으로 유출된다. 그리고, 어큐뮬레이터(19)로부터 어큐뮬레이터 출구 배관(36) 내로 유입된 가스 냉매가, 압축기(11)의 흡입구(11a)로 귀환한다. 이러한 냉매의 순환 사이클이 반복됨으로써, 실내 냉방이 계속된다.
또한, 상기한 난방 운전 시에 있어서, 제1 유량 조정 밸브(15b)의 개방도는, 통상은, 공조 부하에 따라서 제어되고 있다. 예를 들어, 실외 열교환기 입구 온도 T1과 실외 열교환기 출구 온도 T2의 차 (T2-T1)이, 공조 부하에 따라서 필요한 온도차로 되도록 제1 유량 조정 밸브(15b)의 개방도가 제어 장치(40)에 의해 제어된다. 또한, 상기한 난방 운전 시에 있어서, 제2 유량 조정 밸브(17)의 개방도는, 통상은, 서브 열교환기(16)에서의 열교환이 유효하게 기능하는지 여부에 따라서 제어되고 있다. 예를 들어, 제2 유량 조정 밸브(17)의 개방도는, 서브 열교환기 출구 온도 T5에 기초하여 얻어지는 서브 열교환기 출구 과열도가 소정의 과열도 이상일 때에 증가하고, 서브 열교환기 출구 과열도가 소정의 가열도 미만일 때에 감소하도록 제어 장치(40)에 의해 제어된다.
그런데, 난방 운전 시에는, 상기한 바와 같이, 실외 열교환기(14)가 증발기로서 기능한다. 즉, 실외 열교환기(14)에서 흡열된다. 이러한 흡열 반응에 의해 실외 열교환기(14)를 흐르는 냉매가 외기로부터 열을 빼앗는다. 그러나, 난방 운전 시에는 외기 온도가 낮기 때문에, 실외 열교환기(14)를 흐르는 냉매가 외기로부터 충분히 열을 빼앗을 수 없는 것이 우려된다. 냉매가 외기로부터 충분히 열을 빼앗을 수 없는 경우, 냉매의 온도를 목표 온도로 유지할 수 없고, 그 결과, 난방 능력이 저하된다. 이 점에 관하여, 본 실시 형태에 관한 엔진 구동식 공기 조화 장치(1)는, 냉매를 엔진(10)의 폐열에 의해 가열하기 위한 서브 열교환기(16)를 구비하고 있다. 이 서브 열교환기(16)는 중간 배관(34)으로부터 분기된 바이패스 배관(37)에 개재 장착되어 있으므로, 바이패스 배관(37)을 흐른 냉매가 서브 열교환기(16)에서 엔진(10)의 폐열(냉각수)에 의해 가열된다. 그리고, 서브 열교환기(16)에서 가열된 냉매는, 실외 열교환기(14)를 통과하지 않고 어큐뮬레이터 입구 배관(35)을 경유하여 어큐뮬레이터(19)에 도입된다. 즉, 실외 열교환기(14)와 서브 열교환기(16)는 병렬적으로 설치되어 있고, 바이패스 배관(37)은 실외 열교환기(14)를 바이패스하도록 중간 배관(34)(제2 냉매 배관)과 어큐뮬레이터 입구 배관(35)(제3 냉매 배관)을 접속하고 있다. 따라서, 난방 운전 시에는, 냉매는, 서브 열교환기(16)에서 엔진 폐열(냉각수)로부터도 열을 빼앗을 수 있다. 이에 의해 냉매의 온도를 원하는 온도로 유지하여, 난방 시에 있어서의 난방 능력을 유지할 수 있다.
그러나, 외기 온도가 극단적으로 낮은 경우에 있어서의 난방 운전 시, 즉, 저온 난방 운전 시에는, 실외 열교환기(14)에서는 외기로부터 거의 열을 빼앗을 수 없을 뿐만 아니라, 반대로 냉매가 외기에 의해 냉각되므로, 실외 열교환기(14)를 유출한 냉매의 압력은 상당히 낮아진다. 한편, 서브 열교환기(16)를 유출한 냉매의 압력은 상당히 높다. 따라서, 실외 열교환기(14)를 유출한 냉매의 압력과 서브 열교환기(16)를 유출한 냉매의 압력의 차압이 커지고, 이 압력차에 기초하여, 서브 열교환기(16)를 유출한 냉매가 사방 밸브(13)를 통해 실외 열교환기(14)로 역류하는 경우가 있다. 이와 같이 하여 서브 열교환기(16)로부터 실외 열교환기(14)로 역류한 냉매는, 실외 열교환기(14) 내에서 냉각됨으로써 액화된다. 액화된 냉매는, 실외 열교환기(14) 내에 체류한다. 즉, 실외 열교환기(14) 내에 냉매가 정체된다.
실외 열교환기(14) 내에 냉매가 정체되면, 냉매 회로(난방 운전 시 및 냉방 운전 시에 있어서 냉매가 흐르는 배관 및 각 기기) 내를 흐르는 냉매량이 감소하므로, 공조 능력이 저하된다. 또한, 실외 열교환기(14)에 냉매가 정체되어 있을 때, 공조 부하의 증대에 의해 실외 열교환기(14)에 다량의 냉매가 중간 배관(34) 측으로부터 유입된 경우, 실외 열교환기(14)에서 완전히 증발되지 않는 대량의 액 냉매가 단숨에 어큐뮬레이터(19)에 유입된다. 대량의 액 냉매가 단숨에 어큐뮬레이터(19)에 유입된 경우, 압축기(11)의 흡입구(11a)에 있어서의 냉매의 과열도(흡입 과열도)가 저하된다. 흡입 과열도가 저하되면, 압축기(11)에 액 냉매가 흡입되고, 압축기(11)가 액 압축되어 동작 불량을 일으킬 가능성이 높다.
따라서, 저온 난방 운전 시에 있어서의 서브 열교환기(16)로부터 실외 열교환기(14)로의 역류 및 그것에 수반되는 실외 열교환기(14) 내에서의 냉매의 정체는, 가능한 한 발생하지 않는 것이 좋다. 저온 난방 운전 시에 있어서의 실외 열교환기(14)에서의 냉매의 정체를 방지하기 위해, 상기 특허문헌 1에서는, 실외 열교환기에 냉매가 진입하지 않도록, 실외 열교환기의 냉매 입구 측 및 출구 측에 개폐 밸브가 설치되어 있다. 또한, 상기 특허문헌 2에서는, 실외 열교환기의 냉매 출구 측에 역류 방지를 위한 역지 밸브가 설치되어 있다.
이하에 나타내는 복수의 실시 형태에서는, 상기 특허문헌에 기재된 기술과 같이, 정체의 발생을 방지하기 위해 설치되는 전용의 밸브 수단의 개폐 작동에 의해 저온 난방 운전 시에 실외 열교환기에 냉매가 진입하지 않도록 하는 것이 아니라, 제어 장치(40)가 냉매 회로에 통상 구비되는 제1 유량 조정 밸브(15b) 및/또는 제2 유량 조정 밸브(17)를 제어함으로써, 저온 난방 운전 시에 있어서의 서브 열교환기(16)로부터 실외 열교환기(14)로의 냉매의 역류 및 그것에 수반되는 실외 열교환기(14) 내에서의 냉매의 정체를 방지 혹은 억제하고 있다. 이하, 이 점에 대해 설명한다.
(제1 실시 형태)
도 2는, 저온 난방 운전 시에 있어서의 서브 열교환기(16)로부터 실외 열교환기(14)로의 냉매의 역류 및 그것에 수반되는 실외 열교환기(14) 내에서의 냉매의 정체를 방지 혹은 억제하기 위해 제어 장치(40)가 실행하는 제1 정체 방지 제어 처리의 흐름을 나타내는 흐름도이다. 이 흐름도로 나타내어지는 루틴은, 엔진 구동식 공기 조화 장치(1)의 구동 중에, 소정의 단시간마다 반복 실행된다. 도 2의 루틴이 기동되면, 제어 장치(40)는 먼저, 도 2의 스텝(이하, 스텝 번호를 S라고 약기함) 101에 있어서, 엔진 구동식 공기 조화 장치(1)가 난방 운전 중인지 여부를 판단한다. 난방 운전 중이 아닌 경우(S101: "아니오"), 제어 장치(40)는 이 루틴을 종료한다. 한편, 난방 운전 중인 경우(S101: "예"), 제어 장치(40)는 S102에서, 각 센서의 검출 정보, 구체적으로는, 제1 온도 센서(51)가 검출한 실외 열교환기 입구 온도 T1, 제2 온도 센서(52)가 검출한 실외 열교환기 출구 온도 T2, 제3 온도 센서(53)가 검출한 외기 온도 T3, 제4 온도 센서(54)가 검출한 토출 온도, 제5 온도 센서(55)가 검출한 흡입 온도 T4, 제6 온도 센서(56)가 검출한 서브 열교환기 출구 온도 T5, 흡입 압력 센서(57)가 검출한 흡입 압력 PL을 판독한다.
이어서, 제어 장치(40)는 S103에서, 판독한 각 센서의 검출 정보에 기초하여, 냉매 포화 가스 온도 Ts, 흡입 과열도 ΔT 및 서브 열교환기 출구 과열도 ΔT1을 계산한다. 냉매 포화 가스 온도 Ts는, 압축기(11)의 흡입구(11a)로부터 압축기(11)에 흡입되는 냉매의 압력에 있어서의 냉매의 포화 온도이다. 이 냉매 포화 가스 온도 Ts는, 흡입 압력 센서(57)가 검출한 흡입 압력 PL을 냉매의 포화 온도로 환산함으로써, 얻을 수 있다. 흡입 과열도 ΔT는, 압축기(11)의 흡입구(11a)로부터 압축기(11)에 흡입되는 냉매의 건조도를 나타내는 값이다. 이 흡입 과열도 ΔT는, 제5 온도 센서(55)가 검출한 흡입 온도 T4 및 흡입 압력 센서(57)가 검출한 흡입 압력 PL에 기초하여 구할 수 있다. 서브 열교환기 출구 과열도 ΔT1은, 서브 열교환기(16)를 유출한 냉매의 건조도를 나타내는 값이다. 이 서브 열교환기 출구 과열도 ΔT1은, 제6 온도 센서(56)가 검출한 서브 열교환기 출구 온도 T5 및 흡입 압력 센서(57)가 검출한 흡입 압력 PL에 기초하여 구할 수 있다.
계속해서, 제어 장치(40)는, S104에서, 제1 온도 센서(51)가 검출한 실외 열교환기 입구 온도 T1에 소정의 여유도 α를 가산한 온도 (T1+α)가 제3 온도 센서(53)가 검출한 외기 온도 T3 이상인지 여부를 판단한다. S104에서, 온도 (T1+α)가 외기 온도 T3 이상이라고 판단한 경우(S104: "예"), 제어 장치(40)는 S107로 처리를 진행하여, 정체 조건이 성립되어 있다고 판단한다.
또한, S104에서, 온도 (T1+α)가 외기 온도 T3 미만이라고 판단한 경우(S104: "아니오"), 제어 장치(40)는 S105에서, 제2 온도 센서(52)가 검출한 실외 열교환기 출구 온도 T2에 소정의 여유도 α를 가산한 온도 (T2+α)가, 제3 온도 센서(53)가 검출한 외기 온도 T3 이상인지 여부를 판단한다. S105에서, 온도 (T2+α)가 외기 온도 T3 이상이라고 판단한 경우(S105: "예"), 제어 장치는, S107로 처리를 진행하여, 정체 조건이 성립되어 있다고 판단한다.
또한, S105에서, 온도 (T2+α)가 외기 온도 T3 미만이라고 판단한 경우(S105: "아니오"), 제어 장치(40)는, S106에서, 냉매 포화 가스 온도 Ts에 소정의 여유도 α를 가산한 온도 (Ts+α)가, 제3 온도 센서(53)가 검출한 외기 온도 T3 이상인지 여부를 판단한다. 온도 (Ts+α)가 외기 온도 T3 이상이라고 판단한 경우(S106: "예"), 제어 장치(40)는 S107로 처리를 진행하여, 정체 조건이 성립되어 있다고 판단한다. 한편, S106에서, 온도 (Ts+α)가 외기 온도 T3 미만이라고 판단한 경우(S106: "아니오"), 제어 장치(40)는 S108로 처리를 진행하여, 정체 조건이 성립되어 있지 않다고 판단한다. 그 후, 제어 장치(40)는, 이 루틴을 종료한다.
S107에서 정체 조건이 성립되어 있다고 판단한 경우, 제어 장치(40)는, S109로 처리를 진행하여, 흡입 과열도 ΔT가, 미리 정해진 설정 과열도 X℃보다 큰지 여부를 판단한다. 흡입 과열도 ΔT가 설정 과열도 X℃ 이하인 경우(S109: "아니오"), 제어 장치(40)는 이 루틴을 종료한다. 한편, 흡입 과열도 ΔT가 설정 과열도 X℃보다 크다고 판단한 경우(S109: "예"), 제어 장치(40)는 S110으로 처리를 진행하여, 현재의 제1 유량 조정 밸브(15b)의 개방도 Na에, 미리 설정된 소정의 미소 개방도 Astp를 가산한 개방도 (Na+Astp)가, 역치 개방도 Nth 이하인지 여부를 판단한다. 여기서, 역치 개방도 Nth는, 이 제1 유량 조정 밸브(15b)를 사용하는 데 있어서의 상한 개방도, 혹은 엔진(10)의 회전 속도에 따라서 정해지는 기준 개방도이며, 미리 설정된다. 개방도 (Na+Astp)가 역치 개방도 Nth보다 큰 경우(S110: "아니오"), 즉, 현재의 제1 유량 조정 밸브(15b)의 개방도 Na가, 미리 정해진 개방도(Nth-Astp)보다 큰 경우, 제어 장치(40)는 이 루틴을 종료한다. 한편, 개방도 (Na+Astp)가 역치 개방도 Nth 이하인 경우(S110: "예"), 즉, 현재의 제1 유량 조정 밸브(15b)의 개방도 Na가, 미리 정해진 개방도 (Nth-Astp) 이하인 경우, 제어 장치(40)는 제1 유량 조정 밸브(15b)의 개방도가 현재의 개방도 Na로부터 Astp만큼 증가하도록 제1 유량 조정 밸브(15b)의 개방도를 제어한다(S111). 그 후, 제어 장치(40)는 이 루틴을 종료한다.
제어 장치(40)는, 상기한 제1 정체 방지 제어 처리를 실행함으로써, 이하의 조건 (1), (2), (3) 중 어느 하나가 성립되어 있을 때, 실외 열교환기(14) 내에서 냉매의 정체가 발생한다고 예측한다.
(1) 난방 운전 시이며, 외기 온도 T3이, 실외 열교환기 입구 온도 T1에 여유도 α를 가산한 온도 (T1+α) 미만이다.
(2) 난방 운전 시이며, 외기 온도 T3이, 실외 열교환기 출구 온도 T2에 여유도 α를 가산한 온도 (T2+α) 미만이다.
(3) 난방 운전 시이며, 외기 온도 T3이, 압축기(11)에 흡입되는 냉매의 흡입 압력 PL에 있어서의 냉매 포화 가스 온도 Ts에 여유도 α를 가산한 온도 (T5+α) 미만이다.
조건 (1), (2), (3) 중 어느 하나가 성립되어 있을 때에는, 외기 온도 T3이, 실외 열교환기(14)를 흐르는 냉매의 온도보다 낮을 가능성이 높다. 즉, 실외 열교환기(14)를 흐르는 냉매가, 외기에 대해 방열 상태로 되어 있을 가능성이 높다. 실외 열교환기(14)가 외기에 대해 방열 상태인 경우, 실외 열교환기(14)에서는 외기로부터 열을 빼앗아 냉매를 증발시킬 수 없을 뿐만 아니라, 반대로 외기로 열을 방출하여, 냉매의 온도가 더욱 저하되는 경우도 있다. 이러한 경우, 실외 열교환기(14)의 출구 압력이 저하되어, 서브 열교환기(16)로부터의 냉매가 실외 열교환기(14)로 역류할 우려가 있다.
제어 장치(40)는, 정체 조건(상기한 조건 (1), (2), (3) 중 어느 하나)이 성립되어 있고, 또한 제1 유량 조정 밸브(15b)의 개방도를 더욱 크게 할 수 있는 경우(S110: "예"), 제1 유량 조정 밸브(15b)의 개방도를 증가시킨다. 제1 유량 조정 밸브(15b)의 개방도가 증가하면, 중간 배관(34)을 흐르는 냉매의 유량이 증가하고, 중간 배관(34) 측으로부터 실외 열교환기(14)로 유입되는 냉매량이 증가한다. 즉, 난방 운전 시에 실외 열교환기(14)에 정규의 방향으로 흐르는 냉매의 유량이 증가한다.
실외 열교환기(14)에 정규의 방향으로 흐르는 냉매의 유량이 증가하면, 서브 열교환기(16) 측으로부터의 냉매가 역류하여 실외 열교환기(14) 내에 유입하려고 해도, 실외 열교환기(14)를 유출한 냉매의 흐름, 즉, 정규의 흐름에 밀려, 실외 열교환기(14) 내로 진입할 수 없다. 또한, 실외 열교환기(14)에 유입되는 냉매를 증가시킴으로써, 이미 실외 열교환기(14) 내에 정체되어 버린 냉매가 실외 열교환기(14)로부터 압출된다. 이로 인해, 실외 열교환기(14) 내에서의 냉매의 정체가 해소된다.
이와 같이, 제1 실시 형태에 의하면, 제어 장치(40)가 제1 정체 방지 처리를 실행함으로써, 저온 난방 운전 시에 실외 열교환기(14) 내에서의 냉매의 정체 발생이 우려될 때, 제1 유량 조정 밸브(15b)의 개방도가 증가됨으로써 실외 열교환기(14)를 흐르는 냉매 유량이 증가된다. 실외 열교환기(14)를 흐르는 냉매 유량이 증가됨으로써 정체의 발생이 방지되거나, 혹은 정체량이 저감된다. 또한, 실외 열교환기(14)로 유입되는 냉매의 유량을 조정하는 제1 유량 조정 밸브(15b)는, 정체의 발생 방지를 위해서만 제어되는 것은 아니며, 예를 들어 엔진 구동식 공기 조화 장치(1)가 공조 부하에 알맞은 공조 능력을 발휘하도록 공조 부하 등에 의해서도 제어된다. 또한, 제1 유량 조정 밸브(15b)는, 난방 운전 시에 냉매를 팽창시키기 위해서도 사용된다. 즉, 제1 유량 조정 밸브(15b)는, 실외 열교환기(14) 내에서의 냉매의 정체 발생 방지 전용의 밸브 수단이 아니라, 공조 제어를 위해 필요한 구성 부품이다. 본 실시 형태에서는, 이와 같이 공조 제어에 필요한 구성 부품을 이용하여 저온 난방 시에 있어서의 실외 열교환기(14)에의 냉매의 정체 발생을 방지 혹은 억제하고 있다. 따라서, 정체 발생 방지 전용의 밸브 수단을 설치하는 것에 의한 비용 상승을 초래하는 일 없이, 저온 난방 운전 시에 있어서의 역류 현상 및 그것에 의한 실외 열교환기 내에서의 냉매의 정체를 효과적으로 억제할 수 있다.
또한, 도 2의 S109는, 어큐뮬레이터(19)의 상태를 가미한 판단 처리이다. 흡입 과열도 ΔT가 작은 경우, 즉, 흡입 과열도 ΔT가 X℃ 이하(S109: "아니오")인 경우, 어큐뮬레이터(19)에 들어 있는 액 냉매가 많은 것이 상정된다. 이러한 때에 실외 열교환기(14)로 유입되는 냉매를 증가시킨 경우, 어큐뮬레이터(19) 내에 다시 액 냉매가 도입될 우려가 있고, 그렇게 하면, 어큐뮬레이터(19) 내의 액 냉매가 압축기(11)에 흡입될 우려가 있다. 따라서, 그러한 우려가 있는 경우(S109: "아니오")에는, 실외 열교환기(14)로 유입되는 냉매의 양은 증가시키지 않는다. 바꾸어 말하면, 흡입 과열도 ΔT가 충분히 큰 경우에만(S109: "예") 실외 열교환기(14)에 흐르는 냉매의 유량을 증가시킴으로써, 압축기(11)의 액 압축을 회피할 수 있다.
또한, 도 2에 도시하는 루틴에 의해 제1 유량 조정 밸브(15b)의 개방도가 제어되지 않는 경우, 제1 유량 조정 밸브(15b)는 통상의 난방 시에 실행되는 제어 처리에 기초하여, 그 개방도가 제어된다. 예를 들어, 제1 유량 조정 밸브(15b)의 개방도는, 실외 열교환기 출구 온도 T2와 실외 열교환기 입구 온도 T1의 차 (T2-T1)이 공조 부하에 따라서 정해지는 값으로 되도록, 제어 장치(40)에 의해 제어된다.
(제2 실시 형태)
도 3은, 저온 난방 운전 시에 있어서의 서브 열교환기(16)로부터 실외 열교환기(14)로의 냉매의 역류 및 그것에 수반되는 실외 열교환기(14) 내에서의 냉매의 정체를 방지, 혹은 억제하기 위해 제어 장치(40)가 실행하는 제2 정체 방지 제어 처리의 흐름을 나타내는 흐름도이다. 도 3의 흐름도에 나타내어지는 루틴이 기동되면, 제어 장치(40)는 먼저, 도 3의 S201에 있어서, 엔진 구동식 공기 조화 장치(1)가 난방 운전 중인지 여부를 판단한다. 난방 운전 중이 아닌 경우(S201 : "아니오"), 제어 장치(40)는 이 루틴을 종료한다. 한편, 난방 운전 중인 경우(S201: "예"), 제어 장치(40)는, S202에서, 실외 열교환기 입구 온도 T1, 실외 열교환기 출구 온도 T2, 외기 온도 T3, 토출 온도, 흡입 온도 T4, 서브 열교환기 출구 온도 T5, 흡입 압력 PL을 판독한다.
이어서, 제어 장치(40)는, S203에서, 냉매 포화 가스 온도 Ts, 흡입 과열도 ΔT 및 서브 열교환기 출구 과열도 ΔT1을 계산한다.
계속해서, 제어 장치(40)는, S204에서, 서브 열교환기 출구 과열도 ΔT1이, 미리 설정되어 있는 기준 과열도 Y℃ 미만인지 여부를 판단한다. 여기서, 기준 과열도 Y℃는, 서브 열교환기(16)를 유출한 냉매의 과열도가 그 가열도 이상일 때, 서브 열교환기(16)에서 충분히 엔진의 폐열(냉각수)로부터 열을 빼앗았다고 할 수 있는 과열도로서 미리 설정된다. 기준 과열도 Y는, 예를 들어 3℃로 설정할 수 있다.
S204에서, 서브 열교환기 출구 과열도 ΔT1이 기준 과열도 Y℃ 미만이라고 판단된 경우(S204: "예"), 서브 열교환기(16)가 열교환기로서 충분히 기능하고 있지 않다. 이 경우, 서브 열교환기(16)에 냉매를 흐르게 할 필요성이 부족하다. 따라서, S210으로 처리를 진행하여, 제2 유량 조정 밸브(17)의 개방도가 현재의 개방도 Nb로부터 Bstp만큼 감소하도록 제2 유량 조정 밸브(17)의 개방도를 제어한다. 이에 의해, 서브 열교환기(16)를 흐르는 냉매의 유량이 감소한다. 그 후, 제어 장치(40)는 이 루틴을 종료한다.
한편, S204에서, 서브 열교환기 출구 과열도 ΔT1이 Y℃ 이상이라고 판단된 경우(S204: "아니오"), 서브 열교환기가 열교환기로서 충분히 기능하고 있다. 이 경우, 제어 장치(40)는 S205, S206, S207, S208, S209에서, 정체 조건이 성립되어 있는지 여부의 판단 처리를 실행한다. S205, S206, S207, S208, S209의 판단 처리는, 도 2의 S104, S105, S106, S107, S108의 판단 처리와 동일하므로, 그 구체적 설명은 생략한다.
제어 장치(40)가 S208에서 정체 조건이 성립되어 있다고 판단한 경우, 제어 장치(40)는 S210으로 처리를 진행하여, 제2 유량 조정 밸브(17)의 개방도가 현재의 개방도 Nb로부터 Bstp만큼 감소하도록 제2 유량 조정 밸브(17)의 개방도를 제어한다. 이에 의해, 서브 열교환기(16)를 흐르는 냉매의 유량이 감소한다. 그 후, 제어 장치(40)는 이 루틴을 종료한다.
한편, 제어 장치가 S209에서 정체 조건이 성립되어 있지 않다고 판단한 경우, 제어 장치(40)는 이 루틴에서 제2 유량 조정 밸브(17)의 개방도를 제어하는 일 없이, 이 루틴을 종료한다.
이와 같이, 제2 실시 형태에 따르면, 제어 장치(40)가 제2 정체 방지 제어 처리를 실행함으로써, 저온 난방 운전 시에 실외 열교환기(14) 내에서의 냉매의 정체의 발생이 우려될 때, 제2 유량 조정 밸브(17)의 개방도가 감소됨으로써 바이패스 배관(37)을 흐르는 냉매의 유량이 감소되고, 이에 의해 바이패스 배관(37)에 개재 장착된 서브 열교환기(16)를 흐르는 냉매의 유량이 감소된다. 그러면, 서브 열교환기(16)로부터 실외 열교환기(14)로 역류하려고 하는 냉매의 유량도 감소한다. 이와 같이 하여 역류하려고 하는 냉매의 유량이 감소됨으로써, 실외 열교환기(14) 내에서의 냉매의 정체가 억제되거나, 혹은 정체가 방지된다. 또한, 서브 열교환기(16)로 유입되는 냉매의 유량을 조정하는 제2 유량 조정 밸브(17)는, 정체의 발생 방지를 위해서만 제어되는 것이 아니라, 예를 들어 서브 열교환기 출구 과열도 ΔT1에 기초해서도 제어된다. 즉, 제2 유량 조정 밸브(17)는, 실외 열교환기(14) 내에서의 냉매의 정체 발생 방지 전용의 밸브 수단은 아니다. 따라서, 정체 발생 방지 전용의 밸브 수단을 설치하는 것에 의한 비용 상승을 초래하는 일 없이, 저온 난방 운전 시에 있어서의 역류 현상 및 그것에 의한 실외 열교환기 내에서의 냉매의 정체를 효과적으로 억제할 수 있다.
(제3 실시 형태)
도 4는, 저온 난방 운전 시에 있어서의 서브 열교환기(16)로부터 실외 열교환기(14)로의 냉매의 역류 및 그것에 수반되는 실외 열교환기(14) 내에서의 냉매의 정체를 방지 혹은 억제하기 위해 제어 장치(40)가 실행하는 제3 정체 방지 제어 처리의 흐름을 나타내는 흐름도이다. 도 4에 나타내는 흐름도에 의하면, 제어 장치(40)는 먼저, 도 4의 S301∼S311까지의 처리를 실행한다. 이 처리는, 도 2의 S101∼S111까지의 처리와 동일하므로, 그 구체적인 설명은 생략한다. 즉, 제어 장치(40)는 먼저, 도 2에 나타내는 제1 정체 방지 처리를 실행한다.
따라서, 제어 장치(40)는, S310에서, 현재의 제1 유량 조정 밸브(15b)의 개방도 Na에 미리 설정된 미소 개방도 Astp를 가산한 개방도 (Na+Astp)가 미리 설정된 역치 개방도 이하라고 판단한 경우(S310: "예"), 즉, 현재의 제1 유량 조정 밸브(15b)의 개방도 Na가, 미리 정해진 개방도 (Nth-Astp) 이하인 경우, 제1 정체 방지 제어 처리와 마찬가지로, S311에서, 제1 유량 제어 밸브(15b)의 개방도를 Astp만큼 증가시킨다. 이에 의해, 실외 열교환기(14)를 흐르는 냉매의 유량이 증가한다. 그 후, 제어 장치(40)는 이 루틴을 종료한다. 한편, 제어 장치(40)는, S310에서, 현재의 제1 유량 조정 밸브(15b)의 개방도 Na에 미소 개방도 Astp를 가산한 개방도 (Na+Astp)가 역치 개방도 Nth보다 크다고 판단한 경우(S310: "아니오"), 즉, 현재의 제1 유량 조정 밸브(15b)의 개방도 Na가, 미리 정해진 개방도 (Nth-Astp)보다 큰 경우, S312로 처리를 진행하여, 제2 유량 조정 밸브(17)의 개방도가 현재의 개방도 Nb로부터 Bstp만큼 감소하도록 제2 유량 조정 밸브(17)의 개방도를 제어한다. 이 S311의 처리는, 도 3의 S210의 처리와 동일하다. 이에 의해, 서브 열교환기(16)를 흐르는 냉매의 유량이 감소한다. 그 후, 제어 장치(40)는 이 루틴을 종료한다.
제어 장치(40)가 이러한 제3 정체 방지 제어를 실행함으로써, 저온 난방 운전 시에 정체 조건이 성립된 경우이며, 중간 배관(34)에 개재 장착된 제1 유량 조정 밸브(15b)의 개방도 Na가 미리 정해진 개방도 (Nth-Astp) 이하인 경우에는, 중간 배관(34)으로부터 실외 열교환기(14)로 유입되는 냉매의 유량이 증가하도록 제1 유량 조정 밸브(15b)가 제어된다. 이에 의해, 서브 열교환기(16)로부터 실외 열교환기(14)로의 냉매의 역류 및 그것에 의한 실외 열교환기(14) 내에서의 냉매의 정체를 방지 혹은 억제할 수 있다. 즉, 제1 유량 조정 밸브(15b)의 개방도 Na가 개방도 (Nth-Astp)에 도달할 때까지는, 제어 장치(40)가 제1 정체 제어 처리를 실행하여 제1 유량 조정 밸브(15b)의 개방도를 제어함으로써, 냉매의 정체가 방지 혹은 억제된다. 이로 인해, 정체의 방지 혹은 억제를 위해, 서브 열교환기(16)에 흐르는 냉매의 유량을 저감시키지 않아도 된다. 따라서, 실외 열교환기(14)에서의 냉매의 정체를 방지 혹은 억제하면서, 서브 열교환기(16)에서 냉매에 충분히 열을 계속 부여하여 효율적인 난방 운전을 계속할 수 있다. 그리고, 제1 유량 조정 밸브(15b)의 개방도 Na가 미리 정해진 개방도 (Nth-Astp)에 도달해도 여전히 정체 조건이 성립되어 있는 경우에 제2 유량 조정 밸브(17)의 개방도를 감소시킨다. 이에 의해, 제1 유량 조정 밸브(15b)의 개방도 Na가 역치 개방도 Nth에 도달해 있는 경우에 있어서도, 즉, 제1 유량 조정 밸브(15b)의 개방도를 그것 이상 크게 할 수 없는 경우에 있어서도, 실외 열교환기(14)로의 냉매의 정체를 방지 혹은 억제할 수 있다.
이상, 본 발명의 실시 형태에 대해 설명하였지만, 본 발명은 상기 실시 형태에 한정되어야 하는 것은 아니다. 예를 들어, 상기 실시 형태에 있어서는, 저온 난방 운전 시의 실외 열교환기에의 정체의 대책으로서, 제1 정체 방지 제어 처리, 제2 정체 방지 제어 처리 및 제3 정체 방지 제어 처리를 예시하였지만, 제1 정체 방지 제어 처리와 제2 정체 방지 제어 처리를 병용해도 된다. 또한, 상기 실시 형태에서는, 서브 열교환기(16)에서, 냉매가 엔진을 냉각한 냉각수와 열교환하는 예를 나타냈지만, 엔진의 폐열이 냉매의 가열에 이용되는 양태이면, 서브 열교환기를 어떻게 구성해도 된다. 이와 같이, 본 발명은 그 취지를 일탈하지 않는 한에 있어서, 변형 가능하다.
1 : 엔진 구동식 공기 조화 장치
10 : 엔진
11 : 압축기
11a : 흡입구
11b : 토출구
13 : 사방 밸브
14 : 실외 열교환기
15b : 제1 유량 조정 밸브
16 : 서브 열교환기
17 : 제2 유량 조정 밸브
19 : 어큐뮬레이터
22 : 실내 열교환기
31 : 토출 배관(제1 냉매 배관)
32 : 실내기 측 배관(제1 냉매 배관)
33 : 실외기 측 배관(제3 냉매 배관)
34 : 중간 배관(제2 냉매 배관)
35 : 어큐뮬레이터 입구 배관(제3 냉매 배관)
36 : 어큐뮬레이터 출구 배관(제4 냉매 배관)
37 : 바이패스 배관
40 : 제어 장치
51 : 제1 온도 센서
52 : 제2 온도 센서
53 : 제3 온도 센서
54 : 제4 온도 센서
55 : 제5 온도 센서
56 : 제6 온도 센서
57 : 흡입 압력 센서
70 : 냉각수 회로
Na : 개방도
Nth : 역치 개방도
PL : 흡입 압력
T1 : 실외 열교환기 입구 온도
T2 : 실외 열교환기 출구 온도
T3 : 외기 온도
Ts : 냉매 포화 가스 온도

Claims (7)

  1. 구동력을 발생하는 엔진과,
    냉매를 흡입하는 흡입구 및 냉매를 토출하는 토출구를 갖고, 상기 엔진의 구동력에 의해 작동함으로써, 상기 흡입구로부터 냉매를 흡입하고, 흡입한 냉매를 압축하고, 압축한 냉매를 상기 토출구로부터 토출하는 압축기와,
    상기 압축기의 상기 토출구에 제1 냉매 배관을 통해 접속되고, 난방 운전 시에 상기 제1 냉매 배관으로부터 유입된 냉매와 실내 공기를 열교환시키는 실내 열교환기와,
    상기 실내 열교환기에 제2 냉매 배관을 통해 접속되고, 난방 운전 시에 상기 제2 냉매 배관으로부터 유입된 냉매와 외기를 열교환시키는 실외 열교환기와,
    상기 실외 열교환기에 제3 냉매 배관을 통해 접속되고, 난방 운전 시에 상기 제3 냉매 배관으로부터 유입된 냉매를 기액 분리하는 어큐뮬레이터와,
    상기 어큐뮬레이터와 상기 압축기의 상기 흡입구를 접속하는 제4 냉매 배관과,
    상기 제2 냉매 배관을 흐르는 냉매가 상기 실외 열교환기를 바이패스하도록 상기 제2 냉매 배관과 상기 제3 냉매 배관을 접속하는 바이패스 배관과,
    상기 바이패스 배관에 개재 장착되고, 상기 바이패스 배관을 흐르는 냉매와 상기 엔진의 폐열을 열교환시키는 서브 열교환기와,
    상기 제2 냉매 배관에 개재 장착되고, 난방 운전 시에 상기 제2 냉매 배관으로부터 상기 실외 열교환기로 흐르는 냉매의 유량을 조정 가능한 제1 유량 조정 밸브와,
    상기 제1 유량 조정 밸브를 제어하는 제어 장치를 구비하고,
    상기 제어 장치는, 난방 운전 시에 상기 서브 열교환기를 흐른 냉매가 상기 실외 열교환기에 유입됨으로써 상기 실외 열교환기에 냉매가 정체한다고 예측되는 조건인 정체 조건이 성립되었을 때, 상기 제2 냉매 배관으로부터 상기 실외 열교환기에 유입되는 냉매의 유량이 증가하도록 상기 제1 유량 조정 밸브를 제어하는, 엔진 구동식 공기 조화 장치.
  2. 구동력을 발생하는 엔진과,
    냉매를 흡입하는 흡입구 및 냉매를 토출하는 토출구를 갖고, 상기 엔진의 구동력에 의해 작동함으로써, 상기 흡입구로부터 냉매를 흡입하고, 흡입한 냉매를 압축하고, 압축한 냉매를 상기 토출구로부터 토출하는 압축기와,
    상기 압축기의 상기 토출구에 제1 냉매 배관을 통해 접속되고, 난방 운전 시에 상기 제1 냉매 배관으로부터 유입된 냉매와 실내 공기를 열교환시키는 실내 열교환기와,
    상기 실내 열교환기에 제2 냉매 배관을 통해 접속되고, 난방 운전 시에 상기 제2 냉매 배관으로부터 유입된 냉매와 외기를 열교환시키는 실외 열교환기와,
    상기 실외 열교환기에 제3 냉매 배관을 통해 접속되고, 난방 운전 시에 상기 제3 냉매 배관으로부터 유입된 냉매를 기액 분리하는 어큐뮬레이터와,
    상기 어큐뮬레이터와 상기 압축기의 상기 흡입구를 접속하는 제4 냉매 배관과,
    상기 제2 냉매 배관을 흐르는 냉매가 상기 실외 열교환기를 바이패스하도록 상기 제2 냉매 배관과 상기 제3 냉매 배관을 접속하는 바이패스 배관과,
    상기 바이패스 배관에 개재 장착되고, 상기 바이패스 배관을 흐르는 냉매와 상기 엔진의 폐열을 열교환시키는 서브 열교환기와,
    상기 바이패스 배관에 개재 장착되고, 상기 바이패스 배관을 흐르는 냉매의 유량을 조정 가능한 제2 유량 조정 밸브와,
    상기 제2 유량 조정 밸브를 제어하는 제어 장치를 구비하고,
    상기 제어 장치는, 난방 운전 시에 상기 서브 열교환기를 흐른 냉매가 상기 실외 열교환기에 유입됨으로써 상기 실외 열교환기에 냉매가 정체한다고 예측되는 조건인 정체 조건이 성립되었을 때, 상기 서브 열교환기에 유입되는 냉매의 유량이 감소하도록 상기 제2 유량 조정 밸브를 제어하는, 엔진 구동식 공기 조화 장치.
  3. 구동력을 발생하는 엔진과,
    냉매를 흡입하는 흡입구 및 냉매를 토출하는 토출구를 갖고, 상기 엔진의 구동력에 의해 작동함으로써, 상기 흡입구로부터 냉매를 흡입하고, 흡입한 냉매를 압축하고, 압축한 냉매를 상기 토출구로부터 토출하는 압축기와,
    상기 압축기의 상기 토출구에 제1 냉매 배관을 통해 접속되고, 난방 운전 시에 상기 제1 냉매 배관으로부터 유입된 냉매와 실내 공기를 열교환시키는 실내 열교환기와,
    상기 실내 열교환기에 제2 냉매 배관을 통해 접속되고, 난방 운전 시에 상기 제2 냉매 배관으로부터 유입된 냉매와 외기를 열교환시키는 실외 열교환기와,
    상기 실외 열교환기에 제3 냉매 배관을 통해 접속되고, 난방 운전 시에 상기 제3 냉매 배관으로부터 유입된 냉매를 기액 분리하는 어큐뮬레이터와,
    상기 어큐뮬레이터와 상기 압축기의 상기 흡입구를 접속하는 제4 냉매 배관과,
    상기 제2 냉매 배관을 흐르는 냉매가 상기 실외 열교환기를 바이패스하도록 상기 제2 냉매 배관과 상기 제3 냉매 배관을 접속하는 바이패스 배관과,
    상기 바이패스 배관에 개재 장착되고, 상기 바이패스 배관을 흐르는 냉매와 상기 엔진의 폐열을 열교환시키는 서브 열교환기와,
    상기 제2 냉매 배관에 개재 장착되고, 난방 운전 시에 상기 제2 냉매 배관으로부터 상기 실외 열교환기로 흐르는 냉매의 유량을 조정 가능한 제1 유량 조정 밸브와,
    상기 바이패스 배관에 개재 장착되고, 상기 바이패스 배관을 흐르는 냉매의 유량을 조정 가능한 제2 유량 조정 밸브와,
    상기 제1 유량 조정 밸브 및 상기 제2 유량 조정 밸브를 제어하는 제어 장치를 구비하고,
    상기 제어 장치는, 난방 운전 시에 상기 서브 열교환기를 흐른 냉매가 상기 실외 열교환기에 유입됨으로써 상기 실외 열교환기에 냉매가 정체한다고 예측되는 조건인 정체 조건이 성립되었을 때이며, 상기 제1 유량 조정 밸브의 개방도가 미리 정해진 개방도 이하인 경우에, 상기 제1 유량 조정 밸브의 개방도가 증가하도록 상기 제1 유량 조정 밸브를 제어하고, 상기 정체 조건이 성립되었을 때이며, 상기 제1 유량 조정 밸브의 개방도가 상기 미리 정해진 개방도보다 클 때, 상기 제2 유량 조정 밸브의 개방도가 감소하도록 상기 제2 유량 조정 밸브를 제어하는, 엔진 구동식 공기 조화 장치.
  4. 제1항에 있어서,
    상기 실외 열교환기 내에 정체된 냉매가 상기 실외 열교환기로부터 압출되는, 엔진 구동식 공기 조화 장치.
  5. 제2항에 있어서,
    상기 실외 열교환기 내에 정체된 냉매가 상기 실외 열교환기로부터 압출되는, 엔진 구동식 공기 조화 장치.
  6. 제3항에 있어서,
    상기 실외 열교환기 내에 정체된 냉매가 상기 실외 열교환기로부터 압출되는, 엔진 구동식 공기 조화 장치.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서,
    상기 정체 조건은, 상기 실외 열교환기가 증발기로서 기능하는 난방 시이며, 또한 상기 제2 냉매 배관으로부터 상기 실외 열교환기에 유입되는 냉매의 온도가 외기 온도보다 낮은 경우, 상기 실외 열교환기로부터 유출되어 상기 제3 냉매 배관을 흐르는 냉매의 온도가 외기 온도보다 낮은 경우, 및 상기 제4 냉매 배관을 흐르는 냉매의 압력으로부터 환산되는 냉매의 포화 가스 온도가 외기 온도보다 낮은 경우 중 어느 하나인, 엔진 구동식 공기 조화 장치.
KR1020160082374A 2015-08-27 2016-06-30 엔진 구동식 공기 조화 장치 KR101923770B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015167880A JP6641791B2 (ja) 2015-08-27 2015-08-27 エンジン駆動式空気調和装置
JPJP-P-2015-167880 2015-08-27

Publications (2)

Publication Number Publication Date
KR20170026110A KR20170026110A (ko) 2017-03-08
KR101923770B1 true KR101923770B1 (ko) 2018-11-29

Family

ID=58211900

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160082374A KR101923770B1 (ko) 2015-08-27 2016-06-30 엔진 구동식 공기 조화 장치

Country Status (2)

Country Link
JP (1) JP6641791B2 (ko)
KR (1) KR101923770B1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111473474A (zh) * 2020-04-24 2020-07-31 四川长虹空调有限公司 一种r290冷媒热泵空调控制方法、装置及空调机
WO2024034320A1 (ja) * 2022-08-10 2024-02-15 株式会社デンソー 冷凍サイクル装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005016805A (ja) * 2003-06-25 2005-01-20 Aisin Seiki Co Ltd 空気調和機
JP2006266584A (ja) * 2005-03-23 2006-10-05 Aisin Seiki Co Ltd エンジン駆動式空気調和機

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3600906B2 (ja) * 1995-02-08 2004-12-15 ヤマハ発動機株式会社 空気調和装置
JPH11173699A (ja) * 1997-12-10 1999-07-02 Sanyo Electric Co Ltd 冷媒加熱式空気調和機
JP2000097511A (ja) * 1998-09-21 2000-04-04 Sanyo Electric Co Ltd 冷媒加熱式空気調和機
JP4898025B2 (ja) * 2001-06-26 2012-03-14 三菱重工業株式会社 マルチ型ガスヒートポンプ式空気調和装置
JP2004198085A (ja) * 2002-12-20 2004-07-15 Toshiba Kyaria Kk 空気調和機
JP4561147B2 (ja) 2004-03-30 2010-10-13 アイシン精機株式会社 空気調和機
JP4675083B2 (ja) * 2004-10-26 2011-04-20 三洋電機株式会社 空気調和装置
JP2007107859A (ja) * 2005-10-17 2007-04-26 Mitsubishi Heavy Ind Ltd ガスヒートポンプ式空気調和装置
JP2010144940A (ja) * 2008-12-16 2010-07-01 Panasonic Corp 空気調和装置
JP5310101B2 (ja) * 2009-03-03 2013-10-09 ダイキン工業株式会社 空気調和装置
JP5481937B2 (ja) * 2009-05-28 2014-04-23 アイシン精機株式会社 空気調和装置
JP6103181B2 (ja) * 2012-09-26 2017-03-29 アイシン精機株式会社 エンジン駆動式空気調和装置
JP2014214951A (ja) * 2013-04-25 2014-11-17 株式会社富士通ゼネラル 空気調和装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005016805A (ja) * 2003-06-25 2005-01-20 Aisin Seiki Co Ltd 空気調和機
JP2006266584A (ja) * 2005-03-23 2006-10-05 Aisin Seiki Co Ltd エンジン駆動式空気調和機

Also Published As

Publication number Publication date
KR20170026110A (ko) 2017-03-08
JP6641791B2 (ja) 2020-02-05
JP2017044419A (ja) 2017-03-02

Similar Documents

Publication Publication Date Title
EP2325578B1 (en) Heat pump
KR101203579B1 (ko) 공조 겸용 급탕 장치 및 그 운전방법
US7360372B2 (en) Refrigeration system
CN108139120B (zh) 空调装置
US8307668B2 (en) Air conditioner
JP6613759B2 (ja) エンジン駆動式空気調和装置
US20120006050A1 (en) Air-conditioning apparatus
US10208987B2 (en) Heat pump with an auxiliary heat exchanger for compressor discharge temperature control
US9416990B2 (en) Hot water supply apparatus associated with heat pump
EP1873466A2 (en) Refrigeration cycle and water heater
US20170089617A1 (en) Gas heat-pump system
US11022354B2 (en) Air conditioner
WO2018025318A1 (ja) ヒートポンプ装置
KR101706865B1 (ko) 공기조화기
KR102330339B1 (ko) 멀티형 공기조화기 및 그의 제어방법
JPWO2011089652A1 (ja) 空調給湯複合システム
EP2770276A1 (en) Heat pump
EP3144606A1 (en) Air conditioner
JP2007107859A (ja) ガスヒートポンプ式空気調和装置
KR101923770B1 (ko) 엔진 구동식 공기 조화 장치
JP2010127481A (ja) 空気調和機
JP6643630B2 (ja) 空気調和装置
KR20210093560A (ko) 냉난방 및 급탕 동시형 공기조화시스템 및 그의 제어방법
JP5313774B2 (ja) 空気調和機
KR102390900B1 (ko) 멀티형 공기조화기 및 그의 제어방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right