KR101607796B1 - Pem 연료 전지 막 전극 조립체 성분의 재생 방법 - Google Patents
Pem 연료 전지 막 전극 조립체 성분의 재생 방법 Download PDFInfo
- Publication number
- KR101607796B1 KR101607796B1 KR1020147020192A KR20147020192A KR101607796B1 KR 101607796 B1 KR101607796 B1 KR 101607796B1 KR 1020147020192 A KR1020147020192 A KR 1020147020192A KR 20147020192 A KR20147020192 A KR 20147020192A KR 101607796 B1 KR101607796 B1 KR 101607796B1
- Authority
- KR
- South Korea
- Prior art keywords
- solvent
- electrode assembly
- noble metal
- membrane electrode
- membrane
- Prior art date
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 40
- 238000000034 method Methods 0.000 title claims description 45
- 230000008569 process Effects 0.000 title claims description 21
- 210000000170 cell membrane Anatomy 0.000 title description 5
- 238000004064 recycling Methods 0.000 title 1
- 239000012528 membrane Substances 0.000 claims abstract description 70
- 239000002904 solvent Substances 0.000 claims abstract description 60
- 239000003054 catalyst Substances 0.000 claims abstract description 55
- 239000002245 particle Substances 0.000 claims abstract description 39
- 229910000510 noble metal Inorganic materials 0.000 claims abstract description 38
- 238000001914 filtration Methods 0.000 claims abstract description 16
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 49
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 38
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims description 35
- 229920000642 polymer Polymers 0.000 claims description 32
- 238000000926 separation method Methods 0.000 claims description 17
- 239000000203 mixture Substances 0.000 claims description 14
- 238000010438 heat treatment Methods 0.000 claims description 12
- 229920000554 ionomer Polymers 0.000 claims description 12
- 238000009792 diffusion process Methods 0.000 claims description 10
- 238000000108 ultra-filtration Methods 0.000 claims description 7
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 claims description 5
- 238000013019 agitation Methods 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- 238000010924 continuous production Methods 0.000 claims description 3
- 239000012466 permeate Substances 0.000 claims description 3
- 238000010306 acid treatment Methods 0.000 claims description 2
- 150000001298 alcohols Chemical class 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 239000003125 aqueous solvent Substances 0.000 claims 1
- 238000005191 phase separation Methods 0.000 claims 1
- 229920005597 polymer membrane Polymers 0.000 abstract description 19
- 125000005233 alkylalcohol group Chemical group 0.000 abstract description 10
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 35
- 210000004027 cell Anatomy 0.000 description 32
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 20
- 229910052799 carbon Inorganic materials 0.000 description 20
- 239000007789 gas Substances 0.000 description 17
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 16
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 15
- 238000011084 recovery Methods 0.000 description 12
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 11
- 239000001257 hydrogen Substances 0.000 description 11
- 229910052739 hydrogen Inorganic materials 0.000 description 11
- 229920000557 Nafion® Polymers 0.000 description 10
- 239000006185 dispersion Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 8
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 8
- 238000011069 regeneration method Methods 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 229910052697 platinum Inorganic materials 0.000 description 7
- 229920006254 polymer film Polymers 0.000 description 7
- 230000008929 regeneration Effects 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000005518 polymer electrolyte Substances 0.000 description 6
- 238000002485 combustion reaction Methods 0.000 description 5
- 230000002209 hydrophobic effect Effects 0.000 description 5
- 230000001172 regenerating effect Effects 0.000 description 5
- 229920002313 fluoropolymer Polymers 0.000 description 4
- 239000004811 fluoropolymer Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000010970 precious metal Substances 0.000 description 4
- 239000011877 solvent mixture Substances 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 238000000429 assembly Methods 0.000 description 3
- 230000000712 assembly Effects 0.000 description 3
- 235000012209 glucono delta-lactone Nutrition 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- -1 aryl ketone Chemical class 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000012065 filter cake Substances 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- UQSQSQZYBQSBJZ-UHFFFAOYSA-N fluorosulfonic acid Chemical compound OS(F)(=O)=O UQSQSQZYBQSBJZ-UHFFFAOYSA-N 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- 229910004261 CaF 2 Inorganic materials 0.000 description 1
- 235000002918 Fraxinus excelsior Nutrition 0.000 description 1
- 239000004693 Polybenzimidazole Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 239000002956 ash Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 150000007942 carboxylates Chemical group 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002322 conducting polymer Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000010411 electrocatalyst Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 229920001600 hydrophobic polymer Polymers 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000037427 ion transport Effects 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 238000001471 micro-filtration Methods 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 229920002480 polybenzimidazole Polymers 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000005201 scrubbing Methods 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid group Chemical group S(O)(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1039—Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D25/00—Filters formed by clamping together several filtering elements or parts of such elements
- B01D25/12—Filter presses, i.e. of the plate or plate and frame type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D35/00—Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/008—Disposal or recycling of fuel cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1004—Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/84—Recycling of batteries or fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Energy (AREA)
- Inert Electrodes (AREA)
- Catalysts (AREA)
Abstract
PEM 연료 전지의 막 전극 조립체 (MEA)는 MEA를 저급 알킬 알콜 용매와 접촉시켜 막을 조립체의 애노드 및 캐소드 층으로부터 분리시킴으로써 재생시킬 수 있다. 중합체 막 및 지지된 귀금속 촉매 모두를 함유하는 생성 용액을 적당한 조건 하에서 가열하여 중합체 막을 입자로서 분산시키고, 지지된 귀금속 촉매 및 중합체 막 입자를 공지된 여과 수단에 의해 분리시킬 수 있다.
Description
본 발명은 PEM 연료 전지 막 전극 조립체 성분의 재생 방법에 관한 것이다.
연료 전지는 두 전극에서 서로로부터 국부적으로 분리되는 연료 및 산화제를 전기, 열 및 물로 전환시킨다. 수소 또는 수소-농후 기체가 연료로서 사용될 수 있고, 산소 또는 공기가 산화제로서 사용될 수 있다. 연료 전지에서의 에너지 전환 공정은 특히 고효율을 특징으로 한다. 중합체 전해질 막 연료 전지 (PEM 연료 전지)의 조밀 설계, 전력 밀도 및 고효율로 인해 상기 전지를 에너지 전환기로서 사용하기에 적합하며, 이러한 이유로 PEM 연료 전지는 전기 모터와 함께 기존 연소 엔진의 대안으로서 그 중요성이 더해지고 있다.
수소/산소 유형 연료 전지는 전자의 생성 및 흐름, 및 다수의 응용에 유용한 전력원으로서의 전기 에너지를 유도하는 애노드 및 캐소드 반응에 의존한다. 수소/산소 연료 전지에서의 애노드 및 캐소드 반응은 하기와 같이 표시될 수 있다:
H2 → 2H+ + 2e- (애노드)
½ O2 + 2e- → H2O (캐소드)
각각의 PEM 연료 전지 유닛은 기체를 공급하고 전기를 전도하는 역할을 하는 이극성 플레이트 (분리판으로도 공지됨) 사이에 위치한 막 전극 조립체를 함유한다. 막 전극 조립체 (MEA)는 중합체 전해질 막으로 이루어져 있으며, 이의 양면에 반응층인 전극이 제공되어 있다. 반응층 중 하나는 수소를 산화시키기 위한 애노드의 형태를 취하고, 제2 반응층은 산소를 환원시키기 위한 캐소드의 형태를 취한다. 반응 기체가 전극에 양호하게 접근하도록 하고 전류가 전지로부터 양호하게 전도되도록 하는, 탄소 섬유지 또는 탄소 섬유 직물 또는 천으로 제조된 기체 분배층이 전극에 부착되어 있다. 애노드 및 캐소드는 특정 반응 (수소의 산화 및 산소의 환원 각각)에 촉매 작용을 하는 전기촉매를 함유한다. 바람직하게는 원소 주기율표의 백금족 금속이 촉매 활성 성분으로서 사용된다. 촉매 활성 백금족 금속이 전도성 지지체 물질의 표면에 고도로 분산된 형태로 적용된 지지 촉매가 사용된다. 백금족 금속의 평균 소결정 크기는 약 1 내지 10 nm이다. 미립자 카본블랙이 지지체 물질로서 효과적인 것으로 입증되었다. 중합체 전해질 막은 양성자 전도성 중합체 물질로 이루어져 있다. 이들 물질은 또한 하기에서 이오노머라고도 지칭된다. 바람직하게는 산 관능기, 특히 황산기를 갖는 테트라플루오로에틸렌-플루오로비닐 에테르 공중합체가 사용된다. 이러한 유형의 물질은 예를 들어 이.아이. 듀폰(E.I. DuPont)에 의해 상표명 나피온(Nafion)®으로 시판되고 있다. 그러나, 다른 이오노머 물질, 특히 불소-무함유 물질, 예컨대 술폰화 폴리에테르 케톤 또는 아릴 케톤 또는 폴리벤즈이미다졸도 사용될 수 있다.
연료 전지는 높은 에너지 효율 (열 엔진 주기와 일치하지 않음), 연료 융통성에 대한 가능성, 및 극히 소량의 배출물로 인해 수송용 전력원으로서 추구되어 왔다. 연료 전지는 고정식 및 이동식 전력 응용에 대한 가능성이 있으나, 고정식 및 수송 응용시 전력 발생용 연료 전지의 상업적 실용성은 여러 가지 제조, 비용 및 내구성 문제 해결에 좌우된다.
가장 중요한 문제 중 하나는 연료 전지용 양성자 교환 촉매의 비용이다. 가장 효율적인 저온 연료 전지용 촉매는 매우 값비싼 백금과 같은 귀금속이다. 이러한 촉매의 총 비용은 저온 연료 전지의 총 제조 비용의 대략 80%라고 산정된 바 있다.
전형적인 공정에서, 약 0.5 내지 4 mg/cm2의 목적하는 귀금속 촉매의 양이 잉크의 형태로 또는 복잡한 화학 절차를 사용하여 연료 전지 전극에 적용된다. 이러한 방법은 특히 저온 응용을 위한 목적하는 수준의 전극촉매 활성을 갖는 연료 전지 전극을 생성하기 위해, 비교적 많은 양의 귀금속 촉매의 적용을 필요로 한다. 이러한 촉매의 비용으로 인해 연료 전지에 요구되는 촉매의 양 또는 부가량 감소가 부득이하다. 이에, 촉매 적용을 위한 효율적인 방법이 필요하다.
최근에 롤링/분무, 용액 캐스팅/고온 가압을 비롯한 다수의 침착 방법 및 전기화학적 촉매화가 PEM 연료 전지용 Pt 촉매층 생산을 위해 개발되었다.
수소/산소 연료 전지의 경우, 촉매 적용 방법에서의 일부 개선은 제형 중 고가의 백금 촉매 양의 감소에 관한 것이었다. 조성물의 개발은 예를 들어, 용해된 퍼플루오로술포네이트 이오노머 (나피온®), 지지 촉매 (탄소 상의 Pt), 글리세롤 및 물을 배합함으로써 달성되었다. 이로써 백금이 소량 부가된 전극을 사용하게 되었다. 하기 공개문헌에는 수소/산소 연료 전지를 위한 상기 방법들 중 일부가 교시되어 있다: 미국 특허 제5,234,777호 (Wilson); 문헌 [M. S. Wilson, et al, J. App. Electrochem., 22 (1992) 1-7; C. Zawodzinski, et al, Electrochem. Soc. Proc, Vol. 95-23 (1995) 57-65; A. K. Shukla, et al, J. App. Electrochem., 19(1989) 383-386]; 미국 특허 제5,702,755호 (Messell); 미국 특허 제5,859,416호 (Mussell); 미국 특허 제5,501,915호 (Hards, et al).
오일 수입에 대한 의존성을 줄이기 위하여, 미국 경제가 탄화수소가 아닌 수소에 기초하여야 한다는 것이 제안되었다. 현재의 수소 경제 주변 상황은 PEM 연료 전지의 성공에 의해 부분적으로 지지된다. 상기 언급된 바와 같이, PEM 연료 전지의 제조에 대한 주된 비용은 촉매 전극으로 사용되는 백금과 같은 귀금속이다. 중요하게는, 나피온® 막이 또한 비교적 값비싼 물질이어서 연료 전지 스택 비용의 원인이 된다. 전형적으로, 연료 전지의 평균 수명은 약 1년이다. 막에서의 핀홀 및 촉매 불활성화는 PEM 연료 전지의 유효성을 저하시켜 유용 수명을 감소시키는 일부 원인이다.
전형적으로 나피온® 막의 코어 및 양면에 코팅된 백금/탄소 전극을 함유하는 막 전극 조립체의 재생은 PEM 연료 전지의 제조 및 사용과 관련된 여러 비용 문제를 해결할 수 있다. 먼저, 재사용을 위한 백금 촉매의 회수는 이 금속에 대한 세계적 수요를 충족시키고 이 금속의 적당한 가격 유지를 돕는데 중요하다. 현재 MEA로부터 백금의 상업적 회수는 막의 연소 및 재의 처리를 포함한다. 이러한 기작은 상업적 교환의 목적을 위해 시금될 수 있는 재를 생성하기 때문에 유용하다. 유감스럽게도, 상기 종래 공정에는 2가지 단점이 있다. 첫째로, 종종 기체 확산층에 사용되는 플루오로중합체 나피온® 막 및 PTFE의 연소는 부식성이고 건강에 위험한 HF 기체를 발생시킨다. HF 기체의 배출은 고도로 규제되고, 심지어 기체 스크러빙시에도 잔류 HF로 인해 로 처리량이 제한된다. 둘째로, 나피온® 막의 연소로 값비싼 부가가치 물질이 파괴된다.
동시 계류중인 미국 특허출원 제11/110,406호에는 MEA를 저급 알킬 알콜 용매와 접촉시켜 막 전극 조립체의 Pt/탄소 촉매층을 재생할 수 있다고 교시되어 있다. 상기 제11/110,406호 출원에 따라 저급 알킬 알콜은 막과 부착된 Pt/탄소 촉매층 사이의 결합을 파괴하여 Pt 촉매층을 본래 막으로부터 분리시킨다.
