KR101545412B1 - 세공 방전 가공 장치 - Google Patents

세공 방전 가공 장치 Download PDF

Info

Publication number
KR101545412B1
KR101545412B1 KR1020137002596A KR20137002596A KR101545412B1 KR 101545412 B1 KR101545412 B1 KR 101545412B1 KR 1020137002596 A KR1020137002596 A KR 1020137002596A KR 20137002596 A KR20137002596 A KR 20137002596A KR 101545412 B1 KR101545412 B1 KR 101545412B1
Authority
KR
South Korea
Prior art keywords
electrode
pressure
machining
liquid
working fluid
Prior art date
Application number
KR1020137002596A
Other languages
English (en)
Other versions
KR20130069721A (ko
Inventor
에이지 스즈키
유타 시모다
Original Assignee
가부시키가이샤 아스텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 아스텍 filed Critical 가부시키가이샤 아스텍
Publication of KR20130069721A publication Critical patent/KR20130069721A/ko
Application granted granted Critical
Publication of KR101545412B1 publication Critical patent/KR101545412B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H9/00Machining specially adapted for treating particular metal objects or for obtaining special effects or results on metal objects
    • B23H9/14Making holes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/10Supply or regeneration of working media
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/26Apparatus for moving or positioning electrode relatively to workpiece; Mounting of electrode
    • B23H7/265Mounting of one or more thin electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/36Supply or regeneration of working media

Abstract

가공칩 배출을 능률 좋게 행할 수 있어 소경 구멍의 방전 펀칭 가공을 고속으로 행할 수 있는 세공 방전 가공 장치를 제공하는 것이다. Z축 방향으로 이동되고 또한 회전되도록 설치된 회전 샤프트(8)와, 회전 샤프트(8)에 상부를 수용 고정시켜 막대 형상 전극 또는 파이프 전극인 가공용 전극(11)의 상부를 보유 지지하는 전극 홀더(10)와, 워크(14)의 근방에서 가공용 전극(11)의 하부를 가공액의 액막을 개재시켜 Z축 방향으로 가이드하는 전극 가이드(13)를 구비하고, 전극 가이드(13)를 워크의 근방에 있어서 고정하는 하우징 블록(17) 내에 고압 가공액(22c)을 수용하는 고압 가공액 수용실(9)을 구비하고, 고압 가공액 수용실(9)의 하단부에, 전극 직경보다도 초미소하게 큰 구경으로 규제되어 있고, 세공 방전 가공에 의해 형성되는 입구부 방전 가공 구멍 직경(35a)에 거의 동등한 직경의 고압 가공액(22c)의 분사류가 거의 확대되지 않고 방전 가공 간극에 침입시키는 고압 가공액 분사구(9a)를 구비하여 이루어진다.

Description

세공 방전 가공 장치{ELECTRIC DISCHARGE DEVICE FOR SMALL HOLE}
본 발명은, 비교적 가는 직경 또는 미세 직경의 구멍을 뚫기 위한 가공액 분사 방식의 세공 방전 가공 장치에 관한 것이다.
최근, 세공 방전 가공기는, 형조각 방전 가공과 비교하여 가공 속도가 빠르기 때문에, 와이어 컷트 방전 가공의 와이어 전극 삽입 관통용의 가공 개시 구멍이나 항공기 부품, 자동차용 부품 가공 등의 구멍 가공에 널리 사용되고 있다.
가공액 분사 방식의 세공 방전 가공 장치는, 막대 형상 또는 파이프 형상의 가공용 전극을 사용하고, 가압 가공액을 워크의 가공 위치에 공급하여 가공용 전극을 냉각하면서 가공용 전극의 선단면과 워크의 전극 대향 부위 사이에서 펄스 전압을 가해 펄스 방전을 반복해서 방전 가공을 행하고, 전극 직경의 수십배 깊은 세공 가공을 고속도로 천공하는 것이 가능하다.
가공 위치(가공 중의 구멍)에 공급된 가압 가공액은, 방전 가공에 의해 발생한 가공칩, 가스 등을 포함하여 방전 가공 간극(전극 직경과 워크 구멍 직경의 갭)을 통과시켜 방전 가공 구멍의 입구측 개구부로 통류하여 배출되는 동시에, 가압 가공액과 함께 배출된다.
가공액의 공급은, 전극과 워크간의 방전 가공 간극의 냉각, 가공칩 및 가스의 배출 촉진 등을 위해 필요하지만, 가늘고 깊은 구멍의 가공인 경우는 방전 가공 간극에 다량의 액을 공급시키는 것이 매우 곤란해진다. 이로 인해 종래는, 가공액의 공급 펌프압을 향상시켜, 고압액의 공급을 시험해 보고 있지만, 구멍이 가늘고 깊기 때문에 충분한 가공액을 공급, 유통시키는 것이 어려웠다. 또한, 가공칩은 용융시켜 가공 구멍의 입구측 개구의 코너부에 용융 부착물로서 퇴적되는 경향이 있다.
도 5에 도시하는 바와 같이, 종래에 있어서는, 파이프 전극을 통과시켜 가공액을 분사하고 있는 동시에, 전극으로부터 이격되어 구비된 가공액 분사 노즐에 의해, 경사 하방의 방전 가공 위치를 향해서 가공액을 분사하고 있다. 상세하게 서술하면, 방전 펀칭 가공에서도 가공 주변의 가공칩 배출 이동을 위해 노즐을 사용한 측면 분사를 행하고 있다. 막대 형상 전극의 사용에서는, 전극의 경사 상방에 구비한 분사 노즐을 사용하여 가공액 분사를 행하지만, 워크의 가공부 입구측 개구부의 적어도 절반이 분사 가공액 중에 수몰된 상태로 되고, 가공칩의 배출구는 분사 방향과 반대측 일부에 상시 집중되어, 가공 효율이 떨어진 상태에서 2차 방전이 빈발하여, 가공 구멍이 가공액 분사 방향을 길이로 하는 타원 형상으로 된다고 하는 문제가 있다.
또한, 가공칩 배출 향상의 목적으로 가공액 분사 압력 증가를 행하면, 전극 측면을 누르는 벡터력이 증가하고, 전극이 노즐의 분사 방향으로 치우쳐 진동을 일으키고 방전 가공이 불안정해져 메카적 요인과 가공액 유량 부족에 의한 2차 방전 현상이 겹쳐 타원 구멍 형성의 요인이 되는 문제가 있다.
특허 문헌 1에서는, Z축 방향으로 이송을 부여할 수 있는 동시에 회전 구동되는 전극 홀더로 가는 파이프 전극의 상단부를 보유 지지하고, 상기 파이프 전극의 하부를 전극 가이드로 안내하고, 상기 파이프 전극의 상단부로부터 상기 파이프 전극 내를 통과시켜 가공액을 방전 가공 구멍 내에 분류 상태로 공급하면서 상기 파이프 전극을 회전하고 Z축 방향으로 이송을 부여해서 세공 방전 가공을 행하는 동시에, 상기의 가공액의 공급과는 별도로, 방전 가공 구멍의 경사 상방의 복수 개소에 구비한 분사 노즐로부터 적어도 2㎫ 이상의 액압의 가공액 분사를 행함으로써, 가공 구멍의 입구측 개구의 코너부에 부착되는 칩을 불어 날려 버려, 용융 부착물의 발생을 억제하는 세공 방전 가공 장치가 제안되어 있다.
특허 문헌 2에서는, Z축 방향으로 이송을 부여할 수 있는 동시에 회전 구동되는 중공 스핀들로 가는 파이프 전극을 보유 지지하는 세공 방전 가공 장치가 제안되어 있다. 특허 문헌 2에서는, 특허 문헌 1에 개시되는 파이프 전극의 하부를 안내하는 전극 가이드가 없다. 상기 파이프 전극의 상단부로부터 상기 파이프 전극 내를 통과시켜 가공액을 방전 가공 구멍 내에 분류 상태로 공급하면서 상기 파이프 전극을 회전하고 Z축 방향으로 이송을 부여해서 세공 방전 가공을 행한다. 파이프 전극 내를 통하는 가공액을 1.5㎐ 이상의 맥류로 하여 방전 가공 구멍 내에 분류 상태로 공급함으로써 가공칩을 전극과 워크간의 방전 가공 간극으로부터 배출한다.
특허 문헌 3, 4는, 가압 가공액을 막대 형상 전극 또는 파이프 전극을 둘러싸도록 공급하고, 파이프 전극의 경우에는 통 공간을 통과시켜 공급하는 것도 병용하는 가압 가공액 공급 방식이 채용되어 있다.
특허 문헌 3에서는, Z축 방향으로 이송을 부여할 수 있는 동시에 회전 구동되는 전극 홀더로 막대 형상 전극 또는 파이프 전극의 상단부를 보유 지지하고, 상기 파이프 전극의 하부를 전극 가이드로 안내하고, 가압 가공액을 상기 전극의 상단부로부터 전극 외표면 내를 둘러싸서 전극 홀더까지 공급하고 전극 홀더로부터 전극 하단부까지는 전극 홀더에 설치된 전극을 통과시키는 가이드 구멍을 통과시켜 전극 외표면 내를 둘러싸서 분류 상태로 공급하여 세공 방전 가공을 행하는 세공 방전 가공 장치가 제안되어 있다.
특허 문헌 4에서는, Z축 방향으로 이송을 부여할 수 있는 동시에 회전 구동되는 전극 홀더로 막대 형상 전극 또는 파이프 전극의 상단부를 보유 지지하고, 상기 전극의 하부를 전극 가이드로 안내하고, 가압 가공액을 상기 전극의 상단부로부터 전극 외표면 내를 둘러싸서 전극 홀더까지 공급하고, 전극 홀더에 공급된 가압 가공액에 상기 전극 홀더에 설치된 이젝터 구조로부터 고압 기체를 혼입하고, 이 기체를 가압 가공액을 혼입 전극 가이드의 가이드 구멍을 통과시켜 전극 하단부까지는 전극 외표면을 둘러싸서 공급하고, 워크를 진공 흡인 박스 내에 고정하고, 상기 박스의 저부로부터 상기 박스 내를 진공 흡인하는 진공 흡인 장치에서 진공 흡인을 행하면서 세공 방전 가공을 행하는 세공 방전 가공 장치가 제안되어 있다.
일본 특허 출원 공개 평 05-169322호 공보 일본 특허 출원 공개 평 05-185326호 공보 일본 특허 출원 공개 제2001-287119호 공보 일본 특허 출원 공개 제2004-1156호 공보
특허 문헌 1, 2에 개시된 기술에 따르면, 전극 직경 0.2㎜ 이하의 파이프 전극을 사용하여 펀칭용 방전 가공을 행하는 경우에는, 가공액 점성과 관로 저항의 영향을 받아, 전극 내 통로를 통해서 공급되는 가압 가공액이 적어지므로 가공 구멍 내면과 파이프 전극의 방전 가공 간극의 통류량이 적어지고, 이로 인해 가압 가공액에 의한 가공칩의 배출이 불량하게 된다. 이에 기인하여, 2차 방전 현상이나 단락 현상이 발생하고, 방전 가공 속도가 현저하게 저하되어 버려, 이러한 종류의 방전 가공 장치의 특징인 고속 가공을 실현할 수 없게 된다고 하는 문제를 발생한다. 따라서, 가공액 분사 유량의 증가를 목적으로 가공액 압력 증가를 행하면, 파이프 전극의 관 내 두께 불균등에 의해 원래 직선 형상의 파이프가 비뚤어짐이나 휘어짐이 발생하여 가공 불가능하게 된다.
또한 막대 형상 전극을 사용한 경우에는, 노즐 분사를 사용하여 가공 구멍의 입구측 개구부를 향해서 경사 방향으로부터의 가공액 분사를 행하고 있지만, 전극 직경 0.2㎜ 이하가 되면, 가공칩의 배출이 불충분하게 되는 것은 파이프 형상의 가공용 전극의 경우와 마찬가지이며, 상기 문제가 발생하는 것도 마찬가지이다.
특허 문헌 3에 개시된 기술에 대해서는, 가공부로부터의 오염액이 전극 가이드 내에 침입하고 전극 가이드가 막혀서 장시간 안정된 전극 이송을 할 수 없다고 하는 문제가 있는 것이, 특허 문헌 4에 있어서 지적되어 있고, 특허 문헌 4에 개시된 기술은 이를 해결하는 것으로 하고 있다. 특허 문헌 3에 개시된 기술에 따르면, 상방의 전극 홀더로부터 흘러내리는 고압 가공액(22c)이 대기에 노출되어 압력이 낮아져 전극 가이드의 깔때기부에 들어가고, 이 깔때기부에 저류되는 가공액의 압출 압력으로 전극 가이드로부터 방전 가공 중의 구멍을 향해서 가공액이 흘러내린다. 이로 인해, 이 가공액은, 큰 분사 압력을 갖고 있지 않은 상태에서 전극 표면을 두꺼운 막으로 덮어서 흘러내리고 방전 가공 중 구멍의 직경보다도 크게 확대되어 상기 구멍으로 방사되므로, 상기 가압 가공액의 방전 가공 간극으로의 침입 공급이 충분히 행해지지 않는 동시에, 구멍의 주위에 저류되는 물이, 가압 가공액이 방전 가공에 의해 발생하는 가공칩의 방전 가공 간극으로부터의 배출을 저해하는 벽으로 되므로, 가공칩의 배출이 충분히는 행해지지 않는다. 이로 인해, 가공 시간이 오래 걸려, 가공 효율이 높아지지 않는다.
특허 문헌 4에 개시된 기술에 따르면, 전극 가이드로부터 방전 가공 중의 구멍을 향해서 방사되는 가압 가공액은, 고압 기체를 포함하고 있으므로, 가공 중의 구멍에 도달하기 전에 크게 확대되므로, 상기 가압 가공액의 방전 가공 간극으로의 침입 공급이 충분히 행해지지 않으므로, 가공칩의 배출이 충분하게는 행해지지 않는다. 이로 인해, 가공 시간이 오래 걸려, 가공 효율이 높아지지 않는다.
또한, 전극 직경 0.15㎜ 이하의 막대 형상 전극을 사용하여, 가공 깊이가 가공 구멍 직경의 10배를 초과하는 가공을 행하는 경우에는, 필요에 따라서 노즐에 의한 가공액 측면 분사에 추가하여 전극의 점프 동작을 병용하고 가공칩의 배출을 행하지만, 점프로 가공 간극을 확대하는 동안은 가공이 행해지지 않고 가공 효율을 저하시키는 요인으로 되어 있으므로, 가공 깊이가 큰 경우에도 구멍 저부까지 고루 미치는 충분한 양의 가압 가공액의 공급 방식이 요망되어 있다.
도 5에 도시하는 바와 같이, 종래의 가공액 분사 노즐을 사용한 일방향으로부터의 가공액 분사, 또는 전극 상부로부터의 강하 수류에서는, 노즐 직경, 또는 강하 수류 직경이 크기 때문에 가공칩의 배출시에 전극 포위 가공액이 덮개로 되어 가공칩 배출이 곤란하고 가공 효율이 저하된 상태가 된다. 특히 가공액 분사 노즐을 사용한 지금까지의 가공액 분사는 워크와 전극간을 겨냥한 방향으로 분사하지만, 그 분사력은 벡터 방향으로 분해된, 전극 측면을 누르는 힘과 전극 진행 방향의 힘으로 분해되고, 전극 진행 방향으로 분해되어 벡터력의 일부가 가공 구멍에 인입되고 가공칩 배출에 작용한다. 이로 인해 초기 가공액 분사력은 가공칩 배출 작용으로서 크게 감쇠하고 있다.
본 발명은, 상술한 점을 감안하여 안출된 것으로, 가압 가공액이 방전 가공 간극으로부터 가공칩의 배출을 원활하게 행할 수 있도록 가압 가공액의 세공 방전 가공 위치로의 공급이 가능한 세공 방전 가공 장치를 제공하는 것을 목적으로 하고 있다.
상기 목적을 달성하기 위해, 본 발명의 세공 방전 가공 장치는, 워크의 근방에서 막대 형상 전극 또는 파이프 전극인 가공용 전극의 하부를 가공액의 액막을 개재시켜 Z축 방향으로 가이드하는 전극 가이드를 구비하고, 상기 전극 가이드를 워크의 근방에 있어서 고정하는 하우징 블록 내에 고압 가공액을 수용하는 고압 가공액 수용실을 구비하고, 상기 고압 가공액 수용실이 그 하단부에, 전극 직경보다도 초미소하게 큰 구경으로 규제되어 있고, 세공 방전 가공에 의해 형성되는 입구부 방전 가공 구멍 직경에 거의 동등한 직경의 고압 가공액의 분사류가 거의 확대되지 않고 방전 가공 간극에 침입시키는 고압 가공액 분사구를 구비하여 이루어지는 것을 특징으로 한다.
