KR101544198B1 - 루테늄 막 형성 방법 - Google Patents

루테늄 막 형성 방법 Download PDF

Info

Publication number
KR101544198B1
KR101544198B1 KR1020070104509A KR20070104509A KR101544198B1 KR 101544198 B1 KR101544198 B1 KR 101544198B1 KR 1020070104509 A KR1020070104509 A KR 1020070104509A KR 20070104509 A KR20070104509 A KR 20070104509A KR 101544198 B1 KR101544198 B1 KR 101544198B1
Authority
KR
South Korea
Prior art keywords
ruthenium
gas
supplying
reactor
film
Prior art date
Application number
KR1020070104509A
Other languages
English (en)
Other versions
KR20090039083A (ko
Inventor
김종수
박형상
Original Assignee
한국에이에스엠지니텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에이에스엠지니텍 주식회사 filed Critical 한국에이에스엠지니텍 주식회사
Priority to KR1020070104509A priority Critical patent/KR101544198B1/ko
Priority to US12/250,827 priority patent/US8273408B2/en
Publication of KR20090039083A publication Critical patent/KR20090039083A/ko
Application granted granted Critical
Publication of KR101544198B1 publication Critical patent/KR101544198B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/65Electrodes comprising a noble metal or a noble metal oxide, e.g. platinum (Pt), ruthenium (Ru), ruthenium dioxide (RuO2), iridium (Ir), iridium dioxide (IrO2)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • H01L21/28562Selective deposition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Semiconductor Memories (AREA)

Abstract

본 발명의 실시예에 따른 루테늄 막 형성 방법에 의하면, 원자층 증착법으로 루테늄(Ru) 박막을 형성하는 단계와, 기상 반응법으로 산화 루테늄 박막을 형성하는 단계 후에, 암모니아(NH3) 기체를 공급하여, 루테늄 박막 또는 산화 루테늄 내부의 산소를 환원시키는 단계를 포함함으로써, 박막 내 산소 함유량을 감소시키고, 고유전체 막과의 접합성을 향상시키며, 후처리 공정에서 응력 차이에 의해 막 분리 현상이 나타나는 것을 방지할 수 있다. 또한, 원자층 증착 방법을 이용함으로써, 종횡비가 큰 표면에 단차 피복성이 우수한 루테늄 막을 형성할 수 있다.
루테늄 막, 단차 피복성, 산화막, 막분리

Description

루테늄 막 형성 방법{METHOD OF DEPOSITING RUTHENIUM FILM}
본 발명은 기체 상태의 원료들을 공급하여 루테늄 막을 형성하는 방법에 관한 것으로, 특히 산소(O2) 기체와 암모니아(NH3) 기체를 사용하는 원자층 증착법에 의하여 루테늄 막을 형성하는 방법에 관한 것이다.
루테늄 금속 막은 강유전체 메모리 소자의 전극 물질, 게이트 전극 물질 등의 용도로 연구되어 왔고 최근에는 차세대 DRAM의 전극 물질과 구리 배선의 확산 방지막 응용에 관심이 높아지고 있다. DRAM용 전극으로 이용되기 위해서는 약 10nm 정도 두께의 루테늄 막을 종횡비가 큰 DRAM 구조에 형성할 필요가 있다. 스퍼터링법과 같은 물리 증착법은 단차 피복성이 매우 나쁘므로 DRAM 전극 물질을 형성하는 데에 사용할 수 없다.
루테늄 시클로펜타디에닐 화합물이나 액체 상태의 bis(ethylcyclopentadienyl)ruthenium [Ru(EtCp)2]와 같은 루테늄의 유기 금속 화합물과 산소(O2) 기체를 사용하여 루테늄(Ru)이나 산화 루테늄(RuO2) 층을 형성하는 화학 증착법이 알려져 있다 [Sung-Eon Park, Hyun-Mi Kim, Ki-Bum Kim and Seok- Hong Min "Metallorganic Chemical Vapor Deposition of Ru and RuO2 Using Ruthenocene Precursor and Oxygen Gas" J. Electrochem. Soc. 147[1], 203, (2000)]. 그러나 원료 기체들을 동시에 공급하는 화학 증착법은 종횡비가 큰 표면에 단차 피복성이 우수한 막을 형성하기 어렵다.
종횡비가 큰 표면에 단차 피복성이 우수한 막을 형성하는 데에는, 막 형성에 필요한 두 가지 이상의 기체 원료를 시간적으로 분리하여 순차적으로 기판 위에 공급하여 표면 반응을 통해 박막을 성장시키고, 이를 반복적으로 수행하여 원하는 두께의 박막을 형성하는 원자층 증착(atomic layer deposition, ALD) 방법이 유리하다. ALD 원료 기체 공급 주기는 흔히 금속 원료 기체 공급 - 불활성 퍼지 기체 공급 - 반응 기체 공급 - 불활성 퍼지 기체 공급의 4단계로 이루어진 원료 기체 공급 주기를 반복한다.
원자층 증착 반응기는 보통 밸브를 이용하여 반응기에 공급되는 원료 기체의 흐름을 조절한다.
200~400℃ 정도의 기판 온도와 수백mTorr에서 수십 Torr의 압력에서 루테늄 시클로펜타디에닐 화합물이나 bis(ethylcyclopentadienyl)ruthenium [Ru(EtCp)2]와 같은 루테늄의 유기 금속 화합물과 산소(O2) 기체를 번갈아 공급하는 원자층 증착법에서는 ALD 원료 기체 공급 주기 1회 동안 0.1~0.5Å 두께의 루테늄 층이 형성된다(T. Aaltonen, P. Alen, Mikko Ritala and M. Leskela "Ruthenium Thin Film Grown by Atomic Layer Deposition" Chem. Vap. Deposition 9[1], 45 (2003)).
고유전율을 가지는 박막 위에 산소 기체(O2)를 이용하여 원자층 증착 방식으로 루테늄(Ru) 막을 형성하면, 밀도가 12g/cm2 정도의 고밀도 루테늄 증착막을 얻을 수 있으나, 고유전율 막과의 접착성이 낮아서 증착 직 후 또는 증착 이후의 후속 열처리 공정 시, 고유전율 막과 루테늄 박막이 서로 분리될 수 있다. 또한, 원자층 증착 방식을 이용하는 경우 초기 증착이 이루어지기까지 잠복기가 긴 문제가 있다. 잠복기란 초기 핵 생성의 어려움으로 인해 처음 수백 사이클 동안 연속적인 증착막을 얻지 못하는 기간을 의미한다. 이와 같은 접착성 문제 및 초기 잠복기 문제를 해결하기 위한 방안으로 산화 루테늄(RuOx) 박막을 이용하는 방법이 있다. 이처럼, 산화 루테늄을(RuOx) 증착하는 경우, 고유전율 막과의 접착력이 상대적으로 우수하며, 초기 증착 잠복기도 수십 사이클 이내로 감소시키고 증착 속도도 사이클당 1Å 이상을 얻을 수 있다. 그러나 산화 루테늄(RuOx) 층 그 자체를 사용하는 경우가 아니고, 루테늄 층을 얻기 위한 것인 경우라면, 루테늄 층을 얻기 위하여 산화 루테늄(RuOx) 박막을 루테늄으로 환원시키는 과정이 필요하다. 이러한 환원 과정을 포함하는 경우, 후속 열처리 환원 과정에서 증착한 박막의 상변화에 의하여 균열이 발생할 수 있다.
본 발명의 기술적 과제는 종횡비가 큰 표면에 단차 피복성이 우수하면서도, 고유전체 박막과의 접합성이 우수한 루테늄 박막의 형성 방법을 제공하는 데 있다.
본 발명의 한 실시예에 따른 루테늄 막을 형성하는 방법은 기판을 화학 증착 반응기에 장착하는 단계, 상기 반응기에 루테늄 전구체를 공급하는 단계, 상기 반응기에 산소(O2) 기체를 공급하는 단계, 그리고 상기 반응기에 암모니아(NH3) 기체를 공급하는 단계를 반복하여 루테늄 막을 형성할 수 있다.
상기 반응기에 루테늄 전구체를 공급하는 단계 후에 상기 반응기에 불활성 기체를 공급하는 단계를 더 포함할 수 있다.
상기 반응기에 산소(O2) 기체를 공급하는 단계 후에 상기 반응기에 불활성 기체를 공급하는 단계를 더 포함할 수 있다.
상기 반응기에 암모니아 기체를 공급하는 단계 전 후에 상기 반응기에 불활성 기체를 공급하는 단계를 더 포함할 수 있다.
상기 반응기에 암모니아 기체를 공급하는 단계 전에 상기 루테늄 전구체를 공급하는 단계와 상기 산소 기체를 공급하는 단계를 복수 회 반복할 수 있다.
상기 암모니아 기체 공급단계는 막 내의 산소가 충분히 제거될 수 있도록 10분 이하의 시간 내에서 지속될 수 있다.
상기 반응기의 온도는 200℃ 내지 400℃일 수 있다.
본 발명의 다른 한 실시예에 따른 루테늄 막을 형성하는 방법은 기판을 화학 증착 반응기에 장착하는 단계, 상기 반응기에 루테늄 전구체와 제1 산소(O2) 기체를 동시에 공급하는 단계, 상기 반응기에 제2 산소(O2) 기체를 공급하는 단계, 그리고 상기 반응기에 암모니아(NH3) 기체를 공급하는 단계를 반복하여 루테늄 막을 형성할 수 있다.
상기 반응기에 루테늄 전구체와 제1 산소 기체를 동시에 공급하는 단계 후에도 상기 반응기에 제1 산소 기체를 지속적으로 공급할 수 있다.
상기 제1 산소(O2) 기체는 상기 제2 산소(O2) 공급 단계 동안 지속적으로 공급될 수 있다.
상기 반응기에 루테늄 전구체와 제1 산소(O2) 기체를 동시에 공급하는 단계 후에 상기 반응기에 불활성 기체를 공급하는 단계를 더 포함할 수 있다.
상기 반응기에 제2 산소(O2) 기체를 공급하는 단계 후에 상기 반응기에 불활성 기체를 공급하는 단계를 더 포함할 수 있다.
상기 반응기에 암모니아 기체의 공급 전 후에 상기 반응기에 불활성 기체를 공급하는 단계를 더 포함할 수 있다.
상기 반응기에 암모니아 기체를 공급하는 단계 전에 상기 루테늄 전구체 및 제1 산소 (O2) 기체를 공급하는 단계와 상기 반응기에 산소(O2) 기체를 공급하는 단계를 복수 회 반복할 수 있다.
상기 암모니아 기체 공급단계는 막 내의 산소가 충분히 제거될 수 있도록 10분 이하의 시간 내에서 지속될 수 있다.
상기 반응기의 온도는 200℃ 내지 400℃일 수 있다.
본 발명의 다른 한 실시예에 따른 루테늄 막을 형성하는 방법은 기판을 화학 증착 반응기에 장착하는 단계, 상기 반응기에 루테늄 전구체와 제1 산소(O2) 기체를 동시에 공급하는 단계, 상기 반응기에 제2 산소(O2) 기체를 1차 공급하는 단계, 상기 반응기에 암모니아(NH3) 기체를 공급하는 단계, 상기 반응기에 루테늄 전구체를 공급하는 단계, 그리고 상기 반응기에 제2 산소 기체를 2차 공급하는 단계를 반복하여 루테늄 막을 형성할 수 있다.
상기 반응기에 루테늄 전구체와 제1 산소 기체를 동시에 공급하는 단계 후에도 상기 반응기에 제1 산소 기체를 지속적으로 공급할 수 있다.
상기 제1 산소 기체의 공급은 상기 제2 산소 기체의 1차 공급 단계 동안에도 지속적으로 이루어질 수 있다.
상기 반응기에 루테늄 전구체와 제1 산소 기체를 동시에 공급하는 단계 후에 상기 반응기에 불활성 기체를 공급하는 단계를 더 포함할 수 있다.
상기 반응기에 제2 산소 기체를 1차 공급하는 단계 후에 상기 반응기에 불활성 기체를 공급하는 단계를 더 포함할 수 있다.
상기 반응기에 암모니아 기체를 공급하는 단계 전에 상기 반응기에 루테늄 전구체와 제1 산소 기체를 동시에 공급하는 단계와 상기 제2 산소 기체를 1차 공급하는 단계를 복수 회 반복할 수 있다.
상기 반응기에 암모니아 기체를 공급하는 단계 전 후에 상기 반응기에 불활성 기체를 공급하는 단계를 더 포함할 수 있다.
상기 암모니아 기체를 공급하는 단계는 막 내의 산소가 충분히 제거될 수 있도록 10분 이하의 시간 내에서 지속될 수 있다.
상기 반응기에 루테늄 전구체를 공급하는 단계 후에 상기 반응기에 불활성 기체를 공급하는 단계를 더 포함할 수 있다.
상기 반응기에 제2 산소 기체를 2차 공급하는 단계 후에 상기 반응기에 불활성 기체를 공급하는 단계를 더 포함할 수 있다.
상기 반응기에 루테늄 전구체를 공급하는 단계와 상기 제2 산소 기체를 2차 공급하는 단계를 복수 회 반복할 수 있다.
상기 반응기의 온도는 200℃ 내지 400℃일 수 있다.
본 발명의 실시예에 따르면, 고유전체 박막과의 접착성이 우수한 루테늄 박막을 얻을 수 있으며, 원자층 증착 방법을 이용함으로써, 종횡비가 큰 표면에 단차 피복성이 우수한 루테늄 막을 형성할 수 있고, 원자층 증착에 따른 루테늄 박막의 증착 잠복기를 줄여서, 빠른 속도로 루테늄 층을 증착할 수 있다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알 려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 대해 설명한다.
그러면, 도 1을 참고로 하여, 본 발명의 한 실시예에 따른 루테늄 막 증착 방법에 대하여 설명한다. 도 1은 본 발명의 한 실시예에 따른 루테늄 막 증착 방법에 의한 기체 공급 주기의 한 예이다.
본 발명의 한 실시예에 따른 루테늄 막 증착 방법에 의한 원료 기체 공급 주기는 제1 시간(t1) 동안 기판 위에 루테늄(Ru) 원소를 포함하는 루테늄 전구체를 공급하고, 제2 시간(t2) 동안 제1 퍼지 기체를 공급하고, 제3 시간(t3) 동안 기판 위에 산소(O2) 기체를 공급하고, 제4 시간(t4) 동안 기판 위에 제1 퍼지 기체를 공급하고, 제5 시간(t5) 동안 제2 퍼지 기체를 공급하고, 제6 시간(t6) 동안 기판 위에 암모니아(NH3) 기체를 공급하고, 그리고 제7 시간(t7) 동안 기판 위에 제2 퍼지 기체를 공급한다. 원하는 두께의 루테늄(Ru) 층이 형성될 때까지 이러한 시간 주기(t1 내지 t7)를 반복한다. 이때 암모니아(NH3) 기체 공급 단계(t5) 전 제1시간(t1)부터 제4 시간(t4)까지를 복수 회 반복할 수도 있다. 암모니아(NH3) 기체를 공급하는 제6 시간(t6)은 10분 이하의 시간 내에서 지속될 수 있다.
본 실시예에 따른 루테늄 막 증착 방법은 기판 위에 루테늄(Ru) 원소를 포함하는 루테늄 전구체를 공급(t1)하여 루테늄 전구체를 반도체 기판 위에 흡착시키는 단계, 퍼지 기체를 공급(t2)하여 기판 위에 흡착되지 않은 물질들을 제거 및 배출 하는 단계, 루테늄 전구체 흡착층이 형성된 반도체 기판 위에 산소(O2) 기체를 공급(t3)하여 루테늄 전구체 흡착층에서 리간드를 제거하여 원자층 증착 방법으로 루테늄 박막을 형성하는 단계, 퍼지 기체를 공급(t4)하여 루테늄 박막 형성 후 잔여 물질을 배출하는 단계, 루테늄 박막이 형성된 반도체 기판 위에 암모니아(NH3) 기체를 공급(t5)하여 루테늄 박막 내부의 산소를 환원시키는 단계, 그리고 퍼지 기체를 공급(t6)하여 환원 후 잔여물질을 배출하는 단계를 포함한다. 이때, 암모니아(NH3) 기체를 공급하는 단계는 막 내의 산소가 충분히 제거될 수 있도록 10분 이하의 시간 내에서 지속될 수 있다. 또한, 반응기의 온도는 200℃ 내지 400℃일 수 있다.
이처럼, 루테늄 전구체 흡착층에서 리간드를 제거하여 루테늄(Ru) 박막을 형성하는 단계 후에, 암모니아(NH3) 기체를 공급하여, 루테늄 박막 내부의 산소를 환원시키는 단계를 포함함으로써, 루테늄 막과 하부에 놓인 고유전체 막 사이에 다공성 산화막이 형성되는 것을 방지하여, 이러한 박막들의 후처리 공정에서 응력 차이에 의해 막 분리 현상이 나타나는 것을 방지할 수 있다. 또한, 원자층 증착 방법을 이용함으로써, 종횡비가 큰 표면에 단차 피복성이 우수한 루테늄 막을 형성할 수 있다.
그러면, 도 2를 참고로 하여, 본 발명의 다른 한 실시예에 따른 루테늄 막 증착 방법에 대하여 설명한다. 도 2는 본 발명의 다른 한 실시예에 따른 루테늄 막 증착 방법에 의한 기체 공급 주기의 한 예이다.
본 발명의 다른 한 실시예에 따른 루테늄 막 증착 방법에 의한 원료 기체 공 급 주기는 제1 시간 내지 제4 시간(t1~t4) 동안 기판 위에 일정량의 제1 산소(O2) 기체를 공급하면서, 제1 시간(t1) 동안 기판 위에 루테늄(Ru) 원소를 포함하는 루테늄 전구체를 공급하고, 제2 시간(t2) 동안 제1 퍼지 기체를 공급하고, 제3 시간(t3) 동안 기판 위에 제2 산소(O2) 기체를 펄스 형태로 더 공급하고, 제4 시간(t4) 동안 기판 위에 제1 퍼지 기체를 공급하고, 제5 시간(t5) 동안 제2 퍼지 기체를 공급하고, 제6 시간(t6) 동안 기판 위에 암모니아(NH3) 기체를 공급하고, 그리고 제7 시간(t7) 동안 기판 위에 제2 퍼지 기체를 공급한다. 원하는 두께의 루테늄(Ru) 층이 형성될 때까지 이러한 시간 주기(t1 내지 t7)를 반복한다. 또한, 암모니아(NH3) 기체 공급 단계 전 제1 시간부터 제4 시간까지를 복수 회 반복할 수도 있다. 암모니아(NH3) 기체를 공급하는 제6 시간(t6)은 10분 이하의 시간 내에서 지속될 수 있다.
앞서 설명하였듯이 본 실시예에 따른 루테늄 막 증착 방법에 의한 원료 기체 공급 주기는 암모니아 기체를 공급하는 시간 주기(t6)와, 암모니아 기체 공급 전 후의 제2 퍼지 기체를 공급하는 시간 주기(t5 및 t7) 동안을 제외하고, 기판 위에 계속하여 산소 기체(제1 산소 기체)를 공급하는 특징을 가진다. 즉, 본 실시예에 따른 루테늄 막 증착 방법에 의한 원료 기체 공급 주기는 산소 기체와 루테늄 전구체를 함께 공급(t1)하는 단계를 포함함으로써, 원자층 증착 방법뿐만 아니라, 루테늄 전구체와 산소 기체의 기상 반응을 통한 추가적인 루테늄 산화막을 형성하는 단 계(t1 및 t2)를 포함할 수도 있다. 한편, 상기 제2 산소 기체는 제1 산소 기체의 공급 유량에 따라 공급이 생략될 수도 있다.
이처럼 본 발명의 실시예에 따른 루테늄 막 증착 방법에서는 루테늄 막을 증착하는데, 산소 기체를 계속하여 공급함으로써, 기판 표면에 흡착된 루테늄 전구체가 공급되는 산소 기체와 표면 흡착 반응을 일으켜 원자층 증착 방식으로 루테늄 막을 증착할 뿐만 아니라, 일부 루테늄 전구체는 루테늄 전구체 공급 주기와 함께 공급되는 산소 기체와 기상 반응을 일으켜 추가적인 루테늄 산화막을 형성할 수도 있다. 따라서, 일반적인 원자층 증착 방법에 의한 루테늄 막 증착 방법에 의한 경우보다, 루테늄 층 증착 속도가 더 빠를 수 있으며, 초기 반응에서의 증착 잠복기를 기존의 400 사이클 수준에서 50 사이클 수준 이내로 감소시킬 수 있다. 또한, 앞서 설명한 바와 같이 루테늄 막과 루테늄 산화막을 형성한 후에, 암모니아(NH3) 기체를 공급(t6)하여, 루테늄 박막과 산화 루테늄 박막 내부의 산소를 환원시키는 단계(t6)를 포함함으로써, 최종적으로 산소가 포함된 루테늄 박막이나 산화 루테늄 박막이 아닌, 잔류 산소가 제거된 순도가 높은 루테늄 박막을 얻을 수 있다.
본 실시예에서 암모니아(NH3) 기체를 공급(t6)하여, 루테늄 박막과 산화 루테늄 박막 내부의 산소를 환원시키는 단계(t6 및 t7)는 루테늄 박막과 산화 루테늄 박막을 형성하는 기체 공급 사이클(t1 내지 t4)과 함께 반복될 수도 있지만, 루테늄 층의 밀도를 높이기 위하여, 기상 반응으로 기판 위에 산화 루테늄 층을 형성하는 단계와 원자층 증착 방법으로 기판 위에 루테늄 층을 형성하는 단계를 포함하는 기체 공급 사이클(t1 내지 t4)을 2회 이상 수십 회 내지 수백 회 반복한 후, 반응기 내부를 퍼지하는 단계, 산화 루테늄 층과 루테늄 층이 형성된 반도체 기판 위에 암모니아 기체를 공급하여 루테늄 박막 내부의 산소를 환원시키는 단계, 그리고 기판 위에 퍼지 기체를 공급하여 환원 후 잔여물질을 배출하는 단계를 진행할 수도 있다. 그리고 이러한 기체 공급 주기는 원하는 두께의 루테늄 층이 형성될 때까지 반복할 수 있다.
반응기의 부피와 구조에 따라 차이가 있지만, 각각의 기체 공급은 약 0.2초 내지 약 10초 동안 지속하는 것이 바람직하다. 또한, 제1 퍼지 기체를 공급하는 제2, 제4, 그리고 제2 퍼지 기체를 공급하는 제5, 제7 시간(t2, t4, t5, t7)은 다른 시간(t1, t3, 그리고 t6)에 비하여 짧을 수 있고 생략될 수도 있다. 제1, 제2 퍼지 기체는 모두 불활성 기체로서, 예를 들어 아르곤(Ar), 질소(N2), 헬륨(He)을 이용할 수 있다. 이때, 암모니아(NH3) 기체를 공급하는 시간(t6)은 막 내의 산소가 충분히 제거될 수 있도록 10분 이하의 시간 내에서 지속되는 것이 바람직하다. 또한, 반응기의 온도는 200℃ 내지 400℃일 수 있다.
그러면 본 발명의 다른 한 실시예에 따른 루테늄 층 증착 방법을 도 3을 참고로 하여 설명한다. 도 3을 참고하면, 본 발명의 다른 한 실시예에 따른 루테늄 층 증착 방법에 따른 기체 공급 주기는 제1 시간 내지 제4 시간(t1~t4) 동안 기판 위에 일정량의 제1 산소(O2) 기체를 공급하면서, 제1 시간(t1) 동안 기판 위에 루테늄(Ru) 원소를 포함하는 루테늄 전구체를 공급하고, 제2 시간(t2) 동안 제1 퍼지 기체를 공급하고, 제3 시간(t3) 동안 기판 위에 제2 산소(O2) 기체를 펄스 형태로 더 공급하고, 제4 시간(t4) 동안 기판 위에 제1 퍼지 기체를 공급한다. 이러한 제1 시간부터 제4 시간까지를 원하는 두께의 루테늄 산화막이 증착될 때까지 수회, 수십 회 내지 수백 회 동안 반복한다. 원하는 두께의 루테늄 산화막이 증착되면, 제5 시간(t5) 동안 제2 퍼지 기체를 공급하고, 제6 시간(t6) 동안 기판 위에 암모니아(NH3) 기체를 공급하고, 그리고 제7 시간(t7) 동안 기판 위에 제2 퍼지 기체를 공급한다. 암모니아 기체 공급 단계 (t6)는 상기 증착된 루테늄 산화막이 충분히 환원될 때까지 지속한다. 이어서 제8 시간(t8)동안 루테늄 전구체를 다시 공급하고, 제9 시간(t9) 동안 제1 퍼지 기체를 공급하고, 제10 시간(t10) 동안 제2 산소(O2) 기체를 공급하고, 제11 시간(t11) 동안 제1 퍼지 기체를 공급한다. 이러한 제8 시간부터 제11 시간(t8~t11)까지를 원하는 두께의 루테늄 막이 증착될 때까지 수회, 수십 회 내지 수백 회 반복한다.
본 실시예에 따르면 초기 제1 시간부터 제4 시간을 반복 수행함으로써, 기판 위에 일정 두께의 루테늄 산화막을 형성한다. 증착된 루테늄 산화막 위에 암모니아 기체를 제6 시간 동안(t6) 공급하여 루테늄 막으로 환원시킨다. 이러한 과정을 통해 루테늄 증착막이 얻어지면, 원자층 증착 방식에 의해 제8 시간(t8)부터 제11 시간(t11)을 반복함으로써 원하는 두께의 증착막을 얻을 수 있다.
이때, 반응기의 부피와 구조에 따라 차이가 있지만, 각각의 기체 공급은 약 0.2초 내지 약 10초 동안 지속하는 것이 바람직하다. 또한, 퍼지 기체를 공급하는 단계는 생략될 수도 있다. 이때, 암모니아(NH3) 기체를 공급하는 단계는 막 내의 산소가 충분히 제거될 수 있도록 10분 이하의 시간 내에서 지속되는 것이 바람직하다. 또한, 반응기의 온도는 200℃ 내지 400℃일 수 있다.
그러면 본 발명의 다른 한 실시예에 따른 루테늄 층 증착 방법을 도 4를 참고로 하여 설명한다. 도 4를 참고하면, 본 발명의 다른 한 실시예에 따른 루테늄 층 증착 방법에 따른 기체 공급 주기는 제1 시간(t1) 동안 기판 위에 루테늄(Ru) 원소를 포함하는 루테늄 전구체와 산소(O2) 기체를 공급하여 기판 위에 루테늄 전구체와 산소 기체와의 기상 반응에 의한 루테늄 산화막을 형성하고, 이어서 제2 시간(t2) 동안 퍼지 기체를 공급하여 반응하지 않고 남아 있는 기체를 제거하는 단계를 수 회, 수십 회, 또는 수백 회 반복하고, 이어서 제3 시간(t3) 동안 기판 위에 암모니아(NH3) 기체를 공급하여, 루테늄 산화막에서 산소를 제거하는 단계와 제4 시간(t4) 동안 기판 위에 퍼지 기체를 공급하여 잔류하는 암모니아 기체를 반응기로부터 제거하는 단계를 포함한다. 그 후, 제5 시간(t5) 동안 루테늄(Ru) 원소를 포함하는 루테늄 전구체를 공급하여 기판 표면에 루테늄 전구체를 흡착시키는 단계와 제6 시간(t6) 동안 퍼지 기체를 공급하여 흡착하지 않고 기상에 존재하는 루테늄 전구체를 배기시키는 단계와, 제7 시간(t7) 동안 기판 위에 산소(O2) 기체를 공급하여 흡착된 루테늄 전구체와의 반응을 통해 기판에 루테늄 박막을 형성시키는 단계, 그리고 제8 시간(t8) 동안 기판 위에 퍼지 기체를 공급하여 반응하지 않고 남은 산소 기체와 반응 부산물을 반응기로부터 제거하는 단계를 수 회, 수십 회, 또는 수 백 회 반복하여 원자층 증착 방법에 의한 루테늄 막을 증착하고, 이어서 제9 시간(t9) 동안 기판 위에 암모니아(NH3) 기체를 공급하여, 루테늄 막 내에 남아 있는 산소를 제거하는 단계와 제10 시간(t10) 동안 기판 위에 퍼지 기체를 공급하여 잔류하는 암모니아 기체를 반응기로부터 제거하는 단계를 포함한다. 이때, 반응기의 부피와 구조에 따라 차이가 있지만, 각각의 기체 공급은 약 0.2초 내지 약 10초 동안 지속하는 것이 바람직하다. 또한, 퍼지 기체를 공급하는 단계는 생략될 수도 있다. 이때, 암모니아(NH3) 기체를 공급하는 단계는 막 내의 산소가 충분히 제거될 수 있도록 10분 이하의 시간 내에서 지속되는 것이 바람직하다. 또한, 반응기의 온도는 200℃ 내지 400℃일 수 있다.
이처럼 본 발명의 다른 한 실시예에 따른 루테늄 층 증착 방법에서, 먼저 루테늄 전구체와 산소 기체를 함께 공급(t1)하여, 루테늄 전구체와 산소 기체의 기상 반응을 통한 루테늄 산화막을 형성하는 단계(t1 및 t2)를 수백 회 반복하여, 원하는 두께의 루테늄 산화막을 형성한 후에, 암모니아(NH3) 기체를 공급(t3)하여, 루테늄 박막과 산화 루테늄 박막 내부의 산소를 환원시키는 단계(t3 내지 t4)를 수행할 수 있다. 그 후에 이어서, 기판 위에 루테늄(Ru) 원소를 포함하는 루테늄 전구체를 공급(t5)하여 루테늄 전구체를 반도체 기판 위에 흡착시키는 단계, 퍼지 기체를 공급(t6)하여 기판 위에 흡착되지 않은 물질들을 제거 및 배출하는 단계, 루테늄 전구체 흡착층이 형성된 반도체 기판 위에 산소(O2) 기체를 공급(t7)하여 루테늄 전구체 흡착층에서 리간드를 제거하여 원자층 증착 방법으로 루테늄 박막을 형성하는 단계, 퍼지 기체를 공급(t8)하여 루테늄 박막 형성 후 잔여 물질을 배출하는 단계를 수회 내지 수십 수백 회 반복하여 원자층 증착 방법에 의한 루테늄 막을 형성하고, 암모니아(NH3) 기체를 공급(t9)하여, 루테늄 박막과 산화 루테늄 박막 내부의 산소를 환원시키는 단계(t9 내지 t10)를 수행할 수 있다. 이러한 기체 공급 단계들은 원하는 두께의 루테늄 층이 형성될 때까지 반복할 수 있다.
이러한 본 발명의 다른 한 실시예에 따른 루테늄 층 증착 방법에 의하면, 루테늄 막을 증착하는데, 루테늄 전구체와 산소 기체가 동시에 공급되어 기상 반응에 의한 산화 루테늄 층을 형성함과 동시에, 원자층 증착 방식으로 루테늄 막을 증착함으로써, 기존의 원자층 증착 방법에 비하여 빠른 속도로 루테늄 박막을 증착할 수 있고, 루테늄 산화막과 루테늄 막을 형성한 후에, 암모니아(NH3) 기체를 공급하여, 루테늄 박막과 산화 루테늄 박막 내부의 산소를 환원시키는 단계를 포함함으로써, 하부막과의 접합성이 높은 루테늄 박막을 얻을 수 있으며, 원자층 증착법에 의한 루테늄 막 증착 단계를 포함함으로써, 종횡비가 큰 표면에 단차 피복성이 우수한 루테늄 막을 형성할 수 있다.
그러면, 도 5a 및 도 5b를 참고로 하여, 증착된 박막의 현미경 사진에 대하여 설명한다. 도 5a 및 도 5b는 각기 기존의 원자층 증착 방법으로 증착한 박막과 도 3에 도시한 본 발명의 실시예에 따른 증착 방법으로 증착한 박막의 막 표면을 나타내는 주사 전자 현미경 사진이다.
도 5a 및 도 5b를 참고하면, 본 발명의 실시예에 따른 증착 방법으로 증착한 박막의 경우, 기존의 원자층 증착 방법으로 증착한 박막에 비하여, 막 표면의 박막 분리현상이 나타나지 않음을 알 수 있었다.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
도 1 는 본 발명의 한 실시예에 따른 루테늄 막 증착 방법에 의한 기체 공급 주기의 한 예이다.
도 2는 본 발명의 한 실시예에 따른 루테늄 막 증착 방법에 의한 기체 공급 주기의 한 예이다.
도 3은 본 발명의 다른 한 실시예에 따른 루테늄 막 증착 방법에 의한 기체 공급 주기의 한 예이다.
도 4는 본 발명의 다른 한 실시예에 따른 루테늄 막 증착 방법에 의한 기체 공급 주기의 한 예이다.
도 5a 및 도 5b는 각기 기존의 원자층 증착 방법으로 증착한 박막과 도 3에 도시한 본 발명의 실시예에 따른 증착 방법으로 증착한 박막의 막 표면을 나타내는 주사 전자 현미경 사진이다.

Claims (28)

  1. 삭제
  2. 삭제
  3. 삭제
  4. 삭제
  5. 삭제
  6. 삭제
  7. 삭제
  8. 삭제
  9. 삭제
  10. 삭제
  11. 삭제
  12. 삭제
  13. 삭제
  14. 삭제
  15. 삭제
  16. 삭제
  17. 기판을 화학 증착 반응기에 장착하는 단계,
    상기 반응기에 루테늄 전구체와 제1 산소(O2) 기체를 동시에 공급하는 단계 및 상기 반응기에 제2 산소(O2) 기체를 1차 공급하는 단계를 복수 회 반복하는 단계,
    상기 반응기에 암모니아(NH3) 기체를 공급하는 단계,
    상기 반응기에 루테늄 전구체를 공급하는 단계, 그리고
    상기 반응기에 제2 산소 기체를 2차 공급하는 단계를 반복하여 루테늄 막을 형성하는 방법.
  18. 제17항에서,
    상기 반응기에 루테늄 전구체와 제1 산소 기체를 동시에 공급하는 단계 후에도 상기 반응기에 제1 산소 기체를 지속적으로 공급하는 루테늄 막을 형성하는 방법.
  19. 제17항에서,
    상기 제1 산소 기체의 공급은 상기 제2 산소 기체의 1차 공급 단계 동안에도 지속적으로 이루어지는 루테늄 막을 형성하는 방법.
  20. 제17항 또는 제18항에서,
    상기 반응기에 루테늄 전구체와 제1 산소 기체를 동시에 공급하는 단계 후에 상기 반응기에 불활성 기체를 공급하는 단계를 더 포함하는 루테늄 막을 형성하는 방법.
  21. 제17항에서,
    상기 반응기에 제2 산소 기체를 1차 공급하는 단계 후에 상기 반응기에 불활성 기체를 공급하는 단계를 더 포함하는 루테늄 막을 형성하는 방법.
  22. 삭제
  23. 제17항에서,
    상기 반응기에 암모니아 기체를 공급하는 단계 전 후에 상기 반응기에 불활성 기체를 공급하는 단계를 더 포함하는 루테늄 막을 형성하는 방법.
  24. 제23항에서,
    상기 암모니아 기체를 공급하는 단계는 막 내의 산소가 충분히 제거될 수 있도록 10분 이하의 시간 내에서 지속되는 루테늄 막을 형성하는 방법.
  25. 제17항에서,
    상기 반응기에 루테늄 전구체를 공급하는 단계 후에 상기 반응기에 불활성 기체를 공급하는 단계를 더 포함하는 루테늄 막을 형성하는 방법.
  26. 제17항 또는 제25항에서,
    상기 반응기에 제2 산소 기체를 2차 공급하는 단계 후에 상기 반응기에 불활 성 기체를 공급하는 단계를 더 포함하는 루테늄 막을 형성하는 방법.
  27. 제17항에서,
    상기 반응기에 루테늄 전구체를 공급하는 단계와 상기 제2 산소 기체를 2차 공급하는 단계를 복수 회 반복하는 루테늄 막을 형성하는 방법.
  28. 제17항에서,
    상기 반응기의 온도는 200℃ 내지 400℃인 루테늄 막을 형성하는 방법.
KR1020070104509A 2007-10-17 2007-10-17 루테늄 막 형성 방법 KR101544198B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020070104509A KR101544198B1 (ko) 2007-10-17 2007-10-17 루테늄 막 형성 방법
US12/250,827 US8273408B2 (en) 2007-10-17 2008-10-14 Methods of depositing a ruthenium film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070104509A KR101544198B1 (ko) 2007-10-17 2007-10-17 루테늄 막 형성 방법

Publications (2)

Publication Number Publication Date
KR20090039083A KR20090039083A (ko) 2009-04-22
KR101544198B1 true KR101544198B1 (ko) 2015-08-12

Family

ID=40563905

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070104509A KR101544198B1 (ko) 2007-10-17 2007-10-17 루테늄 막 형성 방법

Country Status (2)

Country Link
US (1) US8273408B2 (ko)
KR (1) KR101544198B1 (ko)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7494927B2 (en) * 2000-05-15 2009-02-24 Asm International N.V. Method of growing electrical conductors
US8025922B2 (en) 2005-03-15 2011-09-27 Asm International N.V. Enhanced deposition of noble metals
US7666773B2 (en) * 2005-03-15 2010-02-23 Asm International N.V. Selective deposition of noble metal thin films
US20070014919A1 (en) * 2005-07-15 2007-01-18 Jani Hamalainen Atomic layer deposition of noble metal oxides
US7435484B2 (en) * 2006-09-01 2008-10-14 Asm Japan K.K. Ruthenium thin film-formed structure
US20080124484A1 (en) * 2006-11-08 2008-05-29 Asm Japan K.K. Method of forming ru film and metal wiring structure
US20090087339A1 (en) * 2007-09-28 2009-04-02 Asm Japan K.K. METHOD FOR FORMING RUTHENIUM COMPLEX FILM USING Beta-DIKETONE-COORDINATED RUTHENIUM PRECURSOR
US7655564B2 (en) * 2007-12-12 2010-02-02 Asm Japan, K.K. Method for forming Ta-Ru liner layer for Cu wiring
KR20090067505A (ko) * 2007-12-21 2009-06-25 에이에스엠지니텍코리아 주식회사 루테늄막 증착 방법
US7799674B2 (en) * 2008-02-19 2010-09-21 Asm Japan K.K. Ruthenium alloy film for copper interconnects
US8084104B2 (en) * 2008-08-29 2011-12-27 Asm Japan K.K. Atomic composition controlled ruthenium alloy film formed by plasma-enhanced atomic layer deposition
US8133555B2 (en) 2008-10-14 2012-03-13 Asm Japan K.K. Method for forming metal film by ALD using beta-diketone metal complex
US9379011B2 (en) 2008-12-19 2016-06-28 Asm International N.V. Methods for depositing nickel films and for making nickel silicide and nickel germanide
US20110020546A1 (en) * 2009-05-15 2011-01-27 Asm International N.V. Low Temperature ALD of Noble Metals
US8329569B2 (en) * 2009-07-31 2012-12-11 Asm America, Inc. Deposition of ruthenium or ruthenium dioxide
US8871617B2 (en) 2011-04-22 2014-10-28 Asm Ip Holding B.V. Deposition and reduction of mixed metal oxide thin films
JP6118149B2 (ja) * 2013-03-21 2017-04-19 東京エレクトロン株式会社 ルテニウム膜の形成方法および記憶媒体
US9607842B1 (en) 2015-10-02 2017-03-28 Asm Ip Holding B.V. Methods of forming metal silicides
JP6741780B2 (ja) * 2016-11-11 2020-08-19 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置およびプログラム
US10731250B2 (en) * 2017-06-06 2020-08-04 Lam Research Corporation Depositing ruthenium layers in interconnect metallization
US10501846B2 (en) * 2017-09-11 2019-12-10 Lam Research Corporation Electrochemical doping of thin metal layers employing underpotential deposition and thermal treatment
US10790188B2 (en) * 2017-10-14 2020-09-29 Applied Materials, Inc. Seamless ruthenium gap fill
KR102623543B1 (ko) 2018-05-18 2024-01-10 삼성전자주식회사 유전막을 가지는 집적회로 소자 및 그 제조 방법과 집적회로 소자 제조 장치
KR102642469B1 (ko) * 2021-12-22 2024-03-04 (주)원익머트리얼즈 유기금속 전구체를 이용한 금속 박막 증착 방법

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100597322B1 (ko) * 2005-03-16 2006-07-06 주식회사 아이피에스 박막증착방법

Family Cites Families (176)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE410873C (de) 1923-08-18 1925-03-26 Neufeldt & Kuhnke Fa Asynchronmaschine mit Kondensatoren zur Erzeugung des Magnetisierungstromes
GB368850A (en) 1930-06-07 1932-03-14 Westinghouse Brake & Signal Improvements relating to electric current rectifying devices
US6482262B1 (en) 1959-10-10 2002-11-19 Asm Microchemistry Oy Deposition of transition metal carbides
US4210608A (en) 1974-05-13 1980-07-01 Uop Inc. Manufacture of linear primary aldehydes and alcohols
SE393967B (sv) 1974-11-29 1977-05-31 Sateko Oy Forfarande och for utforande av stroleggning mellan lagren i ett virkespaket
BE843167A (fr) 1975-06-24 1976-10-18 Refroidissement et decapage d'un fil machine lamine en continu
US4670110A (en) 1979-07-30 1987-06-02 Metallurgical, Inc. Process for the electrolytic deposition of aluminum using a composite anode
US4477296A (en) 1982-09-30 1984-10-16 E. I. Du Pont De Nemours And Company Method for activating metal particles
US4891050A (en) 1985-11-08 1990-01-02 Fuel Tech, Inc. Gasoline additives and gasoline containing soluble platinum group metal compounds and use in internal combustion engines
US4604118A (en) 1985-08-13 1986-08-05 Corning Glass Works Method for synthesizing MgO--Al2 O3 --SiO2 glasses and ceramics
FR2596070A1 (fr) 1986-03-21 1987-09-25 Labo Electronique Physique Dispositif comprenant un suscepteur plan tournant parallelement a un plan de reference autour d'un axe perpendiculaire a ce plan
JPH0779136B2 (ja) 1986-06-06 1995-08-23 株式会社日立製作所 半導体装置
JPH0713304B2 (ja) 1987-12-14 1995-02-15 日立化成工業株式会社 銅の表面処理法
US5820664A (en) 1990-07-06 1998-10-13 Advanced Technology Materials, Inc. Precursor compositions for chemical vapor deposition, and ligand exchange resistant metal-organic precursor solutions comprising same
US5453494A (en) 1990-07-06 1995-09-26 Advanced Technology Materials, Inc. Metal complex source reagents for MOCVD
JPH0485024A (ja) 1990-07-30 1992-03-18 Mitsubishi Gas Chem Co Inc 銅張積層板の製造法
US5382333A (en) 1990-07-30 1995-01-17 Mitsubishi Gas Chemical Company, Inc. Process for producing copper clad laminate
EP0469470B1 (en) 1990-07-30 1996-10-09 Mitsubishi Gas Chemical Company, Inc. Process for producing multilayered printed board
US5106454A (en) 1990-11-01 1992-04-21 Shipley Company Inc. Process for multilayer printed circuit board manufacture
US5865365A (en) 1991-02-19 1999-02-02 Hitachi, Ltd. Method of fabricating an electronic circuit device
US5561082A (en) 1992-07-31 1996-10-01 Kabushiki Kaisha Toshiba Method for forming an electrode and/or wiring layer by reducing copper oxide or silver oxide
US5637373A (en) 1992-11-19 1997-06-10 Semiconductor Energy Laboratory Co., Ltd. Magnetic recording medium
US5391517A (en) 1993-09-13 1995-02-21 Motorola Inc. Process for forming copper interconnect structure
US6090701A (en) 1994-06-21 2000-07-18 Kabushiki Kaisha Toshiba Method for production of semiconductor device
FI97731C (fi) 1994-11-28 1997-02-10 Mikrokemia Oy Menetelmä ja laite ohutkalvojen valmistamiseksi
US6006763A (en) 1995-01-11 1999-12-28 Seiko Epson Corporation Surface treatment method
KR0172772B1 (ko) 1995-05-17 1999-03-30 김주용 반도체 장치의 확산장벽용 산화루테늄막 형성 방법
US6015986A (en) 1995-12-22 2000-01-18 Micron Technology, Inc. Rugged metal electrodes for metal-insulator-metal capacitors
US6268291B1 (en) 1995-12-29 2001-07-31 International Business Machines Corporation Method for forming electromigration-resistant structures by doping
US6342277B1 (en) 1996-08-16 2002-01-29 Licensee For Microelectronics: Asm America, Inc. Sequential chemical vapor deposition
US5916365A (en) 1996-08-16 1999-06-29 Sherman; Arthur Sequential chemical vapor deposition
US5923056A (en) 1996-10-10 1999-07-13 Lucent Technologies Inc. Electronic components with doped metal oxide dielectric materials and a process for making electronic components with doped metal oxide dielectric materials
US5695810A (en) 1996-11-20 1997-12-09 Cornell Research Foundation, Inc. Use of cobalt tungsten phosphide as a barrier material for copper metallization
JP3150095B2 (ja) 1996-12-12 2001-03-26 日本電気株式会社 多層配線構造の製造方法
US6335280B1 (en) 1997-01-13 2002-01-01 Asm America, Inc. Tungsten silicide deposition process
US6124189A (en) 1997-03-14 2000-09-26 Kabushiki Kaisha Toshiba Metallization structure and method for a semiconductor device
US6387805B2 (en) 1997-05-08 2002-05-14 Applied Materials, Inc. Copper alloy seed layer for copper metallization
US5939334A (en) 1997-05-22 1999-08-17 Sharp Laboratories Of America, Inc. System and method of selectively cleaning copper substrate surfaces, in-situ, to remove copper oxides
KR100269306B1 (ko) 1997-07-31 2000-10-16 윤종용 저온처리로안정화되는금속산화막으로구성된완충막을구비하는집적회로장치및그제조방법
JPH1154496A (ja) 1997-08-07 1999-02-26 Tokyo Electron Ltd 熱処理装置及びガス処理装置
US6404191B2 (en) 1997-08-08 2002-06-11 Nve Corporation Read heads in planar monolithic integrated circuit chips
KR100274603B1 (ko) 1997-10-01 2001-01-15 윤종용 반도체장치의제조방법및그의제조장치
US6320213B1 (en) 1997-12-19 2001-11-20 Advanced Technology Materials, Inc. Diffusion barriers between noble metal electrodes and metallization layers, and integrated circuit and semiconductor devices comprising same
US6033584A (en) 1997-12-22 2000-03-07 Advanced Micro Devices, Inc. Process for reducing copper oxide during integrated circuit fabrication
US5998048A (en) 1998-03-02 1999-12-07 Lucent Technologies Inc. Article comprising anisotropic Co-Fe-Cr-N soft magnetic thin films
JP3116897B2 (ja) 1998-03-18 2000-12-11 日本電気株式会社 微細配線形成方法
US6323131B1 (en) 1998-06-13 2001-11-27 Agere Systems Guardian Corp. Passivated copper surfaces
US6130123A (en) 1998-06-30 2000-10-10 Intel Corporation Method for making a complementary metal gate electrode technology
KR100275738B1 (ko) 1998-08-07 2000-12-15 윤종용 원자층 증착법을 이용한 박막 제조방법
US6074945A (en) 1998-08-27 2000-06-13 Micron Technology, Inc. Methods for preparing ruthenium metal films
US6133159A (en) 1998-08-27 2000-10-17 Micron Technology, Inc. Methods for preparing ruthenium oxide films
US6063705A (en) 1998-08-27 2000-05-16 Micron Technology, Inc. Precursor chemistries for chemical vapor deposition of ruthenium and ruthenium oxide
US6541067B1 (en) 1998-08-27 2003-04-01 Micron Technology, Inc. Solvated ruthenium precursors for direct liquid injection of ruthenium and ruthenium oxide and method of using same
US6284655B1 (en) 1998-09-03 2001-09-04 Micron Technology, Inc. Method for producing low carbon/oxygen conductive layers
US6108937A (en) 1998-09-10 2000-08-29 Asm America, Inc. Method of cooling wafers
US6444868B1 (en) 1999-02-17 2002-09-03 Exxon Mobil Chemical Patents Inc. Process to control conversion of C4+ and heavier stream to lighter products in oxygenate conversion reactions
US6303500B1 (en) 1999-02-24 2001-10-16 Micron Technology, Inc. Method and apparatus for electroless plating a contact pad
US6136163A (en) 1999-03-05 2000-10-24 Applied Materials, Inc. Apparatus for electro-chemical deposition with thermal anneal chamber
US6305314B1 (en) 1999-03-11 2001-10-23 Genvs, Inc. Apparatus and concept for minimizing parasitic chemical vapor deposition during atomic layer deposition
US20020000665A1 (en) 1999-04-05 2002-01-03 Alexander L. Barr Semiconductor device conductive bump and interconnect barrier
US6184403B1 (en) 1999-05-19 2001-02-06 Research Foundation Of State University Of New York MOCVD precursors based on organometalloid ligands
US6297539B1 (en) 1999-07-19 2001-10-02 Sharp Laboratories Of America, Inc. Doped zirconia, or zirconia-like, dielectric film transistor structure and deposition method for same
US6171910B1 (en) 1999-07-21 2001-01-09 Motorola Inc. Method for forming a semiconductor device
US6478931B1 (en) 1999-08-06 2002-11-12 University Of Virginia Patent Foundation Apparatus and method for intra-layer modulation of the material deposition and assist beam and the multilayer structure produced therefrom
US6391785B1 (en) 1999-08-24 2002-05-21 Interuniversitair Microelektronica Centrum (Imec) Method for bottomless deposition of barrier layers in integrated circuit metallization schemes
US6511539B1 (en) 1999-09-08 2003-01-28 Asm America, Inc. Apparatus and method for growth of a thin film
US6040243A (en) 1999-09-20 2000-03-21 Chartered Semiconductor Manufacturing Ltd. Method to form copper damascene interconnects using a reverse barrier metal scheme to eliminate copper diffusion
US6593653B2 (en) 1999-09-30 2003-07-15 Novellus Systems, Inc. Low leakage current silicon carbonitride prepared using methane, ammonia and silane for copper diffusion barrier, etchstop and passivation applications
US6576053B1 (en) 1999-10-06 2003-06-10 Samsung Electronics Co., Ltd. Method of forming thin film using atomic layer deposition method
US6203613B1 (en) 1999-10-19 2001-03-20 International Business Machines Corporation Atomic layer deposition with nitrate containing precursors
US6290880B1 (en) 1999-12-01 2001-09-18 The United States Of America As Represented By The Secretary Of The Navy Electrically conducting ruthenium dioxide-aerogel composite
EP1247292B1 (en) 1999-12-15 2009-02-04 Genitech Co., Ltd. Method of forming copper interconnections and thin films using chemical vapor deposition with catalyst
US6842740B1 (en) 1999-12-20 2005-01-11 Hewlett-Packard Development Company, L.P. Method for providing automatic payment when making duplicates of copyrighted material
US6551399B1 (en) 2000-01-10 2003-04-22 Genus Inc. Fully integrated process for MIM capacitors using atomic layer deposition
US6777331B2 (en) 2000-03-07 2004-08-17 Simplus Systems Corporation Multilayered copper structure for improving adhesion property
US7419903B2 (en) 2000-03-07 2008-09-02 Asm International N.V. Thin films
EP1266054B1 (en) 2000-03-07 2006-12-20 Asm International N.V. Graded thin films
JP3979791B2 (ja) 2000-03-08 2007-09-19 株式会社ルネサステクノロジ 半導体装置およびその製造方法
US6380080B2 (en) 2000-03-08 2002-04-30 Micron Technology, Inc. Methods for preparing ruthenium metal films
FI117978B (fi) 2000-04-14 2007-05-15 Asm Int Menetelmä ja laitteisto ohutkalvon kasvattamiseksi alustalle
US6984591B1 (en) 2000-04-20 2006-01-10 International Business Machines Corporation Precursor source mixtures
US6482733B2 (en) 2000-05-15 2002-11-19 Asm Microchemistry Oy Protective layers prior to alternating layer deposition
US6679951B2 (en) 2000-05-15 2004-01-20 Asm Intenational N.V. Metal anneal with oxidation prevention
US6759325B2 (en) 2000-05-15 2004-07-06 Asm Microchemistry Oy Sealing porous structures
US6878628B2 (en) 2000-05-15 2005-04-12 Asm International Nv In situ reduction of copper oxide prior to silicon carbide deposition
US6482740B2 (en) 2000-05-15 2002-11-19 Asm Microchemistry Oy Method of growing electrical conductors by reducing metal oxide film with organic compound containing -OH, -CHO, or -COOH
US7494927B2 (en) 2000-05-15 2009-02-24 Asm International N.V. Method of growing electrical conductors
US6429127B1 (en) 2000-06-08 2002-08-06 Micron Technology, Inc. Methods for forming rough ruthenium-containing layers and structures/methods using same
US7253076B1 (en) * 2000-06-08 2007-08-07 Micron Technologies, Inc. Methods for forming and integrated circuit structures containing ruthenium and tungsten containing layers
JP3574383B2 (ja) 2000-07-31 2004-10-06 富士通株式会社 半導体装置及びその製造方法
US6455424B1 (en) 2000-08-07 2002-09-24 Micron Technology, Inc. Selective cap layers over recessed polysilicon plugs
US6602653B1 (en) 2000-08-25 2003-08-05 Micron Technology, Inc. Conductive material patterning methods
US6617173B1 (en) 2000-10-11 2003-09-09 Genus, Inc. Integration of ferromagnetic films with ultrathin insulating film using atomic layer deposition
US6395650B1 (en) 2000-10-23 2002-05-28 International Business Machines Corporation Methods for forming metal oxide layers with enhanced purity
US6617248B1 (en) * 2000-11-10 2003-09-09 Micron Technology, Inc. Method for forming a ruthenium metal layer
KR100400765B1 (ko) 2000-11-13 2003-10-08 엘지.필립스 엘시디 주식회사 박막 형성방법 및 이를 적용한 액정표시소자의 제조방법
WO2002045167A2 (en) 2000-11-30 2002-06-06 Asm International N.V. Thin films for magnetic devices
KR100386034B1 (ko) 2000-12-06 2003-06-02 에이에스엠 마이크로케미스트리 리미티드 확산 방지막의 결정립계를 금속산화물로 충진한 구리 배선구조의 반도체 소자 제조 방법
US6464779B1 (en) 2001-01-19 2002-10-15 Novellus Systems, Inc. Copper atomic layer chemical vapor desposition
US6451685B1 (en) 2001-02-05 2002-09-17 Micron Technology, Inc. Method for multilevel copper interconnects for ultra large scale integration
US6420189B1 (en) 2001-04-27 2002-07-16 Advanced Micro Devices, Inc. Superconducting damascene interconnected for integrated circuit
KR100406534B1 (ko) 2001-05-03 2003-11-20 주식회사 하이닉스반도체 루테늄 박막의 제조 방법
US7700454B2 (en) 2001-07-24 2010-04-20 Samsung Electronics Co., Ltd. Methods of forming integrated circuit electrodes and capacitors by wrinkling a layer that includes a high percentage of impurities
KR100427030B1 (ko) 2001-08-27 2004-04-14 주식회사 하이닉스반도체 다성분계 박막의 형성 방법 및 그를 이용한 커패시터의제조 방법
US20030059535A1 (en) 2001-09-25 2003-03-27 Lee Luo Cycling deposition of low temperature films in a cold wall single wafer process chamber
US7780785B2 (en) 2001-10-26 2010-08-24 Applied Materials, Inc. Gas delivery apparatus for atomic layer deposition
KR100422597B1 (ko) 2001-11-27 2004-03-16 주식회사 하이닉스반도체 다마신 공정에 의해 형성된 캐패시터와 금속배선을 가지는반도체소자
KR20030043380A (ko) 2001-11-28 2003-06-02 주식회사 하이닉스반도체 반도체 소자의 캐패시터 제조방법
KR100805843B1 (ko) 2001-12-28 2008-02-21 에이에스엠지니텍코리아 주식회사 구리 배선 형성방법, 그에 따라 제조된 반도체 소자 및구리 배선 형성 시스템
US6824816B2 (en) 2002-01-29 2004-11-30 Asm International N.V. Process for producing metal thin films by ALD
US6656748B2 (en) 2002-01-31 2003-12-02 Texas Instruments Incorporated FeRAM capacitor post stack etch clean/repair
KR100468847B1 (ko) 2002-04-02 2005-01-29 삼성전자주식회사 알콜을 이용한 금속산화물 박막의 화학기상증착법
US6586330B1 (en) 2002-05-07 2003-07-01 Tokyo Electron Limited Method for depositing conformal nitrified tantalum silicide films by thermal CVD
US6784101B1 (en) 2002-05-16 2004-08-31 Advanced Micro Devices Inc Formation of high-k gate dielectric layers for MOS devices fabricated on strained lattice semiconductor substrates with minimized stress relaxation
US7404985B2 (en) 2002-06-04 2008-07-29 Applied Materials, Inc. Noble metal layer formation for copper film deposition
US7183604B2 (en) 2002-06-10 2007-02-27 Interuniversitair Microelektronica Centrum (Imec Vzw) High dielectric constant device
US6881260B2 (en) 2002-06-25 2005-04-19 Micron Technology, Inc. Process for direct deposition of ALD RhO2
US6861355B2 (en) 2002-08-29 2005-03-01 Micron Technology, Inc. Metal plating using seed film
US6830983B2 (en) 2002-08-29 2004-12-14 Micron Technology, Inc. Method of making an oxygen diffusion barrier for semiconductor devices using platinum, rhodium, or iridium stuffed with silicon oxide
AU2003282836A1 (en) 2002-10-15 2004-05-04 Rensselaer Polytechnic Institute Atomic layer deposition of noble metals
DE10255841A1 (de) 2002-11-29 2004-06-17 Infineon Technologies Ag Kondensator mit ruthenhaltigen Elektroden
US20040142558A1 (en) 2002-12-05 2004-07-22 Granneman Ernst H. A. Apparatus and method for atomic layer deposition on substrates
KR100505680B1 (ko) 2003-03-27 2005-08-03 삼성전자주식회사 루테늄층을 갖는 반도체 메모리 소자의 제조방법 및루테늄층제조장치
US6955986B2 (en) 2003-03-27 2005-10-18 Asm International N.V. Atomic layer deposition methods for forming a multi-layer adhesion-barrier layer for integrated circuits
JP4009550B2 (ja) 2003-03-27 2007-11-14 エルピーダメモリ株式会社 金属酸化膜の形成方法
US6737313B1 (en) 2003-04-16 2004-05-18 Micron Technology, Inc. Surface treatment of an oxide layer to enhance adhesion of a ruthenium metal layer
US7601223B2 (en) 2003-04-29 2009-10-13 Asm International N.V. Showerhead assembly and ALD methods
JP4959333B2 (ja) 2003-05-09 2012-06-20 エーエスエム アメリカ インコーポレイテッド 化学的不活性化を通じたリアクタ表面のパシベーション
US6881437B2 (en) 2003-06-16 2005-04-19 Blue29 Llc Methods and system for processing a microelectronic topography
US7211508B2 (en) 2003-06-18 2007-05-01 Applied Materials, Inc. Atomic layer deposition of tantalum based barrier materials
US7067407B2 (en) 2003-08-04 2006-06-27 Asm International, N.V. Method of growing electrical conductors
US6939815B2 (en) 2003-08-28 2005-09-06 Intel Corporation Method for making a semiconductor device having a high-k gate dielectric
US8152922B2 (en) 2003-08-29 2012-04-10 Asm America, Inc. Gas mixer and manifold assembly for ALD reactor
US20050085031A1 (en) 2003-10-15 2005-04-21 Applied Materials, Inc. Heterogeneous activation layers formed by ionic and electroless reactions used for IC interconnect capping layers
US7107998B2 (en) 2003-10-16 2006-09-19 Novellus Systems, Inc. Method for preventing and cleaning ruthenium-containing deposits in a CVD apparatus
US7618681B2 (en) 2003-10-28 2009-11-17 Asm International N.V. Process for producing bismuth-containing oxide films
KR100548999B1 (ko) 2003-10-28 2006-02-02 삼성전자주식회사 수직으로 연장된 배선간 엠아이엠 커패시터를 갖는로직소자 및 그것을 제조하는 방법
US7341946B2 (en) 2003-11-10 2008-03-11 Novellus Systems, Inc. Methods for the electrochemical deposition of copper onto a barrier layer of a work piece
US7074719B2 (en) 2003-11-28 2006-07-11 International Business Machines Corporation ALD deposition of ruthenium
US7273526B2 (en) 2004-04-15 2007-09-25 Asm Japan K.K. Thin-film deposition apparatus
JP2005314713A (ja) 2004-04-27 2005-11-10 L'air Liquide Sa Pour L'etude & L'exploitation Des Procede S Georges Claude ルテニウム膜またはルテニウム酸化物膜の製造方法
US7312165B2 (en) 2004-05-05 2007-12-25 Jursich Gregory M Codeposition of hafnium-germanium oxides on substrates used in or for semiconductor devices
US20050252449A1 (en) 2004-05-12 2005-11-17 Nguyen Son T Control of gas flow and delivery to suppress the formation of particles in an MOCVD/ALD system
TW200617197A (en) 2004-07-09 2006-06-01 Aviza Tech Inc Deposition of ruthenium and/or ruthenium oxide films
US7300873B2 (en) 2004-08-13 2007-11-27 Micron Technology, Inc. Systems and methods for forming metal-containing layers using vapor deposition processes
JP2006097044A (ja) 2004-09-28 2006-04-13 L'air Liquide Sa Pour L'etude & L'exploitation Des Procede S Georges Claude 成膜用前駆体、ルテニウム含有膜の成膜方法、ルテニウム膜の成膜方法、ルテニウム酸化物膜の成膜方法およびルテニウム酸塩膜の成膜方法
US20060073276A1 (en) 2004-10-04 2006-04-06 Eric Antonissen Multi-zone atomic layer deposition apparatus and method
US7476618B2 (en) 2004-10-26 2009-01-13 Asm Japan K.K. Selective formation of metal layers in an integrated circuit
US7435679B2 (en) 2004-12-07 2008-10-14 Intel Corporation Alloyed underlayer for microelectronic interconnects
US7429402B2 (en) 2004-12-10 2008-09-30 Applied Materials, Inc. Ruthenium as an underlayer for tungsten film deposition
US20060137608A1 (en) 2004-12-28 2006-06-29 Choi Seung W Atomic layer deposition apparatus
US7438949B2 (en) 2005-01-27 2008-10-21 Applied Materials, Inc. Ruthenium containing layer deposition method
US7408747B2 (en) 2005-02-01 2008-08-05 Hitachi Global Storage Technologies Netherlands B.V. Enhanced anti-parallel-pinned sensor using thin ruthenium spacer and high magnetic field annealing
US20060177601A1 (en) 2005-02-10 2006-08-10 Hyung-Sang Park Method of forming a ruthenium thin film using a plasma enhanced atomic layer deposition apparatus and the method thereof
TW200634982A (en) 2005-02-22 2006-10-01 Asm Inc Plasma pre-treating surfaces for atomic layer deposition
US7666773B2 (en) 2005-03-15 2010-02-23 Asm International N.V. Selective deposition of noble metal thin films
US8025922B2 (en) 2005-03-15 2011-09-27 Asm International N.V. Enhanced deposition of noble metals
US7273814B2 (en) 2005-03-16 2007-09-25 Tokyo Electron Limited Method for forming a ruthenium metal layer on a patterned substrate
US7220671B2 (en) 2005-03-31 2007-05-22 Intel Corporation Organometallic precursors for the chemical phase deposition of metal films in interconnect applications
US20070059502A1 (en) 2005-05-05 2007-03-15 Applied Materials, Inc. Integrated process for sputter deposition of a conductive barrier layer, especially an alloy of ruthenium and tantalum, underlying copper or copper alloy seed layer
US20070014919A1 (en) 2005-07-15 2007-01-18 Jani Hamalainen Atomic layer deposition of noble metal oxides
US7785658B2 (en) 2005-10-07 2010-08-31 Asm Japan K.K. Method for forming metal wiring structure
KR101379015B1 (ko) 2006-02-15 2014-03-28 한국에이에스엠지니텍 주식회사 플라즈마 원자층 증착법을 이용한 루테늄 막 증착 방법 및고밀도 루테늄 층
US7435484B2 (en) 2006-09-01 2008-10-14 Asm Japan K.K. Ruthenium thin film-formed structure
US20080124484A1 (en) 2006-11-08 2008-05-29 Asm Japan K.K. Method of forming ru film and metal wiring structure
US20080296768A1 (en) 2006-12-14 2008-12-04 Chebiam Ramanan V Copper nucleation in interconnects having ruthenium layers
US20080171436A1 (en) 2007-01-11 2008-07-17 Asm Genitech Korea Ltd. Methods of depositing a ruthenium film
JP5313171B2 (ja) 2007-02-21 2013-10-09 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード ルテニウムベースの膜を基板上に形成するための方法
US7786006B2 (en) 2007-02-26 2010-08-31 Tokyo Electron Limited Interconnect structures with a metal nitride diffusion barrier containing ruthenium and method of forming
KR100817090B1 (ko) 2007-02-28 2008-03-26 삼성전자주식회사 반도체 소자의 제조 방법
US7615480B2 (en) 2007-06-20 2009-11-10 Lam Research Corporation Methods of post-contact back end of the line through-hole via integration
US20090087339A1 (en) 2007-09-28 2009-04-02 Asm Japan K.K. METHOD FOR FORMING RUTHENIUM COMPLEX FILM USING Beta-DIKETONE-COORDINATED RUTHENIUM PRECURSOR
US7655564B2 (en) 2007-12-12 2010-02-02 Asm Japan, K.K. Method for forming Ta-Ru liner layer for Cu wiring
KR20090067505A (ko) 2007-12-21 2009-06-25 에이에스엠지니텍코리아 주식회사 루테늄막 증착 방법
US7799674B2 (en) 2008-02-19 2010-09-21 Asm Japan K.K. Ruthenium alloy film for copper interconnects
US8084104B2 (en) 2008-08-29 2011-12-27 Asm Japan K.K. Atomic composition controlled ruthenium alloy film formed by plasma-enhanced atomic layer deposition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100597322B1 (ko) * 2005-03-16 2006-07-06 주식회사 아이피에스 박막증착방법

Also Published As

Publication number Publication date
KR20090039083A (ko) 2009-04-22
US20090104777A1 (en) 2009-04-23
US8273408B2 (en) 2012-09-25

Similar Documents

Publication Publication Date Title
KR101544198B1 (ko) 루테늄 막 형성 방법
KR101379015B1 (ko) 플라즈마 원자층 증착법을 이용한 루테늄 막 증착 방법 및고밀도 루테늄 층
US6808978B2 (en) Method for fabricating metal electrode with atomic layer deposition (ALD) in semiconductor device
KR100960273B1 (ko) 반도체 장치의 제조 방법 및 기판 처리 장치
JP4704618B2 (ja) ジルコニウム酸化膜の製造方法
JP3687651B2 (ja) 薄膜形成方法
US7431966B2 (en) Atomic layer deposition method of depositing an oxide on a substrate
US6800542B2 (en) Method for fabricating ruthenium thin layer
JP4350318B2 (ja) 半導体素子のアルミニウム酸化膜形成方法
KR20080066619A (ko) 루테늄 사산화물을 사용한 루테늄 막 형성 방법
US20100227476A1 (en) Atomic layer deposition processes
US20050037154A1 (en) Method for forming thin film
US8329569B2 (en) Deposition of ruthenium or ruthenium dioxide
TWI809262B (zh) 用於脈衝薄膜沉積的方法
KR20090067505A (ko) 루테늄막 증착 방법
KR101757515B1 (ko) 루테늄막의 형성 방법 및 기억 매체
KR100531464B1 (ko) 원자층 증착법을 이용한 하프니움산화막 형성방법
KR100738068B1 (ko) 산화 환원 반응을 이용한 귀금속 전극 형성 방법
KR101094379B1 (ko) 오존을 반응가스로 이용한 귀금속막의 형성 방법
KR100699362B1 (ko) 플라즈마를 이용한 원자층 증착방법
KR100604665B1 (ko) 하프늄이 함유된 유전막을 갖는 캐패시터 및 그 제조 방법
KR20230096216A (ko) 유기금속 전구체를 이용한 금속 박막 증착 방법
KR20050015442A (ko) 엠오씨브이디에 의한 산화하프늄 박막 증착 방법
US20080182037A1 (en) Method of forming metal layer
KR20040098115A (ko) 원자층 증착 방법에 의한 Ru 박막 형성 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180718

Year of fee payment: 4