미국 특허 제6,150,426호 및 동 제4,433,082호에 개시된 것을 비롯한, 막을 회수하는데 적용될 수 있는 플루오로카본-함유 이오노머 중합체의 분산 방법이 공지되어 있다. 상기 제6,150,426호 특허에는 중합체를 가압 하에서 수성 액체 분산 매질에 분산시켜 고도로 플루오르화된 이온-교환 중합체를 제조하는 방법이 개시되어 있다. 상기 제6,150,426호 특허에 따라 중합체는 150℃ 내지 350℃의 바람직한 온도에서 가압 하에서 물을 주성분으로 하는 매질 중에 분산될 수 있다. 상기 제4,433,082호 특허에는, 중합체를 25 내지 100 중량%의 물과 0 내지 75 중량%의 제2 액체 성분, 예컨대 저급 알콜, 예를 들어 프로판올 또는 메탄올의 혼합물과 180℃ 이상의 온도에서 접촉시키는 퍼플루오르화 중합체의 액체 조성물의 제조 방법이 제공되어 있다. 그러나, 이들 방법은 플루오로중합체 막의 분산을 위한 고압 및 고온 요건으로 인해 비용이 많이드는 경향이 있다.
MEA 재생을 위한 다른 공정이 제안되었다. 이 공정은 재생 문제를 본 발명의 정도로 해결하지 못한다. 예를 들어, 어떤 공정은 용융 공정을 사용하여 MEA로부터 귀금속을 회수한다. 칼슘염을 함유하는 플럭스에서 3-층 MEA가 처리된다. 이는 유리된 HF를 CaF2로서 격리시킨다. 그러나, MEA 막의 가치가 파괴된다. 또다른 공정은 MEA 막을 용해시켜 막 필름을 재캐스팅하고 회수된 전극 촉매를 재사용하는 것을 제안한다. 경험상 노화 동안 막의 물리적 성질이 변화된다. 분자량이 낮은 중합체로 필름을 재캐스팅하면 원래 중합체로 제조된 것과 상이한 성질을 갖는 막을 생성할 수 있다.
따라서, 귀금속이 고수율로 회수되고 나피온® 또는 다른 플루오로중합체 막이 재생 가능하도록 완전히 회수되는 PEM 연료 전지의 막 전극 조립체 재생을 위한 다른 공정을 제공하는 것이 유용할 것이다. HF 기체의 형성과 같은 심각한 환경 문제가 없는 상기 공정은 저-에너지 설비로 실시될 수 있고, 회수된 귀금속의 시금에 기초하는 상업적 교환을 촉진하는 상기 공정은 수소 경제를 진전시키는데 도움이 될 것이다.
본 발명자들은, 저급 알킬 알콜 용액을 사용하고 그 용액을 적당한 가열 조건 하에서 가열하고 귀금속 촉매를 여과에 의해 이오노머 막으로부터 분리시켜, 귀금속 촉매 및 MEA의 중합체 전해질 막 또는 플루오로카본-함유 이오노머 막 모두를 재생시킬 수 있다는 것을 발견하였다. 보다 구체적으로, 저급 알킬 알콜 (상기 알콜과 가변량의 물의 혼합물 포함)은 중합체 전해질 막 또는 플루오로카본-함유 이오노머 막과 부착된 귀금속/탄소 촉매층 사이의 결합을 파괴하여 귀금속 촉매를 중합체 막 필름으로부터 분리시킬 수 있다. 이어서, 중합체 막을 적당한 가열 조건을 사용하여 용액 중에 입자로서 분산시킬 수 있으며, 그 결과 플라스틱 재생을 위한 중합체 막 및 촉매층 중의 귀금속 모두를 여과에 의해 막 전극 조립체의 연소 및 HF 기체의 형성 없이 회수할 수 있다.
도 1은 막 전극 조립체의 중합체 막 및 지지된 귀금속 촉매 모두의 재생을 위한 제안된 방법을 예시한다.
본 발명은 막 전극 조립체를 연소시켜 귀금속 적재된 재를 회수하고 MEA의 외층 (예를 들어, 기체 확산층)을 제거할 필요 없이, PEM 연료 전지 막 전극 조립체의 성분을 재생시키는 방법에 관한 것이다. 또한, 본 발명은 저급 알콜 또는 저급 알콜/물 혼합물을 이용하여 PEM 연료 전지 막 전극 조립체를 층분리(delamination)시키고, 이후 남아있는 중합체 막 또는 퍼플루오로카본 이오노머 막을 적당한 가열 조건을 사용하여 분산시키는 것에 관한 것이다. 본 발명의 방법은, 전형적으로 탄소 입자 상에 지지된 백금과 같은 귀금속으로 형성된 애노드와 캐소드 사이에 중합체 막이 위치하는, 3개 이상의 층을 함유하는 막 전극 조립체 (MEA) (예를 들어, 3-, 5- 및 7-층 MEA)에 유용하다.
3-, 5- 및 7-층 MEA의 구조체가 당업계에 널리 공지되어 있다. 상기 조립체의 특정 제조 방법이 또한 공지되어 있으며, 본 발명의 중요한 특징을 형성하지는 않는다. 그러나, 제조 방법은 사용된 용매 유형 및 처리 시간에 영향을 미칠 수 있다.
5-층 막 전극 조립체에서, 기체 확산층 (GDL)은 각 전극의 반대편 말단에 놓인다. GDL은 전형적으로 종래 기술에 공지된 탄소지 또는 탄소 섬유 구조체이다. 종종 GDL은 소수성을 부여하는 플루오로카본을 함유한다. 예를 들어, 미국 특허 제6,083,638호 (Taniguchi et al)에는, 360℃에서 소부된 후 소수성 및 친수성 중합체의 미립자 분산액으로 처리되어 소수성 및 친수성인 분리 채널이 형성된, 플루오로수지로 전처리된 섬유질 탄소 기판이 개시되어 있다. EP 1 063 717 A2호 (Isono et al)에는, 전지를 통한 이온 수송 방향에 수직인 방향으로 소수성 구배가 나타나는 방식으로 수분산액 중에서 고온의 플루오로중합체로 처리된 섬유질 탄소 기판이 개시되어 있다. 섬유질 탄소 기판은 상기 동일한 수분산액을 포함하고 유사한 소수성 구배를 나타내는 혼합물 층으로 더 처리된다. 전체 구조체는 380℃로 가열되어 중합체가 합체된다.
미국 특허 제5,561,000호 (Dirven et al)에는, PTFE-처리된 탄소지 또는 탄소 직물을 코팅하여 PTFE 및 탄소로 이루어진 미세 다공층이 침착된 이중층 구조체가 개시되어 있다.
본 발명에 따라 재생될 MEA는 당업계에 공지된 중합체 막 또는 플루오로카본-함유 이오노머 막을 함유한다. 특히, 듀폰의 나피온®과 같은 퍼플루오로술포네이트 막을 함유하는 연료 전지는 본 발명의 교시에 따라 용이하게 처리될 수 있다. PEM 연료 전지에서 막에 사용될 수 있는 퍼플루오로술포네이트 이오노머의 예 및 본 발명에 따라 처리될 수 있는 막 전극 조립체가 이.아이. 듀폰 디 네모아 앤드 캄파니(E.I. Dupont de Nemours and Co.)에 양도된 미국 특허 제4,433,082호 및 동 제6,150,426호, 및 다우 케미칼 컴파니(Dow Chemical Co.)에 양도된 미국 특허 제4,731,263호 (이들은 전문이 본원에 참조로 포함됨)에 개시되어 있다. 카르복실레이트기를 함유하는 것과 같은 다른 플루오로카본-함유 이오노머가 시판되고 있으며, 본 발명에 따라 처리될 수 있다.
본 발명에 따라, 막 전극 조립체는 1종 이상의 저급 알킬 알콜 (바람직하게는 물과 혼합됨)로 구성된 용매와 접촉된다. 알콜 대 물의 비율 및 알콜의 선택은 막의 노화 여부에 좌우된다는 것을 발견하였다. 노화된 막의 경우, 바람직하게는 알콜-희박 용매 혼합물이 사용된다. 알콜-희박 용매는 30 중량% 미만의 알콜을 함유하는 알콜과 물 용매로 여겨질 수 있으나, 25 중량% 미만의 알콜 또한 그 예가 된다.
한 실시양태에서, 3-, 5- 또는 7-층 MEA는 작은 조각 (예를 들어, 1×1 또는 ½×½ 평방 인치)로 잘려져서 본 발명에 따른 용매를 함유하는 층분리 탱크에 놓인다. 이러한 방법은 층, 특히 기체 확산층의 기계적 제거가 귀금속 촉매의 적은 회수를 초래하는 경향이 있기 때문에 바람직할 수 있다. 용매와의 접촉시, 연료 전지 막 및 지지된 귀금속을 함유하는 애노드 및 캐소드 층이 분리된다는 것을 발견하였다. 캐소드 및 애노드는 종종 지지된 귀금속 촉매를 함유하는, 미립자 (입자의 90% 초과가 50 마이크로미터 미만) 또는 조립자 (50 마이크로미터 초과) 탄소로 존재한다. 촉매층 (애노드 및 캐소드)은 조립자로 존재하는 것이 바람직하다. 용매 중에 용이하게 분산되는 미립자로서 분리되는 경우, 귀금속의 회수가 더 어려워질 수 있다. 중합체 막은 또한 임의의 외층으로부터 분리되며, 용액 중에 잔존한다. 저급 알킬 알콜-함유 용매와 접촉하며 기체 확산층을 함유하는 막 전극 조립체 (예를 들어, 5- 또는 7-층 MEA)는 기체 확산층 및 막층을 촉매층으로부터 분리시킨다. 이후, 용매를 적당한 가열 조건 하에서 가열하여, 중합체 막을 입자로서 분산시키고, 회수 전에 막 전극 조립체를 먼저 재로 연소시킬 필요없이 막과 귀금속 촉매 모두를 회수할 수 있다.
용어 "접촉"은 주로 막 전극 조립체가 알콜 또는 알콜/물 용매 중에 침지 또는 현탁됨을 의미한다. 용매의 교반은 알콜과 물의 균일한 혼합물을 제공하고 막을 촉매층으로부터 분리시키는데 필요한 시간을 감소시키는데 유용할 수 있다. 또한, MEA를 미스트 또는 보다 농축된 분무액과 같은 용매의 유동 스트림과 연속적으로 접촉시킬 수 있다. 추가로, 막이 촉매층으로부터 스트립핑되기에 충분한 시간 동안 스팀을 포함할 수 있는 알킬 알콜 용매 증기 스트림 중에 MEA를 보유시킬 수 있다.
본 발명에서 사용되는 용매는 1종 이상의 C1 내지 C8 알킬 또는 이소알킬 알콜을 포함할 것이다. 2종 이상의 상기 저급 알킬 알콜의 혼합물을 또한 사용할 수 있다. 5 내지 95 중량%의 물을 첨가하면 분리 공정이 촉진된다는 것을 발견하였다. 물 단독으로는 막을 애노드 및 캐소드 촉매층으로부터 분리시키기에 불충분하다는 것을 발견하였다. 한 실시양태에서, 메탄올, 에탄올 및 이소프로판올과 같은 저급 알콜은 인화점이 낮기 때문에, 상기 알콜은 C4 내지 C6 알킬 알콜일 것이다. 그러나, C1 내지 C3 알킬 알콜 (이들의 혼합물 포함)이 중합체 막으로부터의 귀금속 분리에 효과적이다. 10 내지 50 중량%의 물 함량을 비롯한, 혼합물에 대한 10 내지 90 중량%의 추가적인 물 함량이 유용하다. 탄소 원자가 6개를 초과하는 알칸올은 교반 하에서조차 물과 혼화성 혼합물을 형성할 수 없어 유용하지 않을 수 있다. 접촉 시간은 이용된 특정 조립체 및 특정 용매에 따라 변할 수 있으나, 전형적으로 10초 이상 및 10분 이하의 접촉 시간이면 막이 촉매층으로부터 분리되기에 충분하다. 바람직하게는, 30초 내지 3분의 시간이 적당한 파라미터 세트로 달성가능하다.
본 발명에 따라, 막 전극 조립체 (MEA)로부터 지지된 귀금속 및 중합체 막 모두가 단일 공정으로 재생될 수 있다. 본 출원인은 새로운 막을 이용하여 상기 막이 본 발명의 알콜/몰 용매 혼합물로 처리된 후 본래대로 남아있을 수 있다는 것을 발견하였다. 그러나, 노화된 막의 경우 상기 막은 알콜 함량에 따라 일련의 변화를 겪게 된다. 노화된 MEA의 재생은 일부 막 분해를 초래할 수 있다. 예를 들어, 5% 알콜의 경우, 노화된 막은 본래대로 관찰되었으나 전극 촉매의 일부가 막에 남아있었다. 25% 알콜 함량에서, 탄소 및 전극 촉매는 노화된 막으로부터 완전히 분리되었으나, 상기 막은 부분 에멀젼으로서 겔 및/또는 소수성 층을 형성하였다.
출원인은 예상밖으로, 사용된 MEA 막의 재생시 생성된 중합체 겔이 적당한 가열 조건 하에서 본 발명의 알콜/물 용매 중에 중합체 입자로서 비교적 급속히 분산될 수 있다는 것을 발견하였다. 본원에서 사용된 "적당한 가열 조건"은 알콜/물 용매를 약 50℃ 내지 약 180℃의 온도로 가열하는 것을 포함한다. 알콜/물 용매를 약 50℃ 내지 약 150℃, 또는 70℃ 내지 약 100℃, 또는 약 70℃의 온도로 가열하는 것이 또한 그 예가 된다. 이로써, 반연속식 공정을 사용하여 막 전극 조립체의 지지된 귀금속 및 중합체 막 (예를 들어, 나피온®) 모두를 재생 및 분리시키는 것이 가능하다. 도 1에 예시된 한 실시양태는 애노드 및 캐소드 층 또는 기체 확산층 (GDL)의 예비 제거 없이 MEA 막을 재생시킨다. 상기 공정은 배치식, 반연속식 또는 연속식으로 수행될 수 있다. 가능하게는, (예를 들어, 7-층 MEA의) 외부 가스켓층이 또한 MEA 상에 남아있을 수 있다. 이러한 공정의 다른 이점은 하기를 포함한다:
(1) 알콜/물 용매 혼합물의 재순환 및 재사용;
(2) 저온 및 저압에서의 공정 수행의 결과로서 에너지 효율;
(3) 프로판올/부탄올 혼합물의 사용으로 인한 안전성 개선;
(4) 농축된 중합체 스트림 및 귀금속 함침된 탄소 입자의 동반 생성;
(5) 개선된 PM 회수; 및
(6) 중합체로부터 탄소 입자를 제거하여 탄소 입자의 하류 연소로부터 보다 적은 HF를 생성함.
도 1을 참조하면, 층분리 탱크 (42), 마이크로파 가열기 (46), 여과 프레스 (58) 및 초여과 시스템 (66)을 포함하는 MEA 조립체의 재생 방법 (40)이 제공된다. 층분리 탱크 (42)는 탱크 (42)를 상부 챔버 (41) 및 하부 챔버 (45)로 분할하는 스크린 (43)을 함유한다. 층분리 탱크 (42)는 알콜/물 용매를 교반 또는 혼합하여 층분리를 증진시키는 수단을 더 포함한다 (본원에서 교반기 (50)로 표시됨).
5- 또는 7-층 MEA 막은 먼저 작은 조각으로 잘려지고, 조각은 층분리 탱크 (42)의 상부 챔버에 놓인다. 탱크 (42)는 본 발명에 따른 알콜/물 용매로 채워질 수 있으며, 용매가 탱크 내부에서 혼합 또는 교반되어 지지된 귀금속을 중합체 막 및/또는 GDL 층으로부터 분리시킨다. 남아있는 GDL은 층분리 탱크로부터 제거되거나 탄소/중합체 용액으로부터 분리되고 체로 걸러질 수 있다. 본 발명의 한 실시양태에서, 알콜/물 용매는 2종 이상의 알킬 알콜을 포함하며, 예를 들어 알콜/물 용매는 이소프로판올 및 부탄올을 포함할 수 있다. 본 발명의 실시양태에 사용된 알콜/물 용매는 재생될 막 전극 조립체의 조성 및/또는 추가 층, 예를 들어 기체 확산층의 존재 또는 부재를 기준으로 조정될 수 있다.
지지된 귀금속 촉매를 중합체 막으로부터 분리시킨 후, 지지된 귀금속 촉매 및 중합체 막 모두를 함유하는 알콜/물 용매를 층분리 탱크 (42)로부터 라인 (44)을 경유하여 마이크로파 가열기 (46)를 통해 펌핑한다. 마이크로파 가열기 (46)는 중합체 막을 알콜/물 용매 중에 중합체 입자로서 용해시키기에 적절한 온도로 알콜/물 용매를 가열한다. 전형적으로, 마이크로파 가열기 (46)는 알콜/물 용매를 약 50℃ 내지 150℃의 온도로 가열할 것이다.
지지된 귀금속 입자를 분산된 중합체 막 입자로부터 분리시키고 분산된 중합체 막 입자를 용매로부터 분리시키는 것을 보조하기 위해, 분산된 중합체 입자의 크기를 조절하는 것이 중요하다. 예를 들어, 중합체 입자는 지지된 귀금속 촉매를 트랩핑하기 위한 여과 프레스 (58)를 통과하기에 충분히 작아야 하며, 초여과 시스템 (66)을 사용하여 알콜/물 용매에서 분리되기에 충분히 커야 한다. 중합체 입자 크기 조절을 보조하는 하나의 수단은 적당한 가열 조건 하에서 용매 중에 중합체 입자를 분산시키기 위해 알콜/물 용매에 함유된 중합체를 가열기를 통해 연속 유동시키는 것을 포함한다. 알콜/물 용매는 중합체 막의 분산에 충분한 온도로 용매를 가열하도록 충분히 길게, 그러나 용매로부터 입자를 분리시키는데 너무 작은 중합체 입자 분산액을 생성하지 않도록 충분히 길지 않게 가열기와 접촉한 채 남아있어야 한다. 바람직하게는, 평균 입자 크기는 100 nm, 125 nm, 150 nm 또는 175 nm 초과의 반경을 함유한다. 또한, 입자의 90% 이상이 500 nm 미만의 반경을 함유하는 것이 바람직하다. 목적하는 분산을 달성하기 위해, 가열기를 통한 중합체 용매 혼합물의 체류 시간은 약 1분 내지 약 30분이어야 한다. 약 2분 내지 약 20분, 약 5분 내지 약 10분의 체류 시간이 또한 그 예가 된다.
용매 중에 중합체 막을 분산시킨 후, 지지된 귀금속 촉매 및 분산된 중합체 막 입자를 예를 들어 여과 프레스 (58) 및 초여과 시스템 (66)을 사용하여 알콜/물 용매로부터 및 서로로부터 분리시킬 수 있다. 또다른 실시양태에서, 다른 공지된 여과 방법이 사용될 수 있으며, 예를 들어 마이크로-여과 시스템이 지지된 금속 촉매를 분산된 중합체 막 입자로부터 분리시키는데 사용될 수 있다. 한 실시양태에서, 알콜/물 용매는 먼저 임의의 남아있는 거대 중합체 막 입자 및/또는 임의의 가능한 GDL 층 입자를 제거하기 위해 라인 (48)을 경유하여 스크린 (54)를 통해 펌핑된 다음, 라인 (56)을 경유하여 여과 프레스 (58)를 통해 펌핑되어 지지된 귀금속 촉매를 필터 케이크 또는 슬러지로서 트랩핑한다. 본 발명의 여과 프레스 (58)는 보다 작은 크기의 중합체 막 입자가 침투액으로서 대량의 알콜/물 용매와 함께 여과 프레스 (58)를 통과하도록 한다. 여과 케이크에 함유된 귀금속 촉매는 당업계에 공지된 임의의 수단 (본원에서 화살표 (60)로 표시됨)에 의해 회수될 수 있다. 예를 들어, 귀금속 촉매는 (1) 개방 공기 중에서 탄소 입자의 연소; 및 (2) 주변 압력 하 또는 가압 및 고온 하에서 탄소의 산 처리에 의해 회수될 수 있다.
여과 프레스 (58)로부터의 침투액은 라인 (62)을 경유하여 초여과 시스템 (66)에 안내된다. 분산된 중합체 막 입자를 함유하는 알콜/용매는 초여과 시스템 (66)을 통해 안내되어 분산된 중합체 막 입자를 트랩핑함으로써, 중합체 입자로서 회수 및 농축된 중합체의 일정한 스트림 (본원에서 화살표 (68)로 표시됨)을 생성한다. 남아있는 알콜/물 용매는 MEA의 반연속식 재생을 위해 라인 (70)을 경유하여 층분리 탱크 (42)로 다시 안내될 수 있다.
당업자가 잘 이해할 수 있는 바와 같이, 막 전극 조립체의 재생을 위한 상기 공정은 단지 예시적인 것을 의미한다. 다수의 별법이 고려된다. 추가 성분 및 상이한 배열의 부가가 본 발명의 범위 및 취지 내에 있다. 당업자가 잘 이해할 수 있는 바와 같이, 다수의 상이한 알콜/물 용매 조합 뿐만 아니라 다수의 여과 시스템이 본 발명의 실시에 사용될 수 있다. PEM 연료 전지로부터 막 전극 조립체의 재생 방법은 어떤 방식으로든 본 발명의 범위를 제한하는 것을 의도하지 않는다고 개시되어 있다.
<실시예>
실시예 1
본래의 GDL을 갖는 노화된 5-층 MEA 상에서 실험을 수행하여, 상이한 농도의 이소프로필 알콜, 1-부탄올 및 2-부탄올을 사용하여 중합체 막 및/또는 GDL 상의 백금 (Pt) 손실을 비교하였다 (표 1 참조). 사용된 샘플 크기는 용매 20 ml 중에서 1 인치×1 인치이고, 용매 부피는 20 내지 30 ml 추정 범위에서 가변적이었다.
표 1로부터 알 수 있는 바와 같이, 중합체 막 및 GDL 상의 Pt 손실은 전형적으로 알콜 농도가 높을수록 감소하였다.
용매 층분리에 의한 노화된 MEA로부터의 Pt 회수율 비교 | |||
용매 | 온도 (℃) | GDL 상에 남아있는 Pt (%) |
막 상에 남아있는 Pt (%) |
50% 이소프로판올 | 100 | 0.9 | 0.5 |
25% 이소프로판올 | 100 | 1.0 | 1.0 |
10% 이소프로판올 | 100 | 27 | 42 |
25% 2-부탄올 | 100 | 1.0 | 2.4 |
10% 2-부탄올 | 100 | 0.5 | 1.7 |
10% 2-부탄올 | 150 | 2.1 | 1.7 |
5% 2-부탄올 | 100 | 3 | 6 |
25% 1-부탄올 | 100 | <0.2 | <0.2 |
10% 1-부탄올 | 100 | 0.6 | 0.4 |
실시예 2
사용된 MEA를 다양한 알콜 농도 및 온도를 사용하여 Pt의 총 회수율에 대해 배치 모드로 시험하였다. 샘플 (½×½ 또는 1×1 평방 인치로서)을 기재한 바와 같은 용매를 함유한 플라스틱 병에 넣었다. 이어서, 샘플을 마이크로파 가열 장치를 사용하여 목적하는 온도로 가열하고, 교반 없이 30분 동안 인큐베이션하였다.
노화된 MEA로부터의 Pt 회수율 비교 | ||
용매 | 온도 (℃) | 수율 (%) |
5% 프로판올 | 150 | 84.2 |
10% 프로판올 | 150 | 98 |
25% 프로판올 | 150 | 96.6 |
5% 프로판올 | 100 | 11.8 |
10% 프로판올 | 100 | 30.4 |
25% 프로판올 | 100 | 98.1 |
5% n-부탄올 | 150 | 94.5 |
10% n-부탄올 | 150 | 93.3 |
25% n-부탄올 | 150 | 94.9 |
5% n-부탄올 | 100 | 95.9 |
10% n-부탄올 | 100 | 98.9 |
25% n-부탄올 | 100 | 100 |
실시예 3
연속식
사용된 MEA를 다양한 알콜 농도 및 온도를 사용하여 Pt의 총 회수율에 대해 배치 모드로 시험하였다. 1×1 인치 샘플을 기재한 바와 같은 용매를 함유한 플라스틱 병에 넣었다. 인큐베이션 후, GDL을 탄소/중합체 용액으로부터 분리시키고, 체로 걸러내었다. 이어서, 용액을 마이크로파 가열 장치를 통해 펌핑하여 중합체를 완전히 분산시켰다. 용매는 반투명 에멀젼에서 투명 분산액이 되었다. 탄소/귀금속 (Pt) 입자를 여과 프레스를 사용하여 분산액으로부터 분리시키고, 회수된 귀금속 (Pt)의 수율을 정량화하였다 (표 3 참조).
연속식 공정을 사용한 MEA로부터의 Pt 회수율 비교 | |||
MEA | 용매 | 온도 (℃) | Pt 수율 (%) (잔류 Pt 기준) |
새로운 것 | 25% n-부탄올 | 100 | 98.5 |
사용된 것 | 25% n-부탄올 | 100 | 99 |
사용된 것 | 25% n-부탄올 | 150 | 97 |
사용된 것 | 25% n-부탄올/ 5% 2-프로판올 |
150 | 98.8 |
41: 상부 챔버
42: 층분리 탱크
43: 스크린
45: 하부 챔버
46: 마이크로파 가열기
50: 교반기
58: 여과 프레스
66: 초여과 시스템
42: 층분리 탱크
43: 스크린
45: 하부 챔버
46: 마이크로파 가열기
50: 교반기
58: 여과 프레스
66: 초여과 시스템
Claims (12)
- 막 전극 조립체가 플루오로카본-함유 이오노머 필름 및 상기 필름의 1개 이상의 측면에 코팅된 지지된 귀금속 촉매를 포함하며,
(a) 층분리 탱크 내에서, 상기 이오노머 필름을 상기 지지된 귀금속 촉매로부터 분리시키기에 충분한 시간 동안, 1종 이상의 C4 내지 C6 알킬 알콜을 함유하고 알콜의 총 함량은 30 중량% 미만인 수성 용매를 혼합 또는 교반하면서 상기 막 전극 조립체와 접촉시키는 단계;
(b) 상기 막 전극 조립체 및 상기 용매를 가열기로 이동시키고, 주변 압력 하에서 상기 이오노머 필름을 상기 용매 중에 중합체 입자로 분산시키기 위해 70℃ 내지 100℃의 온도로 상기 용매를 가열하는 단계;
(c) 상기 중합체 입자, 상기 지지된 귀금속 촉매, 및 상기 용매를 여과 프레스로 이동시키고, 상기 분산된 중합체 입자를 상기 지지된 귀금속 촉매로부터 분리시키는 단계;
(d) 상기 분산된 중합체 입자 및 용매를 초여과 시스템으로 이동시키고, 초여과를 통해 상기 분산된 입자를 회수하는 단계; 및
(e) 상기 용매를 상기 층분리 탱크로 다시 이동시키는 단계
를 포함하는, PEM 연료 전지로부터 막 전극 조립체의 재생 방법. - 제1항에 있어서, 상기 막 전극 조립체를 상기 용매를 함유하는 조에서 상기 용매와 접촉시키는 방법.
- 제1항에 있어서, 상기 용매를 1분 내지 30분의 체류 시간으로 상기 가열기를 통해 유동시키는 방법.
- 제1항에 있어서, 상기 지지된 귀금속 촉매로부터 상기 분산된 중합체 입자의 분리가 상기 분산된 중합체 입자를 함유하는 침투액을 생성하는 방법.
- 제1항에 있어서, 상기 귀금속 촉매를 개방 공기 중에서 지지체를 연소시키거나 지지체를 산 처리하여 지지체로부터 회수하는 단계를 더 포함하는 방법.
- 제1항에 있어서, 상기 분산된 중합체 입자가 100 nm 초과의 평균 반경을 갖는 입자를 함유하고, 입자의 90% 이상이 500 nm 미만의 반경을 갖는 것인 방법.
- 제1항에 있어서, 상기 층분리 탱크로 다시 이동시킨 상기 용매는 단계 (a)에서 사용하기 위해 재순환된 것인 방법.
- 제1항에 있어서, 상기 알콜이 부탄올인 방법.
- 제1항에 있어서, 상기 용매가 2종의 알콜과 물의 혼합물을 포함하는 것인 방법.
- 제1항에 있어서, 연속식 공정인 방법.
- 제1항에 있어서, 상기 막 전극 조립체가 상기 지지된 귀금속 촉매의 각 코팅에 대해 배치된 기체 확산층을 더 포함하는 것인 방법.
- 제11항에 있어서, 상기 막 전극 조립체가 상기 기체 확산층의 각 코팅에 대해 배치된 외부 가스켓층을 더 포함하는 것인 방법.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/471,324 US8124261B2 (en) | 2006-06-20 | 2006-06-20 | Process for recycling components of a PEM fuel cell membrane electrode assembly |
US11/471,324 | 2006-06-20 | ||
PCT/US2007/071642 WO2007149904A1 (en) | 2006-06-20 | 2007-06-20 | Process for recycling components of a pem fuel cell membrane electrode assembly |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR20097001036A Division KR20090021314A (ko) | 2006-06-20 | 2007-06-20 | Pem 연료 전지 막 전극 조립체 성분의 재생 방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20140114384A KR20140114384A (ko) | 2014-09-26 |
KR101607796B1 true KR101607796B1 (ko) | 2016-03-31 |
Family
ID=38656564
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR20097001036A KR20090021314A (ko) | 2006-06-20 | 2007-06-20 | Pem 연료 전지 막 전극 조립체 성분의 재생 방법 |
KR1020147020192A KR101607796B1 (ko) | 2006-06-20 | 2007-06-20 | Pem 연료 전지 막 전극 조립체 성분의 재생 방법 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR20097001036A KR20090021314A (ko) | 2006-06-20 | 2007-06-20 | Pem 연료 전지 막 전극 조립체 성분의 재생 방법 |
Country Status (8)
Country | Link |
---|---|
US (1) | US8124261B2 (ko) |
EP (1) | EP2036153B8 (ko) |
JP (1) | JP5524613B2 (ko) |
KR (2) | KR20090021314A (ko) |
CN (1) | CN101507025B (ko) |
CA (1) | CA2656036C (ko) |
MX (1) | MX2008016332A (ko) |
WO (1) | WO2007149904A1 (ko) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI357930B (en) * | 2008-03-07 | 2012-02-11 | Ind Tech Res Inst | Method for recovery of noble metals |
US8658558B2 (en) | 2010-11-11 | 2014-02-25 | Chevron U.S.A. Inc. | Hydroconversion multi-metallic catalyst and method for making thereof |
US8575061B2 (en) | 2010-11-11 | 2013-11-05 | Chevron U.S.A. Inc. | Hydroconversion multi-metallic catalyst and method for making thereof |
US8586500B2 (en) | 2010-11-11 | 2013-11-19 | Chevron U.S.A. Inc. | Hydroconversion multi-metallic catalyst and method for making thereof |
AU2011326682B2 (en) | 2010-11-11 | 2016-07-14 | Chevron U.S.A. Inc. | Hydroconversion multi-metallic catalyst and method for making thereof |
US8575062B2 (en) | 2010-11-11 | 2013-11-05 | Chevron U.S.A. Inc. | Hydroconversion multi-metallic catalyst and method for making thereof |
US9168519B2 (en) | 2010-11-11 | 2015-10-27 | Chevron U.S.A. Inc. | Hydroconversion multi-metallic catalyst and method for making thereof |
DE102012109063A1 (de) | 2011-09-26 | 2013-03-28 | Ekpro Gmbh | Edelmetallextraktion aus Brennstoffzellen |
US9199224B2 (en) | 2012-09-05 | 2015-12-01 | Chevron U.S.A. Inc. | Hydroconversion multi-metallic catalysts and method for making thereof |
US9577272B2 (en) | 2013-09-16 | 2017-02-21 | Hamilton Sundstrand Corporation | Fuel cell with impurity filtering |
GB201505311D0 (en) * | 2015-03-27 | 2015-05-13 | Johnson Matthey Fuel Cells Ltd | Process |
CN106803596A (zh) * | 2017-01-22 | 2017-06-06 | 东莞佐佑电子科技有限公司 | 一种回收废旧燃料电池中铂的方法 |
FR3062135B1 (fr) | 2017-01-24 | 2019-06-07 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Procede de recuperation du platine et du cobalt contenus dans une pile a combustible |
WO2018152404A1 (en) * | 2017-02-16 | 2018-08-23 | Tyton Biosciences, Llc | Method of separating metal from metallic starting materials using a hydrothermal reactor system |
FR3102679B1 (fr) | 2019-10-31 | 2022-10-14 | Commissariat Energie Atomique | Procédé de récupération de particules de platinoïde contenues dans un support électriquement isolant |
CN112713279B (zh) * | 2020-12-02 | 2021-11-05 | 中国科学院大连化学物理研究所 | 一种燃料电池催化剂浆料批量回收设备 |
CN112952128B (zh) * | 2021-01-29 | 2022-09-23 | 上海神力科技有限公司 | 一种从废旧燃料电池膜电极中回收质子交换膜和Pt的方法 |
FR3142299A1 (fr) | 2022-11-22 | 2024-05-24 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Procédé de désassemblage d’un assemblage membrane-électrodes d’une pile à combustible |
GB2626403A (en) * | 2022-12-02 | 2024-07-24 | Johnson Matthey Plc | Recycling of catalyst coated membrane components |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050211630A1 (en) * | 2004-03-26 | 2005-09-29 | Ion Power, Inc. | Recycling of used perfluorosulfonic acid membranes |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4433082A (en) | 1981-05-01 | 1984-02-21 | E. I. Du Pont De Nemours And Company | Process for making liquid composition of perfluorinated ion exchange polymer, and product thereof |
US4731263A (en) | 1986-09-26 | 1988-03-15 | The Dow Chemical Company | Method for the preparation of ionomer films |
US5133843A (en) * | 1990-09-10 | 1992-07-28 | The Dow Chemical Company | Method for the recovery of metals from the membrane of electrochemical cells |
US5234777A (en) | 1991-02-19 | 1993-08-10 | The Regents Of The University Of California | Membrane catalyst layer for fuel cells |
GB9213124D0 (en) | 1992-06-20 | 1992-08-05 | Johnson Matthey Plc | High performance electrode |
BE1008455A3 (nl) | 1994-06-07 | 1996-05-07 | Vito | Gasdiffusie elektrode met katalysator voor een elektrochemische cel met vast elektrolyt en werkwijze ter vervaardiging van dergelijke elektrode. |
JP3433549B2 (ja) | 1994-12-15 | 2003-08-04 | トヨタ自動車株式会社 | 燃料電池の電解質膜回収方法およびその装置 |
US5702755A (en) | 1995-11-06 | 1997-12-30 | The Dow Chemical Company | Process for preparing a membrane/electrode assembly |
US5859416A (en) | 1996-05-01 | 1999-01-12 | Gatto; James G. | Fuel pump system with automated transaction processing |
AU745585B2 (en) | 1996-10-15 | 2002-03-21 | E.I. Du Pont De Nemours And Company | Compositions containing particles of highly fluorinated ion exchange polymer |
JP3583897B2 (ja) | 1997-04-11 | 2004-11-04 | 三洋電機株式会社 | 燃料電池 |
JPH11288732A (ja) * | 1998-04-02 | 1999-10-19 | Asahi Chem Ind Co Ltd | 固体高分子型燃料電池用材料の回収および再利用方法 |
US6610436B1 (en) | 1998-09-11 | 2003-08-26 | Gore Enterprise Holdings | Catalytic coatings and fuel cell electrodes and membrane electrode assemblies made therefrom |
EP1063717B1 (en) | 1999-06-22 | 2011-09-28 | Sanyo Electric Co., Ltd. | Stable and high-performance fuel cell |
US6602630B1 (en) | 2000-03-14 | 2003-08-05 | The Electrosynthesis Company, Inc. | Membrane electrode assemblies for electrochemical cells |
DE10042744A1 (de) | 2000-08-31 | 2002-03-28 | Omg Ag & Co Kg | PEM-Brennstoffzellenstapel |
US6733915B2 (en) | 2001-12-27 | 2004-05-11 | E. I. Du Pont De Nemours And Company | Gas diffusion backing for fuel cells |
JP2004171921A (ja) * | 2002-11-20 | 2004-06-17 | Toyota Motor Corp | 燃料電池から触媒金属及びスルホン酸基を有する含フッ素ポリマーを回収する方法 |
EP1478042A1 (de) * | 2003-05-16 | 2004-11-17 | Umicore AG & Co. KG | Verfahren zur Anreicherung von Edelmetallen aus fluorhaltigen Brennstoffzellenkomponenten |
JP2005179447A (ja) * | 2003-12-17 | 2005-07-07 | Daikin Ind Ltd | 膜体、膜・電極接合体及び固体高分子型燃料電池 |
JP4635450B2 (ja) | 2004-02-18 | 2011-02-23 | トヨタ自動車株式会社 | 含フッ素ポリマーの再利用方法 |
JP2005235511A (ja) | 2004-02-18 | 2005-09-02 | Toyota Motor Corp | 触媒回収方法 |
JP2005289001A (ja) | 2004-04-05 | 2005-10-20 | Toyota Motor Corp | 含フッ素ポリマーの再利用方法及び再利用装置 |
US20060147791A1 (en) | 2004-12-30 | 2006-07-06 | Debe Mark K | Platinum recovery from fuel cell stacks |
US20060237034A1 (en) * | 2005-04-20 | 2006-10-26 | Lawrence Shore | Process for recycling components of a PEM fuel cell membrane electrode assembly |
-
2006
- 2006-06-20 US US11/471,324 patent/US8124261B2/en not_active Expired - Fee Related
-
2007
- 2007-06-20 MX MX2008016332A patent/MX2008016332A/es active IP Right Grant
- 2007-06-20 WO PCT/US2007/071642 patent/WO2007149904A1/en active Application Filing
- 2007-06-20 KR KR20097001036A patent/KR20090021314A/ko not_active Application Discontinuation
- 2007-06-20 CN CN2007800309189A patent/CN101507025B/zh not_active Expired - Fee Related
- 2007-06-20 JP JP2009516695A patent/JP5524613B2/ja not_active Expired - Fee Related
- 2007-06-20 CA CA2656036A patent/CA2656036C/en not_active Expired - Fee Related
- 2007-06-20 EP EP07784488.4A patent/EP2036153B8/en not_active Ceased
- 2007-06-20 KR KR1020147020192A patent/KR101607796B1/ko not_active IP Right Cessation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050211630A1 (en) * | 2004-03-26 | 2005-09-29 | Ion Power, Inc. | Recycling of used perfluorosulfonic acid membranes |
Also Published As
Publication number | Publication date |
---|---|
CA2656036A1 (en) | 2007-12-27 |
JP2009541947A (ja) | 2009-11-26 |
WO2007149904A1 (en) | 2007-12-27 |
CA2656036C (en) | 2014-03-25 |
KR20140114384A (ko) | 2014-09-26 |
EP2036153B8 (en) | 2017-06-07 |
US20070292745A1 (en) | 2007-12-20 |
EP2036153A1 (en) | 2009-03-18 |
CN101507025A (zh) | 2009-08-12 |
EP2036153B1 (en) | 2017-04-19 |
CN101507025B (zh) | 2013-03-27 |
JP5524613B2 (ja) | 2014-06-18 |
MX2008016332A (es) | 2009-02-10 |
US8124261B2 (en) | 2012-02-28 |
KR20090021314A (ko) | 2009-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101607796B1 (ko) | Pem 연료 전지 막 전극 조립체 성분의 재생 방법 | |
KR20080004614A (ko) | Pem 연료전지 막 전극 조립체 성분의 재생 방법 | |
US6562446B1 (en) | Multi-layer polymer electrolyte-membrane, electrochemical apparatus and process for the preparation of multi-layer polymer electrolyte membrane | |
CA2567305C (en) | Liquid composition, process for its production, and process for producing membrane-electrode assembly for polymer electrolyte fuel cells | |
US7445859B2 (en) | Organic fuel cell methods and apparatus | |
US6391487B1 (en) | Gas diffusion electrode, method for manufacturing the same, and fuel cell with such electrode | |
CA2488908C (en) | Method of making membrane electrode assemblies | |
JP2003515894A (ja) | 循環電解質を有する直接メタノール電池 | |
JP2002184415A (ja) | 膜電極アセンブリを準備する方法 | |
JPH11288732A (ja) | 固体高分子型燃料電池用材料の回収および再利用方法 | |
JP4607708B2 (ja) | 燃料電池用電極,燃料電池,燃料電池の製造方法 | |
JP2004152615A (ja) | 固体高分子電解質膜、その製造方法及び膜電極接合体 | |
JP2005108770A (ja) | 電解質膜電極接合体の製造方法 | |
JP2004178814A (ja) | 固体高分子型燃料電池用膜・電極接合体の製造方法 | |
JP3978757B2 (ja) | 燃料電池用ガス拡散電極−電解質膜接合体およびその製造方法 | |
JP2007234473A (ja) | 燃料電池用触媒電極層およびその製造方法 | |
KR102672210B1 (ko) | 초임계 분산법을 이용한 전극 소재의 분리 및 회수 방법 | |
JP2004146255A (ja) | 膜電極接合体及び膜電極接合体の製造方法 | |
KR20240014313A (ko) | 결함이 있는 막전극접합체로부터 이오노머와 촉매를 분리하는 방법 | |
Huo et al. | Membrane electrode assembly for CO x reduction | |
Narayanan et al. | Hydrogen generation by electrolysis of aqueous organic solutions | |
JP2000106200A (ja) | ガス拡散電極−電解質膜接合体および燃料電池 | |
Vamos et al. | Organic fuel cell methods and apparatus | |
WO2003069713A1 (en) | Membrane electrode assemblies for electrochemical cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent | ||
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
LAPS | Lapse due to unpaid annual fee |