상기 발명의 세공 방전 가공 장치는, 전극 홀더로 막대 형상 또는 파이프 형상의 가공용 전극의 상부를 보유 지지하고, 가공용 전극의 하부를 워크에 근접하는 위치에서 전극 가이드로 고압 가공액의 액막을 개재시켜 Z축 방향으로 가이드한다. 그리고, 고압 가공액 수용실에 도입되는 고압 가공액을 고압 가공액 분사구로부터 분사한다. 고압 가공액 분사구는, 가공용 전극 직경보다도 초미소하게 큰 구경으로 규제되어 있고, 분사류를 거의 확대시키지 않고 또한 분사류에 의해 가공용 전극의 외면을 둘러싸도록 하여 고압 가공액을 분사하므로, 상기 고압 가공액을 방전 가공 간극에 깊게 침입시킨다. 이로 인해, 가공용 전극을 워크에 대하여 Z축 방향으로 상대적 이송하여 세공 방전 가공을 행하면, 이에 의해 방전 가공 구멍의 저부에 발생하는 가공칩이 방전 가공 간극에 깊게 침입하는 가공액에 도입되고 방전 가공 간극으로부터 방전 가공 구멍 입구부에 원활하게 운반된다. 고압 가공액 분사구로부터 워크 표면의 방전 가공 구멍 입구부 주위에 도달하는 분사류는, 방전 가공 간극으로부터 상기 방전 가공 구멍 입구부 주위에 막 유출된 가공칩을 포함한 가공액에 강열하게 접촉하고, 접촉한 충격으로 분무 형상으로 되어 비산하므로, 워크 표면의 방전 가공 구멍 입구부 주위에 액저류를 만들지 않으므로, 방전 가공 구멍 입구부의 엣지에 용융 부착물이 형성되지 않고, 방전 가공 구멍의 저부에 발생하는 가공칩이 방전 가공 간극에 저류되지 않고 원활하게 외부로 배출된다. 그리고, 가공용 전극의 냉각이 충분히 크게 행해지므로, 가공용 전극에 공급하는 전류를 종래보다도 대폭으로 크게 할 수 있으므로, 방전 가공 시간을 종래의 수분의 1로 단축시킬 수 있어, 방전 가공 효율이 대폭으로 향상된다. 또한, 펀칭이 완료된 시점에서는, 고압 가공액 분사구로부터의 분사류는 방전 가공 간극을 관통하므로, 이 분사류에 의해 가공용 전극의 하단부에 부착되는 가공칩이 씻어내어지므로, 가공용 전극의 하단부에 용융 부착물이 형성되지 않는다.
또한, 상기 가공용 전극을 보유 지지하는 샤프트와, 상기 샤프트의 내부에 가압 가공액을 도입하여 상기 가공용 전극을 통과시키고 또한 분사 구멍을 갖는 가압 가공액 분배실과, 상기 전극 가이드의 상측에, 상기 가압 가공액 분배실의 분사 구멍으로부터 분사되어 가공용 전극을 둘러싸서 흘러내리는 가압 가공액을 수용하고 또한 가공용 전극이 파이프 전극일 때는 그 내부 통로에 연통 상태에 면하여 가압 가공액 분배하는 액조와, 상기 액조로부터 일류액(溢流液)을 일류액 유하관을 통과시켜 수용하는 저액조를 구비한다.
이 구성에 따르면, 가공용 전극의 전극 홀더로부터 전극 가이드까지의 부분을, 가압 가공액의 방사류에 의해 둘러싸서 냉각할 수 있고, 가공용 전극이 파이프 전극인 경우에는 상기 파이프 전극의 내부 공간에도 가압 가공액을 공급할 수 있다. 그리고, 가공액 펌프로부터 전극 홀더에 다량의 가압 가공액을 공급할 수 있고, 전극 홀더로부터 막대 형상 전극 또는 파이프 전극인 가공용 전극을 둘러싸서 분사하는 가압 가공액의 분사류를 다량으로 할 수 있어, 가공용 전극의 전극 홀더로부터 액조까지의 사이의 부분을 충분히 냉각할 수 있다. 가공용 전극에 대해서, 워크와의 사이에서 방전이 행해지는 전극 하단부로부터 이격된 부분의 냉각도, 가공용 전극에 대전류를 흘릴 수 있는 것에 연결된다.
바람직하게는, 상기 발명에 있어서, 상기 저액조 내의 가공액을 가공액 펌프에 의해 상기 가압 가공액과 상기 고압 가공액으로 분기하여 순환하도록 구성되어 있다.
이 구성에서는, 가압 가공액과 상기 고압 가공액의 공급에 대해서, 저액조에 저류되는 가공액을 펌프 1기만으로 펌프 업함으로써 행할 수 있고, 분기 후에, 가압 가공액의 압력 설정과 고압 가공액의 압력 설정을 행하면 되므로, 가공액의 압력 설정의 제어 및 유량 제어가 하기 쉬워, 가공액의 순환 경로를 간소하게 구성할 수 있다.
바람직하게는, 상기 발명에 있어서, 상기 고압 가공액 수용실에 도입되는 상기 고압 가공액의 액압이 3㎫ 이상이고, 상기 가공용 전극의 상기 전극 가이드로부터 전극 하단부까지의 사이를 고압 가공액으로 둘러싼 상태의 분사류의 액압이 3㎫ 이상으로 하는 압력 설정 수단을 구비하고 있다.
이 구성에서는, 고압 가공액의 액압이 3㎫ 이상이므로, 방전 가공 구멍이 깊어진 가공 단계에서도 방전 가공 구멍의 내면과 가공용 전극 사이의 방전 가공 간극에 고압 가공액이 원활하게 침입할 수 있어 방전 가공 구멍의 바닥에서 발생하는 가공칩을 고압 가공액이 씻어낼 수 있다. 이로 인해, 깊은 세공의 방전 가공에서도 단시간에 가공할 수 있다.
바람직하게는, 상기 발명에 있어서, 상기 고압 가공액 수용실은, 전극 가이드의 중공부이고, 전극 가이드의 하단부를 노출시켜 상기 전극 가이드를 수용하는 하우징 블록으로 설치된 액로를 통해서 고압 가공액을 도입하고, 상기 고압 가공액 분사구는, 상기 전극 가이드의 중공부인 상기 고압 가공액 수용실의 하단부에 설치되어 있다.
이 구성에서는, 고압 가공액을 전극 가이드의 중공부에 대량으로 도입할 수 있고, 통 공간의 하단부의 고압 가공액 분사구로부터 분사하는 고압 가공액의 분사류가, 세공 방전 가공에 의해 형성되는 입구부 방전 가공 구멍 직경에 거의 동등한 직경을 갖는 고압 가공액 분사구로부터 전극 하단부까지의 사이의 가공용 전극을 둘러싸서 거의 확대되지 않고, 방전 가공 간극에 침입한다. 이로 인해, 깊은 세공의 방전 가공에서도 단시간에 가공할 수 있다.
바람직하게는, 상기 발명에 있어서, 상기 고압 가공액 수용실은, 상기 전극 가이드를 수용하는 하우징 블록으로 설치되고 상기 전극 가이드의 외면을 따라서 하단부까지 도입하도록 형성되고, 상기 고압 가공액 분사구는, 상기 고압 가공액 수용실의 상기 전극 가이드의 하측 근방에 동심으로 설치되어 있다.
이 구성에서는, 고압 가공액이 전극 가이드의 주위의 공간에 대량으로 도입할 수 있고, 고압 가공액 수용실의 하단부의 고압 가공액 분사구로부터 분사하는 고압 가공액의 분사류가, 세공 방전 가공에 의해 형성되는 입구부 방전 가공 구멍 직경에 거의 동등한 직경을 갖는 고압 가공액 분사구로부터 전극 하단부까지의 사이를 둘러싸서 거의 확대되지 않고, 방전 가공 간극에 침입한다. 이로 인해, 깊은 세공의 방전 가공에서도 단시간에 가공할 수 있다.
바람직하게는, 상기 발명에 있어서, 가공 전후로부터 발생하는 안개 형상으로 된 가공칩을 포함하는 비산 가공액 및 액상화물을 불어 날려 버리기 위한 에어 또는 불활성 가스를 분사하는 에어 노즐과, 상기 불어 날려 버려진 비산 가공액 및 액상화물을 회수하기 위한 분무 가공액 회수 장치를 구비하고 있다.
이 구성에서는, 방전 가공 구멍의 주변에 안개 형상으로 된 가공칩을 포함하는 비산 가공액 및 액상화물이 정체되지 않으므로, 방전 가공 간극으로부터 가공칩을 포함하는 가공액이 원활하게 배출되어, 입구부 방전 가공 구멍의 주연에 용융 퇴적물이 형성하는 것이 회피된다.
본 발명에 따르면, 워크에 가까운 거리의 위치로부터 고압 가공액을, 워크 표면의 입구부 방전 가공 구멍의 주위로의 공급을 적게 하여 전극 표면을 따라서 방전 가공 간극에 깊게 대량으로 공급할 수 있으므로, 방전 가공에 의해 방전 가공 구멍의 저부에 발생하는 가공칩을 방전 가공 간극으로부터 원활하게 배출할 수 있다. 이로 인해, 비교적 가는 직경 또는 미세 직경의 구멍을 기중의 작업 환경에서 방전 가공에 의해 고속으로 개방하고자 하는 경우에 있어서도 방전 가공 간극으로부터 가공칩의 배출을 원활하게 행할 수 있고, 매우 고속으로 또한 안정적으로 방전 가공을 행할 수 있어, 가공 시간의 대폭적인 단축화가 도모되고, 작업성이 개선되어 비교적 미세한 구멍의 양산 가공에 대폭적인 비용 절감을 기대할 수 있는 세공 방전 가공 장치를 제공할 수 있다.
도 1은 본 발명의 제1 실시 형태에 관한 세공 방전 가공 장치의 일 실시 형태를 도시하는 구성도.
도 2는 도 1에 도시하는 세공 방전 가공 장치의 주요부의 확대 단면도.
도 3은 도 1에 도시하는 세공 방전 가공 장치의 주요부의 확대 단면도.
도 4는 도 1에 도시하는 세공 방전 가공 장치의 가공액 분사 상태를 나타내는 주요부의 확대 단면도.
도 5는 펀칭용 방전 가공으로 가공액 분사 노즐에 의한 가공액 분사 상태를 나타내는 주요부의 확대 단면도.
도 6은 본 발명에 의한 세공 방전 가공 장치에 사용하는 가공액 분사 가이드 겸 전극 가이드의 확대 단면도.
도 7은 도 1에 도시하는 세공 방전 가공 장치에서 채용하는 전극 가이드의 5개의 형태의 사시도.
도 8은 본 발명의 제2 실시 형태에 관한 세공 방전 가공 장치의 주요부의 확대 단면도.
도 9는 도 8에 도시하는 세공 방전 가공 장치의 주요부에 있어서 고압 가공액의 흐름을 도시하는 단면도.
도 10은 도 8에 도시하는 세공 방전 가공 장치의 주요부의 A-A 단면에 있어서의 전극 가이드의 횡단면도.
도 11은 도 8에 도시하는 세공 방전 가공 장치에서 채용하는 전극 가이드의 2개의 형태의 사시도.
도 12는 저가공 속도의 가공 조건 하에서의 전극 가이드와 워크 사이의 거리의 적정 거리용 데이터를 나타내는 그래프.
도 13은 가공액 분사 압력 변화에 대한 성능 변화에 관한 실험 결과를 나타내는 그래프.
도 14는 가공액압 변화에 대한 가공 성능 변화에 관한 실험 결과를 나타내는 그래프.
도 15는 현행의 통상 기계와 본 발명의 시작기의 성능을 비교한 그래프.
도 16은 본 발명의 장치에 의한 방전 가공에 관한, 전극-가이드 갭(편측 ㎛) 변화와 가공 성능의 관계를 나타내는 그래프.
도 17은 종래의 장치와 본 발명 장치에 의한 방전 가공 진행 상황을 비교한 그래프.
도 18은 방전 가공 장치에 있어서의 가공 깊이의 변화에 대한 소모비의 변화, 가공 속도의 변화를 나타내는 그래프.
이하, 본 발명의 일 실시 형태에 관한 세공 방전 가공 장치에 대해서 도면을 참조하여 설명한다.
[제1 실시 형태]
도 1은 제1 실시 형태의 세공 방전 가공 장치의 전체 구성도이고, 도 2는 주요부의 확대 단면도이고, 도 3은 주요부를 더 확대한 단면도이다.
이 실시 형태의 세공 방전 가공 장치(1)는, Z축 방향으로 이동되고 또한 회전되도록 설치되고 전극 홀더(10)의 상부를 수용 고정시키는 회전 샤프트(8)와, 회전 샤프트(8)에 상부를 수용 고정시켜 막대 형상 또는 파이프 형상의 가공용 전극(11)의 상단부를 보유 지지하는 척 장치인 전극 홀더(10)와, 가공용 전극(11)의 하단부를 가공액의 액막을 개재시켜 Z축 방향으로 가이드하는 전극 가이드(13)와, 회전 샤프트(8)에 형성되고, 가공액 펌프(21)로부터의 가압 가공액을 회전 조인트(5)를 통해서 도입하는 가압 가공액 분배실(8a)과, 전극 가이드(13)를 수용하여 지지하는 하우징 블록(17)의 상부에 설치되고, 가압 가공액 분배실(8a)의 하단부의 분사 구멍(8b)으로부터 분사되어 가공용 전극(11)을 둘러싸서 흘러내리는 가공액을 수용하는 액조(15)와, 상기 하우징 블록(17) 내에, 상기 액조(15)에 연통하고 있는 동시에 가공액 펌프(21)로부터 고압 가공액(22c)을 수용하는 고압 가공액 수용실(9)과, 고압 가공액 수용실(9)의 하단부에 설치되고, 세공 방전 가공에 의해 워크(14)에 형성되는 입구부 방전 가공 구멍 직경(35a)에 거의 동등한 직경의 고압 가공액(22c)의 분사류가 거의 확대되지 않고 방전 가공 간극에 침입시키는 고압 가공액 분사구(9a)를 구비하여 이루어진다. 여기서, 본 실시 형태에서는 샤프트로서 회전 샤프트를 사용한 예를 나타내고 있지만, 그것에 얽매이지 않고, 회전하지 않는 샤프트라도 좋다.
이 실시 형태의 세공 방전 가공 장치(1)는, 가공액 순환계로서, 가공액 펌프(21)와, 파이프 분사용 압력 조절 밸브(46)와, 가공액 분사 가이드용 압력 조절 밸브(45)와, 저액조(40)를 갖고 있다. 전원 제어계로서, 컨트롤 유닛(44)과, 서보 유닛(39)과, 가공용 펄스 전원(36)과, NC 장치(42)와, 모터 드라이버(43)를 갖고 있다.
