KR101748055B1 - 감지 증폭기를 위한 저전압 전류 레퍼런스 발생기 - Google Patents

감지 증폭기를 위한 저전압 전류 레퍼런스 발생기 Download PDF

Info

Publication number
KR101748055B1
KR101748055B1 KR1020157014248A KR20157014248A KR101748055B1 KR 101748055 B1 KR101748055 B1 KR 101748055B1 KR 1020157014248 A KR1020157014248 A KR 1020157014248A KR 20157014248 A KR20157014248 A KR 20157014248A KR 101748055 B1 KR101748055 B1 KR 101748055B1
Authority
KR
South Korea
Prior art keywords
terminal
resistor
memory cell
reference circuit
pmos transistor
Prior art date
Application number
KR1020157014248A
Other languages
English (en)
Other versions
KR20150079909A (ko
Inventor
야오 조우
샤오조우 치안
광밍 린
Original Assignee
실리콘 스토리지 테크놀로지 인크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 실리콘 스토리지 테크놀로지 인크 filed Critical 실리콘 스토리지 테크놀로지 인크
Publication of KR20150079909A publication Critical patent/KR20150079909A/ko
Application granted granted Critical
Publication of KR101748055B1 publication Critical patent/KR101748055B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5621Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using charge storage in a floating gate
    • G11C11/5642Sensing or reading circuits; Data output circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/06Sense amplifiers; Associated circuits, e.g. timing or triggering circuits
    • G11C7/062Differential amplifiers of non-latching type, e.g. comparators, long-tailed pairs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/26Sensing or reading circuits; Data output circuits
    • G11C16/28Sensing or reading circuits; Data output circuits using differential sensing or reference cells, e.g. dummy cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/12Bit line control circuits, e.g. drivers, boosters, pull-up circuits, pull-down circuits, precharging circuits, equalising circuits, for bit lines
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • G05F3/262Current mirrors using field-effect transistors only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2207/00Indexing scheme relating to arrangements for writing information into, or reading information out from, a digital store
    • G11C2207/06Sense amplifier related aspects
    • G11C2207/063Current sense amplifiers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
    • G11C5/147Voltage reference generators, voltage or current regulators; Internally lowered supply levels; Compensation for voltage drops

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Read Only Memory (AREA)
  • Static Random-Access Memory (AREA)

Abstract

한 쌍의 저항들(20, 30) 및 연산 증폭기(40)를 포함하는 전류 미러를 포함하는 감지 증폭기(10)를 갖는 비휘발성 메모리 디바이스가 개시된다.

Description

감지 증폭기를 위한 저전압 전류 레퍼런스 발생기{LOW VOLTAGE CURRENT REFERENCE GENERATOR FOR A SENSING AMPLIFIER}
개선된 감지 증폭기를 갖는 비휘발성 메모리 셀이 개시된다.
플로팅 게이트(floating gate)를 사용하여 그 위에 전하들을 저장하는 비휘발성 반도체 메모리 셀들 및 반도체 기판에 형성되는 그러한 비휘발성 메모리 셀들의 메모리 어레이들은 당해 기술 분야에 주지되어 있다. 일반적으로, 그러한 플로팅 게이트 메모리 셀들은 스플릿 게이트 타입(split gate type) 또는 스택 게이트 타입(stacked gate type)이 있다.
판독 동작들은 보통 감지 증폭기들을 사용하여 플로팅 게이트 메모리 셀들에 대해 수행된다. 이러한 목적을 위한 감지 증폭기는 미국 특허 제5,386,158호("'158 특허")에 개시되며, 이 특허는 모든 목적들을 위해 참고로서 본 명세서에 포함된다. '158 특허는 알려진 양의 전류를 인입하는 레퍼런스 셀을 사용하는 것을 개시한다. '158 특허는 레퍼런스 셀에 의해 인입되는 전류를 미러링(mirroring)하는 전류 미러(current mirror), 및 선택 메모리 셀(selected memory cell)에 의해 인입되는 전류를 미러링하는 다른 전류 미러에 의존한다. 이어서, 각 전류 미러 내의 전류가 비교되고, 메모리 셀에 저장되는 값(예컨대, 0 또는 1)이 어떤 전류가 더 큰지에 기초하여 결정될 수 있다.
다른 감지 증폭기가 미국 특허 제5,910,914호("'914 특허")에 개시되며, 이 특허는 모든 목적들을 위해 참고로서 본 명세서에 포함된다. '914 특허는 1 비트를 초과하는 데이터를 저장할 수 있는 멀티-레벨 플로팅 게이트 메모리 셀 또는 MLC를 위한 감지 회로를 개시한다. 그것은 메모리 셀에 저장되어 있는 값(예컨대, 00, 01, 10, 또는 11)을 판단하는 데 활용되는 다수의 레퍼런스 셀들의 사용을 개시한다. 전류 미러들은 이러한 접근법에서 역시 활용된다.
종래 기술의 전류 미러들은 PMOS 트랜지스터들을 활용한다. PMOS 트랜지스터들의 한 가지 특성은 게이트에 인가되는 전압이 일반적으로 VTH로 지칭되는 디바이스의 전압 임계치 미만이면 PMOS 트랜지스터가 턴 "온"만이 될 수 있다는 것이다. PMOS 트랜지스터들을 활용하는 전류 미러들을 사용하는 것의 한 가지 단점은 PMOS 트랜지스터가 VTH 강하를 야기한다는 것이다. 이것은 더 낮은 전압들에서 동작하는 감지 증폭기들을 만들어 내기 위한 설계자의 능력을 저해한다.
종래 기술 설계의 다른 단점은 게이트가 하이(high)로부터 로우(low)로 천이할 때(즉, PMOS 트랜지스터가 턴 온될 때) PMOS 트랜지스터들이 상대적으로 느리다는 것이다. 이는 전체적인 감지 증폭기의 지연을 초래한다.
종래 기술에서보다 더 낮은 전압 서플라이를 사용하여 동작하는 개선된 감지 회로가 필요하다.
사용 중이 아닐 때에는 전력을 절감하기 위해 전압 서플라이가 턴 오프될 수 있지만, 일단 전압 서플라이가 다시 턴 온되면 상당한 타이밍 패널티 없이 감지 회로가 동작 가능하게 될 수 있는 개선된 감지 회로가 더 필요하다.
전술된 문제들 및 필요성들은 전류 미러로서 트랜지스터 쌍 대신에 저항 쌍을 활용하는 감지 회로를 제공함으로써 해결된다. 트랜지스터 쌍 대신의 저항 쌍의 사용은 보다 짧은 시동 시간으로 더 낮은 전압 서플라이의 사용을 가능하게 한다.
일 실시 형태에서, 레퍼런스 셀 전류가 전류 미러에 인가된다. 미러링된 전류가 선택 메모리 셀에 결부된다. 미러링된 전류는 선택 메모리 셀 전류에 비교되며, 메모리 셀의 상태(예컨대, 0 또는 1)를 나타내고 그리고 레퍼런스 전류에 비교되는 선택 메모리 셀을 통하는 전류의 상대적 크기에 직접적으로 관련되는 감지 출력이 생성된다.
다른 실시 형태에서, 미러 쌍 블록이 전류 미러와 선택 메모리 셀 사이에 추가된다.
본 발명의 다른 목적들 및 특징들은 명세서, 특허청구범위, 및 첨부된 도면의 검토에 의해 명확해질 것이다.
도 1은 한 쌍의 저항들을 포함하는 전류 미러를 포함하는 감지 회로 실시 형태의 블록 다이어그램을 도시한다.
도 2는 한 쌍의 저항들을 포함하는 전류 미러를 포함하는 다른 감지 회로 실시 형태의 블록 다이어그램을 도시한다.
도 3은 미러 쌍 블록의 일 실시 형태를 도시한다.
도 4는 레퍼런스 회로의 일 실시 형태를 도시한다.
도 5는 레퍼런스 회로의 다른 실시 형태를 도시한다.
이제 도 1을 참조하여 일 실시 형태가 설명될 것이다. 감지 회로(10)가 도시된다. 전력 서플라이 VDD가 저항(20) 및 저항(30)에 제공된다. 저항(20)은 연산 증폭기(40)의 하나의 양극 단자(positive terminal)에 연결된다. 저항(30)은 연산 증폭기(40)의 다른 단자에 연결된다. 연산 증폭기(40)는 클램프 루프(clamp loop)로서 동작한다. 연산 증폭기(40)의 출력은 PMOS 트랜지스터(70)의 게이트에 연결된다. PMOS 트랜지스터(70)의 게이트는 저항(30)에 연결된다. PMOS 트랜지스터(70)의 드레인은 메모리 셀(60)에 연결된다. 저항(20)은 또한 레퍼런스 회로(50)에 연결된다. 알 수 있는 바와 같이, 저항(20) 및 저항(30)은 각각 제1 단자 및 제2 단자를 갖는다. PMOS 트랜지스터(70)의 소스, 드레인, 및 게이트도 또한 단자들이다.
레퍼런스 회로(50)는 설정된 양의 전류 iREF를 인입할 것이다. 저항(20)을 통하는 전류는 iREF일 것이다. 연산 증폭기(40)가 클램프 루프로서 동작하기 때문에, 저항(20) 및 저항(30)에 걸리는 전압 강하는 동일할 것이며, 따라서, 그들은 전류 미러를 형성할 것이고, 저항(30)을 통하는 전류도 또한 iREF(또는, 저항(20) 및 저항(30)의 값들이 동일하지 않은 경우에, 그의 배수)일 것이다.
동작 시, 메모리 셀(60)은 메모리 셀에 저장되어 있는 값에 의존하는 레벨의 전류 iS를 인입할 것이다. 예를 들어, 메모리 셀(60)은 그것이 "0"을 저장하고 있는 경우에는 적은 양의 전류를, 그리고 그것이 "1"을 저장하고 있는 경우에는 많은 양의 전류를 인입할 수 있을 것이다.
이러한 예에서, iREF > iS인 경우에, 감지 출력(80)은 상대적으로 높은 전압을 가질 것이다. iREF < iS인 경우에, 감지 출력(80)은 상대적으로 낮은 전압을 가질 것이다. 따라서, 메모리 셀(60)에 저장되어 있는 값이 "0"이면, iS는 상대적으로 작을 것이고, iREF는 iS보다 더 클 것인데, 이는 감지 출력(80)이 "1"을 나타내는 높은 전압을 가질 것임을 의미한다. 메모리 셀(60)에 저장되어 있는 값이 "1"이면, iS는 상대적으로 클 것이고, iREF는 iS보다 더 작을 것인데, 이는 감지 출력(80)이 "0"을 나타내는 낮은 전압을 가질 것임을 의미한다. 따라서, 감지 출력(80)은 메모리 셀(60)에 되어 있는 값의 역(inverse)이다. 선택적으로, 감지 출력(80)은 인버터(도시되지 않음)에 연결될 수 있는데, 여기서 인버터는 메모리 셀(60)에 저장되어 있는 값에 직접적으로 대응하는 값을 출력할 것이다.
이러한 예에서, 쌍을 이룬 트랜지스터들 대신에 쌍을 이룬 저항들을 사용하여 전류 미러가 형성되기 때문에, VDD는 쌍을 이룬 트랜지스터들을 사용하는 시스템내에서보다 더 낮은 전압일 수 있다. 이러한 설계는 VDD가 1.0 V 미만의 전압에서 동작할 수 있게 한다. 예를 들어, 개시된 실시 형태들은 약 0.9 V의 최소 전압에서 동작할 수 있다.
이제 도 2를 참조하여 다른 실시 형태가 기술될 것이다. 감지 회로(110)가 도시된다. 전력 서플라이 VDD가 저항(120) 및 저항(130)에 제공된다. 저항(120)은 연산 증폭기(140)의 양극 단자에 연결된다. 저항(130)은 연산 증폭기(140)의 음극 단자(negative terminal)에 연결된다. 연산 증폭기(140)는 클램프 루프로서 동작한다. 연산 증폭기(140)의 출력은 PMOS 트랜지스터(170)의 게이트에 연결된다. PMOS 트랜지스터(170)의 게이트는 저항(130)에 연결된다. PMOS 트랜지스터(70)의 드레인은 미러 쌍 블록(190)에 연결된다. 미러 쌍 메모리 블록(190)은 메모리 셀(160)에 연결된다. 감지 출력(180)은 감지 회로(110)의 출력으로, 출력이 획득될 수 있는 포트이다. 알 수 있는 바와 같이, 저항(120) 및 저항(130)은 각각 제1 단자 및 제2 단자를 갖는다. PMOS 트랜지스터(170)의 소스, 드레인, 및 게이트도 또한 단자들이다.
레퍼런스 회로(150)는 설정된 양의 전류 iREF를 인입할 것이다. 저항(120)을 통하는 전류는 iREF일 것이다. 연산 증폭기(140)가 클램프 루프로서 동작하기 때문에, 저항(120) 및 저항(130)에 걸리는 전압 강하는 동일할 것이며, 따라서, 그들은 전류 미러를 형성할 것이고, 저항(130)을 통하는 전류도 또한 iREF(또는, 저항(120) 및 저항(130)의 값들에 따라, 그의 배수)일 것이다.
동작 시, 메모리 셀(160)은 메모리 셀에 저장되어 있는 값에 의존하는 레벨의 전류 iS를 인입할 것이다. 예를 들어, 메모리 셀(60)은 그것이 "0"을 저장하고 있는 경우에는 적은 양의 전류를, 그리고 그것이 "1"을 저장하고 있는 경우에는 많은 양의 전류를 인입할 수 있을 것이다.
이제 도 3을 참조하여 미러 쌍 블록(190)에 대한 추가적인 세부 내용이 기술될 것이다. 여기서, 도 2에서 했던 것처럼 다시 저항(130) 및 PMOS 트랜지스터(170)를 살펴본다. PMOS 트랜지스터(170)의 드레인은 미러 쌍 블록(190)의 입력에 연결된다. 입력은 전류 iREF일 것이다. 미러 쌍 블록(190)은 전류 미러로서 구성되는, NMOS 트랜지스터(191) 및 NMOS 트랜지스터(192)를 포함한다. NMOS 트랜지스터(191) 및 NMOS 트랜지스터(192)의 게이트들은 함께 NMOS 트랜지스터(191)의 게이트에 연결되고, NMOS 트랜지스터(191) 및 NMOS 트랜지스터(192)의 드레인들은 접지에 연결된다. 게이트로부터 드레인으로의 전압 강하는 NMOS 트랜지스터(191) 및 NMOS 트랜지스터(192)에 대해 동일할 것이며, 따라서, NMOS 트랜지스터(192)를 통하는 전류도 또한 iREF(또는, NMOS 트랜지스터(191) 및 NMOS 트랜지스터(192)의 특성들에 따라, 그의 배수)일 것이다.
미러 쌍 블록(190)은 PMOS 트랜지스터(193) 및 PMOS 트랜지스터(194)를 포함한다. PMOS 트랜지스터(193) 및 PMOS 트랜지스터(194)의 소스들은 VDD에 접속된다. PMOS 트랜지스터(193) 및 PMOS 트랜지스터(194)의 게이트들은 함께 PMOS 트랜지스터(193)의 드레인에 접속되는데, 이는 이어서 NMOS 트랜지스터(192)의 소스에 접속한다. PMOS 트랜지스터(193) 및 PMOS 트랜지스터(194)에서 소스-게이트 접합부로부터의 전압 강하는 동일할 것이다. 따라서, PMOS 트랜지스터(193) 및 PMOS 트랜지스터(194)는 전류 미러로서 동작할 것이고, PMOS 트랜지스터(194)를 통하는 전류도 또한 iREF(또는, PMOS 트랜지스터(193) 및 PMOS 트랜지스터(194)의 특성들에 따라, 그의 배수)일 것이다. PMOS 트랜지스터(194)의 드레인은 감지 출력(180)에 연결되는데, 이는 이어서 메모리 셀(160)에 접속된다.
감지 출력(180)을 통하는 전류는 iREF-iS일 것이다. iS > iREF인 경우에, 이러한 값은 음의 값일 것이고, 감지 출력(180)은 낮은 전압(즉, "0")을 검출할 것이다. iS < iREF인 경우에, 이러한 값은 양의 값일 것이고, 감지 출력(180)은 높은 전압(즉, "1")을 검출할 것이다. 따라서, 감지 출력(180)은 메모리 셀(160)에 저장된 값의 역이다. 선택적으로, 감지 출력(180)은 인버터(도시되지 않음)에 연결될 수 있는데, 여기서 인버터는 이어서 메모리 셀(160)에 저장되어 있는 값에 직접적으로 대응하는 값을 출력할 것이다.
도 4는 레퍼런스 회로(200)로서 도시된 레퍼런스 회로의 일 실시 형태를 도시한다. 레퍼런스 회로(200)는 앞서 논의된 레퍼런스 회로(50 또는 50)에 사용될 수 있다. 레퍼런스 회로(200)는 연산 증폭기(210)를 포함한다. 연산 증폭기(210)의 음의 노드는 전압 VREF를 생성하는 전압원(도시되지 않음)에 접속된다. VREF는, 예를 들어, 0.8 볼트일 수 있다. 연산 증폭기(210)의 출력은 NMOS 트랜지스터의 게이트에 접속된다. NMOS 트랜지스터(220)의 드레인은 레퍼런스 회로(200)의 입력이다. NMOS 트랜지스터(220)의 소스는 레퍼런스 메모리 셀(230)에 접속한다.
도 5는 레퍼런스 회로(300)로서 도시된 레퍼런스 회로의 다른 실시 형태를 도시한다. 레퍼런스 회로(300)는 앞서 논의된 레퍼런스 회로(50 또는 50)에 사용될 수 있다. 레퍼런스 회로(300)는 인버터(310)를 포함한다. 인버터(310)의 출력은 PMOS 트랜지스터(320)의 게이트에 접속된다. PMOS 트랜지스터의 소스는 레퍼런스 회로(200)의 입력이다. PMOS 트랜지스터의 드레인은 레퍼런스 메모리 셀(330)에 접속되고, 인버터(310)에 대한 입력이다.
선택적으로, 레퍼런스 회로(50) 또는 레퍼런스 회로(150)는 각각 전류원 회로를 포함할 수 있다. 이러한 목적에 적합한 전류원 회로들의 예들은 당업자에게 주지되어 있다.
본 명세서에서의 본 발명에 대한 언급은 임의의 청구항 또는 청구항 용어의 범주를 제한하려는 것이 아니라, 대신, 청구항들 중 하나 이상에 의해 포괄될 수 있는 하나 이상의 특징들에 대해 언급하는 것일 뿐이다. 전술된 물질들, 프로세스들, 및 수치 예들은 단지 예시적일 뿐이며, 특허청구범위를 제한하는 것으로 간주되어서는 안 된다. 본 명세서에 사용된 바와 같이, 용어들 "~ 위에" 및 "~ 상에" 둘 모두는 포괄적으로 "직접적으로 위에"(그 사이에 위치한 어떠한 중개의 물질들, 요소들 또는 공간이 없음)와 "간접적으로 위에"(그 사이에 위치한 중개의 물질들, 요소들 또는 공간이 있음)를 포함한다는 것에 주의하여야 한다. 마찬가지로, 용어 "인접한"은 "직접적으로 인접한"(그 사이에 위치한 어떠한 중개의 물질들, 요소들 또는 공간이 없음) 및 "간접적으로 인접한"(그 사이에 위치한 중개의 물질들, 요소들 또는 공간이 있음)을 포함한다. 예를 들어, "기판 위에" 요소를 형성하는 것은 그 사이에 어떠한 중개의 물질들/요소들도 두지 않고 기판 상에 직접적으로 요소를 형성하는 것뿐만 아니라 그 사이에 하나 이상의 중개의 물질들/요소들을 두어 기판 상에 간접적으로 요소를 형성하는 것을 포함할 수 있다.

Claims (24)

  1. 메모리 디바이스에서 사용하기 위한 장치로서,
    제1 저항 및 제2 저항을 포함하는 전류 미러(current mirror) - 상기 제1 저항은 제1 단자 및 제2 단자를 포함하고, 상기 제2 저항은 제1 단자 및 제2 단자를 포함함 -;
    상기 제1 저항의 상기 제1 단자에 연결되고 상기 제2 저항의 상기 제1 단자에 연결되는 전압원;
    상기 제1 저항의 상기 제2 단자에 연결되는 레퍼런스 회로;
    적어도 두 개의 단자를 포함하되, 하나의 양극 단자가 상기 제1 저항의 상기 제2 단자에 연결되고, 다른 단자는 상기 제2 저항의 제2 단자에 연결되는 연산 증폭기;
    제1 단자, 제2 단자 및 제3 단자를 포함하는 트랜지스터 - 상기 트랜지스터의 상기 제1 단자는 상기 제2 저항의 상기 제2 단자에 연결됨 -; 및
    상기 트랜지스터의 상기 제2 단자에 연결되는 선택 메모리 셀(selected memory cell)을 포함하며,
    상기 트랜지스터의 제3 단자는 상기 연산 증폭기에 연결되고,
    상기 트랜지스터의 상기 제2 단자는 상기 선택 메모리 셀에 저장되어 있는 값을 나타내는 전압을 제공하는 장치.
  2. 제1항에 있어서, 상기 전압원은 1.0 볼트 이하의 전압을 제공하는 장치.
  3. 제1항에 있어서, 상기 선택 메모리 셀은 플로팅 게이트 메모리 셀인 장치.
  4. 제1항에 있어서, 상기 레퍼런스 회로는 레퍼런스 메모리 셀을 포함하는 장치.
  5. 제4항에 있어서, 상기 레퍼런스 메모리 셀은 플로팅 게이트 메모리 셀인 장치.
  6. 삭제
  7. 제4항에 있어서, 상기 레퍼런스 회로는 인버터를 포함하는 장치.
  8. 제1항에 있어서, 상기 레퍼런스 회로는 전류원을 포함하는 장치.
  9. 메모리 디바이스에서 사용하기 위한 장치로서,
    제1 저항 - 상기 제1 저항의 제1 단자는 전압원에 연결됨 -;
    상기 제1 저항의 제2 단자에 연결되는 레퍼런스 회로;
    제2 저항 - 상기 제2 저항의 제1 단자는 상기 전압원에 연결됨 -;
    연산 증폭기 - 상기 연산 증폭기의 양의 입력 단자(positive input terminal)는 상기 제1 저항의 제2 단자에 연결되고, 상기 연산 증폭기의 음의 입력 단자(negative input terminal)는 상기 제2 저항의 제2 단자에 연결됨 -;
    제1 단자, 제2 단자, 및 제3 단자를 포함하는 PMOS 트랜지스터 - 상기 PMOS 트랜지스터의 상기 제1 단자는 상기 제2 저항의 제2 단자에 연결되고, 상기 PMOS 트랜지스터의 상기 제3 단자는 상기 연산 증폭기의 출력에 연결됨 -; 및
    상기 PMOS 트랜지스터의 상기 제2 단자에 연결되는 선택 메모리 셀을 포함하며,
    상기 PMOS 트랜지스터의 드레인은 상기 선택 메모리 셀에 저장되어 있는 값을 나타내는 전압을 제공하는 장치.
  10. 제9항에 있어서, 상기 전압원은 1.0 볼트 이하의 전압을 제공하는 장치.
  11. 제9항에 있어서, 상기 선택 메모리 셀은 플로팅 게이트 메모리 셀인 장치.
  12. 제9항에 있어서, 상기 레퍼런스 회로는 레퍼런스 메모리 셀을 포함하는 장치.
  13. 제12항에 있어서, 상기 레퍼런스 메모리 셀은 플로팅 게이트 메모리 셀인 장치.
  14. 제12항에 있어서, 상기 레퍼런스 회로는 연산 증폭기를 포함하는 장치.
  15. 제12항에 있어서, 상기 레퍼런스 회로는 인버터를 포함하는 장치.
  16. 제9항에 있어서, 상기 레퍼런스 회로는 전류원을 포함하는 장치.
  17. 메모리 디바이스에서 사용하기 위한 장치로서,
    제1 저항 - 상기 제1 저항의 제1 단자는 전압원에 연결됨 -;
    상기 제1 저항의 제2 단자에 연결되는 레퍼런스 회로;
    제2 저항 - 상기 제2 저항의 제1 단자는 상기 전압원에 연결됨 -;
    연산 증폭기 - 상기 연산 증폭기의 양의 입력 단자는 상기 제1 저항의 제2 단자에 연결되고, 상기 연산 증폭기의 음의 입력 단자는 상기 제2 저항의 제2 단자에 연결됨 -;
    PMOS 트랜지스터 - 상기 PMOS 트랜지스터의 제1 단자는 상기 제2 저항의 제2 단자에 연결되고 상기 PMOS 트랜지스터의 제3 단자는 상기 연산 증폭기의 출력에 연결됨 -;
    제1 단자 및 제2 단자를 포함하는 미러 쌍 블록 - 상기 미러 쌍 블록의 상기 제1 단자는 상기 PMOS 트랜지스터의 상기 제2 단자에 연결되고, 상기 미러 쌍 블록의 상기 제2 단자는 선택 메모리 셀에 연결됨 -; 및
    상기 미러 쌍 블록의 상기 제2 단자에 연결되는, 상기 선택 메모리 셀에 저장되어 있는 값을 나타내는 전압을 제공하는 출력 포트를 포함하는 장치.
  18. 제17항에 있어서, 상기 전압원은 1.0 볼트 이하의 전압을 제공하는 장치.
  19. 제17항에 있어서, 상기 선택 메모리 셀은 플로팅 게이트 메모리 셀인 장치.
  20. 제17항에 있어서, 상기 레퍼런스 회로는 레퍼런스 메모리 셀을 포함하는 장치.
  21. 제20항에 있어서, 상기 레퍼런스 메모리 셀은 플로팅 게이트 메모리 셀인 장치.
  22. 제20항에 있어서, 상기 레퍼런스 회로는 연산 증폭기를 포함하는 장치.
  23. 제20항에 있어서, 상기 레퍼런스 회로는 인버터를 포함하는 장치.
  24. 제17항에 있어서, 상기 레퍼런스 회로는 전류원을 포함하는 장치.
KR1020157014248A 2012-10-29 2013-10-03 감지 증폭기를 위한 저전압 전류 레퍼런스 발생기 KR101748055B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201210419802.7 2012-10-29
CN201210419802.7A CN103794252B (zh) 2012-10-29 2012-10-29 用于读出放大器的低电压电流参考产生器
PCT/US2013/063272 WO2014070366A1 (en) 2012-10-29 2013-10-03 Low voltage current reference generator for a sensing amplifier

Publications (2)

Publication Number Publication Date
KR20150079909A KR20150079909A (ko) 2015-07-08
KR101748055B1 true KR101748055B1 (ko) 2017-06-15

Family

ID=49447818

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020157014248A KR101748055B1 (ko) 2012-10-29 2013-10-03 감지 증폭기를 위한 저전압 전류 레퍼런스 발생기

Country Status (7)

Country Link
US (1) US9589630B2 (ko)
EP (1) EP2912662B1 (ko)
JP (1) JP5953598B2 (ko)
KR (1) KR101748055B1 (ko)
CN (1) CN103794252B (ko)
TW (1) TWI525636B (ko)
WO (1) WO2014070366A1 (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106782649B (zh) * 2015-11-20 2020-07-14 华邦电子股份有限公司 感测放大器电路
US9792979B1 (en) * 2016-11-30 2017-10-17 Apple Inc. Process, voltage, and temperature tracking SRAM retention voltage regulator
US10515686B1 (en) * 2018-08-03 2019-12-24 Macronix International Co., Ltd. Low voltage reference current generator and memory device using same
CN110942789A (zh) * 2018-09-21 2020-03-31 合肥格易集成电路有限公司 一种灵敏放大器电路及非易失存储器
CN109765963B (zh) * 2019-01-24 2021-03-16 上海磐启微电子有限公司 一种数字调节偏置电流源
EP3918599B1 (en) * 2019-04-30 2023-07-05 Yangtze Memory Technologies Co., Ltd. Memory system capable of reducing the reading time
US11307604B2 (en) * 2020-01-27 2022-04-19 Qualcomm Incorporated Clamp circuit
CN118092560B (zh) * 2024-01-30 2024-09-20 上海帝迪集成电路设计有限公司 一种双极性晶体管的基极电流消除电路及其消除方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4713797A (en) 1985-11-25 1987-12-15 Motorola Inc. Current mirror sense amplifier for a non-volatile memory
EP0936627A1 (en) 1998-02-13 1999-08-18 STMicroelectronics S.r.l. Low voltage non volatile memory sense amplifier
US20060023531A1 (en) 2004-08-02 2006-02-02 Stmicroelectronics S.R.I. Sensing circuit for a semiconductor memory
US20060202763A1 (en) 2005-03-10 2006-09-14 Semiconductor Technology Academic Research Center Current mirror circuit

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993018412A1 (en) 1992-03-13 1993-09-16 Silicon Storage Technology, Inc. A sensing circuit for a floating gate memory device
JPH10505989A (ja) * 1995-03-01 1998-06-09 ラティス セミコンダクタ コーポレイション 低歪差動トランスコンダクタ出力カレントミラー
US5910914A (en) 1997-11-07 1999-06-08 Silicon Storage Technology, Inc. Sensing circuit for a floating gate memory device having multiple levels of storage in a cell
US6366497B1 (en) * 2000-03-30 2002-04-02 Intel Corporation Method and apparatus for low voltage sensing in flash memories
EP1306851A1 (en) 2001-10-24 2003-05-02 STMicroelectronics S.r.l. Low fatigue sensing method and circuit for ferroelectric non-volatile storage units
JP2003173691A (ja) 2001-12-04 2003-06-20 Toshiba Corp 半導体メモリ装置
ITTO20030121A1 (it) 2003-02-18 2004-08-19 St Microelectronics Srl Amplificatore di lettura di celle di memoria non volatili a
EP1538632B1 (en) * 2003-11-12 2010-06-30 STMicroelectronics Srl Phase change memory device with overvoltage protection and method for protecting a phase change memory device against overvoltages
US7016245B2 (en) 2004-02-02 2006-03-21 Texas Instruments Incorporated Tracking circuit enabling quick/accurate retrieval of data stored in a memory array
TWI259940B (en) * 2004-12-09 2006-08-11 Novatek Microelectronics Corp Voltage-controlled current source apparatus
US8081523B2 (en) 2005-01-12 2011-12-20 Nxp B.V. Circuit with a memory array and a reference level generator circuit
US7145824B2 (en) * 2005-03-22 2006-12-05 Spansion Llc Temperature compensation of thin film diode voltage threshold in memory sensing circuit
US7342832B2 (en) 2005-11-16 2008-03-11 Actel Corporation Bit line pre-settlement circuit and method for flash memory sensing scheme
EP1858027A1 (en) 2006-05-19 2007-11-21 STMicroelectronics S.r.l. A sensing circuit for semiconductor memories
TWM302832U (en) * 2006-06-02 2006-12-11 Princeton Technology Corp Current mirror and light emitting device with the current mirror
US7660161B2 (en) * 2007-01-19 2010-02-09 Silicon Storage Technology, Inc. Integrated flash memory systems and methods for load compensation
US7859906B1 (en) * 2007-03-30 2010-12-28 Cypress Semiconductor Corporation Circuit and method to increase read margin in non-volatile memories using a differential sensing circuit
US8054687B2 (en) * 2007-04-23 2011-11-08 Georgia Tech Research Corporation Systems and methods of providing programmable voltage and current reference devices
US8254178B2 (en) * 2007-08-27 2012-08-28 Infineon Technologies Ag Self-timed integrating differential current

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4713797A (en) 1985-11-25 1987-12-15 Motorola Inc. Current mirror sense amplifier for a non-volatile memory
EP0936627A1 (en) 1998-02-13 1999-08-18 STMicroelectronics S.r.l. Low voltage non volatile memory sense amplifier
US20060023531A1 (en) 2004-08-02 2006-02-02 Stmicroelectronics S.R.I. Sensing circuit for a semiconductor memory
US20060202763A1 (en) 2005-03-10 2006-09-14 Semiconductor Technology Academic Research Center Current mirror circuit

Also Published As

Publication number Publication date
KR20150079909A (ko) 2015-07-08
TWI525636B (zh) 2016-03-11
CN103794252A (zh) 2014-05-14
EP2912662A1 (en) 2015-09-02
US20150235711A1 (en) 2015-08-20
JP2015536520A (ja) 2015-12-21
EP2912662B1 (en) 2017-12-06
US9589630B2 (en) 2017-03-07
CN103794252B (zh) 2018-01-09
JP5953598B2 (ja) 2016-07-20
WO2014070366A1 (en) 2014-05-08
TW201417109A (zh) 2014-05-01

Similar Documents

Publication Publication Date Title
KR101748055B1 (ko) 감지 증폭기를 위한 저전압 전류 레퍼런스 발생기
TWI545568B (zh) 記憶體及其操作電壓開關電路的方法
Conte et al. A high-performance very low-voltage current sense amplifier for nonvolatile memories
CN107077876B (zh) 用于读取电阻式存储器的恒定感测电流
KR20120045197A (ko) 온도에 의존하는 저장 매체를 포함하는 메모리 장치 및 그 구동방법
US9754640B1 (en) Sensing circuit and method utilizing voltage replication for non-volatile memory device
US9959915B2 (en) Voltage generator to compensate for process corner and temperature variations
US8830759B2 (en) Sense amplifier with offset current injection
JP2008305469A (ja) 半導体記憶装置
US9558841B2 (en) Generating stabilized output signals during fuse read operations
CN107958688B (zh) 非易失性存储装置的感测电路及方法
US8830772B2 (en) Sense amplifier circuit
JP2005050473A (ja) 半導体装置
WO2008039624A2 (en) Sense amplifier circuit for low voltage applications
KR102287699B1 (ko) 데이터 독출 회로
US9099190B2 (en) Non-volatile memory device with improved reading circuit
CN109346118B (zh) 用于sonos单元的灵敏放大器电路
TWI615851B (zh) 非揮發性記憶裝置的感測電路及方法
US20060146624A1 (en) Current folding sense amplifier
CN103378833A (zh) 开关电路
US20070205808A1 (en) Sense amplifier
TWI574260B (zh) 具有電流注入讀出放大器的非易失性存儲裝置
KR20170035737A (ko) 전류 미러 회로를 이용하여 센싱 마진을 확보하는 비휘발성 메모리의 동작 방법
TW201248647A (en) Memory array with two-phase bit line precharge

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant