JP3600906B2 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
JP3600906B2
JP3600906B2 JP2018395A JP2018395A JP3600906B2 JP 3600906 B2 JP3600906 B2 JP 3600906B2 JP 2018395 A JP2018395 A JP 2018395A JP 2018395 A JP2018395 A JP 2018395A JP 3600906 B2 JP3600906 B2 JP 3600906B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
refrigerant circuit
valve
outside air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2018395A
Other languages
English (en)
Other versions
JPH08219574A (ja
Inventor
博文 吉原
明 北井
誠 三沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP2018395A priority Critical patent/JP3600906B2/ja
Publication of JPH08219574A publication Critical patent/JPH08219574A/ja
Application granted granted Critical
Publication of JP3600906B2 publication Critical patent/JP3600906B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Description

【0001】
【産業上の利用分野】
本発明は、熱源装置を備える空気調和装置に関する。
【0002】
【従来の技術】
本出願人は、暖房運転時に圧縮機、凝縮器として機能する室内熱交換器、膨張弁、蒸発器として機能する室外熱交換器及びエンジン廃熱を利用する熱源装置を順次経て冷媒を循環させるようにした空気調和装置を先に提案した(特開平5−180529号公報参照)。
而して、上記提案に係る空気調和装置によれば、暖房運転時に外気温度が低下したために冷媒の外気からの吸熱量が減少し、そのために室外熱交換器の蒸発器としての機能が低下しても、熱源装置において冷媒にエンジン廃熱を与えることによって冷媒の蒸発を促進させることができ、これによって暖房能力の低下を防ぐことができる。
【0003】
尚、エンジン廃熱以外の熱源(外気以外のものであれば、例えば地下水、電気ヒータ等)であっても、その温度が熱源装置を流れる冷媒の温度よりも高ければ、同様に低温時の暖房能力の低下を防ぐことができる。
【0004】
【発明が解決しようとする課題】
しかしながら、外気温度が更に低くなり、暖房運転時に室外熱交換器を流れる冷媒の温度よりも外気温度の方が低い場合には、逆に冷媒から外気に放熱がなされて暖房能力が低下するという問題が発生する。
【0005】
本発明は上記問題に鑑みてなされたもので、その目的とする処は、暖房運転時に室外熱交換器において冷媒の吸熱ができない程の低温時においても冷媒の放熱に伴う暖房能力の低下を防ぐことができる空気調和装置を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するため、請求項1記載の発明は、暖房運転時に圧縮機、凝縮器として機能する室内熱交換器、膨張弁、蒸発器として機能する室外熱交換器及び熱源装置を順次経て冷媒を循環させる主冷媒回路を備える空気調和装置において、外気温度を検出する外気温センサーと、前記主冷媒回路の前記膨張弁と室外熱交換器の間から分岐して室外熱交換器を迂回し同主冷媒回路の室外熱交換器と前記熱源の間に合流する迂回冷媒回路を設けるとともに、前記主冷媒回路の迂回冷媒回路分岐部から室外熱交換器に至る第1の部分と迂回冷媒回路の少なくとも一方に流量制御弁を設け、前記主冷媒回路の前記膨張弁から迂回冷媒回路合流部に至る第3の部分に冷媒温度センサーを配置し、前記外気温センサーによって検出された外気温度が前記冷媒温度センサーによって検出された冷媒温度以下の場合に前記流量制御弁を制御して迂回冷媒回路を流れる冷媒の流量を室外熱交換器を流れる冷媒の流量よりも大きくすることを特徴とする。
【0007】
請求項2記載の発明は、請求項1記載の発明において、前記主冷媒回路と迂回冷媒回路に第1流量制御弁、第2流量制御弁をそれぞれ設け、前記外気温センサーによって検出された外気温度が前記冷媒温度センサーによって検出された冷媒温度以下の場合に前記第2流量制御弁の開度を第1流量制御弁のそれよりも大きく設定することを特徴とする。
【0008】
請求項3記載の発明は、請求項2記載の発明において、前記第1流量制御弁及び第2流量制御弁としてそれぞれ第1開閉弁と第2開閉弁を設けるとともに、前記外気温センサーによって検出された外気温度が前記冷媒温度センサーによって検出された冷媒温度以下の場合に前記第1開閉弁を全閉、第2開閉弁を全開とすることを特徴とする。
【0010】
請求項記載の発明は、前記迂回冷媒回路の分岐部に、該分岐部の上流部と前記主冷媒回路の迂回冷媒回路分岐部から室外熱交換器に至る第1の部分との連通部の第1連通断面積と分岐部の上流部と迂回冷媒回路との連通部の第2連通断面積の一方を他方に対して大きくするように選択可能な三方弁を設けるとともに、前記外気温センサーによって検出された外気温度が前記冷媒温度センサーによって検出された冷媒温度以下の場合に前記第2連通断面積を第1連通断面積よりも大きくすることを特徴とする。
【0011】
請求項記載の発明は、請求項1〜4の何れかに記載の発明において、前記主冷媒回路の室外熱交換器から迂回冷媒回路合流部に至る第2の部分に冷媒の逆流防止手段を設けたことを特徴とする。
【0012】
請求項記載の発明は、暖房運転時に圧縮機、凝縮器として機能する室内熱交換器、膨張弁、蒸発器として機能する室外熱交換器及び熱源装置を順次経て冷媒を循環させる主冷媒回路を備える空気調和装置において、外気温度を検出する外気温センサーと、前記主冷媒回路の前記膨張弁と室外熱交換器の間から分岐して室外熱交換器を迂回し同主冷媒回路の室外熱交換器と前記熱源の間に合流する迂回冷媒回路を設けるとともに、前記主冷媒回路と迂回冷媒回路に第1開閉弁、第2開閉弁をそれぞれ設け、前記主冷媒回路の室外熱交換器から迂回冷媒回路合流部に至る第2の部分に冷媒の逆流防止手段を設け、前記外気温センサーによって検出された外気温度が所定値以下の場合に前記第1開閉弁を全閉、第2開閉弁を全開とするとともに、前記第2開閉弁が開閉する外気温度を前記第1開閉弁が開閉する外気温度よりも高く設定したことを特徴とする。
【0013】
【作用】
請求項1又は2記載の発明によれば、膨張弁の開度を変化させる等、冷媒が膨張弁で断熱膨張した後の冷媒温度が変化する場合であっても、外気温度が冷媒温度以下の暖房運転時において迂回冷媒回路を流れる冷媒の流量を増加させて室外熱交換器を流れる冷媒の流量を絞ることによって、室外熱交換器における冷媒の放熱を抑制して暖房能力の低下を防ぐことができる。
【0014】
請求項3記載の発明によれば、外気温度が冷媒温度以下の暖房運転時において室外熱交換器への冷媒の流れを完全に遮断して室外熱交換器での冷媒の放熱を確実に防ぐことができ、暖房能力低下をより確実に防ぐことができる。
【0016】
請求項記載の発明によれば、制御のためのアクチュエータを1つにすることができ、構成及び制御の簡略化を図ることができる。
【0017】
請求項記載の発明によれば、逆流防止手段によって室外熱交換器への液相冷媒の逆流が防がれ、室外熱交換器に液相冷媒が滞留するために冷媒循環量が減って暖房能力が低下する事態の発生を防ぐことができる。
【0018】
請求項記載の発明によれば、第1開閉弁と第2開閉弁が開いている間、室外熱交換器を液相冷媒の貯留部として利用することができる。
【0019】
【実施例】
以下に本発明の実施例を添付図面に基づいて説明する。
【0020】
<第1実施例>
図1は本発明の第1実施例に係る空気調和装置の暖房運転時の基本構成を示す回路図、図2は同空気調和装置の制御系の構成を示すブロック図である。
【0021】
図1において、2は不図示の駆動源によって駆動された圧縮機であって、本実施例に係る空気調和装置は圧縮機2を含んで閉ループを構成する主冷媒回路3が設けられている。
【0022】
上記主冷媒回路3は圧縮機2によってフロン等の冷媒を循環させる回路であって、これには圧縮機2の他、凝縮器として機能する室内熱交換器9、膨張弁8、第1流量制御弁14、蒸発器として機能する室外熱交換器6、逆止弁16及び熱源装置17が設けられている。尚、逆止弁16は室外熱交換器6から熱源装置17への冷媒の流れを許容するものであり、熱源装置17は例えば圧縮機2をエンジンによって駆動する場合にはエンジン冷却水と冷媒との間で熱交換を行わせる二重管熱交換器で構成され、圧縮機2を電動モータで駆動する場合には電気ヒータで構成される。
【0023】
而して、本実施例においては、室外熱交換器6を迂回する迂回冷媒回路18が設けられている。この迂回冷媒回路18は主冷媒回路3の前記膨張弁8と第1流量制御弁14の間から分岐し、室外熱交換器6を迂回して主冷媒回路3の前記逆止弁16と熱源装置17の間に合流しており、その途中には第2流量制御弁15が設けられている。尚、迂回冷媒回路18の分岐点、合流点を図1においてそれぞれa,bにて示す。
【0024】
その他、本実施例に係る空気調和装置には、外気温度を検出するための外気温センサー60が設置されており、又、主冷媒回路3の膨張弁8から迂回冷媒回路18の分岐部aに至る部分には、そこを流れる冷媒の温度を検出する冷媒温度センサー61が設置されている。そして、これらの外気温センサー60と冷媒温度センサー61は図2に示す制御装置70に接続されている。尚、図2に示すように、制御装置70には、前記第1流量制御弁14を駆動する第1制御弁開閉アクチュエータ62と第2流量制御弁15を駆動する第2制御弁開閉アクチュエータ63が接続されている。
【0025】
次に、本実施例に係る空気調和装置の暖房運転時の作用を説明する。
【0026】
前記外気温センサー60によって検出される外気温度tが所定値(本実施例では、冷媒温度センサー61によって検出される冷媒温度t )よりも高い(t>t )場合には、前記制御装置70によって第1流量制御弁14は全開され、第2流量制御弁15は全閉される。
【0027】
而して、不図示の駆動源によって圧縮機2が駆動されると、該圧縮機2から吐出される高温高圧の気相冷媒は主冷媒回路3を室内熱交換器9に向かって流れ、室内熱交換器9において室内の空気に凝縮熱を放出して液化し、このとき冷媒から放出される凝縮熱によって室内の暖房が行われる。
【0028】
そして、外気温度tが冷媒温度t よりも高い(t>t )場合には、前述のように第1流量制御弁14が全開、第2流量制御弁15が全閉となっているため、室内熱交換器9において液化した高圧の液相冷媒は膨張弁8によって減圧された後、その全てが第1流量制御弁14を通って室外熱交換器6に導かれる。尚、図3に室外熱交換器6の冷媒流量Q と迂回冷媒回路18の冷媒流量Q の外気温度tとの関係を示すが、t>t の場合には、迂回冷媒回路18を流れる冷媒の流量Q =0となり、従って、室外熱交換器6を流れる冷媒の流量Q は全冷媒流量Q (=Q +Q )に等しく(Q =Q )なる。つまり、冷媒の全てが室外熱交換器6に導かれる。
【0029】
而して、蒸発器として機能する室外熱交換器6に導かれた低圧の液相冷媒は、外気から蒸発熱を奪って気化した後、逆止弁16を通って熱源装置17に至り、この熱源装置17から与えられる熱によってスーパーヒートされて圧縮機2に吸引され、圧縮機2によって再度圧縮されて前述と同様の作用を繰り返す。
【0030】
ところで、外気温センサー60によって検出される外気温度tが冷媒温度t よりも低く(t<t )なると、第1流量制御弁14が徐々に絞られると同時に第2流量制御弁15が徐々に開かれ、従って、図3に示すように室外熱交換器6を流れる冷媒の流量Q が外気温度tの低下と共に徐々に減少する反面、迂回冷媒回路18を流れる冷媒の流量Q が徐々に増加する。そして、外気温度tが冷媒温度t よりも更に低い所定温度t よりも低い(t<t )場合には、第1流量制御弁14が更に絞られてその開度は一定に保たれ、図3に示すように室外熱交換器6を流れる冷媒の流量Q は小さく抑えられる。これに対して第2流量制御弁15の開度は大きな値に設定され、従って、迂回冷媒回路18に大部分の冷媒が流れ、図3に示すように、その流量Q は室外熱交換器6を流れる冷媒の流量Q よりも大きく(Q >Q )なる。
【0031】
以上のように外気温度tが冷媒温度t よりも低い(t<t )場合には、室外熱交換器6へ流れる冷媒の量が制限され、大部分の冷媒は室外熱交換器6を迂回して迂回冷媒回路18を流れるため、室外熱交換器6における冷媒の外気への放熱量が小さく抑えられ、この結果、低温時の暖房能力の低下が防がれる。
【0032】
ところで、室外熱交換器6及び逆止弁16を通過した流量Q の冷媒及び迂回冷媒回路18を流れる流量Q の冷媒は合流して熱源装置17に導入され、熱源装置17から与えられる熱によって蒸発して気化した後、圧縮機2に吸引されて再度圧縮され、以後は前述と同様の作用を繰り返して暖房に供される。
【0033】
而して、本実施例においては、主冷媒回路3の膨張弁8の下流側を流れる冷媒の温度を冷媒温度センサー61によって検出し、この検出された冷媒温度を第1及び第2流量制御弁14,15を開閉制御する所定温度に設定したため、膨張弁8の開度を変化させる等によって冷媒が膨張弁8で断熱膨張するために冷媒温度t が変化する場合であっても、外気温度tが冷媒温度t 以下に下がった場合に確実に対応可能となる。
【0034】
又、本実施例では、迂回冷媒回路18を流れる液相冷媒の室外熱交換器6側への逆流が逆止弁16によって防がれるため、室外熱交換器6に液相冷媒が滞留して冷媒循環量が減るために暖房能力が低下する事態の発生が防がれる。
【0035】
ところで、第1及び第2流量制御弁14,15を開閉制御する所定温度を図3に鎖線にて示すように冷媒温度t に対して変化させても良く、或は第1及び第2流量制御弁14,15を開閉制御する所定温度として運転中の冷媒温度の平均値を図2に示すように所定温度データ64として制御装置70のメモリに保管しておき、この所定温度データ64に基づいて所定温度を設定しても良い。尚、図3において、Q ’,Q ’は第1及び第2流量制御弁14,15を開閉制御する所定温度を図3に鎖線にて示すように変化させた場合に室外熱交換器6、迂回冷媒回路18をそれぞれ流れる冷媒の流量である。
【0036】
<第2実施例>
次に、本発明の第2実施例を図4に基づいて説明する。尚、図4は本実施例に係るエンジン駆動式空気調和装置の具体構成を示す回路図であり、本図においては図1に示したと同一要素には同一符号を付しており、以下、それらについての説明は省略する。
【0037】
図4に示すエンジン駆動式空気調和装置は、室外空調ユニット20と室内空調ユニット30とで構成されており、室内空調ユニット30は室内熱交換器9と膨張弁8を含んで構成されている。
【0038】
又、前記室外空調ユニット20は、エンジン1、圧縮機2等が配設された機関室21と、メインアキュームレータ10、サブアキュームレータ22、電装ボックス23及び各機器同士を接続する管路が配設された配管室24と、室外熱交換器6、温水熱交換器としてのラジエータ25等が配設された室外熱交換器室26とを備えている。
【0039】
ところで、前記エンジン1は水冷式ガスエンジンであって、その吸気ポートには吸気管27を介してガスミキサ28及びエアクリーナ29が接続されており、吸気管27は機関室21の天壁及び室外熱交換器室26の天壁を貫通して外部に開口している。
【0040】
上記ガスミキサ28は燃料管31を介して不図示のガス燃料源に接続され、燃料管31にはガスミキサ28に一体化された流量制御弁32、ゼロガバナ(減圧弁)33及び2個の電磁弁34が設けられている。又、エンジン1の排気ポートには、排気管35を介して排気ガス熱交換器13、排気サイレンサ36及びミストセパレータ37が接続されており、排気管35は前記室外熱交換器室26の上方に開口している。
【0041】
又、エンジン1には潤滑油タンク38が備えられ、潤滑油量が減少すると電磁弁39が開き、潤滑油が重力によってエンジン1に補給されるようになっている。
【0042】
更に、エンジン1の出力軸には、クラッチ40を介して前記圧縮機2が接続されており、圧縮機2の吐出口は冷媒ライン3a、四方弁5及び冷媒ライン3cを介して前記室内熱交換器9に接続されている。そして、室内熱交換器9は膨張弁8、冷媒ライン3d、前記メインアキュームレータ10内の熱交換部、第1流量制御弁14及び冷媒ライン3eを介して前記室外熱交換器6に接続されており、該室外熱交換器6から冷媒ライン3b、四方弁5、冷媒ライン3h、メインアキュームレータ10及びサブアキュームレータ22を介して圧縮機2の吸入口に接続されている。
【0043】
尚、図4において、41は冷媒ライン3eの途中に設けられるドライヤ、42はドライヤ41を迂回するフィルタである。又、43は毛細管であり、44は各々温度検知器と毛細管を組み合わせたものであり、これらは冷媒温度を検知することによりメインアキュームレータ10内のレベルを検知するためのものである。更に、45は開閉弁、46はオイル排出路、47は潤滑油戻し用の絞りであり、メインアキュームレータ10の下部に溜る潤滑油量が多くなると手動又は自動で開閉弁45を開け、潤滑油をメインアキュームレータ10からサブアキュームレータ22の方へ流すようにしている。
【0044】
又、前記冷媒ライン3aの途中には、冷媒に含まれる潤滑油を分離するオイルセパレータ48が設けられ、このオイルセパレータ48で分離された潤滑油は毛細管43を通って常時冷媒ライン3h側に戻されるとともに、潤滑油の量が所定値以上になると、潤滑油はオイルストレーナ49及び電磁弁50を経てメインアキュームレータ10、サブアキュームレータ22に戻される。尚、冷媒ライン3aはオイルストレーナ49及び冷媒ライン3aの冷媒圧力が所定値以上のとき開く電磁弁50を介してメインアキュームレータ10に接続されており、これによって冷媒回路内の異常圧力上昇を防いでいる。
【0045】
他方、室外空調ユニット20には冷却水循環システムSが備えられている。この冷却水循環システムSは、冷却水温度が所定値以下のエンジン冷機状態時に、エンジン1の冷却水ジャケット1a、サーモスタット51、第1の冷却水ポンプ52を循環する第1循環路と、エンジン冷機時、排気ガス熱交換器13、リニア三方弁53、一方はラジエータ25、他方はメインアキュームレータ10内の熱交換部、第2の冷却水ポンプ54を循環する第2循環路から成るとともに、冷却水温度が所定値を超えた場合のエンジン暖機完了時に、排気ガス熱交換器13、第1の冷却水ポンプ52、冷却水ジャケット1a、サーモスタット51、リニア三方弁53、一方はラジエータ25、他方はメインアキュームレータ10内の熱交換部、第2の冷却水ポンプ54の順で循環する第3循環路を有している。
【0046】
又、ラジエータ25には、冷却水用リザーバタンク55が注入口56を介して接続されており、注入口56にはサーモスタット51の1つのポートも接続されている。サーモスタット51のポートはエンジン1の冷却水ジャケット1aに常時連通しており、エンジン冷機時の第1循環路内のエアー抜きが可能となる。
【0047】
又、エンジン冷却水はリニア三方弁53が切り換えられると、冷却水ライン4dによってメインアキュームレータ10内の熱交換部に供給され、これにより冷媒に熱が与えられる。
【0048】
而して、本実施例に係る空気調和装置においても、室外熱交換器6を迂回する迂回冷媒回路18が設けられており、該迂回冷媒回路18には第2流量制御弁15が設けられている。尚、本実施例においては、メインアキュームレータ10が熱源装置を構成している。
【0049】
従って、この空気調和装置においても、外気温センサー60によって検出された外気温度が冷媒温度センサー61によって検出される冷媒温度よりも低い場合には、第1及び第2制御弁14,15の開閉が前記第1実施例と同様に制御されて室外熱交換器6側へ流れる冷媒の量が制限され、室外熱交換器6における冷媒の外気への放熱量が小さく抑えられ、低温時の冷房能力の低下が防がれる。
【0050】
<第3実施例>
本実施例は、図1に示す空気調和装置における第1及び第2流量制御弁14,15をそれぞれ第1開閉弁、第2開閉弁に置き換えたものであって、他の構成は実施例1のそれと同様である。
【0051】
而して、本実施例においては、図5に示すように暖房運転時に外気温度tが冷媒温度t よりも大きな所定値t よりも高い(t>t )場合には、第1開閉弁14が開、第2開閉弁15が閉とされ、膨張弁8を通過して減圧された全ての液相冷媒は室外熱交換器6に導入されて外気との熱交換によって蒸発せしめられる。
【0052】
そして、外気温度tが冷媒温度t0 よりも小さな所定値 2 よりも下がると(t< 2 )、図5に示すように第2開閉弁15が開けられるため、膨張弁8を通過して減圧された液相冷媒の一部は室外熱交換器6を迂回して迂回冷媒回路18を流れる。従って、室外熱交換器6を流れる流量Q1
が減り、外気温度tに低下に伴う室外熱交換器6での冷媒の蒸発能力の低下或は冷媒から大気中への放熱が抑制され、低温時の暖房能力の低下が防がれる。
【0053】
又、外気温度tが冷媒温度t よりも低い所定値t よりも更に低い場合には、図5に示すように第1開閉弁14は閉、第2開閉弁15は開とされ、膨張弁8を通過して全て(流量Q =Q )の冷媒は室外熱交換器6を迂回して迂回冷媒回路18を流れるため、室外熱交換器6における冷媒の放熱が完全に阻止され、この結果、低温時の暖房能力の低下が防がれる。尚、迂回冷媒回路18を流れる液相冷媒は熱源装置17において与えられる熱によって蒸発して気化し、圧縮機2に吸引されて再度圧縮され、引き続いて暖房に供される。このとき、迂回冷媒回路18を流れる液相冷媒の室外熱交換器6側への逆流が逆止弁16によって防がれるため、室外熱交換器6に液相冷媒が滞留して冷媒循環量が減るために暖房能力が低下する事態の発生が防がれる。
【0054】
尚、本実施例では、逆止弁16を設け、第2開閉弁15が開閉する外気温度t を第1開閉弁14が開閉する外気温度t よりも高く(t >t )設定したため、第1開閉弁14と第2開閉弁15が共に開いている間、室外熱交換器6を液相冷媒の貯留部として利用することができる。
【0055】
<第4実施例>
次に、本発明の第4実施例を図6及び図7に基づいて説明する。尚、図6は本実施例に係る空気調和装置の暖房運転時の基本構成を示す回路図、図7は外気温度に対する冷媒流量の制御特性図であり、図6においては図1に示したと同一要素には同一符号を付している。
【0056】
本実施例においては、主冷媒回路3の迂回冷媒回路18の分岐部aから室外熱交換器6に至る部分にのみ流量制御弁14を設け、迂回冷媒回路18には絞り65を設けている。
【0057】
而して、本実施例に係る空気調和装置の暖房運転において外気温センサー60によって検出される外気温度tが所定値(本実施例では、冷媒温度センサー61によって検出される冷媒温度t )よりも高い(t>t )場合には、流量制御弁14が全開され、膨張弁8を通過した液相冷媒の大部分、つまり、図7に示す流量Q の液相冷媒は室外熱交換器6を流れ、室外熱交換器6において外気から吸熱して蒸発する。又、残りの少量(図7に示す流量Q (<Q ))の液相冷媒は室外熱交換器6を迂回して迂回冷媒回路18を流れ、絞り65を通過して熱源装置17に導かれ、熱源装置17において与えられる熱によって蒸発して気化する。
【0058】
ところで、外気温度tが冷媒温度t よりも低く(t<t )なると、室外熱交換器6において冷媒から外気に放熱される可能性があるため、流量制御弁14が外気温度tの低下と共に絞られて室外熱交換器6を流れる冷媒の流量Q が図7に示すように減少し、これに伴って迂回冷媒回路18を流れる冷媒の流量Q が徐々に増加する。
【0059】
そして、外気温度tが所定値t よりも低い(t<t )場合には、流量制御弁14が全閉され、従って、図7に示すように室外熱交換器6を流れる冷媒の流量Q =0となり、膨張弁8を通過した流量Q の液相冷媒の全て(図7に示す流量Q (=Q ))は室外熱交換器6を迂回して迂回冷媒回路18を通って熱源装置17に導入され、熱源装置17において与えられる熱によって蒸発して気化した後、圧縮機2に吸引される。尚、このとき、液相冷媒の室外熱交換器6側への逆流は逆止弁16によって防がれる。
【0060】
従って、本実施例においても、暖房運転時に外気温度tが冷媒温度t よりも低い(t<t )場合には室外熱交換器6への冷媒の流れが制限或は阻止されるため、室外熱交換器6における冷媒の外気への放熱が抑制或は阻止され、外気温度tの低下に伴う暖房能力の低下が防がれる。
【0061】
尚、流量制御弁14を開閉制御する所定温度を図7に鎖線にて示すように冷媒温度t に対して変化させても良く、或は流量制御弁14を開閉制御する所定温度として運転中の冷媒温度の平均値を図2に示すように所定温度データ64として制御装置70のメモリに保管しておき、この所定温度データ64に基づいて所定温度を設定しても良い。尚、図7において、Q ’,Q ’は流量制御弁14を開閉制御する所定温度を図7に鎖線にて示すように変化させた場合に室外熱交換器6、迂回冷媒回路18をそれぞれ流れる冷媒の流量である。
【0062】
又、本実施例では、流量制御弁14を主冷媒回路3の迂回冷媒回路18の分岐部aから室外熱交換器6に至る部分に設け、絞り65を迂回冷媒回路18に設けたが、逆に流量制御弁14を迂回冷媒回路18に設け、絞り65を主冷媒回路3の迂回冷媒回路18の分岐部aから室外熱交換器6に至る部分に設けても良い。この場合、外気温度tが冷媒温度t よりも高い(t>t )ときには流量制御弁14を全閉して液相冷媒の全てを室外熱交換器6側に流し、外気温度tが冷媒温度t よりも低い(t<t )ときには流量制御弁14を開けて室外熱交換器6側へ流れる冷媒の量を制限する必要がある。
【0063】
<第5実施例>
次に、本発明の第5実施例を図8乃至図10に基づいて説明する。尚、図8は本実施例に係る空気調和装置の暖房運転時の基本構成を示す回路図、図9は三方弁の切替状態を示す同回路図の室外熱交換器部の図、図10は外気温度に対する三方弁(連通断面積)の制御特性図であり、図8及び図9においては図1に示したと同一要素には同一符号を付しており、以下、それらについての説明は省略する。
【0064】
本実施例においては、図8に示すように、主冷媒回路3における迂回冷媒回路18の分岐部に三方弁66が設けられている。この三方弁66は図2に示す制御装置70によって駆動制御される三方弁駆動アクチュエータ67によって駆動され、これの上流部である冷媒ライン3dと三方弁66から室外熱交換器6に至る冷媒ライン3eとの連通部の第1連通断面積S と冷媒ライン3dと迂回冷媒回路18との連通部の第2連通断面積S の一方を他方に対して大きくなるように選択可能である。
【0065】
而して、暖房運転時において外気温センサー60によって検出される外気温度tが冷媒温度センサー61によって検出される冷媒温度t よりも高い所定温度t (図10参照)よりも高い(t>t )ときには、三方弁66は図8に示す状態にあり、このとき、図10に示すように第2連通断面積S =0に設定され、従って、膨張弁8を通過して減圧された液相冷媒の全ては室外熱交換器6に導かれ、室外熱交換器6において外気からの吸熱によって蒸発して気化する。
【0066】
そして、外気温度tが前記所定温度t よりも低い(t<t )場合には、図10に示すように外気温度tの低下と共に三方弁66が徐々に切り替えられ、第1連通断面積S はリニアに減少する反面、第2連通断面積S はリニアに増加し、室外熱交換器6側へ流れる冷媒の流量が絞られると同時に、迂回冷媒回路18を流れる冷媒の流量が増加せしめられ、室外熱交換器6における冷媒の外気への放熱が抑制される。
【0067】
而して、外気温度tが冷媒温度t よりも低い図10に示す所定温度t よりも低い(t<t )場合には、三方弁66は図9に示すように切り替えられ、図10に示すように第1連通断面積S =0に設定され、膨張弁8を通過した液相冷媒の全ては室外熱交換器6を迂回して迂回冷媒回路18へ流れて熱源装置17に至り、熱源装置17において与えられる熱によって蒸発して気化した後、圧縮機2に吸引される。尚、このとき、液相冷媒の室外熱交換器6側への逆流は逆止弁16によって防がれる。
【0068】
従って、本実施例においても、暖房運転時に外気温度tが低い場合には室外熱交換器6への冷媒の流れが制限或は阻止されるため、室外熱交換器6における冷媒の外気への放熱が抑制或は阻止され、外気温度tの低下に伴う暖房能力の低下が防がれる。
【0069】
又、本実施例によれば、三方弁66及びこれを駆動する三方弁アクチュエータ67が各々1つで済むため、空気調和装置の構成及び制御の簡略化を図ることができる。
【0070】
尚、三方弁66を切り替えるべき所定温度t ,t は冷媒温度t に対して任意に設定することができる。
【0071】
【発明の効果】
以上の説明で明らかなように、本発明によれば、暖房運転時に圧縮機、凝縮器として機能する室内熱交換器、膨張弁、蒸発器として機能する室外熱交換器及び熱源装置を順次経て冷媒を循環させる主冷媒回路を備える空気調和装置において、外気温度を検出する外気温センサーと、前記主冷媒回路の前記膨張弁と室外熱交換器の間から分岐して室外熱交換器を迂回し同主冷媒回路の室外熱交換器と前記熱源の間に合流する迂回冷媒回路を設けるとともに、前記主冷媒回路の迂回冷媒回路分岐部から室外熱交換器に至る第1の部分と迂回冷媒回路の少なくとも一方に流量制御弁を設け、前記主冷媒回路の前記膨張弁から迂回冷媒回路合流部に至る第3の部分に冷媒温度センサーを配置し、前記外気温センサーによって検出された外気温度が前記冷媒温度センサーによって検出された冷媒温度以下の場合に前記流量制御弁を制御して迂回冷媒回路を流れる冷媒の流量を室外熱交換器を流れる冷媒の流量よりも大きくするようにしたため、暖房運転時に室外熱交換器において冷媒の放熱ができない程の低温時においても冷媒の放熱に伴う暖房能力の低下を防ぐことができるという効果が得られる。
【図面の簡単な説明】
【図1】本発明の第1実施例に係る空気調和装置の暖房運転時の基本構成を示す回路図である。
【図2】本発明の第1実施例に係る空気調和装置の制御系の構成を示すブロック図である。
【図3】本発明の第1実施例に係る空気調和装置における外気温度に対する冷媒流量の制御特性図である。
【図4】本発明の第2実施例に係るエンジン駆動式空気調和装置の具体構成を示す回路図である。
【図5】本発明の第3実施例に係る空気調和装置における第1及び第2開閉弁の外気温度に対する開閉制御特性図である。
【図6】本発明の第4実施例に係る空気調和装置の暖房運転時の基本構成を示す回路図である。
【図7】本発明の第4実施例に係る空気調和装置における外気温度に対する冷媒流量の制御特性図である。
【図8】本発明の第5実施例に係る空気調和装置の暖房運転時の基本構成を示す回路図である。
【図9】本発明の第5実施例に係る空気調和装置の暖房運転時の基本構成を示す回路図の部分図である。
【図10】本実施例に係る空気調和装置における外気温度に対する三方弁(連通断面積)の制御特性図である。
【符号の説明】
2 圧縮機
3 主冷媒回路
6 室外熱交換器
8 膨張弁
9 室内熱交換器
14 第1流量制御弁(第1開閉弁)
15 第2流量制御弁(第2開閉弁)
16 逆止弁(逆流防止手段)
17 熱源装置
18 迂回冷媒回路
60 外気温センサー
61 冷媒温度センサー
66 三方弁
室外熱交換器を流れる冷媒の流量
迂回冷媒回路を流れる冷媒の流量
第1連通断面積
第2連通断面積
a 迂回冷媒回路の分岐部
b 迂回冷媒回路の合流部

Claims (6)

  1. 暖房運転時に圧縮機、凝縮器として機能する室内熱交換器、膨張弁、蒸発器として機能する室外熱交換器及び熱源装置を順次経て冷媒を循環させる主冷媒回路を備える空気調和装置において、
    外気温度を検出する外気温センサーと、前記主冷媒回路の前記膨張弁と室外熱交換器の間から分岐して室外熱交換器を迂回し同主冷媒回路の室外熱交換器と前記熱源の間に合流する迂回冷媒回路を設けるとともに、前記主冷媒回路の迂回冷媒回路分岐部から室外熱交換器に至る第1の部分と迂回冷媒回路の少なくとも一方に流量制御弁を設け、前記主冷媒回路の前記膨張弁から迂回冷媒回路合流部に至る第3の部分に冷媒温度センサーを配置し、前記外気温センサーによって検出された外気温度が前記冷媒温度センサーによって検出された冷媒温度以下の場合に前記流量制御弁を制御して迂回冷媒回路を流れる冷媒の流量を室外熱交換器を流れる冷媒の流量よりも大きくすることを特徴とする空気調和装置。
  2. 前記主冷媒回路と迂回冷媒回路に第1流量制御弁、第2流量制御弁をそれぞれ設け、前記外気温センサーによって検出された外気温度が前記冷媒温度センサーによって検出された冷媒温度以下の場合に前記第2流量制御弁の開度を第1流量制御弁のそれよりも大きく設定することを特徴とする請求項1記載の空気調和装置。
  3. 前記第1流量制御弁及び第2流量制御弁としてそれぞれ第1開閉弁と第2開閉弁を設けるとともに、前記外気温センサーによって検出された外気温度が前記冷媒温度センサーによって検出された冷媒温度以下の場合に前記第1開閉弁を全閉、第2開閉弁を全開とすることを特徴とする請求項2記載の空気調和装置。
  4. 前記迂回冷媒回路の分岐部に、該分岐部の上流部と前記主冷媒回路の迂回冷媒回路分岐部から室外熱交換器に至る第1の部分との連通部の第1連通断面積と分岐部の上流部と迂回冷媒回路との連通部の第2連通断面積の一方を他方に対して大きくするように選択可能な三方弁を設けるとともに、前記外気温センサーによって検出された外気温度が前記冷媒温度センサーによって検出された冷媒温度以下の場合に前記第2連通断面積を第1連通断面積よりも大きくすることを特徴とする請求項1記載の空気調和装置。
  5. 前記主冷媒回路の室外熱交換器から迂回冷媒回路合流部に至る第2の部分に冷媒の逆流防止手段を設けたことを特徴とする請求項1〜4の何れかに記載の空気調和装置。
  6. 暖房運転時に圧縮機、凝縮器として機能する室内熱交換器、膨張弁、蒸発器として機能する室外熱交換器及び熱源装置を順次経て冷媒を循環させる主冷媒回路を備える空気調和装置において、
    外気温度を検出する外気温センサーと、前記主冷媒回路の前記膨張弁と室外熱交換器の間から分岐して室外熱交換器を迂回し同主冷媒回路の室外熱交換器と前記熱源の間に合流する迂回冷媒回路を設けるとともに、前記主冷媒回路と迂回冷媒回路に第1開閉弁、第2開閉弁をそれぞれ設け、前記主冷媒回路の室外熱交換器から迂回冷媒回路合流部に至る第2の部分に冷媒の逆流防止手段を設け、前記外気温センサーによって検出された外気温度が所定値以下の場合に前記第1開閉弁を全閉、第2開閉弁を全開とするとともに、前記第2開閉弁が開閉する外気温度を前記第1開閉弁が開閉する外気温度よりも高く設定したことを特徴とする空気調和装置。
JP2018395A 1995-02-08 1995-02-08 空気調和装置 Expired - Fee Related JP3600906B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018395A JP3600906B2 (ja) 1995-02-08 1995-02-08 空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018395A JP3600906B2 (ja) 1995-02-08 1995-02-08 空気調和装置

Publications (2)

Publication Number Publication Date
JPH08219574A JPH08219574A (ja) 1996-08-30
JP3600906B2 true JP3600906B2 (ja) 2004-12-15

Family

ID=12020072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018395A Expired - Fee Related JP3600906B2 (ja) 1995-02-08 1995-02-08 空気調和装置

Country Status (1)

Country Link
JP (1) JP3600906B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101448941B1 (ko) * 2012-06-26 2014-10-13 갑을오토텍(주) 차량용 냉방장치
KR20170026110A (ko) * 2015-08-27 2017-03-08 아이신세이끼가부시끼가이샤 엔진 구동식 공기 조화 장치

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005016805A (ja) * 2003-06-25 2005-01-20 Aisin Seiki Co Ltd 空気調和機
JP4565923B2 (ja) * 2004-08-03 2010-10-20 三洋電機株式会社 空気調和装置
JP4661289B2 (ja) * 2005-03-23 2011-03-30 アイシン精機株式会社 エンジン駆動式空気調和機

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101448941B1 (ko) * 2012-06-26 2014-10-13 갑을오토텍(주) 차량용 냉방장치
KR20170026110A (ko) * 2015-08-27 2017-03-08 아이신세이끼가부시끼가이샤 엔진 구동식 공기 조화 장치

Also Published As

Publication number Publication date
JPH08219574A (ja) 1996-08-30

Similar Documents

Publication Publication Date Title
JP5030344B2 (ja) ガスヒートポンプ式空気調和装置、エンジン冷却水加熱装置及びガスヒートポンプ式空気調和装置の運転方法
US5729985A (en) Air conditioning apparatus and method for air conditioning
JP3635119B2 (ja) 冷凍装置及びその作動方法
JP3635120B2 (ja) 冷凍装置及びその作動方法
JPH0232546B2 (ja)
JP2005528283A (ja) 自動車用空調装置
KR100586989B1 (ko) 냉난방 공조시스템 및 그 제어방법
JP2007225141A (ja) ガスヒートポンプ式空気調和装置及びガスヒートポンプ式空気調和装置の起動方法
KR20210085443A (ko) 공기조화장치
JP3600906B2 (ja) 空気調和装置
JP4898025B2 (ja) マルチ型ガスヒートポンプ式空気調和装置
JP4468888B2 (ja) 空気調和装置
JP3637106B2 (ja) ガスエンジン駆動式空気調和装置
JP4610688B2 (ja) 冷暖房給湯装置とその制御方法
JP2005016805A (ja) 空気調和機
JP4561147B2 (ja) 空気調和機
JP3828957B2 (ja) 冷媒循環式熱移動装置
JP3638648B2 (ja) 空気調和装置
JPH08291950A (ja) 空気調和装置
WO2019167822A1 (ja) 冷凍サイクル、冷凍サイクルの運転方法、冷凍サイクルに用いられるアキュムレータ、及び、冷凍サイクルを搭載した車両用空調装置
JP3746471B2 (ja) 給湯暖房ユニットを備えたエンジン駆動ヒートポンプ式空気調和装置及びその運転制御方法
KR100696712B1 (ko) 멀티 에어컨의 압축기 보호 시스템 및 방법
JP4303864B2 (ja) 給湯装置を備えたエンジン駆動式熱ポンプ空調装置
JP3499287B2 (ja) 熱ポンプ装置
JP3721375B2 (ja) ガスエンジン駆動式空気調和装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040514

A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040609

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040618

A61 First payment of annual fees (during grant procedure)

Effective date: 20040903

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20101001

LAPS Cancellation because of no payment of annual fees