전극 홀더(10)는 헤드부(25)의 회전 샤프트(8)에 지지되어 있다. 헤드부(25)는 베이스(23)와 이 베이스(23)에 세워 설치된 컬럼(24)으로 이루어지는 프레임의, 컬럼(24)의 상단부 돌출부에 지지되어 있다.
헤드부(25)는, 컬럼(24)에 고정되어 있는 Z축 플레이트(26)와, Z축 플레이트(26)의 하단부에 일단부를 고정시켜 수평 방향으로 연장되는 안내 가이드 고정판(12)으로 이루어지는 L자형의 프레임을 포함하고, 또한 Z축 플레이트(26)에 설치된 레일(27)과, 레일(27)에 결합하여 Z축 방향(종방향)으로 안내되는 슬라이드(28)와, 슬라이드(28)에 기단부를 고정시켜 수평 방향으로 연장되는 승강 테이블(7)을 갖게 되고, 승강 테이블(7)을 Z축 방향(종방향)으로 가능하게 이동한다.
헤드부(25)는, Z축 플레이트(26)의 상단부에 승강 테이블(7)을 Z축 방향으로 진퇴하는 구동 수단을 구비하고 있다. 즉, Z축 플레이트(26)의 상단부에 일단부를 고정시켜 수평 방향으로 연장되는 장착판(29)에 이송 나사축(34)이 회전 가능 또한 축 방향 이동 불가능하게 장착되는 동시에, 상기 이송 나사축(34)이 승강 테이블(7)에 설치한 관통 구멍에 고착된 너트 러너에 나사 결합되어 있다. 그리고, 서보 모터(3)를 구비하고, 상기 서보 모터(3)의 회전이 서보 모터(3)의 출력축(33)에 장착된 풀리(31), 벨트(32), 이송 나사축(34)에 장착된 풀리(30)를 통해서 이송 나사축(34)에 전달되도록 되어 있다. 따라서, 서보 모터(3)가 이송 나사축(34)을 회전시킴으로써, 승강 테이블(7)이, 레일(27)에 안내되어 Z축 방향으로 진퇴할 수 있다.
전극 홀더(10)는 승강 테이블(7)의 하단부에 설치되고, 가공용 전극(11)의 상단부가 하방으로부터 삽입되면 이 상단부를 파지하고, 승강 테이블(7)에 설치되어 있는 모터(4)에 의해 회전되어 가공용 전극(11)을 회전한다.
워크(14)는 베이스(23) 위에 설치된 X-Y 이동 테이블 장치(62) 위에 위치 결정 고정된다. X-Y 이동 테이블 장치(62)는 NC 장치(42)로부터의 신호에 기초하여 생성하는 모터 드라이버(43)의 구동 신호에 의해 작동하는 X축 모터(MX) 및 Y축 모터(MY)를 갖고, 워크(14)를 Z축 방향과 직교하는 X-Y 평면 내에서 위치 결정을 위해 이동하고, 워크(14)의 펀칭 위치를 가공용 전극(11)에 정확하게 대향시킬 수 있다.
가공용 전극(11)이 워크(14)의 입구면에 Z축 강하하여 근접하면 가공용 펄스의 전압 강하가 발생하여 가공 원점의 설정을 한다. 가공용 전극(11)과 워크(14)의 워크 위치가 정밀하게 위치 결정되어 있을 때는 방전 가공을 개시할 수 있고, 가공용 전극(11)과 워크(14)의 워크 위치가 정밀하게 위치 결정되어 있지 않을 때는 X-Y 평면 내에서 위치 결정을 하고 나서 방전 가공을 개시한다.
가압 가공액 분배실(8a)에 도입되는 가압 가공액(22b)은, 가공용 전극(11)이 파이프 전극일 때는, 가압 가공액(22b)이 파이프 중공 통로 내를 지나서 전극 하단부로부터 방전 가공 구멍(14a)의 저부에 직접 공급된다. 가압 가공액 분배실(8a)의 하부는, 전극 홀더(10)의 전극 끼움 지지면에 인접하여 종방향으로 뚫어 설치된 분사 구멍(8b)으로 되어 있고, 가공용 전극(11)이 파이프 전극과 막대 형상 전극의 모든 경우라도, 상기 분사 구멍(8b)은, 그 하단부에 있어서 하나로 통합된 비교적 큰 직경의 가압 가공액의 흐름으로서 가공용 전극(11)을 전극 가이드(13)까지의 사이를 둘러싸서 냉각한다. 이 가압 가공액(22b)의 흐름은 액조(15)에 수용된다.
액조(15)는, 안내 가이드 고정판(12)의 돌출 단부 상면에 지지되고, 가압 가공액 분배실(8a)로부터 분사되어 가공용 전극(11)을 둘러싸서 흘러내리는 가공액을 수용한다. 액조(15)는, 하부 위치에 설치되는 저액조(40)와 일류액 유하 호스(52)로 연통 접속되어 가공액을 저액조(40)에 일류시킨다. 액조(15)는 필요한 용적이라고 하고, 가압 가공액 분배실(8a)에 도입되는 가압 가공액이 다량이며, 액조(15)에 수용되는 가압 가공액이 다량이라도, 액조(15)로부터의 일류액이 저액조(40)에 흘러내림으로써, 액조(15)가 일정한 액면 레벨로 유지된다.
가공용 전극(11)의 상부 가이드 피스(13c)로부터 상부가 기중 상태이면, 가공용 전극(11)에 전류를 많이 흘리면 전극이 소손된다. 또한, 고압 가공액(22)의 분사는 상부 가이드 피스(13c)와 전극의 간극으로부터 상방으로도 발생하기 때문에, 전극 홀더(10)와 상부 가이드 피스(13c) 사이가 비교적 긴 경우는, 전극의 진동 및 만곡이 발생한다. 그로 인해, 액조(15)를 설치하고, 액조(15) 중의 고압 가공액(22c)으로 가이드 상방향의 가공액 분사력을 흡수하고, 또한, 액조(15)는 일류 방식으로 하고 있으므로, 기중 상태에서도 가공용 전극(11)에 전류를 많이 흘려서 고속으로 안정된 세공 방전 가공을 실현할 수 있다.
도 6에 도시하는 바와 같이, 전극 가이드(13)는 중공체로 형성되어 있고, 고압 가공액 수용실(9)은, 이 실시 형태에서는, 전극 가이드(13)의 중공 부분이다. 이 중공 부분인 고압 가공액 수용실(9)에 고압 가공액(22c)을 도입하기 위한 고압 가공액 도입로로서, 안내 가이드 고정판(12)의 내부에 액로(12a)가 설치되고, 안내 가이드 고정판(12)의 돌출 단부 하면에 고정된 하우징 블록(17)에 액로(17a)가 설치되고, 상기 액로(17a)와 연통되어 전극 가이드(13)의 측면 중도와 전극 가이드(13)의 중공부인 고압 가공액 수용실(9)에 연통하는 관통로(13a)가 설치되어 있다. 그리고, 전극 가이드(13)의 중공부인 고압 가공액 수용실(9)의 하단부에 고압 가공액 분사구(9a)를 담지하는 하부 가이드 피스(13b)가 설치되어 있으므로, 도 3에 도시하는 바와 같이, 하우징 블록(17)은 전극 가이드(13)의 하단부를 노출시켜서 상기 전극 가이드(13)를 수용하고 있다. 즉, 헤드 커버(17b)가 전극 가이드(13)의 하단부를 노출시키고 있다. 또한, 관통로(13a)는, 원형, 각형, 혹은 타원형으로 가압한 고압 가공액(22c)을 유입시키는 역할 외에, 전극 가이드(13) 내에서 파손된 가공용 전극(11)이나 가공칩의 제거 배출구로서도 역할을 하고, 전극 가이드(13)의 기계적 강도가 허용하는 범위에서 크게 하는 것이 바람직하다.
도 6에 도시하는 바와 같이, 고압 가공액 수용실(9)은 전극 직경보다도 수배 큰 직경으로 형성되어 있고, 하단부와 상단부를 좁히도록, 중공 부분의 중심과 동심으로 하부 가이드 피스(13b) 및 상부 가이드 피스(13c)가 고정되어 있다. 이 실시 형태에서, 고압 가공액 분사구(9a)를 담지하는 하부 가이드 피스(13b)는, 가공용 전극(11)을 통과시키고 있고, 가공용 전극(11)의 주위에 예를 들어 2㎛ 이하의 간극을 갖도록 전극 직경보다도 초미소하게 큰 구경으로 형성되고, 상측 단부면이 깔때기 형상으로 형성되고, 초미소의 간극에 고압 가공액(22c)의 액막을 개재시켜 가공용 전극(11)을 Z축 방향으로 가이드하는 기능을 갖고, 또한 액막에 의해 가이드하는 기능을 가지면서 중공 부분의 고압 가공액(22c)을 하방향으로 가공용 전극(11)을 둘러싸는 초박막의 분사류로 되어 분사한다. 따라서, 하부 가이드 피스(13b)의 가공용 전극(11)을 통과시키고 있는 개구와 가공용 전극(11)의 간극이, 고압 가공액 분사구(9a)로 되어 있고 가공용 전극 직경보다도 초미소하게 큰 구경으로 규제되어 있음으로써, 세공 방전 가공에 의해 형성되는 입구부 방전 가공 구멍 직경(35a)에 거의 동등한 직경의 고압 가공액(22c)의 분사류가 거의 확대되지 않고 방전 가공 간극에 침입시키는 방사 안내 기능을 갖는다.
상부 가이드 피스(13c)는 가공용 전극(11)을 통과시키고 있고, 가공용 전극(11)의 주위에 간극을 갖도록 전극 직경보다도 초미소하게 큰 구경으로 형성되고, 상측 단부면이 깔때기 형상으로 형성되고, 초미소의 간극에 고압 가공액(22c)의 액막을 개재시켜 가공용 전극(11)을 Z축 방향으로 가이드하는 기능을 갖고 있다. 상부 가이드 피스(13c)의 내경은 하부 가이드 피스(13b)의 내경보다도 약간 커서 지장이 없다.
도 1에 도시하는 바와 같이, 저액조(40) 내의 가공액(22)을 가공액 펌프(21)에 의해 퍼 올려서 가압 가공액 분배실(8a)에 공급하는 가압 가공액(22b)과, 고압 가공액 수용실(9)에 공급하는 고압 가공액(22c)으로 분기하여 순환하도록 구성되어 있다. 즉, 가공액 펌프(21)로부터 급송되는 가공액(22a)을 파이프 분사용 압력 조절 밸브(46)로 압력 조절하여 가압 가공액(22b)으로 하고, 상기 가압 가공액(22b)을 전극 홀더(10) 내의 가압 가공액 분배실(8a)에 도입하고, 또한, 가공액 펌프(21)로부터 급송되는 가공액(22a)의 분기류를 가공액 분사용 압력 조절 밸브(45)에 의해 가압 가공액(22b)의 액압보다도 높은 압력이 되도록 압력 조절하여 고압 가공액(22c)으로 하고, 이 고압 가공액(22c)을 전극 가이드(13)의 중공부인 고압 가공액 수용실(9)에 도입하고 있다. 고압 가공액 수용실(9)에 도입되는 고압 가공액(22c)의 액압이 3㎫ 이상이고, 가공용 전극(11)의 전극 가이드(13)로부터 전극 하단부까지의 사이를 고압 가공액(22c)으로 둘러싼 상태의 분사류의 액압이 3㎫ 이상으로 하는 것이, 고압 가공액(22c)이 방전 가공 간극(35b)에 깊게 침입해서 가공칩을 씻어내는 데 큰 효과가 있다. 따라서, 가공액 분사용 압력 조절 밸브(45)의 압력 설정을 3㎫ 이상으로 한다.
고압 가공액(22c)의 압력을 3㎫ 이상으로 하면, 하부 가이드 피스(13b)는 가공용 전극(11)을 통과시킨 상태에서의 가공액 분사는, 분사 방향 10㎜ 이내의 금속재 표면 등에 접촉하면 고압 가공액(22c)은 무화되는 기세를 갖는다. 상부 가이드 피스(13c)의 상측에는 액조(15)를 장착하여 고압 가공액(22c)을 유입시킨다. 액조(15) 내의 가공액은 고압 가공액(22c)의 액압에 따라, 그 수위를 변경하고, 또한, 가공용 전극(11)의 전극 홀더(10)로부터 상부 가이드 피스(13c)까지의 사이에서 부분이 수몰되는 수위로 한다. 이에 의해, 가공 중의 진퇴 이동시에 발생하는 전극 진동, 전극 만곡을 방지하는 기능을 갖고, 또한, 전극 홀더(10)로부터 상부 가이드 피스(13c)까지의 사이의 전극 냉각을 행할 수 있다.
상기의 전극 냉각 방법으로, 전극 직경 0.2㎜ 이하의 가공용 전극(11)에 의해 가공 펄스 설정 전류를 지금까지의 3배 이상으로 할 수도 있어, 고속으로 펀칭 방전 가공을 할 수 있다.
전극 홀더(10)에 설치되는 가압 가공액 분배실(8a)은, 가공액 펌프(21)에 의해 공급되는 가압 가공액(22b)을 상기 전극 홀더(10)에 보유 지지된 가공용 전극(11)의 외면을 둘러싸서 전극 가이드(13)를 향해서 방사하는 동시에 상기 가공용 전극(11)이 파이프 전극인 경우에는 상기 파이프 전극의 내부 공간에도 가압 가공액을 공급한다.
전극 가이드(13)에 설치되는 고압 가공액 수용실(9)은, 가공용 전극(11)의 전극 홀더(10)로부터 상기 전극 가이드(13)까지의 사이를 둘러싸서 상기 전극 가이드(13)에 도달하는 분사류의 가압 가공액을 수용하는 동시에, 상기 가압 가공액보다도 고압의 고압 가공액(22c)을 고압 가공액 공급로(51)를 통해서 수용하여 상기 가공용 전극(11)의 상기 전극 가이드(13)로부터 전극 하단부까지의 사이를 고압 가공액(22c)으로 둘러싼 상태의 분사류라고 한다.
고압 가공액 수용실(9)은, 세공 방전 가공에 의해 형성되는 입구부 방전 가공 구멍 직경(35a)에 거의 동등한 직경을 갖는 고압 가공액 분사구(9a)를 갖고, 상기 고압 가공액 분사구(9a)로부터 분사하는 고압 가공액(22c)의 분사류가 거의 확대되지 않고 방전 가공 간극(35b)에 침입시키는 분사 기능을 갖는다.
가공 전후로부터 발생하는 안개 형상으로 된 가공칩을 포함하는 비산 가공액 및 액상화물을 불어 날려 버리기 위한 에어 또는 불활성 가스를 분사하는 에어 노즐(16)과, 에어 노즐(16)에 의해 불어 날려 버려진 비산 가공액 및 액상화물을 회수하기 위한 분무 가공액 회수 장치(20)를 구비하고 있다. 분무 가공액 회수 장치(20)는, 안내 가이드 고정판(12)의 하면에 고정되고, 에어 노즐(16)도 마찬가지로 고정된다. 에어 노즐(16)로부터 에어 또는 불활성 가스를 분사하기 위해 및 분무 가공액 회수 장치(20)에 의해 부압 흡인을 행하기 위해, 가압 공기 공급 장치(예를 들어 공기 압축기)(47)와, 에어 블로우 유량 조정 밸브(48)와, 에어 흡인 유량 조정 밸브(49)와, 진공 발생기(50)를 구비하고 있다. 에어 노즐(16)로부터 불활성 가스를 분사하는 경우에는, 도시하지 않은 실린더가 설치된다. 진공 발생기(50)에서 포착되는 습분은, 저액조(40)에 흘러내린다. 가압 공기 공급 장치(47)는, 컨트롤 유닛(44)의 판정 처리 수단(44c)으로부터의 제어 신호에 의해 제어된다.
가공용 펄스 전원(36)은 가공용 전극(11)을 음극, 워크(14)를 양극이 되도록, 출력선(37)을 통해서 통전 브러시(6)로부터 회전 샤프트(8)에 전기적으로 접속되는 동시에, 출력선(38)을 통해서 워크(14)에 전기적으로 접속되고, 가공용 전극(11)의 하단부면과 워크(14)의 전극 하단부면 대향 부위 사이에 형성되는 방전 가공 간극(35b)에 가공용 펄스 전압을 인가한다. 또한, 가공용 전극(11)과 워크(14)의 재질에 의해 상기 극성을 역접속으로 해도 좋다.
방전 가공 중은 가공액을 분사하면서, 가공용 전극(11)이 워크(14)에 서보 유닛(39)에 의해 Z축 방향으로 진퇴하게 하여 적정한 방전 가공 간극(35b)을 유지한다.
서보 유닛(39)은 서보 회로와 서보 드라이버를 갖고, NC 장치(42)로부터의 신호에 기초하여 가공용 펄스 전원(36)으로부터 출력되는 펄스를 입력하고, 서보 모터(3)를 제어 구동한다.
서보 모터(3)의 구동 회전에 의해 승강하는 승강 테이블(7)의 이동량은, 로터리 인코더(2)로 펄스량으로서 검출되고, 컨트롤 유닛(44)의 전극 이동 위치 계측 수단에 입력하도록 되어 있고, 항상 전극의 이동 위치가 어느 곳에 있을지 검출되어 메모리 처리 및 비교 처리 수단(44b)에 데이터 입력되거나 또는 비교 처리된다.
컨트롤 유닛(44)은 전극 이동 위치 계측 수단(44a)과, 마이크로컴퓨터를 사용한 메모리 처리 및 비교 처리 수단(44b)과, 마이크로컴퓨터를 사용한 판정 처리 수단(44c)을 갖고 있다.
전극 이동 위치 계측 수단(44a)은 서보 모터(3)의 구동 회전에 의해 승강하는 승강 테이블(7)의 이동량(전극의 이동량)을 로터리 인코더(2)가 검출 이동량에 대응하여 출력하는 펄스량을 입력하여, 방전 가공을 행하고 있는 전극 하단부의 현재 위치를 상시 검출하고, 위치 신호를 메모리 처리 및 비교 처리 수단(44b)에 출력한다.
메모리 처리 및 비교 처리 수단(44b)은, 파이프 전극의 내부를 통하는 가압 가공액의 분사 개시 위치를 비교하는 수단과, 고압 가공액 분사구(9a)로부터의 고압 가공액(22c)의 분사 개시 위치를 비교하는 수단과, 가공 종료 위치를 비교하는 수단과, 전극으로부터의 가공액 분사 정지 위치를 비교하는 수단과, 고압 가공액 분사구(9a)로부터의 고압 가공액(22c)의 분사 정지 위치를 비교하는 수단을 갖고, 각 수단에 설정되어 있는 임계값과 전극 이동 위치 계측 수단(44a)으로부터의 신호를 비교해서 동등해졌을 때에 필요한 제어 신호를 판정 처리 수단(44c)에 출력한다.
판정 처리 수단(44c)은, 축 이송ㆍ가공 제어 수단과, 가압 공기 공급 시간 제어 수단과, 가공액 펌프 압력 제어 증감속을 판정하는 수단과, 가압 가공액의 압력 조절 밸브 제어 수단과, 고압 가공액(22c)의 압력 조절 밸브 제어 수단을 갖고, 가공액 순환계ㆍ가압 공기 공급계ㆍ전원 제어계의 각 기기로의 제어 신호를 출력한다. 즉, 판정 처리 수단(44c)은, 가공액 펌프(21)에 대한 구동 개시 정지 신호, 파이프 분사용 압력 조절 밸브(46)와 가공액 분사 가이드용 압력 조절 밸브(45)에 대한 압력 설정 신호, 밸브 개폐 신호, 가압 공기 공급 장치(47)에 대한 구동 개시 정지 신호, 서보 유닛(39)에 대한 Z축 방향 이동량 지시 신호와, 가공용 펄스 전원(36)에 대한 제어 신호와, NC 장치(42)에 대한 제어 신호와 출력한다.
판정 처리 수단(44c)은, 소요의 방전 가공용 펄스 전압이 방전 가공 간극(35b)에 인가되고, 방전 가공 간극(35b)의 간극을 소요의 최적값으로 제어하기 위한 서보 제어 신호 sv가 출력된다. 방전 가공 간극(35b)의 상태를 나타내는 신호 F는, 가공용 펄스 전원(36)으로부터 컨트롤 유닛(44)에 부여되고, 서보 제어 신호 sv는 서보 모터(3)에 부여되고, 이에 의해 가공용 전극(11)의 Z축 방향으로의 이송량의 제어가 행해진다.
가공용 펄스 전압은 가공용 펄스 전원(36)으로부터 출력선(37, 38)을 통해서 가공용 전극(11)과 워크(14) 사이에 형성되는 방전 가공 간극(35b)에 인가한다.
가공 중, 가공용 전극(11)은, 전극 회전 모터(4)에 의해 회전되는 동시에, 서보 모터(3)에 의해 Z축 방향으로 진퇴되고, 그 사이 동안, 전극 선단부를 전극 가이드(13)에 의해 안내되어 워크(14)에 대하여 정확한 위치 결정 상태가 유지된다.
가공용 전극(11)이 상기 워크(14)의 입구면에 Z축 강하하는 데 수반하여 근접하면 가공용 펄스의 전압 강하가 발생하여 가공 원점의 설정을 한다. 그 후, NC 방전 가공기에서는, 가공 위치 이동하여 방전 가공을 개시 또는 직접 방전 가공을 개시할 수 있다.
부호 55는 밀봉 부재이며, O링이 사용되어 있다. 부호 56은 전극을 안내하는 유발 형상 블록이며, 부호 59는 플러그 캡이다.
상기 발명의 세공 방전 가공 장치는, 전극 홀더로 막대 형상 또는 파이프 형상의 가공용 전극의 상부를 보유 지지하고, 가공용 전극의 하부를 워크(14)에 근접하는 위치에서 전극 가이드로 고압 가공액(22c)의 액막을 개재시켜 Z축 방향으로 가이드한다. 그리고, 고압 가공액 수용실(9)에 도입되는 고압 가공액(22c)을 고압 가공액 분사구(9a)로부터 분사한다. 고압 가공액 분사구(9a)는 가공용 전극 직경보다도 초미소하게 큰 구경으로 규제되어 있고, 분사류를 거의 확대시키지 않고 또한 분사류에 의해 가공용 전극의 외면을 둘러싸도록 하여 고압 가공액(22c)을 분사하므로, 상기 고압 가공액(22c)을 방전 가공 간극(35b)에 깊게 침입시킨다. 이로 인해, 가공용 전극을 회전시키면서 워크(14)에 대하여 Z축 방향으로 상대적 이송하여 세공 방전 가공을 행하면, 이에 의해 방전 가공 구멍의 저부에 발생하는 가공칩이 방전 가공 간극(35b)에 깊게 침입하는 가공액에 도입되고 방전 가공 간극(35b)으로부터 방전 가공 구멍 입구부에 원활하게 운반된다. 고압 가공액 분사구(9a)로부터 워크 표면의 방전 가공 구멍 입구부 주위에 도달하는 분사류는, 방전 가공 간극(35b)으로부터 상기 방전 가공 구멍 입구부 주위에 막 유출된 가공칩을 포함한 가공액에 강열하게 접촉하고, 접촉한 충격으로 분무 형상으로 되어 비산하므로, 워크 표면의 방전 가공 구멍 입구부 주위에 액저류를 만들지 않으므로, 방전 가공 구멍 입구부의 엣지에 용융 부착물이 형성되지 않고, 방전 가공 구멍의 저부에 발생하는 가공칩이 방전 가공 간극(35b)에 저류되지 않고 원활하게 외부로 배출된다. 그리고, 가공용 전극의 냉각이 충분히 크게 행해지기 때문에, 가공용 전극에 공급하는 전류를 종래보다도 대폭으로 크게 할 수 있으므로, 방전 가공 시간을 종래의 수분의 1로 단축시킬 수 있어, 방전 가공 효율이 대폭으로 향상된다. 또한, 펀칭이 완료된 시점에서는, 고압 가공액 분사구(9a)로부터의 분사류는 방전 가공 간극(35b)을 관통하므로, 이 분사류에 의해 전극 측면에 부착되는 가공칩이 씻어내어지므로, 가공용 전극의 하단부에 용융 부착물이 형성되지 않는다.
도 4에 도시하는 바와 같이, 가공용 전극(11)과 전극 가이드(13)의 하부 가이드 피스(13b)의 간극(실험에서는 편측 0.01㎜ 이하)으로부터 고압 가공액(22c)을 전극 측면을 따라서 전극을 포위하면서 분사하므로, 고압 가공액(22c)이 직접 가공 구멍에 인입되는 액류로 된다. 또한, 가공칩이 배출될 때에 하부 가이드 피스(13b)로부터 분사되는 고압 가공액(22c)이 가공 구멍 입구부 주위를 덮는 범위가 적으므로 가공칩 배출을 효율적 행할 수 있어, 가공 효율이 좋은 상태가 된다.
전극 가이드(13)의 하부 가이드 피스(13b)로부터의 가공액 분사는, 가공용 전극(11)이 막대 형상 전극 및 파이프 형상 전극 중 어느 것에 있어서도 형성되는 방전 가공 간극(35b)의 입구부를 향해서 적어도 3㎫ 이상으로 가압된 가공액(22)을 전극 진퇴 방향과 대략 평행하게 전극의 표면 주위를 거의 방전 가공 확대 여유분과 동등한 두께 또는 그 이하의 두께로 포위하면서 전극 외측면을 따라서 분사한다.
분사된 고압 가공액(22c)이 워크(14) 상면에 직접 접촉하는 영역(35c)에서는, 상기 가공액은 무화되기 때문에 비교적 얕은 수류의 벽이 되고, 전극 회전 등에 의해 입구부 방전 가공 구경(35a)의 가공 갭이 확대 불균일하게 된 부분으로부터 분사 가공액이 방전 간극에 공급되어 가공칩을 수반하는 전극의 워크 관통 전에는 방전 가공 간극(35b)의 입구부로 송출된다. 이때, 방전 가공 간극(35b)의 입구부에서는 배출해야 할 가공칩을 수반한 가공액과 전극 가이드(13)로부터 분사된 고압 가공액(22c)이 충돌한다. 그러나, 실험예의 관찰에 따르면, 주위의 액층이 지금까지 사용되고 있는 가공액 분사 노즐을 사용한 것과 비교해서 극단적으로 배출이 효율적으로 행해진다. 이로 인해, 가공 속도가 대폭으로 향상된다.
도 7의 (a) 내지 (e)는, 이 세공 방전 가공 장치(1)에서 채용하는 전극 가이드(13)의 5개의 형태의 사시도를 도시한다. 도 7의 (a) 내지 (e)에 도시하는 어느 하나의 전극 가이드(13)에 대해서도, 도 6을 사용하여 상술한 바와 같이, 축 방향에 관통하는 고압 가공액 수용실(9)의 하단부와 상단부에 끼워 맞추어진 하부 가이드 피스(13b)와 상부 가이드 피스(13c)에 가공용 전극(11)이 삽입 관통된 고압 가공액 수용실(9)에 대해, 고압 가공액(22c)을 유입시키는 역할을 하는 것 외에, 고압 가공액 수용실(9) 내에서 파손된 가공용 전극(11)이나 가공칩 등의 잔존물의 제거 배출구로서도 역할을 한다. 고압 가공액 수용실(9) 내에 고압 가공액(22c)을 도입하는 관통로(13a)를 구비하고 있다.
이로 인해, 관통로(13a)는, 전극 가이드(13)의 기계적 강도가 허용하는 범위에서 크게 하는 것이 바람직하다. 관통로(13a)는, 도 7의 (a)에 도시하는 전극 가이드(13)에서는 상하로 긴 타원 구멍이 되도록 개설되고, 도 7의 (b)에 도시하는 전극 가이드(13)에서는 상하로 긴 직사각형 구멍이 되도록 개설되고, 도 7(c)에 도시하는 전극 가이드(13)에서는 상하 방향의 중앙부를 측방에서 보아 ㄷ자로 절제하여 수평 단면이 반원분만 남겨 상하가 연결되어 있는 형태로 개설되어 있다. 도 7의 (d), (e)에 도시하는 전극 가이드(13)에서는 관통로(13a)로부터 하측 부분의 외면을 고압 가공액이 접촉하여 흐르게 되어 있고 전극 가이드(13)를 냉각하도록 되어 있다. 또한 이 형상은, 후술하는 제2 실시 형태의 전극 가이드(13A)로서도 사용 가능한 형태로 되어 있다.
관통로(13a)의 크기에 대해서는, 상하 방향으로 4㎜ 이상의 길이를 확보한다. 이에 의해, 가공용 전극(11)에 초강합금재를 사용한 경우에, 외부 응력 등이 가해짐으로써, 고압 가공액 수용실(9) 내에서 2㎜, 4㎜, 8㎜ 등 제각각의 길이로 분쇄 상태로 되는 가공용 전극(11)의 배제가 양호하게 행할 수 있다.
[제2 실시 형태]
도 8은 본 발명의 제2 실시 형태의 세공 방전 가공 장치에 관한 주요부의 단면도이다. 도 9는 상기 주요부에 있어서 고압 가공액의 흐름을 도시하는 단면도이다. 이 실시 형태에서는, 하우징 블록(17A)이 전극 가이드(13A)를 밀폐 상태로 수용하고 있다. 이 실시 형태에서는, 고압 가공액 수용실(9A)이, 하우징 블록(17A) 내의 전극 가이드(13A)의 측면부로부터 하단부까지의 부분을 둘러싸서 형성되어 있다. 헤드 커버(17c)는 전극 가이드(13A)를 밀폐시켜 설치되고 고압 가공액 분사구(9a)를 갖고 있다. 고압 가공액(22c)은, 전극 가이드(13A)의 측면부 주위에 따라서 도입되고 하단부에 이르도록 되어 있다. 고압 가공액 분사구(9a)는, 하부 가이드 피스(13b)의 하측 근방에 동심 상태로 설치되어 있다. 고압 가공액 분사구(9a)의 고압 가공액(22c)의 분사 기능은 제1 실시 형태의 경우와 완전히 동일하다. 또한 그 밖의 구성은, 제1 실시 형태의 경우와 완전히 동일하므로, 도시되어 있는 부분에 있어서 대응하는 구성 요소에 제1 실시 형태에 관한 도면에 붙인 부호와 동일한 번호를 부여하고, 설명은 생략한다.
도 10은 도 8의 A-A 단면 형상이고, 전극 가이드(13)의 주위면에 형성된 가공액을 흘리기 위한 송액 홈의 형상에 관한 세개의 다른 구성을 도시하고 있다. 이 송액 홈이 고압 가공액 수용실(9A)을 담지하고 있다.
도 11의 (a)는 제2 실시 형태의 세공 방전 가공 장치에서 사용하는 전극 가이드(13A)를 도시한다. 이 예의 전극 가이드(13)는, 주위면에 모선 방향으로 직선 형상이고 또한 둘레 방향으로 배열되는 복수의 송액 홈을 가공액 통로로서 갖고, 가공액(22)을 상기 분사 구멍으로 직선 형상으로 송액한다. 이 직선 형상의 송액 홈으로 한 경우에는, 전극의 진퇴 방향과 동일 방향이므로 송액 방향의 액류의 흐트러짐을 안정시키기 때문에, 고압 가공액 분사구(9a)로부터 워크(14)까지의 거리를 비교적 약간 길게 함에 있어서 구멍 가공을 행할 수 있다.
또한 도 11의 (b)는 전극 가이드(13A)의 다른 예를 도시한다. 이 예의 전극 가이드(13A)는, 가이드 측면에 나선 형상의 홈을 가지므로, 가공칩의 배출에 회전한 흐름을 부여하는 것으로 되고, 전극 회전 속도가 비교적 낮은 상태에서도 가공이 안정된다. 이 예의 전극 가이드(13)는, 나선 형상의 홈은 45도의 각도를 이루도록 형성되어 있다. 그러나, 이 나선 형상의 홈의 각도는 45도로 한정되는 것이 아니라, 전극 가이드(13A)로부터 워크(14)까지의 거리나 전극 회전 속도에 따라, 그때마다의 상황에 따라서 적당한 홈 각도값을 구비하는 전극 가이드(13A)를 선택 사용해도 좋다.
또한, 직선 및 나선 형상의 홈 개수는 단수 및 복수를 사용해도 좋다.
[실험예 1]
실시 형태에 나타내는 세공 방전 가공 장치에 파이프 전극을 장착하고, 재질 SUS304, 가공 두께 1㎜의 워크에 방전 가공을 행하면, 가공 구멍 직경이 0.075㎜가 되고, 가공 시간이 약 4초로 되었다. 이 데이터에서는, 분사 가공액(22)의 액량이 20.7g/min이고, 이 액량의 사용은, 도 4에 도시하는 파이프 전극 직경(35d)이 0.1㎜일 때의 가공액 유량 0.254ml/min의 약 80배의 사용으로 된다. 구멍 직경과 가공 두께의 차이는 있지만, 가공 속도 비교에서는 전극 가이드(13)를 구비하고 있음으로써 종래보다도 약 25배의 속도 향상으로 된다. 이 가공액 분사 가이드를 사용하는 환경은 가공칩의 배출을 안정적으로 유지할 필요가 있어, 그 때문에 전극 가이드(13)로부터 워크(14)까지의 사이는 수몰되지 않도록 한다.
[실험예 2]
실시 형태에 나타내는 세공 방전 가공 장치에 파이프 전극을 장착하고, 재질 SUS304, 가공 두께 1㎜의 워크에 방전 가공을 행하면, 도 4에 도시하는 전극 직경(35d)이 0.055㎜, 하부 가이드 피스(13b)가 내경 0.063㎜인 설정 조건의 경우, 하부 가이드 피스(13b)로부터 분사한 고압 가공액(22c)은 직경 0.065㎜로 방사상으로 확대되면서 0.3㎜의 거리에 있는 워크(14)에 도달하고, 분사 가공액(22)의 워크(14) 상면에서의 방사 직경(35f)은 0.082㎜로 측정되었다. 이때의 가공 구멍 직경은, 0.079㎜이었다. 방전 가공 중에 가공액(22)이 방전 가공 간극(35b)을 통해 워크(14)의 상면에 직접 도달하는, 상기 방전 가공 간극(35b)의 반경 방향의 폭은,
{[분사 가공액의 워크 상면에서의 방사 직경(35f)]-[입구부 방전 가공 구멍 직경(35e)]}/2=0.0015㎜
로 되고, 상기한 분사 가공액이 이 영역(35c)으로 무화된다.
그러므로, 방전 가공 간극(35b)의 입구부로부터 배출되는 방전 가공칩이 배출될 때에 상기 방전 가공칩을 저해하는 가공액의 벽, 액 저류부가 없거나 적은 상태에서 방전 가공이 진행된다. 상기 가공에서는, 워크(14)의 재질이 SUS304이고 가공 두께가 1.0㎜일 때 방전 가공 시간이 3.7초이었다.
Figure 112013009103922-pct00001
표 1의 가공 성능 비교 데이터에서는 타사의 가공 속도와 비교하여 약 7배로 되었다. 가공 조건의 변경으로 구멍 직경이 0.007㎜ 확대되지만 약 10배의 가공 속도로 가공할 수 있다. 이 가공 시간에서 사용된 가압되어 전극 가이드(13)로부터 분사되는 가공액(22)은 1.7cc이고, 극히 적은 가공액(22)의 사용량이다.
도 12에 나타내는 그래프는, 저가공 속도의 가공 조건 하에서의 전극 가이드(13)와 워크(14) 사이의 거리의 적정 거리용 데이터이고, 가공액 분사시는 0.3㎜를 상기 거리의 목표로 하고 있다. 방전 가공 중은, 무화된 가공액(22)은 가공 시간이 길어짐에 따라 가공 주위에서 액상화하는 경향에 있기 때문에, 전극 가이드(13)의 근방에 장착된 에어 노즐(16)로부터 에어를 분출하면서, 전극 가이드(13)로부터 분사된 가공액(22)과 상기 분사 가공에 의해 배출된 방전 가공칩을 포함하는 액상 및 안개 형상의 가공액(22)을 방전 가공 간극(35b)의 입구부로부터 불어 날려 버리고, 에어 노즐(16)의 에어 분출 방향으로 설치된 전극 가이드(13)를 통과시킨 앞에 설치한 분무 가공액 회수 장치(20)에 의해 방전 가공칩을 포함하는 액상 및 안개 형상의 가공액(22)을 회수함으로써, 배출해야 할 방전 가공칩을 포함하는 가공액(22)의 배출을 저해하는 것이 최대한 적어지므로, 안정된 고속의 방전 가공을 행하고, 또한, 워크(14)의 장착, 제거 등의 작업성을 기중 환경에서 양호하게 행할 수 있다.
[실험예 4]
도 13은, 가공액 분사 압력에 대한 성능 변화에 관한 실험 결과를 나타내는 그래프이다. 도 14는, 가공액압 변화에 대한 가공 성능 변화에 관한 실험 결과를 나타내는 그래프이다.
이 실험은, 가공액 분사 압력(유량)을 변화시킴으로써, 전극 소모비, 가공 속도, 가공 구멍 입구 직경의 각 변화를 측정하였다. 이 실험에서는, SUS304, 두께 1.0㎜의 워크(14)에 대하여, 전극 직경 0.055㎜로 관통한다. 이때, 전극 가이드(13) 상부의 전극 냉각과 방전 가공 간극으로의 에어 분사를 병용하였다. 실험 결과에 따르면, 전극 가이드(13)의 가공액 분사 압력이 3㎫의 전후에서 가공 성능이 크게 변화되었다.
상세하게 서술하면, 가공액 분사 압력 3㎫까지는 전극 가이드(13)로부터의 분사 유량이 방전시에 발생하는 가공칩 배출의 효과가 부족한 상태이고, 가공액 분사 압력 3㎫로부터 전극 소모의 상승이 멈춰, 가공칩 배출이 효과적으로 행해지는 상태가 된다. 가공액 분사 압력 12㎫로부터 전극 소모비, 가공 속도, 가공 구멍 입구 직경으로 크게 변화되는 것을 측정할 수 있었다. 가공액 분사 압력 12㎫에서는 전극 소모비와 가공 구멍 입구 직경이 작아진 요인으로서, 전극 가이드(13)의 상부 가이드 피스(13c) 및 하부 가이드 피스(13b)의 가공용 전극(11)과 대향하는 안내면에 가공액(22)이 통과할 때에 윤활액으로서 작용하고, 가공 중의 전극 진퇴 동작에 기계적 부하가 경감되었는지, 상부 가이드 피스(13c) 및 하부 가이드 피스(13b)와 가공용 전극(11) 사이의 가공액 유속에 의해 미끄럼 베어링의 마찰 저감이 작용하였다고 생각한다. 이것은, 가공액 분사 압력이 적은 상태라도 전극 회전수의 고속화를 행함으로써, 상기 가공 성능이 변화된다고 생각된다. 따라서, 본 발명자의 실험에 따르면, 전극 가이드(13) 상부의 전극 냉각과 방전 가공 간극의 에어 분사를 병용하고, 전극 가이드(13)를 사용하여 고압 가공액(22c)의 액압이 적어도 3㎫인 것이, 비교적 가는 직경의 구멍으로부터 미세 직경의 구멍을 고속으로 개방하기 위해 유용한 것이 확인되었다. 또한, 고압 가공액(22c)의 액압이 20㎫ 이상으로도 양호하게 세공 방전 가공을 행할 수 있는 것도 확인되었다.
도 15는, 현행의 통상기와 본 발명의 시작기를 비교한 성능을 비교한 그래프이다. SUS304, 두께 1.0㎜의 워크에 대해, 전극 직경 0.055㎜로 펀칭 방전 가공을 행하고, 가공 속도, 전극 소모비, 구멍 직경, 갭을 비교하였다. 그래프에 나타내는 바와 같이, 가공 속도가 비약적으로 빨라지고, 전극의 소모가 적어져, 갭이 작아졌다.
도 16은, 본 발명 장치에 의한 방전 가공에 관한, 전극-가이드 갭(편측 ㎛) 변화와 가공 성능의 관계를 나타내는 그래프이다.
도 17은, 종래 장치와 본 발명 장치에 의한 방전 가공 진행 상황을 비교한 그래프이다. SUS304, 두께 20㎜의 워크에 대해, φ1㎜의 놋쇠로 만든 막대 형상 전극을 사용하여 펀칭 가공을 행하고, 관통시킬 때까지의 진행 상황을 측정하였다. 종래 장치에서는 49초 걸려 관통한 것에 반해, 본 발명 장치에서는 5초로 관통하였다.
도 18은, 방전 가공 장치에 있어서의 가공 깊이의 변화에 대한 소모비의 변화, 가공 속도의 변화를 나타내는 그래프이다.
[그 밖의 실시 형태]
본 발명은, 상기의 실시 형태에 한정되는 것이 아니라, 특허청구의 범위의 기재에 기초하여 파악되는 기술적 범위에는, 발명의 요지를 일탈하지 않는 범위 내에서 여러 가지 설계 변경한 형태가 포함된다.
8 : 회전 샤프트
8a : 가압 가공액 분배실
8b : 분사 구멍
9, 9A : 고압 가공액 수용실
9a : 고압 가공액 분사구
10 : 전극 홀더
11 : 가공용 전극
13 : 전극 가이드
14 : 워크
15 : 액조
16 : 에어 노즐
17, 17A : 하우징 블록
17a : 액로
20 : 분무 가공액 회수 장치
21 : 가공액 펌프
22b : 가압 가공액
22c : 고압 가공액
35a : 입구부 방전 가공 구멍 직경
35b : 방전 가공 간극
40 : 저액조

Claims (7)

  1. 워크의 근방에서 막대 형상 전극 또는 파이프 전극인 가공용 전극의 하부를 고압 가공액의 액막을 개재시켜 Z축 방향으로 가이드하는 전극 가이드를 구비하고,
    상기 전극 가이드를 워크의 근방에 있어서 고정하는 하우징 블록 내에 상기 고압 가공액을 수용하는 고압 가공액 수용실을 구비하고,
    상기 고압 가공액 수용실이 그 하단부에, 전극 직경보다도 큰 구경으로 규제되어 있고, 세공 방전 가공에 의해 형성되는 입구부 방전 가공 구멍 직경과 동등한 직경의 고압 가공액의 분사류를 상기 가공용 전극의 진퇴 방향과 평행하게 방전 가공 간극에 침입시키는 고압 가공액 분사구를 구비하여 이루어지며,
    상기 고압 가공액 수용실에 도입되는 상기 고압 가공액의 액압이 3㎫ 이상인 것을 특징으로 하는, 세공 방전 가공 장치.
  2. 제1항에 있어서,
    상기 가공용 전극을 보유 지지하는 샤프트와,
    상기 샤프트의 내부에 가압 가공액을 도입하여 상기 가공용 전극을 통과시키고 또한 분사 구멍을 갖는 가압 가공액 분배실과,
    상기 전극 가이드의 상측에, 상기 가압 가공액 분배실의 분사 구멍으로부터 분사되어 가공용 전극을 둘러싸서 흘러내리는 가압 가공액을 수용하는 액조와,
    상기 액조로부터의 일류액을 수용하는 저액조를 더 구비하는 것을 특징으로 하는, 세공 방전 가공 장치.
  3. 제2항에 있어서,
    상기 저액조 내의 가공액을 상기 가압 가공액과 상기 고압 가공액으로 분기하여 순환하도록 구성되어 있는, 세공 방전 가공 장치.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 가공용 전극 하단부까지를 상기 고압 가공액으로 둘러싼 상태에 있어서, 상기 고압 가공액의 분사류의 액압을 3㎫ 이상으로 하는 압력 설정 수단을 구비하고 있는 것을 특징으로 하는, 세공 방전 가공 장치.
  5. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 고압 가공액 수용실은, 상기 전극 가이드의 중공부이고, 상기 전극 가이드의 하단부를 노출시켜 상기 전극 가이드를 수용하는 하우징 블록에 설치된 액로를 통해서 상기 고압 가공액을 도입하고, 상기 고압 가공액 분사구는, 상기 전극 가이드의 중공부인 상기 고압 가공액 수용실의 하단부에 설치되어 있는 것을 특징으로 하는, 세공 방전 가공 장치.
  6. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 고압 가공액 수용실은, 상기 전극 가이드를 수용하는 하우징 블록에 설치되고 상기 전극 가이드의 외면을 따라서 상기 전극 가이드의 하단부까지 형성되어 있는 것을 특징으로 하는, 세공 방전 가공 장치.
  7. 제1항 내지 제3항 중 어느 한 항에 있어서,
    에어 또는 불활성 가스를 분사하는 에어 노즐과,
    상기 에어 또는 불활성 가스에 의해 불어 날려 버려진 것을 회수하기 위한 분무 가공액 회수 장치를 더 구비하는 것을 특징으로 하는, 세공 방전 가공 장치.
KR1020137002596A 2011-09-01 2011-09-01 세공 방전 가공 장치 KR101545412B1 (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/069959 WO2013031011A1 (ja) 2011-09-01 2011-09-01 細穴放電加工装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020147027102A Division KR101662419B1 (ko) 2011-09-01 2011-09-01 세공 방전 가공 장치

Publications (2)

Publication Number Publication Date
KR20130069721A KR20130069721A (ko) 2013-06-26
KR101545412B1 true KR101545412B1 (ko) 2015-08-18

Family

ID=47755559

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020147027102A KR101662419B1 (ko) 2011-09-01 2011-09-01 세공 방전 가공 장치
KR1020137002596A KR101545412B1 (ko) 2011-09-01 2011-09-01 세공 방전 가공 장치

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020147027102A KR101662419B1 (ko) 2011-09-01 2011-09-01 세공 방전 가공 장치

Country Status (8)

Country Link
US (1) US9737946B2 (ko)
EP (1) EP2752268B1 (ko)
JP (1) JP5255167B1 (ko)
KR (2) KR101662419B1 (ko)
CN (1) CN103118826B (ko)
ES (1) ES2750567T3 (ko)
TW (1) TWI551382B (ko)
WO (1) WO2013031011A1 (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107900471A (zh) * 2017-11-24 2018-04-13 中山复盛机电有限公司 应用于细孔电极放电加工的组合式导引装置
EP3552746A1 (de) * 2018-04-10 2019-10-16 Siemens Aktiengesellschaft Vorrichtung zum selektiven elektrochemischen bearbeiten von werkstücken und anlage zum herstellen eines werkstücks mit einer solchen vorrichtung
CN109014456B (zh) * 2018-06-22 2020-06-12 沙迪克(厦门)有限公司 放电加工装置
CN109014455B (zh) * 2018-06-22 2020-03-06 株式会社沙迪克 放电加工装置
KR102135212B1 (ko) * 2018-10-24 2020-07-17 (주)애니캐스팅 전해생성물 제거가 가능한 전해가공장치
JP7343325B2 (ja) 2019-07-26 2023-09-12 株式会社ディスコ 廃液処理装置
CN110560805B (zh) * 2019-08-06 2020-11-20 沙迪克(厦门)有限公司 放电加工装置的放电加工单元
CN110899879B (zh) * 2019-10-30 2021-01-01 沙迪克(厦门)有限公司 放电加工装置的下侧引导单元
FR3125451A1 (fr) * 2021-07-26 2023-01-27 Safran Dispositif de guidage d’une électrode d’appareil de perçage par électroérosion
CN114043018B (zh) * 2021-11-29 2024-03-29 南京诚光新能源科技有限公司 一种电火花穿孔设备及其穿孔加工工艺

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010131689A (ja) 2008-12-03 2010-06-17 Elenix Inc 細穴放電加工機によるテーパ穴の加工方法および同方法に使用する細穴放電加工機

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3067358A (en) * 1960-11-02 1962-12-04 Ibm Electro-erosion apparatus
JPS5523674B2 (ko) * 1974-09-30 1980-06-24
FR2478512B1 (ko) * 1980-03-24 1985-03-22 Charmilles Sa Ateliers
JPS58196925A (ja) * 1982-05-10 1983-11-16 Mitsubishi Electric Corp ワイヤカツト放電加工装置のワイヤ電極供給装置
JPS61182725A (ja) * 1986-02-06 1986-08-15 Mitsubishi Electric Corp ワイヤカツト放電加工用電極ガイドユニツト
JPH01205922A (ja) * 1988-02-08 1989-08-18 Fanuc Ltd イニシャルホール加工装置
JPH0825096B2 (ja) 1988-12-16 1996-03-13 三菱電機株式会社 加工装置
US5073690A (en) * 1989-02-23 1991-12-17 Fort Wayne Wire Die, Inc. Long lasting electrical discharge machine wire guide
JP3241780B2 (ja) 1991-12-17 2001-12-25 株式会社ソディック 細孔放電加工装置
JPH05185326A (ja) 1992-01-13 1993-07-27 I N R Kenkyusho:Kk 細穴放電加工装置
US5416289A (en) * 1994-02-14 1995-05-16 Tanaka; Dwight Method of and apparatus for increasing the productivity of an electroerosion drill
JP2719112B2 (ja) * 1994-05-18 1998-02-25 オグラ宝石精機工業株式会社 ワイヤカット放電加工機におけるワイヤガイドユニット
JP3540464B2 (ja) * 1995-10-13 2004-07-07 三菱電機株式会社 放電加工装置の加工液処理装置
JP3575209B2 (ja) * 1997-02-04 2004-10-13 三菱電機株式会社 細穴放電加工装置、および該装置を使用した細穴放電加工方法
TW339299B (en) * 1997-08-14 1998-09-01 Castek Mechatron Industry Co L The double processing-liquids circulation system of fining-hole EDM includes 1st oil-water separating tank, 2nd water-filtering tank and the 3rd oil-filtering tank, to separate & filter oil & water as processing liquid
US6344624B1 (en) * 1998-10-16 2002-02-05 Mitsubishi Denki Kabushiki Kaisha Wire electric discharge machine
WO2000023221A1 (fr) * 1998-10-19 2000-04-27 Mitsubishi Denki Kabushiki Kaisha Ensemble d'usinage par etincelage a fils
JP4430199B2 (ja) 2000-04-06 2010-03-10 株式会社エレニックス 細穴放電加工方法および細穴放電加工装置
JPWO2002064299A1 (ja) * 2001-02-14 2004-06-10 三菱電機株式会社 ワイヤ放電加工方法及び装置
US6806435B2 (en) * 2001-04-12 2004-10-19 Elenix, Inc. Small hole electric discharge machine drill provided with depth-specific processing means
US6734384B2 (en) 2001-08-10 2004-05-11 Ann Arbor Machine Company Electrical discharge machine apparatus with improved dielectric flushing
US6844519B2 (en) * 2002-03-14 2005-01-18 Mc Machinery Systems, Inc. Electric sparking drill and method for forming a hole with an electric spark
JP4099356B2 (ja) 2002-04-11 2008-06-11 株式会社エレニックス 細穴放電加工方法および装置
US6717094B2 (en) * 2002-07-22 2004-04-06 Edward L. Beaumont Electrical discharge machine and methods of establishing zero set conditions for operation thereof
CA2445077C (en) * 2003-10-09 2008-02-12 Elenix, Inc. Small hole electrical discharge machining method and small hole electrical discharge machining apparatus and electrode inserting method and electrode inserting apparatus
US7518081B2 (en) * 2004-01-23 2009-04-14 Mitsubishi Denki Kabushiki Kaisha Electric discharge machining apparatus
US6897400B1 (en) * 2004-03-16 2005-05-24 General Electric Company Out flushing guide bushing
US8664559B2 (en) * 2005-02-28 2014-03-04 Mitsubishi Denki Kabushiki Kaisha Electrical discharge machine
US7824526B2 (en) * 2006-12-11 2010-11-02 General Electric Company Adaptive spindle assembly for electroerosion machining on a CNC machine tool
JP5039002B2 (ja) * 2008-09-16 2012-10-03 株式会社ソディック ワイヤカット放電加工装置、ワイヤガイドアッセンブリおよびその洗浄方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010131689A (ja) 2008-12-03 2010-06-17 Elenix Inc 細穴放電加工機によるテーパ穴の加工方法および同方法に使用する細穴放電加工機

Also Published As

Publication number Publication date
CN103118826A (zh) 2013-05-22
CN103118826B (zh) 2014-12-10
US20140144884A1 (en) 2014-05-29
WO2013031011A1 (ja) 2013-03-07
TW201311383A (zh) 2013-03-16
EP2752268A1 (en) 2014-07-09
JPWO2013031011A1 (ja) 2015-03-23
KR20140122286A (ko) 2014-10-17
US9737946B2 (en) 2017-08-22
EP2752268B1 (en) 2019-08-14
KR101662419B1 (ko) 2016-10-04
EP2752268A4 (en) 2015-06-03
JP5255167B1 (ja) 2013-08-07
KR20130069721A (ko) 2013-06-26
TWI551382B (zh) 2016-10-01
ES2750567T3 (es) 2020-03-26

Similar Documents

Publication Publication Date Title
KR101545412B1 (ko) 세공 방전 가공 장치
US4564431A (en) TW-electroerosion machines with double-floating nozzle assemblies
TWI503194B (zh) 電解加工裝置及其加工方法
JP2001287119A (ja) 細穴放電加工方法および細穴放電加工装置
KR102135212B1 (ko) 전해생성물 제거가 가능한 전해가공장치
CN109014456B (zh) 放电加工装置
CA2445077A1 (en) Small hole electrical discharge machining method and small hole electrical discharge machining apparatus and electrode inserting method and electrode inserting apparatus
JP2012051108A (ja) 細穴放電加工装置及び細穴放電加工方法
US20080277383A1 (en) Apparatus for removing debris from the cutting gap of a work piece on a wire electronic discharge machine and method therefor
JP5541141B2 (ja) 放電加工装置
CN109014455B (zh) 放电加工装置
CN110560805B (zh) 放电加工装置的放电加工单元
JP2015009292A (ja) 細穴放電加工装置及び同装置を使用した細穴放電加工方法
JP2010155267A (ja) 機構部品における微細孔の加工方法
JP2008062328A (ja) ウォータジェット加工とワイヤ放電加工を行うことができる複合加工装置
JP3623363B2 (ja) ワイヤ放電加工機におけるワイヤ送り装置
WO1999061191A1 (fr) Ensemble d'usinage par etincelage a fil
KR960005262B1 (ko) 와이어 커트 방전 가공장치
JP2889898B2 (ja) ワイヤカット放電加工用上部給液装置
WO2020031251A1 (ja) 放電加工装置および放電加工方法
WO2000015376A1 (fr) Etincelleuse a fil
JP2008055573A (ja) 複合加工装置
JPH0248377B2 (ko)
JPS6347025A (ja) 細穴放電加工機
JP2010065258A (ja) 放電表面処理装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
A107 Divisional application of patent
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant