KR101460500B1 - 칼코지나이드계 나노선을 이용한 열화학 가스 센서 및 그 제조방법 - Google Patents

칼코지나이드계 나노선을 이용한 열화학 가스 센서 및 그 제조방법 Download PDF

Info

Publication number
KR101460500B1
KR101460500B1 KR20130020889A KR20130020889A KR101460500B1 KR 101460500 B1 KR101460500 B1 KR 101460500B1 KR 20130020889 A KR20130020889 A KR 20130020889A KR 20130020889 A KR20130020889 A KR 20130020889A KR 101460500 B1 KR101460500 B1 KR 101460500B1
Authority
KR
South Korea
Prior art keywords
porous
alumina
pores
chalcogenide
precursor
Prior art date
Application number
KR20130020889A
Other languages
English (en)
Other versions
KR20140106812A (ko
Inventor
좌용호
김세일
이영인
최요민
Original Assignee
한양대학교 에리카산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 에리카산학협력단 filed Critical 한양대학교 에리카산학협력단
Priority to KR20130020889A priority Critical patent/KR101460500B1/ko
Priority to PCT/KR2014/001548 priority patent/WO2014133310A1/ko
Priority to JP2015559197A priority patent/JP6007342B2/ja
Priority to US14/770,921 priority patent/US20160013389A1/en
Publication of KR20140106812A publication Critical patent/KR20140106812A/ko
Application granted granted Critical
Publication of KR101460500B1 publication Critical patent/KR101460500B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/005H2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Catalysts (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

본 발명은, 전면, 후면 및 측면을 포함하고 상기 전면 및 상기 후면을 관통하는 복수 개의 기공이 구비된 다공성 알루미나 템플레이트와, 상기 다공성 알루미나 템플레이트의 후면에 구비되고 복수 개의 기공을 덮는 전기전도성을 갖는 씨드층과, 상기 다공성 알루미나 템플레이트 전면의 상기 복수 개의 기공을 통해 노출된 씨드층에 접촉하고 상기 복수 개의 기공 내에 구비된 복수 개의 칼코지나이드계 나노선과, 상기 칼코지나이드계 나노선과 접촉하면서 상기 다공성 알루미나 템플레이트의 전면에 구비된 전극과, 상기 전극과 전기적으로 연결되는 전극선과, 상기 전극 상부에 구비되고 감지하려는 가스와 접촉하여 발열 반응을 일으키는 다공성 백금-알루미나 복합체 또는 다공성 팔라듐-알루미나 복합체를 포함하며, 상기 칼코지나이드계 나노선은 BixTey(1.5≤x≤2.5, 2.4≤y≤3.6), SbxTey(1.5≤x≤2.5, 2.4≤y≤3.6) 또는 (Bi1-xSbx)Te3(0<x<1)로 이루어진 열화학 가스 센서 및 그 제조방법에 관한 것이다. 본 발명에 의하면, 감지하려는 가스에 반응하는 다공성 백금-알루미나 복합체 또는 다공성 팔라듐-알루미나 복합체의 변화를 통해 원하는 종류의 다양한 가스를 감지할 수 있고, 가스를 감지함으로써 나타나는 온도, 미세한 기전력 변화를 확인할 수 있으므로 가스를 이용한 열전 성능 지수 평가에도 활용이 가능하다.

Description

칼코지나이드계 나노선을 이용한 열화학 가스 센서 및 그 제조방법{Chalcogenide nanowire based thermoelectric chemical sensor and manufacturing method of the same}
본 발명은 열화학 가스 센서 및 그 제조방법에 관한 것으로, 더욱 상세하게는 온도 변화에 의하여 기전력(electromotive force)이 생기는 원리를 이용하고, 감지하려는 가스에 반응하는 다공성 백금-알루미나 복합체 또는 다공성 팔라듐-알루미나 복합체의 변화를 통해 원하는 종류의 다양한 가스를 감지할 수 있고, 가스를 감지함으로써 나타나는 온도, 미세한 기전력 변화를 확인할 수 있으므로 가스를 이용한 열전 성능 지수 평가에도 활용이 가능한 열화학 가스 센서 및 그 제조방법에 관한 것이다.
수소 기체의 경우 미래 청정연료로 각광받고 있지만 가스 특유의 물성 때문에 센서 특성에 있어서 다른 가연성 가스들보다도 더욱 정밀하고 완벽한 감지가 요구된다.
일반적으로 수소 기체는 4~75%의 넓은 폭발 농도 범위를 가지고 있기 때문에 저 농도 및 광대역 가스 농도에서 센싱이 가능해야 하며, 수소 가스 이외에 가스나 수증기(습도 포함), 온도 등에 영향을 받지 않아야 하고, 높은 센싱 정확성, 소형화 등의 조건을 고루 갖추어야만 센서로의 실용적 보급과 이용이 가능하다. 이러한 특성을 가지는 여러 종류의 수소센서에 관한 연구가 많이 이루어지고 있다. 현재 중점적으로 연구되고 있는 수소센서의 타입으로는 접촉연소식, 열선식, 열전식 수소센서와, 수소가 흡착할 경우 입자 표면의 전자 밀도(electron density)가 달라져서 저항(resistance)이 변화는 성질을 이용한 반도체형, 전기화학식, 금속흡수식 수소센서 등이 연구되고 있다.
수소 센싱에서 가장 중요한 것은 상온에서 센싱이 가능해야 한다는 것이며, 추후 소자의 제작에 있어서 가격 경쟁력을 확보하기 위해서는 공정비용이 높은 고 진공 및 고온 공정을 배제하고 실온에서 소재를 합성할 수 있는 기술 개발이 필요하다.
SiGe 기반의 박막 수소 센서의 경우, 물질 자체가 고온에서의 제벡(Seebeck)계수가 높아 실제 센서로 이용 시 백금-히터(Pt-heater)를 사용하여 고온에서 작동하게 해야 한다. 수소 센싱에서 대표적으로 사용되고 있는 팔라듐(palladium) 기반의 수소센서는 고가의 팔라듐 나노입자 및 나노와이어를 사용하고, 소재 및 센서 제작 공정에서 고온 및 고 진공을 요하기 때문에 저가의 센서를 제작하는데 어려움이 있다.
대부분의 연구가 팔라듐/백금 게이트 FET(field effect transistor)형에 치우쳐 있으며, 고농도 영역에서 감지 능력 저하 문제와, 팔라듐 기반의 센서가 반복되어 수소 기체에 노출될 경우 급격한 상변화(phase change)에 따른 성능저하를 일으키는 문제점이 있기 때문에 보다 넓은 범위의 수소 기체 농도를 감지할 수 있는 센서에 대한 연구가 필요하다.
또한, 미래 청정에너지로 각광을 받고 있는 수소 연료전지의 개발 및 수요가 증대되고 있는 가운데, 자동차 분야의 경우 연료전지에 대한 안정성 확보와 더불어 열전재료를 이용해 폐열을 이용한 에너지원을 생산하는 연구가 필요하고, 우주항공 분야, 즉 위성, 왕복선 등에서도 수소 전지를 사용하고 있기 때문에 이에 적합한 수소 센서의 개발이 필요한 실정이며, 수소 센서의 적용을 초소형 회로제조기술 중에 하나인 멤스(micro electro mechanical systems; MEMS) 기술과 연계하여 센서의 소형화, 고감도화, 대량생산 방안 등에 대한 연구가 필요하다.
본 발명이 해결하고자 하는 과제는 온도 변화에 의하여 기전력(electromotive force)이 생기는 원리를 이용하고, 감지하려는 가스에 반응하는 다공성 백금-알루미나 복합체 또는 다공성 팔라듐-알루미나 복합체의 변화를 통해 원하는 종류의 다양한 가스를 감지할 수 있고, 가스를 감지함으로써 나타나는 온도, 미세한 기전력 변화를 확인할 수 있으므로 가스를 이용한 열전 성능 지수 평가에도 활용이 가능한 열화학 가스 센서를 제공함에 있다.
본 발명이 해결하고자 하는 다른 과제는 합성 방법이 저렴한 습식 전해 증착법을 이용하기 때문에 공정비용이 높은 고 진공 및 고온 공정을 배제하고 실온에서 센서를 제작함으로써 소자 당 적용소재의 양을 최소화할 수 있기 때문에 가격경쟁력을 확보할 수 있는 열화학 가스 센서의 제조방법을 제공함에 있다.
본 발명은, 전면, 후면 및 측면을 포함하고 상기 전면 및 상기 후면을 관통하는 복수 개의 기공이 구비된 다공성 알루미나 템플레이트와, 상기 다공성 알루미나 템플레이트의 후면에 구비되고 복수 개의 기공을 덮는 전기전도성을 갖는 씨드층과, 상기 다공성 알루미나 템플레이트 전면의 상기 복수 개의 기공을 통해 노출된 씨드층에 접촉하고 상기 복수 개의 기공 내에 구비된 복수 개의 칼코지나이드계 나노선과, 상기 칼코지나이드계 나노선과 접촉하면서 상기 다공성 알루미나 템플레이트의 전면에 구비된 전극과, 상기 전극과 전기적으로 연결되는 전극선과, 상기 전극 상부에 구비되고 감지하려는 가스와 접촉하여 발열 반응을 일으키는 다공성 백금-알루미나 복합체 또는 다공성 팔라듐-알루미나 복합체를 포함하며, 상기 칼코지나이드계 나노선은 BixTey(1.5≤x≤2.5, 2.4≤y≤3.6), SbxTey(1.5≤x≤2.5, 2.4≤y≤3.6) 또는 (Bi1-xSbx)Te3(0<x<1)로 이루어진 열화학 가스 센서를 제공한다.
또한, 본 발명은, 전면, 후면 및 측면을 포함하고 상기 전면 및 상기 후면을 관통하는 복수 개의 기공이 구비된 다공성 알루미나 템플레이트와, 상기 다공성 알루미나 템플레이트의 후면에 구비되고 복수 개의 기공을 덮는 전기전도성을 갖는 씨드층과, 상기 다공성 알루미나 템플레이트 전면의 상기 복수 개의 기공을 통해 노출된 씨드층에 접촉하고 상기 복수 개의 기공 내에 구비된 복수 개의 P형 칼코지나이드계 나노선과, 상기 다공성 알루미나 템플레이트 전면의 상기 복수 개의 기공을 통해 노출된 씨드층에 접촉하고 상기 복수 개의 기공 내에 구비된 복수 개의 N형 칼코지나이드계 나노선과, 상기 P형 칼코지나이드계 나노선 및 상기 N형 칼코지나이드계 나노선과 접촉하면서 상기 다공성 알루미나 템플레이트의 전면에 구비된 전극과, 상기 전극과 전기적으로 연결되는 전극선과, 상기 전극 상부에 구비되고 감지하려는 가스와 접촉하여 발열 반응을 일으키는 다공성 백금-알루미나 복합체 또는 다공성 팔라듐-알루미나 복합체를 포함하며, 상기 P형 칼코지나이드계 나노선은 SbxTey(1.5≤x≤2.5, 2.4≤y≤3.6) 또는 (Bi1-xSbx)Te3(0<x<1)로 이루어지고, 상기 N형 칼코지나이드계 나노선은 BixTey(1.5≤x≤2.5, 2.4≤y≤3.6)로 이루어진 열화학 가스 센서를 제공한다.
상기 씨드층은 10∼1000㎚의 두께를 가질 수 있으며, 금(Au), 은(Ag) 및 구리(Cu) 중에서 선택된 1종 이상의 금속으로 이루어질 수 있다.
상기 기공은 10∼1000㎚의 평균 지름을 가질 수 있으며, 칼코지나이드계 나노선은 상기 기공의 평균 지름 보다 작은 1∼500㎚의 평균 직경을 가질 수 있다.
상기 칼코지나이드계 나노선의 길이는 상기 기공의 깊이와 같거나 작으며, 상기 다공성 백금-알루미나 복합체 또는 다공성 팔라듐-알루미나 복합체는 복수 개의 매크로기공과 복수 개의 메조기공을 갖는 다공성 물질일 수 있다.
또한, 본 발명은, 전면, 후면 및 측면을 포함하고 상기 전면 및 상기 후면을 관통하는 복수 개의 기공이 구비된 다공성 알루미나 템플레이트를 준비하고, 상기 다공성 알루미나 템플레이트의 후면에 복수 개의 기공을 덮는 전기전도성을 갖는 씨드층을 형성하는 단계와, 상기 다공성 알루미나 템플레이트 전면의 상기 복수 개의 기공을 통해 노출된 씨드층에 습식 전해 증착을 이용하여 복수 개의 칼코지나이드계 나노선을 성장시켜 형성하는 단계와, 상기 다공성 알루미나 템플레이트의 전면에 상기 칼코지나이드계 나노선과 접촉하는 전극을 형성하는 단계와, 상기 전극과 전기적으로 연결되는 전극선을 형성하는 단계 및 상기 다공성 알루미나 템플레이트의 전면에 형성된 상기 전극 상부에 감지하려는 가스와 접촉하여 발열 반응을 일으키는 다공성 백금-알루미나 복합체 또는 다공성 팔라듐-알루미나 복합체를 형성하는 단계를 포함하며, 상기 칼코지나이드계 나노선은 BixTey(1.5≤x≤2.5, 2.4≤y≤3.6), SbxTey(1.5≤x≤2.5, 2.4≤y≤3.6) 또는 (Bi1-xSbx)Te3(0<x<1)로 이루어지며, 상기 습식 전해 증착은 비스무트(Bi) 전구체 및 안티모니(Sb) 전구체 중에서 선택된 1종 이상의 물질, 텔루륨(Te) 전구체 및 산(acid)을 포함하는 전해질을 사용하며, 상기 산(acid)은 상기 비스무트(Bi) 전구체 및 안티모니(Sb) 전구체 중에서 선택된 1종 이상의 물질과 상기 텔루륨(Te) 전구체를 용해할 수 있는 물질인 것을 특징으로 하는 열화학 가스 센서의 제조방법을 제공한다.
또한, 본 발명은, 전면, 후면 및 측면을 포함하고 상기 전면 및 상기 후면을 관통하는 복수 개의 기공이 구비된 다공성 알루미나 템플레이트를 준비하고, 상기 다공성 알루미나 템플레이트의 후면에 대하여 칼코지나이드계 나노선을 형성할 부분 이외의 영역을 마스킹하고 노출된 부분에 복수 개의 기공을 덮는 전기전도성을 갖는 씨드층을 형성하는 단계와, 상기 다공성 알루미나 템플레이트의 전면에 N형 칼코지나이드계 나노선이 형성될 영역을 제1 마스크로 차폐하고, 상기 다공성 알루미나 템플레이트 전면의 상기 복수 개의 기공을 통해 노출된 씨드층에 습식 전해 증착을 이용하여 복수 개의 P형 칼코지나이드계 나노선을 성장시켜 형성하는 단계와, 상기 P형 칼코지나이드계 나노선이 형성된 영역을 제2 마스크로 차폐하고, 상기 제1 마스크가 제거되어 상기 복수 개의 기공을 통해 노출된 씨드층에 습식 전해 증착을 이용하여 복수 개의 N형 칼코지나이드계 나노선을 성장시켜 형성하는 단계와, 상기 다공성 알루미나 템플레이트의 전면에 상기 P형 칼코지나이드계 나노선 및 상기 N형 칼코지나이드계 나노선과 접촉하는 전극을 형성하는 단계와, 상기 전극과 전기적으로 연결되는 전극선을 형성하는 단계 및 상기 다공성 알루미나 템플레이트의 전면에 형성된 상기 전극 상부에 감지하려는 가스와 접촉하여 발열 반응을 일으키는 다공성 백금-알루미나 복합체 또는 다공성 팔라듐-알루미나 복합체를 형성하는 단계를 포함하며, 상기 P형 칼코지나이드계 나노선은 SbxTey(1.5≤x≤2.5, 2.4≤y≤3.6) 또는 (Bi1-xSbx)Te3(0<x<1)로 이루어지고, 상기 N형 칼코지나이드계 나노선은 BixTey(1.5≤x≤2.5, 2.4≤y≤3.6)로 이루어지고, 상기 P형 칼코지나이드계 나노선 형성을 위한 상기 습식 전해 증착은 안티모니(Sb) 전구체 또는 안티모니(Sb) 전구체와 비스무트(Bi) 전구체, 텔루륨(Te) 전구체 및 산(acid)을 포함하는 전해질을 사용하고, 상기 N형 칼코지나이드계 나노선 형성을 위한 상기 습식 전해 증착은 비스무트(Bi) 전구체, 텔루륨(Te) 전구체 및 산(acid)을 포함하는 전해질을 사용하며, 상기 산(acid)는 안티모니(Sb) 전구체, 비스무트(Bi) 전구체 및 텔루륨(Te) 전구체를 용해할 수 있는 물질인 것을 특징으로 하는 열화학 가스 센서의 제조방법을 제공한다.
상기 비스무트(Bi) 전구체는 Bi(NO3)3·5H2O 이고, 상기 안티모니(Sb) 전구체는 Sb2O3 이며, 상기 텔루륨(Te) 전구체는 TeO2 이고, 상기 산(acid)은 HNO3일 수 있다.
칼코지나이드계 나노선이 SbxTey(1.5≤x≤2.5, 2.4≤y≤3.6) 또는 (Bi1 -xSbx)Te3(0<x<1)로 이루어지는 경우에 칼코지나이드계 나노선을 성장시킨 후 상기 전극을 형성하는 단계 전에 칼코지나이드계 나노선에 대하여 100∼300℃의 온도에서 열처리를 수행할 수 있다.
상기 씨드층은 10∼1000㎚의 두께로 형성하고, 금(Au), 은(Ag) 및 구리(Cu) 중에서 선택된 1종 이상의 금속을 사용하는 것이 바람직하다.
상기 전극은 금(Au), 은(Ag) 및 구리(Cu) 중에서 선택된 1종 이상의 금속을 전기 도금하여 형성하고, 상기 전기 도금은 마그네틱 바를 이용하여 교반하면서 정류기를 이용하여 2전극 시스템에 전류를 인가하여 이루어질 수 있다.
상기 기공은 10∼1000㎚의 평균 지름을 가지며, 칼코지나이드계 나노선은 상기 기공의 평균 지름 보다 작은 1∼500㎚의 평균 직경을 갖게 형성되고, 칼코지나이드계 나노선의 길이는 상기 기공의 깊이와 같거나 작게 형성될 수 있다.
상기 다공성 백금-알루미나 복합체 또는 다공성 팔라듐-알루미나 복합체의 제조는, 스티렌과 증류수의 혼합 용액을 형성하는 단계와, 상기 혼합 용액에 포타슘퍼설페이트를 추가하여 폴리스티렌 용액을 합성하는 단계와, 상기 폴리스티렌 용액을 건조하여 콜로이드 결정 형태로 형성하는 단계와, 백금-알루미나 복합체 또는 팔라듐-알루미나 복합체의 전구체 용액을 합성하는 단계와, 건조하여 형성된 콜로이드 결정을 백금-알루미나 복합체 또는 팔라듐-알루미나 복합체의 전구체 용액에 침지하는 단계 및 백금-알루미나 복합체 또는 팔라듐-알루미나 복합체의 전구체 용액에 침지한 콜로이드 결정을 건조 및 하소하여 폴리스티렌 콜로이드 결정을 제거하는 단계를 포함할 수 있으며, 상기 다공성 백금-알루미나 복합체 또는 다공성 팔라듐-알루미나 복합체는 복수 개의 매크로기공과 복수 개의 메조기공을 갖도록 형성되는 것이 바람직하다.
본 발명의 열화학 가스 센서는 습식 전해 증착법을 통하여 다공성 알루미나 템플레이트(alumina template) 내에 열전물질로 알려진 칼코지나이드계 나노선을 선택적으로 도금하여 단일형 열전소자를 형성하거나 열전 특성이 극대화된 P-N 접합형 열전소자를 형성하고, 감지하려는 가스와 접촉하여 발열 반응하는 다공성 촉매-알루미나 복합체를 결합하여 제조할 수 있으며, 본 발명의 열화학 가스 센서는 가스를 센싱할 수 있을 뿐만 아니라 가스 센싱 특성을 확인하여 평가할 수도 있는 새로운 타입의 열전 나노선 어레이 기반의 열화학 가스센서이다.
본 발명의 열화학 가스 센서는 넓은 비표면적, 독특한 전기적, 광학적 특징 등을 갖는 칼코지나이드계 나노선이 적용된 열전 수소 가스 센서로도 사용될 수 있다.
칼코지나이드계 나노선을 형성하는 BixTey(1.5≤x≤2.5, 2.4≤y≤3.6), SbxTey(1.5≤x≤2.5, 2.4≤y≤3.6) 또는 (Bi1 - xSbx)Te3(0<x<1)은 상온 영역에서 높은 열전특성 나타내는 물질로, 습식 전해 증착법을 이용하여 손쉽게 합성할 수 있다. 습식 전해 증착법을 이용하면 작동온도에 따라서 그에 맞는 온도 범위에서 열전 특성을 나타내는 열전물질들을 손쉽게 합성할 수 있다.
본 발명에 의하면, 온도 변화에 의하여 기전력(electromotive force)이 생기는 원리를 이용하고, 감지하려는 가스(예컨대, 수소 가스)에 반응하는 다공성 백금-알루미나 복합체 또는 다공성 팔라듐-알루미나 복합체의 변화를 통해 원하는 종류의 다양한 가스를 감지할 수 있다. 또한, 가스를 감지함으로써 나타나는 온도, 미세한 기전력 변화를 확인할 수 있으므로 가스를 이용한 열전 성능 지수 평가에도 활용도 가능하다.
본 발명에 따른 열화학 가스 센서의 제조방법은, 합성 방법이 저렴한 습식 전해 증착법을 이용하였기 때문에 공정비용이 높은 고 진공 및 고온 공정을 배제하고 실온에서 센서를 제작함으로써 소자 당 적용소재의 양을 최소화할 수 있기 때문에 가격경쟁력을 확보할 수 있다.
또한, 미래 청정에너지로 각광을 받고 있는 수소 연료전지의 개발 및 수요가 증대되고 있는 가운데, 자동차 분야의 경우 연료전지에 대한 안정성 확보와 더불어 열전재료를 이용해 폐열을 이용한 에너지원의 생산까지 가능할 것으로 판단된다.
또한, 우주항공 분야, 즉 위성, 왕복선 등에서도 수소 전지를 사용하고 있기 때문에 이에 적합한 수소 센서의 개발이 필요하고, 수소 센서의 적용을 초소형 회로제조기술 중에 하나인 멤스(micro electro mechanical systems; MEMS) 기술과 연계하여 센서의 소형화, 고감도화, 대량생산 방안 등을 연구할 필요가 있는데, 본 발명에서 제작하는 열화학 가스 센서의 소형화와 더불어 잉크젯 프린팅 등을 통한 촉매의 집적화 도포 기술 개발을 통해, 멤스(MEMS) 기술에 적용될 수 있다고 판단된다.
도 1a 내지 도 1d는 본 발명의 바람직한 제1 실시예에 따른 단일형 열전소자를 이용한 열화학 가스 센서의 제작과정을 설명하기 위하여 개략적으로 도시한 도면들이다.
도 2a 내지 도 2f는 본 발명의 바람직한 제2 실시예에 따른 P-N 접합형 열전소자를 이용한 열화학 가스 센서의 제작과정을 설명하기 위하여 개략적으로 도시한 도면들이다.
도 3은 실시예 1에 따라 다공성 알루미나 템플레이트 내에 습식 전해 증착법으로 BixTey 나노선을 형성하고 다공성 알루미나 템플레이트를 단면으로 자른 후 관찰한 광학현미경 사진이다.
도 4는 실시예 1에 따라 다공성 알루미나 템플레이트 내에 습식 전해 도금법으로 BixTey 나노선을 합성하는 경우에 도금시간에 따른 BixTey 나노선의 길이를 관찰하여 나타낸 그래프이다.
도 5는 실시예 2에 따라 다공성 알루미나 템플레이트 내에 습식 전해 도금법으로 SbxTey 나노선을 합성하고 다공성 알루미나 템플레이트를 단면으로 자른 후 관찰한 광학현미경 사진이다.
도 6은 실시예 2에 따라 다공성 알루미나 템플레이트 내에 습식 전해 도금법으로 SbxTey 나노선을 합성하는 경우에 도금시간에 따른 SbxTey 나노선의 길이를 관찰하여 나타낸 그래프이다.
도 7a 및 도 7b는 실시예 1에 따라 습식 전해 도금법으로 합성된 BixTey 나노선의 X-선회절 측정 결과를 나타낸 그래프이다.
도 8은 실시예 2에 따라 습식 전해 도금법으로 합성된 SbxTey 나노선의 X-선회절(XRD) 측정 결과를 나타낸 그래프이다.
도 9는 실시예 1에 따라 습식 전해 도금법으로 합성된 BixTey 나노선의 FE-SEM 이미지(image)와 EDS(Energy dispersive spectroscopy) 분석을 나타낸 도면이다.
도 10은 실시예 2에 따라 습식 전해 도금법으로 합성된 SbxTey 나노선의 열처리(annealing) 전과 후의 FE-SEM 이미지(image)와 EDS 분석을 나타낸 도면이다.
도 11a는 실시예 1에 따라 BixTey 나노선으로 구성한 단일형 열전소자가 적용된 열화학 가스 센서에 대하여 수소 센싱 하였을 때 수소 농도에 따른 다공성 백금-알루미나 복합체의 온도 변화를 나타낸 그래프이고, 실시예 1에 따라 BixTey 나노선으로 구성한 단일형 열전소자가 적용된 열화학 가스 센서에 대하여 수소 센싱 하였을 때 수소 농도에 따라 열전소자에서 발생하는 기전력(electromotive force) 변화를 나타낸 그래프이다.
도 12a는 실시예 1에 따라 BixTey 나노선으로 구성한 단일형 열전소자가 적용된 열화학 가스 센서에 대하여 총 1부피%의 수소가 흐르는 조건에서 수소의 플로우 레이트(flow rate)의 증가에 따른 촉매의 온도 변화를 나타낸 그래프이고, 도 12b는 실시예 1에 따라 BixTey 나노선으로 구성한 단일형 열전소자가 적용된 열화학 가스 센서에 대하여 총 1부피%의 수소가 흐르는 조건에서 수소의 플로우레이트의 증가에 따라 열전소자에서 발생하는 기전력의 변화를 나타내 그래프이다.
도 13a는 실시예 2에 따라 P(SbxTey)-N(BixTey) 접합형 나노선으로 구성한 열전소자가 적용된 열화학 가스 센서에 대하여 수소 센싱 하였을 때 수소 농도에 따른 촉매의 온도 변화를 나타낸 그래프이고, 도 13b는 실시예 2에 따라 P(SbxTey)-N(BixTey) 접합형 나노선으로 구성한 열전소자가 적용된 열화학 가스 센서에 대하여 수소 센싱 하였을 때 수소 농도에 따라 열전소자에서 발생하는 기전력의 변화를 나타낸 그래프이다.
도 14a는 실시예 2에 따라 P(SbxTey)-N(BixTey) 접합형 나노선으로 구성한 열전소자가 적용된 열화학 가스 센서에 대하여 수소 센싱 하였을 때 1부피% 수소가 흐르는 조건에서 수소의 플로우레이트 증가에 따른 촉매의 온도 변화를 나타낸 그래프이고, 도 14b는 실시예 2에 따라 P(SbxTey)-N(BixTey) 접합형 나노선으로 구성한 열전소자가 적용된 열화학 가스 센서에 대하여 수소 센싱 하였을 때 1부피% 수소가 흐르는 조건에서 수소의 플로우레이트 증가에 따라 열전소자에서 발생하는 기전력의 변화를 나타낸 그래프이다.
도 15a는 실시예 2에 따라 P(SbxTey)-N(BixTey) 접합형 나노선으로 구성한 열전소자가 적용된 열화학 가스 센서에 대하여 수소 센싱 하였을 때 저 농도에서의 온도 변화를 나타낸 그래프이고, 실시예 2에 따라 P(SbxTey)-N(BixTey) 접합형 나노선으로 구성한 열전소자가 적용된 열화학 가스 센서에 대하여 수소 센싱 하였을 때 저 농도에서의 기전력 변화를 나타낸 그래프이다.
이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세하게 설명한다. 그러나, 이하의 실시예는 이 기술분야에서 통상적인 지식을 가진 자에게 본 발명이 충분히 이해되도록 제공되는 것으로서 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 다음에 기술되는 실시예에 한정되는 것은 아니다.
이하에서, 나노라 함은 나노미터(nm) 단위의 크기로서 1∼1,000nm의 크기를 의미하는 것으로 사용하고, 나노선(nanowire)은 직경이 1∼1,000nm의 크기를 갖는 와이어(wire)를 의미하는 것으로 사용한다.
다공체의 기공은 IUPAC(Internationalunion of Pureand Applied Chemistry) 정의에 의하면 다공성 물질의 기공 직경에 따라 3가지로 나누어지는데, 마이크로기공(micropore)은 기공 지름이 2nm 이하, 메조기공(mesopore)은 기공 지름이 2∼50nm, 매크로기공(macropore)은 50nm 이상인 것으로 정의하고 있다. 이하에서, 매크로기공은 IUPAC에 따라 기공 지름이 50nm 이상인 것을 의미하고, 메조기공은 IUPAC에 따라 기공 지름이 2∼50nm인 것을 의미하는 것으로 사용한다.
본 발명은 칼코지나이드계 나노선으로 이루어진 열전소자를 기반으로 하는 열화학 가스 센서 및 그 제조방법을 제시한다.
본 발명의 열화학 가스 센서는 습식 전해 증착(electrodeposition)을 통하여 다공성의 양극산화 알루미나 템플레이트(anodic alumina template) 내에 열전물질로 알려진 칼코지나이드계 나노선을 선택적으로 도금하여 단일형 열전소자를 형성하거나 열전 특성이 극대화된 P-N 접합형 열전소자를 형성하고, 감지하려는 가스와 접촉하여 발열 반응하는 다공성 촉매-알루미나 복합체(다공성 백금-알루미나 복합체 또는 다공성 팔라듐-알루미나 복합체)를 결합하여 제조한다. 본 발명의 열화학 가스 센서는 가스를 센싱할 수 있을 뿐만 아니라 가스 센싱 특성을 확인하여 평가할 수도 있는 새로운 타입의 열전 나노선 어레이 기반의 열화학 가스센서이다.
본 발명의 바람직한 제1 실시예에 따른 열화학 가스 센서는, 전면, 후면 및 측면을 포함하고 상기 전면 및 상기 후면을 관통하는 복수 개의 기공이 구비된 다공성 알루미나 템플레이트(porous alumina template)와, 상기 다공성 알루미나 템플레이트의 후면에 구비되고 복수 개의 기공을 덮는 전기전도성을 갖는 씨드층(seed layer)과, 상기 다공성 알루미나 템플레이트 전면의 상기 복수 개의 기공을 통해 노출된 씨드층에 접촉하고 상기 복수 개의 기공 내에 구비된 복수 개의 칼코지나이드계 나노선(chalcogenide nanowire)과, 상기 칼코지나이드계 나노선과 접촉하면서 상기 다공성 알루미나 템플레이트의 전면에 구비된 전극과, 상기 전극과 전기적으로 연결되는 전극선과, 상기 전극 상부에 구비되고 감지하려는 가스(예컨대, 수소 가스)와 접촉하여 발열 반응을 일으키는 다공성 백금-알루미나 복합체 또는 다공성 팔라듐-알루미나 복합체를 포함하며, 상기 칼코지나이드계 나노선은 BixTey(1.5≤x≤2.5, 2.4≤y≤3.6), SbxTey(1.5≤x≤2.5, 2.4≤y≤3.6) 또는 (Bi1-xSbx)Te3(0<x<1)로 이루어진다.
본 발명의 바람직한 제2 실시예에 따른 열화학 가스 센서는, 전면, 후면 및 측면을 포함하고 상기 전면 및 상기 후면을 관통하는 복수 개의 기공이 구비된 다공성 알루미나 템플레이트와, 상기 다공성 알루미나 템플레이트의 후면에 구비되고 복수 개의 기공을 덮는 전기전도성을 갖는 씨드층과, 상기 다공성 알루미나 템플레이트 전면의 상기 복수 개의 기공을 통해 노출된 씨드층에 접촉하고 상기 복수 개의 기공 내에 구비된 복수 개의 P형 칼코지나이드계 나노선과, 상기 다공성 알루미나 템플레이트 전면의 상기 복수 개의 기공을 통해 노출된 씨드층에 접촉하고 상기 복수 개의 기공 내에 구비된 복수 개의 N형 칼코지나이드계 나노선과, 상기 P형 칼코지나이드계 나노선 및 상기 N형 칼코지나이드계 나노선과 접촉하면서 상기 다공성 알루미나 템플레이트의 전면에 구비된 전극과, 상기 전극과 전기적으로 연결되는 전극선과, 상기 전극 상부에 구비되고 감지하려는 가스(예컨대, 수소 가스)와 접촉하여 발열 반응을 일으키는 다공성 백금-알루미나 복합체 또는 다공성 팔라듐-알루미나 복합체를 포함하며, 상기 P형 칼코지나이드계 나노선은 SbxTey(1.5≤x≤2.5, 2.4≤y≤3.6) 또는 (Bi1-xSbx)Te3(0<x<1)로 이루어지고, 상기 N형 칼코지나이드계 나노선은 BixTey(1.5≤x≤2.5, 2.4≤y≤3.6)로 이루어진다.
상기 씨드층은 10∼1000㎚의 두께를 가질 수 있으며, 금(Au), 은(Ag) 및 구리(Cu) 중에서 선택된 1종 이상의 금속으로 이루어질 수 있다.
상기 기공은 10∼1000㎚의 평균 지름을 가질 수 있으며, 칼코지나이드계 나노선은 상기 기공의 평균 지름 보다 작은 1∼500㎚의 평균 직경을 가질 수 있다.
상기 칼코지나이드계 나노선의 길이는 상기 기공의 깊이와 같거나 작을 수 있다.
상기 다공성 백금-알루미나 복합체 또는 다공성 팔라듐-알루미나 복합체는 복수 개의 매크로기공과 복수 개의 메조기공을 갖는 다공성 물질일 수 있다.
상기 다공성 백금-알루미나 복합체 또는 다공성 팔라듐-알루미나 복합체에서 알루미나는 γ-알루미나일 수 있다.
상기 다공성 백금-알루미나 복합체는 감지하려는 가스와의 발열 반응을 고려하여 0.1∼12부피%의 백금(Pt)과 88∼99.9부피%의 알루미나(alumina)를 포함하는 물질일 수 있고, 상기 다공성 팔라듐-알루미나 복합체는 감지하려는 가스와의 발열 반응을 고려하여 0.1∼12부피%의 팔라듐(Pd)과 88∼99.9부피%의 알루미나(alumina)를 포함하는 물질일 수 있다.
이하에서, 본 발명의 바람직한 제1 실시예에 따른 열화학 가스 센서의 제조방법을 구체적으로 설명한다. 도 1a 내지 도 1d는 본 발명의 바람직한 제1 실시예에 따른 단일형 열전소자를 이용한 열화학 가스 센서의 제작과정을 설명하기 위하여 개략적으로 도시한 도면들이다.
도 1a 내지 도 1d를 참조하면, 전면, 후면 및 측면을 포함하고 상기 전면 및 상기 후면을 관통하는 복수 개의 기공(12)이 구비된 다공성 알루미나 템플레이트(10)를 준비한다. 상기 기공(12)은 10∼1000㎚의 평균 지름을 가지는 것이 바람직하다.
상기 다공성 알루미나 템플레이트(10)의 후면에 복수 개의 기공을 덮는 전기전도성을 갖는 씨드층(20)을 형성한다. 상기 씨드층(20)은 10∼1000㎚의 두께로 형성하고, 금(Au), 은(Ag) 및 구리(Cu) 중에서 선택된 1종 이상의 금속을 사용하는 것이 바람직하다. 상기 씨드층(20)은 다양한 방식으로 증착하여 형성할 수 있는데, 예컨대 스퍼터링(sputtering) 방식을 이용하여 형성할 수 있다. 씨드층(20)은 다공성 알루미나 템플레이트(10) 후면의 기공(12)을 덮도록 형성된다.
다공성 알루미나 템플레이트 전면의 상기 복수 개의 기공(12)을 통해 노출된 씨드층(20)에 습식 전해 증착을 이용하여 복수 개의 칼코지나이드계 나노선(30)을 성장시킨다.
상기 칼코지나이드계 나노선(30)은 BixTey(1.5≤x≤2.5, 2.4≤y≤3.6), SbxTey(1.5≤x≤2.5, 2.4≤y≤3.6) 또는 (Bi1 - xSbx)Te3(0<x<1)로 이루어질 수 있다.
본 발명에서는 저 비용으로 손쉽게 나노 구조체를 합성할 수 있는 습식 전해증착법을 이용하여 다공성 알루미나 템플레이트(10) 내에 칼코지나이드계 나노선(30)을 형성한다. 습식 전해 증착법은 저렴한 공정비용과 손쉬운 방법으로 원하는 종류와 조성을 가지는 칼코지나이드계 나노선(30)을 균일한 길이로 합성할 수 있는 방법으로 나노 스케일이므로 센서의 소형화까지 가능하다는 장점이 있고, 열전재료 기반의 수소 가스 센서는 수소를 감지할 수 있는 농도 영역대가 넓으며, 반복되어 수소 가스에 노출되어도 열전재료에 상변화와 같은 물리/화학적 변화를 수반하지 않는다는 장점이 있다. 또한, 다공성 알루미나 템플레이트(10)의 기공(12)과 도금 조건 등을 조절함으로써 원하는 직경, 길이 그리고 조성을 갖는 칼코지나이드계 나노선(30)을 합성할 수 있다.
상기 습식 전해 증착은 비스무트(Bi) 전구체 및 안티모니(Sb) 전구체 중에서 선택된 1종 이상의 물질, 텔루륨(Te) 전구체 및 산(acid)을 포함하는 전해질을 사용하며, 상기 산(acid)은 상기 비스무트(Bi) 전구체 및 안티모니(Sb) 전구체 중에서 선택된 1종 이상의 물질과 상기 텔루륨(Te) 전구체를 용해할 수 있는 물질이다. 상기 습식 전해 증착은 예컨대 정류기를 이용하여 2전극 또는 3전극 시스템에 전압을 인가하여 수행될 수 있다.
상기 비스무트(Bi) 전구체는 Bi(NO3)3·5H2O 이고, 상기 안티모니(Sb) 전구체는 Sb2O3 이며, 상기 텔루륨(Te) 전구체는 TeO2 이고, 상기 산(acid)은 HNO3일 수 있다.
칼코지나이드계 나노선(30)이 SbxTey(1.5≤x≤2.5, 2.4≤y≤3.6) 또는 (Bi1 -xSbx)Te3(0<x<1)로 이루어지는 경우에 칼코지나이드계 나노선(30)을 성장시킨 후 상기 전극(40)을 형성하기 전에 칼코지나이드계 나노선(30)에 대하여 100∼300℃의 온도에서 열처리를 수행할 수 있다.
칼코지나이드계 나노선(30)은 기공(12)의 평균 지름 보다 작은 1∼500㎚의 평균 직경을 갖게 형성하는 것이 바람직하고, 칼코지나이드계 나노선(30)의 길이는 상기 기공(12)의 깊이와 같거나 작게 형성할 수 있다.
상기 다공성 알루미나 템플레이트(10)의 전면에 상기 칼코지나이드계 나노선(30)과 접촉하는 전극(40)을 형성한다. 상기 전극(40)은 금(Au), 은(Ag) 및 구리(Cu) 중에서 선택된 1종 이상의 금속을 전기 도금하여 형성하고, 상기 전기 도금은 마그네틱 바를 이용하여 교반하면서 정류기를 이용하여 2전극 시스템에 전류를 인가하여 이루어질 수 있다.
상기 전극(40)과 전기적으로 연결되는 전극선을 형성한다. 상기 전극선은 열전소자의 특성 평가 등을 위해 씨드층에도 전기적으로 연결될 수 있다. 상기 전극선은 예컨대, 실버 페이스트(silver paste)를 이용하여 구리 도선으로 형성할 수 있다.
상기 다공성 알루미나 템플레이트(10)의 전면에 형성된 상기 전극(40) 상부에 감지하려는 가스(예컨대, 수소 가스)와 접촉하여 발열 반응을 일으키는 다공성 백금-알루미나 복합체 또는 다공성 팔라듐-알루미나 복합체를 형성한다. 상기 다공성 백금-알루미나 복합체 또는 다공성 팔라듐-알루미나 복합체에서 알루미나는 γ-알루미나일 수 있다. 상기 다공성 백금-알루미나 복합체는 감지하려는 가스와의 발열 반응을 고려하여 0.1∼12부피%의 백금(Pt)과 88∼99.9부피%의 알루미나(alumina)를 포함하는 물질일 수 있고, 상기 다공성 팔라듐-알루미나 복합체는 감지하려는 가스와의 발열 반응을 고려하여 0.1∼12부피%의 팔라듐(Pd)과 88∼99.9부피%의 알루미나(alumina)를 포함하는 물질일 수 있다.
이하에서 다공성 백금-알루미나 복합체 또는 다공성 팔라듐-알루미나 복합체를 제조하는 방법을 설명한다.
스티렌과 증류수의 혼합 용액을 만들고, 상기 혼합 용액에 포타슘퍼설페이트를 추가하여 폴리스티렌 용액을 합성한 후, 상기 폴리스티렌 용액을 건조하여 콜로이드 결정 형태로 만든다. 백금-알루미나 복합체 또는 팔라듐-알루미나 복합체의 전구체 용액을 합성하고, 건조하여 형성된 콜로이드 결정을 백금-알루미나 복합체 또는 팔라듐-알루미나 복합체의 전구체 용액에 침지한 다음, 상기 백금-알루미나 복합체 또는 팔라듐-알루미나 복합체의 전구체 용액에 침지한 콜로이드 결정을 건조 및 하소하여 폴리스티렌 콜로이드 결정을 제거한다.
백금-알루미나 복합체 전구체 용액은 알루미늄이소프로폭사이드(C9H21O3Al) 및 염화백금산(H2PtCl6)을 포함하는 용액일 수 있으며, 팔라듐-알루미나 복합체 전구체 용액은 알루미늄이소프로폭사이드(C9H21O3Al) 및 염화팔라듐산(H2PdCl6)을 포함하는 용액일 수 있다.
이렇게 제조된 다공성 백금-알루미나 복합체 또는 다공성 팔라듐-알루미나 복합체는 복수 개의 매크로기공과 복수 개의 메조기공을 갖는 다공성 물질이며, 감지하려는 가스(예컨대, 수소 가스)와 접촉하여 발열 반응을 일으킨다.
상술한 다공성 백금-알루미나 복합체 또는 다공성 팔라듐-알루미나 복합체의 제조방법은, 폴리스티렌 콜로이드 결정을 주형제로 하고 이를 제거함으로써 규칙적인 배열을 가지는 매크로기공을 만들 수 있다. 이러한 매크로기공과 알루미나 고유의 메조기공이 함께 형성되어 작용하는 매크로-메조 기공을 가지는 백금-알루미나 복합체 또는 팔라듐-알루미나 복합체를 합성할 수 있다. 백금-알루미나 복합체 또는 팔라듐-알루미나 복합체에 매크로-메조 기공을 형성함으로써 분자 확산속도를 증가시킴으로써 빠른 응답특성, 고민감성을 가질 수 있다.
폴리스티렌 용액에는 폴리스티렌이 비드 형태로 존재하는데, 이 비드의 크기는 반응 시간과 연관이 있다. 매크로기공의 크기는, 콜로이드 결정의 크기, 따라서 비드의 크기와 관련되는데, 반응 시간, 포타슘퍼설페이트의 양, 증류수와 스티렌의 비율 등을 조절하여 비드의 크기를 조절함으로써 매크로기공의 크기를 제어할 수 있다.
이하에서, 본 발명의 바람직한 제2 실시예에 따른 열화학 가스 센서의 제조방법을 구체적으로 설명한다. 도 2a 내지 도 2f는 본 발명의 바람직한 제2 실시예에 따른 P-N 접합형 열전소자를 이용한 열화학 가스 센서의 제작과정을 설명하기 위하여 개략적으로 도시한 도면들이다. 도 2f는 도 2e의 A-A'을 절취하여 나타낸 단면도이다.
도 2a 내지 도 2f를 참조하면, 전면, 후면 및 측면을 포함하고 상기 전면 및 상기 후면을 관통하는 복수 개의 기공(12)이 구비된 다공성 알루미나 템플레이트(10)를 준비한다. 상기 기공(12)은 10∼1000㎚의 평균 지름을 가지는 것이 바람직하다.
상기 다공성 알루미나 템플레이트(10)의 후면에 대하여 칼코지나이드계 나노선을 형성할 부분 이외의 영역을 마스킹하고 노출된 부분에 복수 개의 기공을 덮는 전기전도성을 갖는 씨드층(20)을 형성한다. 상기 씨드층(20)은 10∼1000㎚의 두께로 형성하고, 금(Au), 은(Ag) 및 구리(Cu) 중에서 선택된 1종 이상의 금속을 사용하는 것이 바람직하다. 상기 씨드층(20)은 다양한 방식으로 증착하여 형성할 수 있는데, 예컨대 스퍼터링(sputtering) 방식을 이용하여 형성할 수 있다. 씨드층(20)은 다공성 알루미나 템플레이트(10) 후면의 기공(12)을 덮도록 형성된다.
상기 다공성 알루미나 템플레이트(10)의 전면에 N형 칼코지나이드계 나노선(60)이 형성될 영역을 제1 마스크로 차폐하고, 다공성 알루미나 템플레이트 전면의 상기 복수 개의 기공(12)을 통해 노출된 씨드층(20)에 습식 전해 증착을 이용하여 복수 개의 P형 칼코지나이드계 나노선(50)을 성장시켜 형성한다.
상기 P형 칼코지나이드계 나노선(50)이 형성된 영역을 제2 마스크로 차폐하고, 상기 제1 마스크가 제거되어 상기 복수 개의 기공(12)을 통해 노출된 씨드층(20)에 습식 전해 증착을 이용하여 복수 개의 N형 칼코지나이드계 나노선(60)을 성장시켜 형성한다.
상기 P형 칼코지나이드계 나노선(50)은 SbxTey(1.5≤x≤2.5, 2.4≤y≤3.6) 또는 (Bi1-xSbx)Te3(0<x<1)로 이루어지고, 상기 N형 칼코지나이드계 나노선(60)은 BixTey(1.5≤x≤2.5, 2.4≤y≤3.6)로 이루어질 수 있다.
본 발명에서는 저 비용으로 손쉽게 나노 구조체를 합성할 수 있는 습식 전해증착법을 이용하여 다공성 알루미나 템플레이트(10) 내에 칼코지나이드계 나노선을 형성한다. 습식 전해 증착법은 저렴한 공정비용과 손쉬운 방법으로 원하는 종류와 조성을 가지는 칼코지나이드계 나노선을 균일한 길이로 합성할 수 있는 방법으로 나노 스케일이므로 센서의 소형화까지 가능하다는 장점이 있고, 열전재료 기반의 수소 가스 센서는 수소를 감지할 수 있는 농도 영역대가 넓으며, 반복되어 수소 가스에 노출되어도 열전재료에 상변화와 같은 물리/화학적 변화를 수반하지 않는다는 장점이 있다. 또한, 다공성 알루미나 템플레이트(10)의 기공(12)과 도금 조건 등을 조절함으로써 원하는 직경, 길이 그리고 조성을 갖는 칼코지나이드계 나노선을 합성할 수 있다.
상기 P형 칼코지나이드계 나노선(50) 형성을 위한 상기 습식 전해 증착은 안티모니(Sb) 전구체 또는 안티모니(Sb) 전구체와 비스무트(Bi) 전구체, 텔루륨(Te) 전구체 및 산(acid)을 포함하는 전해질을 사용하고, 상기 N형 칼코지나이드계 나노선(60) 형성을 위한 상기 습식 전해 증착은 비스무트(Bi) 전구체, 텔루륨(Te) 전구체 및 산(acid)을 포함하는 전해질을 사용하며, 상기 산(acid)는 안티모니(Sb) 전구체, 비스무트(Bi) 전구체 및 텔루륨(Te) 전구체를 용해할 수 있는 물질이다. 상기 습식 전해 증착은 예컨대 정류기를 이용하여 2전극 또는 3전극 시스템에 전압을 인가하여 수행될 수 있다.
상기 비스무트(Bi) 전구체는 Bi(NO3)3·5H2O 이고, 상기 안티모니(Sb) 전구체는 Sb2O3 이며, 상기 텔루륨(Te) 전구체는 TeO2 이고, 상기 산(acid)은 HNO3일 수 있다.
칼코지나이드계 나노선이 SbxTey(1.5≤x≤2.5, 2.4≤y≤3.6) 또는 (Bi1 -xSbx)Te3(0<x<1)로 이루어지는 경우에 칼코지나이드계 나노선을 성장시킨 후 상기 전극(40)을 형성하기 전에 칼코지나이드계 나노선에 대하여 100∼300℃의 온도에서 열처리를 수행할 수 있다.
칼코지나이드계 나노선은 기공(12)의 평균 지름 보다 작은 1∼500㎚의 평균 직경을 갖게 형성하는 것이 바람직하고, 칼코지나이드계 나노선의 길이는 상기 기공(12)의 깊이와 같거나 작게 형성할 수 있다.
상기 다공성 알루미나 템플레이트(10)의 전면에 상기 P형 칼코지나이드계 나노선(50) 및 상기 N형 칼코지나이드계 나노선(60)과 접촉하는 전극(40)을 형성한다. 상기 전극(40)은 금(Au), 은(Ag) 및 구리(Cu) 중에서 선택된 1종 이상의 금속을 전기 도금하여 형성하고, 상기 전기 도금은 마그네틱 바를 이용하여 교반하면서 정류기를 이용하여 2전극 시스템에 전류를 인가하여 이루어질 수 있다.
상기 전극(40)과 전기적으로 연결되는 전극선을 형성한다. 상기 전극선은 열전소자의 특성 평가 등을 위해 씨드층에도 전기적으로 연결될 수 있다. 상기 전극선은 예컨대, 실버 페이스트(silver paste)를 이용하여 구리 도선으로 형성할 수 있다.
상기 다공성 알루미나 템플레이트(10)의 전면에 형성된 상기 전극(40) 상부에 감지하려는 가스(예컨대, 수소 가스)와 접촉하여 발열 반응을 일으키는 다공성 백금-알루미나 복합체 또는 다공성 팔라듐-알루미나 복합체를 형성한다. 상기 다공성 백금-알루미나 복합체 또는 다공성 팔라듐-알루미나 복합체에서 알루미나는 γ-알루미나일 수 있다. 상기 다공성 백금-알루미나 복합체는 감지하려는 가스와의 발열 반응을 고려하여 0.1∼12부피%의 백금(Pt)과 88∼99.9부피%의 알루미나(alumina)를 포함하는 물질일 수 있고, 상기 다공성 팔라듐-알루미나 복합체는 감지하려는 가스와의 발열 반응을 고려하여 0.1∼12부피%의 팔라듐(Pd)과 88∼99.9부피%의 알루미나(alumina)를 포함하는 물질일 수 있다. 상기 다공성 백금-알루미나 복합체 또는 다공성 팔라듐-알루미나 복합체는 앞에서 상술한 방법과 동일한 방법으로 형성할 수 있으므로 여기서는 그 설명을 생략한다.
본 발명의 칼코지나이드계 나노선을 이용한 열화학 가스 센서는 온도 변화에 의하여 기전력(electromotive force)이 생기는 원리를 이용한 것으로, 수소의 경우는 다공성 촉매-알루미나 복합체(다공성 백금-알루미나 복합체 또는 다공성 팔라듐-알루미나 복합체)와의 산화, 발열 반응(exothermic reaction)으로 인하여 부산물(by-product)로 물이 발생하면서 다공성 촉매-알루미나 복합체에 열이 발생하게 되고, 이 열이 열전재료인 칼코지나이드계 나노선에 전해지면서 기전력이 발생하게 된다.
칼코지나이드계 나노선을 형성하는 BixTey(1.5≤x≤2.5, 2.4≤y≤3.6), SbxTey(1.5≤x≤2.5, 2.4≤y≤3.6) 또는 (Bi1 - xSbx)Te3(0<x<1)은 상온 영역에서 높은 열전특성 나타내는 물질로, 습식 전해 증착법을 이용하여 손쉽게 합성할 수 있다. 습식 전해 증착법을 이용하면 작동온도에 따라서 그에 맞는 온도 범위에서 열전 특성을 나타내는 열전물질들을 손쉽게 합성할 수 있다.
또한, 감지하려는 가스(예컨대, 수소 가스)에 반응하는 다공성 백금-알루미나 복합체 또는 다공성 팔라듐-알루미나 복합체의 변화를 통해 원하는 종류의 다양한 가스를 감지할 수 있다. 또한, 가스를 감지함으로써 나타나는 온도, 미세한 기전력 변화를 확인할 수 있으므로 가스를 이용한 열전 성능 지수 평가방법으로써의 활용도 가능하다.
본 발명에 따른 열화학 가스 센서의 제조방법은, 합성 방법이 저렴한 습식 전해 증착법을 이용하였기 때문에 공정비용이 높은 고 진공 및 고온 공정을 배제하고 실온에서 센서를 제작함으로써 소자 당 적용소재의 양을 최소화할 수 있기 때문에 가격경쟁력을 확보할 수 있다.
또한, 미래 청정에너지로 각광을 받고 있는 수소 연료전지의 개발 및 수요가 증대되고 있는 가운데, 자동차 분야의 경우 연료전지에 대한 안정성 확보와 더불어 열전재료를 이용해 폐열을 이용한 에너지원의 생산까지 가능할 것으로 판단된다.
또한, 우주항공 분야, 즉 위성, 왕복선 등에서도 수소 전지를 사용하고 있기 때문에 이에 적합한 수소 센서의 개발이 필요하고, 수소 센서의 적용을 초소형 회로제조기술 중에 하나인 멤스(micro electro mechanical systems; MEMS) 기술과 연계하여 센서의 소형화, 고감도화, 대량생산 방안 등을 연구할 필요가 있는데, 본 발명에서 제작하는 열화학 가스 센서의 소형화와 더불어 잉크젯 프린팅 등을 통한 촉매의 집적화 도포 기술 개발을 통해, 멤스(MEMS) 기술에 적용될 수 있다고 판단된다.
이하에서, 본 발명에 따른 실시예들을 구체적으로 제시하며, 다음에 제시하는 실시예들에 의하여 본 발명이 한정되는 것은 아니다.
<실시예 1>
본 실시예에서는 열화학 가스 센서의 제작을 위하여 12mm의 직경과, 200nm의 기공(pore) 크기를 가지는 다공성 알루미나 템플레이트를 센서의 모체(matrix)로 사용하였고, 다공성 알루미나 템플레이트 내에 칼코지나이드계 나노선을 형성하기 위해 습식 전해 증착법(electrodeposition)을 사용하였다.
다공성 알루미나 템플레이트 내에 단일형 열전소자를 만들기 위해 알루미나 템플레이트의 후면에 스퍼터링(sputtering) 공정을 수행하여 금(gold) 씨드층(seed layer)을 형성하였다. 이렇게 형성된 금 씨드층의 높이는 약 200nm로 확인되었다.
다공성 알루미나 템플레이트 전면의 기공을 통해 노출된 금 씨드층에 일정정류기를 사용하여 3전극(electrode) 시스템에서 75mV의 전압을 인가하면서 8시간 동안 전기도금을 수행하여 BixTey(1.5≤x≤2.5, 2.4≤y≤3.6) 나노선을 성장시켜 형성하였다. 이때의 전해질(electrolyte)은 1M의 HNO3, 70mM의 Bi(NO3)5H2O, 10mM의 TeO2가 혼합된 것을 사용하였다.
상기 BixTey 나노선과 접촉하는 전극을 형성하였다. 상기 전극은 금(gold)층을 전기 도금하는 방식으로 만들었다. 전극 형성을 위한 전기도금은 마그네틱 바를 이용하여 250rpm으로 교반하면서 일정정류기를 이용하여 2전극 시스템에서 1mA의 전류를 인가하면서 진행하였다.
수소 센싱에 앞서 열전소자에서 발생되는 기전력을 측정하는 나노볼트미터(Nanovoltmeter) 장비와의 연결을 위해 전극과 씨드층에 실버 페이스트(silver paste)를 이용하여 구리 도선을 연결하였다.
구리 도선이 형성된 전극 상부에 다공성 백금-알루미나 복합체를 형성하였다. 상기 다공성 백금-알루미나 복합체는 2부피%의 백금(Pt)과 98부피%의 γ-알루미나로 이루어진 촉매로서 0.05g을 전극 윗부분에 직접 도포하였다. 균일한 열전달을 위해서 상기 다공성 백금-알루미나 복합체는 전극이 형성된 결과물 위에 균일하게 펴서 도포하였다.
상기 다공성 백금-알루미나 복합체는 다음과 같은 과정을 통해 제조하였다.
먼저 매크로기공을 형성하는 폴리스티렌 비드를 제조하였다. 10㎖의 스티렌을 0.1M의 수산화나트륨(NaOH) 수용액 10㎖로 5회 세척하고, 이어 증류수 10㎖로 5회 세척하였다. 동시에 증류수 100㎖를 삼구플라스크에서 넣고 질소 분위기에서 70℃로 가열하였다. 다음으로, 미리 세척한 스티렌 10㎖를 70℃의 증류수에 넣고 교반하였다. 이어서, 포타슘퍼설페이트 0.04g을 스티렌과 증류수 혼합 용액에 넣고 질소분위기에서 70℃를 유지하며 28시간 동안 교반하여, 폴리스티렌이 비드 형상으로 존재하는 용액을 합성하였다.
알루미늄이소프로폭사이드(C9H21O3Al) 2.0425g을 80℃의 18㎖의 증류수에 넣고 1시간 동안 교반하였다. 여기에 10중량%의 질산(HNO3)을 첨가하여 혼합물의 pH를 5.5로 유지시키고 90℃의 온도에서 5시간 동안 교반하였다. 온도를 낮추고 염화백금산(H2PtCl6) 1.303㎖를 첨가한 후, 한 시간 동안 교반하여 백금-알루미나 복합체를 위한 전구체 용액을 합성하였다.
합성된 폴리스티렌 용액을 4000rpm에서 3시간 동안 원심분리한 뒤 건조하여 콜로이드 결정을 형성하였다. 이렇게 하여 얻어진 콜로이드 결정을, 앞서 합성한 백금-알루미나 복합체의 전구체 용액에 1시간 동안 침지하였다. 그 후 콜로이드 결정을 백금-알루미나 복합체의 전구체 용액에서 꺼내고 주변에 과잉으로 남아 있는 전구체를 닦아낸 뒤 100℃에서 12시간 동안 건조하였다. 건조 후 600℃에서 6시간 동안 하소하여 주형제인 폴리스티렌 콜로이드 결정을 제거하여 다공성 백금-알루미나 복합체를 형성하였다.
<실시예 2>
본 실시예에서는 열화학 가스 센서의 제작을 위하여 12mm의 직경과, 200nm의 기공(pore) 크기를 가지는 다공성 알루미나 템플레이트를 센서의 모체(matrix)로 사용하였고, 다공성 알루미나 템플레이트 내에 칼코지나이드계 나노선을 형성하기 위해 습식 전해 증착법(electrodeposition)을 사용하였다.
다공성 알루미나 템플레이트 내에 P-N 접합형 열전소자를 만드는 과정을 수행하였다.
먼저 스텐실(stencil)을 이용하여 나노선을 도금할 부분만 제외하고 마스킹(masking)한 후, 노출된 부분에 스퍼터 공정을 수행하여 금 씨드층을 형성하였다. 이렇게 형성된 금 씨드층의 높이는 약 200nm로 확인되었다.
다음은 P형 SbxTey(1.5≤x≤2.5, 2.4≤y≤3.6) 나노선을 합성하기 위해 N형 BixTey(1.5≤x≤2.5, 2.4≤y≤3.6) 나노선이 합성될 부분을 마이크로스탑(Microstop)을 사용하여 마스킹하고, 다공성 알루미나 템플레이트 전면의 기공을 통해 노출된 금 씨드층에 일정정류기를 사용하여 3전극 시스템에서 -0.17V의 전압을 인가하면서 5시간 동안 도금을 진행하여 다공성 알루미나 템플레이트 전면의 기공을 통해 노출된 금 씨드층에 SbxTey 나노선을 성장시켜 형성하였다. 이때의 전해질은 1M의 HNO3, 5mM의 Sb2O3, 10mM의 TeO2, 0.5M C4H6O6가 혼합된 것을 사용하였다.
BixTey 나노선을 합성하기 위해 SbxTey 나노선이 합성된 부분을 마이크로스탑(Microstop)을 사용하여 마스킹하고, 120rpm으로 교반하면서 8시간 동안 일정정류기를 사용하여 3전극 시스템에서 75mV의 전압을 인가하면서 다공성 알루미나 템플레이트 전면의 기공을 통해 노출된 금 씨드층에 BixTey 나노선을 성장시켜 형성하였다. 이때의 전해질은 1M의 HNO3, 70mM의 Bi(NO3)5H2O, 10mM의 TeO2가 혼합된 것을 사용하였다.
SbxTey 나노선과 BixTey 나노선과 접촉하는 전극을 형성하였다. 상기 전극은 금(gold)층을 전기 도금하는 방식으로 만들었다. 전극 형성을 위한 전기도금은 마그네틱 바를 이용하여 250rpm으로 교반하면서 일정정류기를 이용하여 2전극 시스템에서 1mA의 전류를 인가하면서 진행하였다.
수소 센싱에 앞서 열전소자에서 발생되는 기전력을 측정하는 나노볼트미터(Nanovoltmeter) 장비와의 연결을 위해 전극과 씨드층에 실버 페이스트(silver paste)를 이용하여 구리 도선을 연결하였다.
구리 도선이 형성된 전극 상부에 다공성 백금-알루미나 복합체를 형성하였다. 상기 다공성 백금-알루미나 복합체는 2부피%의 백금(Pt)과 98부피%의 γ-알루미나로 이루어진 촉매로서 0.05g을 전극 윗부분에 직접 도포하였다. 균일한 열전달을 위해서 상기 다공성 백금-알루미나 복합체는 전극이 도포된 결과물 위에 균일하게 펴서 도포하였다.
도 3은 실시예 1에 따라 다공성 알루미나 템플레이트 내에 습식 전해 증착법으로 BixTey 나노선을 형성하고 다공성 알루미나 템플레이트를 단면으로 자른 후 관찰한 광학현미경 사진이고, 도 4는 실시예 1에 따라 다공성 알루미나 템플레이트 내에 습식 전해 도금법으로 BixTey 나노선을 합성하는 경우에 도금시간에 따른 BixTey 나노선의 길이를 관찰하여 나타낸 그래프이다.
도 3 및 도 4를 참조하면, BixTey 나노선은 평균적으로 시간당 5.31㎛ 정도의 길이로 자라는 것을 확인하였다.
도 5는 실시예 2에 따라 다공성 알루미나 템플레이트 내에 습식 전해 도금법으로 SbxTey 나노선을 합성하고 다공성 알루미나 템플레이트를 단면으로 자른 후 관찰한 광학현미경 사진이고, 도 6은 실시예 2에 따라 다공성 알루미나 템플레이트 내에 습식 전해 도금법으로 SbxTey 나노선을 합성하는 경우에 도금시간에 따른 SbxTey 나노선의 길이를 관찰하여 나타낸 그래프이다.
도 5 및 도 6을 참조하면, SbxTey 나노선은 평균적으로 시간당 7.52㎛ 정도의 길이로 자라는 것을 확인하였다.
합성한 나노선의 상을 확인하기 위해서 X-선회절(X-ray diffration; XRD) 패턴을 측정하였다. 도 7a 및 도 7b는 실시예 1에 따라 습식 전해 도금법으로 합성된 BixTey 나노선의 X-선회절 측정 결과를 나타낸 그래프이다.
도 7a 및 도 7b를 참조하면, 다공성 알루미나 템플레이트를 제거하지 않고 측정한 경우(도 7a의 경우) BixTey 나노선은 (110) 방향으로 우선방향성을 가지고 성장함이 확인되었고, 다공성 알루미나 템플레이트를 1M의 NaOH를 이용하여 제거하고 얻어진 BixTey 나노선만 가지고 측정했을 때(도 7b의 경우) BixTey 나노선은 Bi2Te3(JCPDS 00-015-0863) 상을 갖는 것을 확인하였다.
도 8은 실시예 2에 따라 습식 전해 도금법으로 합성된 SbxTey 나노선의 X-선회절(XRD) 측정 결과를 나타낸 그래프이다.
도 8을 참조하면, SbxTey 나노선의 경우 도금 후의 XRD 분석 결과에서는 Sb0.405Te0.595와 텔루륨(Tellurium)이 혼재되어 있는 상이 나온 것을 확인할 수 있었다.
따라서, Sb2Te3 상을 만들기 위해 도 8의 X-선회절을 측정한 후에 SbxTey 나노선에 대하여 열처리 공정을 수행하였다. 120℃의 대기 분위기에서 1시간 동안 열처리한 후, X-선회절(XRD)을 분석했을 때 SbxTey 나노선은 Sb2Te3(JCPDS 00-015-0874) 상을 갖는 확인하였다.
나노선의 형상과 조성을 확인하기 위해 전계방사 주사전자현미경(field emission-scanning electron microscope; 이하 'FE-SEM'이라 함)과 에너지분산분광기(Energy dispersive spectroscopy; 이하 'EDS'라 함)분석을 수행하였다.
도 9는 실시예 1에 따라 습식 전해 도금법으로 합성된 BixTey 나노선(Bi2Te3 NWs)의 FE-SEM 이미지(image)와 EDS 분석을 나타낸 도면이다.
도 9를 참조하면, EDS 분석 결과 Bi2Te3의 조성과 거의 일치하는 것을 확인할 수 있었다. 이는 도 7a 및 도 7b의 X-선회절 데이터와 일치하는 결과이다.
도 10은 실시예 2에 따라 습식 전해 도금법으로 합성된 SbxTey 나노선의 열처리(annealing) 전과 후의 FE-SEM 이미지(image)와 EDS 분석을 나타낸 도면이다. 상기 열처리는 도 8에 나타낸 SbxTey 나노선의 X-선회절을 관찰하고 FE-SEM 관찰 및 EDS 분석을 측정한 후에 120℃의 대기 분위기에서 1시간 동안 수행한 것이다. 도 10에서 'AAO template'는 다공성 알루미나 템플레이트를 의미하고, 'Sb2Te3 NWs'는 Sb2Te3 나노선을 의미한다.
도 10을 참조하면, 열처리 전은 원자분율(atomic ratio)이 약 26.11:73.89로 Sb2Te3 조성과 많이 차이나는 것을 확인할 수 있다. 그러나 대기 분위기 120℃에서 1시간 동안 열처리 후에의 원자분율(atomic ratio)은 37.34:62.76으로 Sb2Te3 조성에 근접하였다. 이는 도 8의 X-선회절(XRD) 데이터와 일치하는 결과이다.
실시예 1 및 실시예 2에 따라 제조된 열화학 가스 센서에 대하여 수소를 센싱의 특성을 평가하였다. 센싱을 위해 수소 가스는 모든 경우에서 180sec 동안 흘려주고, 600sec 동안 차단하는 것을 반복하였다. 온도 그래프와 기전력 그래프의 약간의 시간 차이는 온도 측정 시 분위기 안정화를 위해 아르곤(argon)과 산소(oxygen) 분위기에서 약 3분 정도 워밍업을 한 후, 기전력 측정을 시작하였기 때문이다.
도 11a는 실시예 1에 따라 BixTey 나노선으로 구성한 단일형 열전소자가 적용된 열화학 가스 센서에 대하여 수소 센싱 하였을 때 수소 농도에 따른 다공성 백금-알루미나 복합체의 온도 변화를 나타낸 그래프이고, 실시예 1에 따라 BixTey 나노선으로 구성한 단일형 열전소자가 적용된 열화학 가스 센서에 대하여 수소 센싱 하였을 때 수소 농도에 따라 열전소자에서 발생하는 기전력(electromotive force) 변화를 나타낸 그래프이다.
도 11a 및 도 11b를 참조하면, 수소 농도가 증가할수록 온도와 기전력이 증가함을 알 수 있다. 최고 농도 조건인 5부피%의 수소를 흘려주었을 경우 최대 32.11의 기전력이 발생하였다.
도 12a는 실시예 1에 따라 BixTey 나노선으로 구성한 단일형 열전소자가 적용된 열화학 가스 센서에 대하여 총 1부피%의 수소가 흐르는 조건에서 수소의 플로우 레이트(flow rate)의 증가에 따른 촉매의 온도 변화를 나타낸 그래프이고, 도 12b는 실시예 1에 따라 BixTey 나노선으로 구성한 단일형 열전소자가 적용된 열화학 가스 센서에 대하여 총 1부피%의 수소가 흐르는 조건에서 수소의 플로우레이트(flow rate)의 증가에 따라 열전소자에서 발생하는 기전력의 변화를 나타내 그래프이다.
도 12a 및 도 12b를 참조하면, 수소의 플로우레이트(flow rate)가 증가할수록 온도와 기전력이 증가하였다. 이는 플로우레이트(flow rate)가 증가할수록 같은 시간에 한정된 공간에 많은 양의 수소가 들어가기 때문에 나타난 결과라고 사료된다. 플로우레이트(flow rate)의 경우 최대 300cc/min로 수소 가스를 흘려줬을 경우 9.2μV의 기전력이 발생하였다.
도 13a는 실시예 2에 따라 P(SbxTey)-N(BixTey) 접합형 나노선으로 구성한 열전소자가 적용된 열화학 가스 센서에 대하여 수소 센싱 하였을 때 수소 농도에 따른 촉매의 온도 변화를 나타낸 그래프이고, 도 13b는 실시예 2에 따라 P(SbxTey)-N(BixTey) 접합형 나노선으로 구성한 열전소자가 적용된 열화학 가스 센서에 대하여 수소 센싱 하였을 때 수소 농도에 따라 열전소자에서 발생하는 기전력의 변화를 나타낸 그래프이다.
도 13a 및 도 13b를 참조하면, 수소 농도에 따라 온도와 기전력이 선형적으로 증가함을 확인하였다. 이 경우 최대 5부피%의 수소를 흘려주는 조건에서 0.215 mV의 기전력이 발생하였다. 이는 단일형 열전소자에서 발생한 기전력에 비해 약 6배가 증가한 수치이다. 이를 단위면적 당으로 기전력 값으로 환산하면 약 17배 증가한 수치이다.
도 14a는 실시예 2에 따라 P(SbxTey)-N(BixTey) 접합형 나노선으로 구성한 열전소자가 적용된 열화학 가스 센서에 대하여 수소 센싱 하였을 때 1부피% 수소가 흐르는 조건에서 수소의 플로우레이트(flow rate) 증가에 따른 촉매의 온도 변화를 나타낸 그래프이고, 도 14b는 실시예 2에 따라 P(SbxTey)-N(BixTey) 접합형 나노선으로 구성한 열전소자가 적용된 열화학 가스 센서에 대하여 수소 센싱 하였을 때 1부피% 수소가 흐르는 조건에서 수소의 플로우레이트(flow rate) 증가에 따라 열전소자에서 발생하는 기전력의 변화를 나타낸 그래프이다.
도 14a 및 도 14b를 참조하면, 수소의 플로우레이트(flow rate)가 증가할수록 온도와 기전력이 증가하였고, 최대 300cc/min로 수소 가스를 흘려줬을 경우 98.3μV의 기전력이 발생하였다. 이는 단일형 열전소자에 비해 약 10배가 증가한 수치로 단위면적 당으로 환산하면 27배 정도 증가한 수치이다.
도 15a는 실시예 2에 따라 P(SbxTey)-N(BixTey) 접합형 나노선으로 구성한 열전소자가 적용된 열화학 가스 센서에 대하여 수소 센싱 하였을 때 저 농도에서의 온도 변화를 나타낸 그래프이고, 실시예 2에 따라 P(SbxTey)-N(BixTey) 접합형 나노선으로 구성한 열전소자가 적용된 열화학 가스 센서에 대하여 수소 센싱 하였을 때 저 농도에서의 기전력 변화를 나타낸 그래프이다.
도 15a 및 도 15b를 참조하면, 최소 400ppm(0.2부피%)까지 기전력의 변화를 볼 수 있었다. 하지만 그래프의 양상을 보면 더욱더 낮은 수소 농도에서의 감지도 가능할 것으로 사료된다.
이상, 본 발명의 바람직한 실시예를 들어 상세하게 설명하였으나, 본 발명은 상기 실시예에 한정되는 것은 아니며, 본 발명의 기술적 사상의 범위 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러 가지 변형이 가능하다.
10: 다공성 알루미나 템플레이트
12: 기공
20: 씨드층
30, 50, 60: 칼코지나이드계 나노선
40: 전극

Claims (11)

  1. 전면, 후면 및 측면을 포함하고 상기 전면 및 상기 후면을 관통하는 복수 개의 기공이 구비된 다공성 알루미나 템플레이트;
    상기 다공성 알루미나 템플레이트 후면에 구비되고 복수 개의 기공을 덮는 전기전도성을 갖는 씨드층;
    상기 다공성 알루미나 템플레이트 전면의 상기 복수 개의 기공을 통해 노출된 씨드층에 접촉하고 상기 복수 개의 기공 내에 구비된 복수 개의 칼코지나이드계 나노선;
    상기 칼코지나이드계 나노선과 접촉하면서 상기 다공성 알루미나 템플레이트의 전면에 구비된 전극;
    상기 전극과 전기적으로 연결되는 전극선; 및
    상기 전극 상부에 구비되고 감지하려는 가스와 접촉하여 발열 반응을 일으키는 다공성 백금-알루미나 복합체 또는 다공성 팔라듐-알루미나 복합체를 포함하며,
    상기 칼코지나이드계 나노선은 BixTey(1.5≤x≤2.5, 2.4≤y≤3.6), SbxTey(1.5≤x≤2.5, 2.4≤y≤3.6) 또는 (Bi1-xSbx)Te3(0<x<1)로 이루어진 것을 특징으로 하는 열화학 가스 센서.
  2. 전면, 후면 및 측면을 포함하고 상기 전면 및 상기 후면을 관통하는 복수 개의 기공이 구비된 다공성 알루미나 템플레이트;
    상기 다공성 알루미나 템플레이트의 후면에 구비되고 복수 개의 기공을 덮는 전기전도성을 갖는 씨드층;
    상기 다공성 알루미나 템플레이트 전면의 상기 복수 개의 기공을 통해 노출된 씨드층에 접촉하고 상기 복수 개의 기공 내에 구비된 복수 개의 P형 칼코지나이드계 나노선;
    상기 다공성 알루미나 템플레이트 전면의 상기 복수 개의 기공을 통해 노출된 씨드층에 접촉하고 상기 복수 개의 기공 내에 구비된 복수 개의 N형 칼코지나이드계 나노선;
    상기 P형 칼코지나이드계 나노선 및 상기 N형 칼코지나이드계 나노선과 접촉하면서 상기 다공성 알루미나 템플레이트의 전면에 구비된 전극;
    상기 전극과 전기적으로 연결되는 전극선; 및
    상기 전극 상부에 구비되고 감지하려는 가스와 접촉하여 발열 반응을 일으키는 다공성 백금-알루미나 복합체 또는 다공성 팔라듐-알루미나 복합체를 포함하며,
    상기 P형 칼코지나이드계 나노선은 SbxTey(1.5≤x≤2.5, 2.4≤y≤3.6) 또는 (Bi1-xSbx)Te3(0<x<1)로 이루어지고,
    상기 N형 칼코지나이드계 나노선은 BixTey(1.5≤x≤2.5, 2.4≤y≤3.6)로 이루어진 것을 특징으로 하는 열화학 가스 센서.
  3. 제1항 또는 제2항에 있어서, 상기 씨드층은 10∼1000㎚의 두께를 가지며, 금(Au), 은(Ag) 및 구리(Cu) 중에서 선택된 1종 이상의 금속으로 이루어지고,
    상기 기공은 10∼1000㎚의 평균 지름을 가지며,
    칼코지나이드계 나노선은 상기 기공의 평균 지름 보다 작은 1∼500㎚의 평균 직경을 가지며,
    상기 칼코지나이드계 나노선의 길이는 상기 기공의 깊이와 같거나 작으며,
    상기 다공성 백금-알루미나 복합체 또는 다공성 팔라듐-알루미나 복합체는 복수 개의 매크로기공과 복수 개의 메조기공을 갖는 다공성 물질인 것을 특징으로 하는 열화학 가스 센서.
  4. 전면, 후면 및 측면을 포함하고 상기 전면 및 상기 후면을 관통하는 복수 개의 기공이 구비된 다공성 알루미나 템플레이트를 준비하고, 상기 다공성 알루미나 템플레이트의 후면에 복수 개의 기공을 덮는 전기전도성을 갖는 씨드층을 형성하는 단계;
    상기 다공성 알루미나 템플레이트 전면의 상기 복수 개의 기공을 통해 노출된 씨드층에 습식 전해 증착을 이용하여 복수 개의 칼코지나이드계 나노선을 성장시켜 형성하는 단계;
    상기 다공성 알루미나 템플레이트의 전면에 상기 칼코지나이드계 나노선과 접촉하는 전극을 형성하는 단계;
    상기 전극과 전기적으로 연결되는 전극선을 형성하는 단계; 및
    상기 다공성 알루미나 템플레이트의 전면에 형성된 상기 전극 상부에 감지하려는 가스와 접촉하여 발열 반응을 일으키는 다공성 백금-알루미나 복합체 또는 다공성 팔라듐-알루미나 복합체를 형성하는 단계를 포함하며,
    상기 칼코지나이드계 나노선은 BixTey(1.5≤x≤2.5, 2.4≤y≤3.6), SbxTey(1.5≤x≤2.5, 2.4≤y≤3.6) 또는 (Bi1-xSbx)Te3(0<x<1)로 이루어지며,
    상기 습식 전해 증착은 비스무트(Bi) 전구체 및 안티모니(Sb) 전구체 중에서 선택된 1종 이상의 물질, 텔루륨(Te) 전구체 및 산(acid)을 포함하는 전해질을 사용하며, 상기 산(acid)은 상기 비스무트(Bi) 전구체 및 안티모니(Sb) 전구체 중에서 선택된 1종 이상의 물질과 상기 텔루륨(Te) 전구체를 용해할 수 있는 물질인 것을 특징으로 하는 열화학 가스 센서의 제조방법.
  5. 전면, 후면 및 측면을 포함하고 상기 전면 및 상기 후면을 관통하는 복수 개의 기공이 구비된 다공성 알루미나 템플레이트를 준비하고, 상기 다공성 알루미나 템플레이트의 후면에 대하여 칼코지나이드계 나노선을 형성할 부분 이외의 영역을 마스킹하고 노출된 부분에 복수 개의 기공을 덮는 전기전도성을 갖는 씨드층을 형성하는 단계;
    상기 다공성 알루미나 템플레이트의 전면에 N형 칼코지나이드계 나노선이 형성될 영역을 제1 마스크로 차폐하고, 상기 다공성 알루미나 템플레이트 전면의 상기 복수 개의 기공을 통해 노출된 씨드층에 습식 전해 증착을 이용하여 복수 개의 P형 칼코지나이드계 나노선을 성장시켜 형성하는 단계;
    상기 P형 칼코지나이드계 나노선이 형성된 영역을 제2 마스크로 차폐하고, 상기 제1 마스크가 제거되어 상기 복수 개의 기공을 통해 노출된 씨드층에 습식 전해 증착을 이용하여 복수 개의 N형 칼코지나이드계 나노선을 성장시켜 형성하는 단계;
    상기 다공성 알루미나 템플레이트의 전면에 상기 P형 칼코지나이드계 나노선 및 상기 N형 칼코지나이드계 나노선과 접촉하는 전극을 형성하는 단계;
    상기 전극과 전기적으로 연결되는 전극선을 형성하는 단계; 및
    상기 다공성 알루미나 템플레이트의 전면에 형성된 상기 전극 상부에 감지하려는 가스와 접촉하여 발열 반응을 일으키는 다공성 백금-알루미나 복합체 또는 다공성 팔라듐-알루미나 복합체를 형성하는 단계를 포함하며,
    상기 P형 칼코지나이드계 나노선은 SbxTey(1.5≤x≤2.5, 2.4≤y≤3.6) 또는 (Bi1-xSbx)Te3(0<x<1)로 이루어지고,
    상기 N형 칼코지나이드계 나노선은 BixTey(1.5≤x≤2.5, 2.4≤y≤3.6)로 이루어지며,
    상기 P형 칼코지나이드계 나노선 형성을 위한 상기 습식 전해 증착은 안티모니(Sb) 전구체 또는 안티모니(Sb) 전구체와 비스무트(Bi) 전구체, 텔루륨(Te) 전구체 및 산(acid)을 포함하는 전해질을 사용하고,
    상기 N형 칼코지나이드계 나노선 형성을 위한 상기 습식 전해 증착은 비스무트(Bi) 전구체, 텔루륨(Te) 전구체 및 산(acid)을 포함하는 전해질을 사용하며,
    상기 산(acid)는 안티모니(Sb) 전구체, 비스무트(Bi) 전구체 및 텔루륨(Te) 전구체를 용해할 수 있는 물질인 것을 특징으로 하는 열화학 가스 센서의 제조방법.
  6. 제4항 또는 제5항에 있어서, 상기 비스무트(Bi) 전구체는 Bi(NO3)3·5H2O 이고, 상기 안티모니(Sb) 전구체는 Sb2O3 이며, 상기 텔루륨(Te) 전구체는 TeO2 이고, 상기 산(acid)은 HNO3인 것을 특징으로 하는 열화학 가스 센서의 제조방법.
  7. 제4항 또는 제5항에 있어서, 칼코지나이드계 나노선이 SbxTey(1.5≤x≤2.5, 2.4≤y≤3.6) 또는 (Bi1 - xSbx)Te3(0<x<1)로 이루어지는 경우에 칼코지나이드계 나노선을 성장시킨 후 상기 전극을 형성하는 단계 전에 칼코지나이드계 나노선에 대하여 100∼300℃의 온도에서 열처리를 수행하는 것을 특징으로 하는 열화학 가스 센서의 제조방법.
  8. 제4항 또는 제5항에 있어서, 상기 씨드층은 10∼1000㎚의 두께로 형성하고, 금(Au), 은(Ag) 및 구리(Cu) 중에서 선택된 1종 이상의 금속을 사용하는 것을 특징으로 하는 열화학 가스 센서의 제조방법.
  9. 제4항 또는 제5항에 있어서, 상기 전극은 금(Au), 은(Ag) 및 구리(Cu) 중에서 선택된 1종 이상의 금속을 전기 도금하여 형성하고, 상기 전기 도금은 마그네틱 바를 이용하여 교반하면서 정류기를 이용하여 2전극 시스템에 전류를 인가하여 이루어지는 것을 특징으로 하는 열화학 가스 센서의 제조방법.
  10. 제4항 또는 제5항에 있어서, 상기 기공은 10∼1000㎚의 평균 지름을 가지며,
    칼코지나이드계 나노선은 상기 기공의 평균 지름 보다 작은 1∼500㎚의 평균 직경을 갖게 형성되고,
    칼코지나이드계 나노선의 길이는 상기 기공의 깊이와 같거나 작게 형성되는 것을 특징으로 하는 열화학 가스 센서의 제조방법.
  11. 제4항 또는 제5항에 있어서, 상기 다공성 백금-알루미나 복합체 또는 다공성 팔라듐-알루미나 복합체의 제조는,
    스티렌과 증류수의 혼합 용액을 형성하는 단계;
    상기 혼합 용액에 포타슘퍼설페이트를 추가하여 폴리스티렌 용액을 합성하는 단계;
    상기 폴리스티렌 용액을 건조하여 콜로이드 결정 형태로 형성하는 단계;
    백금-알루미나 복합체 또는 팔라듐-알루미나 복합체의 전구체 용액을 합성하는 단계;
    건조하여 형성된 콜로이드 결정을 백금-알루미나 복합체 또는 팔라듐-알루미나 복합체의 전구체 용액에 침지하는 단계; 및
    백금-알루미나 복합체 또는 팔라듐-알루미나 복합체의 전구체 용액에 침지한 콜로이드 결정을 건조 및 하소하여 폴리스티렌 콜로이드 결정을 제거하는 단계를 포함하며,
    상기 다공성 백금-알루미나 복합체 또는 다공성 팔라듐-알루미나 복합체는 복수 개의 매크로기공과 복수 개의 메조기공을 갖도록 형성되는 것을 특징으로 하는 열화학 가스 센서의 제조방법.
KR20130020889A 2013-02-27 2013-02-27 칼코지나이드계 나노선을 이용한 열화학 가스 센서 및 그 제조방법 KR101460500B1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR20130020889A KR101460500B1 (ko) 2013-02-27 2013-02-27 칼코지나이드계 나노선을 이용한 열화학 가스 센서 및 그 제조방법
PCT/KR2014/001548 WO2014133310A1 (ko) 2013-02-27 2014-02-26 칼코지나이드계 나노선을 이용한 열화학 가스 센서 및 그 제조방법
JP2015559197A JP6007342B2 (ja) 2013-02-27 2014-02-26 カルコゲナイド系ナノ線を利用した熱化学ガスセンサー及びその製造方法
US14/770,921 US20160013389A1 (en) 2013-02-27 2014-02-26 Thermochemical gas sensor using chalcogenide-based nanowires and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20130020889A KR101460500B1 (ko) 2013-02-27 2013-02-27 칼코지나이드계 나노선을 이용한 열화학 가스 센서 및 그 제조방법

Publications (2)

Publication Number Publication Date
KR20140106812A KR20140106812A (ko) 2014-09-04
KR101460500B1 true KR101460500B1 (ko) 2014-11-11

Family

ID=51428517

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20130020889A KR101460500B1 (ko) 2013-02-27 2013-02-27 칼코지나이드계 나노선을 이용한 열화학 가스 센서 및 그 제조방법

Country Status (4)

Country Link
US (1) US20160013389A1 (ko)
JP (1) JP6007342B2 (ko)
KR (1) KR101460500B1 (ko)
WO (1) WO2014133310A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111948256A (zh) * 2020-08-11 2020-11-17 电子科技大学 一种热电自驱动机动车no2传感器及其制备方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9781838B2 (en) 2014-02-24 2017-10-03 Industry-Academic Cooperation Foundation, Yonsei University Gas sensor and method of manufacturing the same
KR101519971B1 (ko) * 2015-01-26 2015-05-15 연세대학교 산학협력단 가스 센서 및 이의 제조 방법
WO2017171214A1 (ko) * 2016-03-31 2017-10-05 한양대학교 에리카산학협력단 열전 박막을 이용한 열화학 가스 센서 및 그 제조방법
JP6878752B2 (ja) * 2016-05-23 2021-06-02 学校法人神奈川大学 フレキシブル熱電変換部材の作製方法
KR101824813B1 (ko) 2016-09-26 2018-02-01 한양대학교 에리카산학협력단 열화학 센서 및 그 제조 방법
KR101962006B1 (ko) 2017-03-22 2019-03-25 한양대학교 에리카산학협력단 가스 센서 및 그 제조 방법
KR101990675B1 (ko) * 2017-03-22 2019-10-01 한양대학교 에리카산학협력단 가스 센서 및 그 제조 방법
KR102008578B1 (ko) * 2017-11-15 2019-08-07 한양대학교 에리카산학협력단 그래핀 및 금속 입자가 결합된 복합 구조체를 포함하는 가스 센서 및 그 제조방법
KR102181200B1 (ko) * 2019-01-08 2020-11-20 서울대학교산학협력단 이차원 물질 기반 가스센서 및 그 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100101804A (ko) * 2009-03-10 2010-09-20 연세대학교 산학협력단 다공성 나노 템플레이트를 이용한 바이오 센서 및 바이오 센서 제조 방법
KR101089320B1 (ko) 2010-08-16 2011-12-02 연세대학교 산학협력단 Bi2Te3 나노선을 이용한 상변화 메모리 소자
KR20120008208A (ko) * 2010-07-16 2012-01-30 한양대학교 산학협력단 전기화학식 가스 센서 및 그의 제조 방법
KR20120059038A (ko) * 2010-11-30 2012-06-08 고려대학교 산학협력단 p형 산화물 반도체 나노섬을 코팅한 n형 산화물 반도체 나노선 가스 센서 및 그 제조 방법

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2494445A1 (fr) * 1980-11-17 1982-05-21 Socapex Capteur electrochimique des concentrations d'especes dans un melange fluide et systeme de regulation de la richesse d'un melange air-carburant mettant en oeuvre un tel capteur
IL85389A (en) * 1988-02-10 1991-06-10 Israel Atomic Energy Comm Thermoelectric devices
JP3494508B2 (ja) * 1995-06-26 2004-02-09 日本碍子株式会社 可燃性ガスセンサ、可燃性ガス濃度の測定方法及び触媒劣化検知方法
US6388185B1 (en) * 1998-08-07 2002-05-14 California Institute Of Technology Microfabricated thermoelectric power-generation devices
US6705152B2 (en) * 2000-10-24 2004-03-16 Nanoproducts Corporation Nanostructured ceramic platform for micromachined devices and device arrays
GB9927689D0 (en) * 1999-11-23 2000-01-19 Capteur Sensors & Analysers Gas sensors
JP2001215214A (ja) * 1999-11-24 2001-08-10 Ngk Spark Plug Co Ltd 水素ガスセンサ
CA2312259A1 (en) * 2000-06-23 2001-12-23 Ilhan Ulkem Fuel cell gas sensors
US7267859B1 (en) * 2001-11-26 2007-09-11 Massachusetts Institute Of Technology Thick porous anodic alumina films and nanowire arrays grown on a solid substrate
AU2003220048A1 (en) * 2002-03-05 2003-09-22 Eltron Research, Inc. Hydrogen transport membranes
US7001446B2 (en) * 2002-03-05 2006-02-21 Eltron Research, Inc. Dense, layered membranes for hydrogen separation
US6849911B2 (en) * 2002-08-30 2005-02-01 Nano-Proprietary, Inc. Formation of metal nanowires for use as variable-range hydrogen sensors
US20080220244A1 (en) * 2004-01-21 2008-09-11 Chien M Wai Supercritical Fluids in the Formation and Modification of Nanostructures and Nanocomposites
WO2006033875A2 (en) * 2004-09-09 2006-03-30 Orobridge, Inc. Thermoelectric devices with controlled current flow and related methods
JP4216237B2 (ja) * 2004-09-24 2009-01-28 シチズンホールディングス株式会社 熱電式化学センサの製造方法
US20060076046A1 (en) * 2004-10-08 2006-04-13 Nanocoolers, Inc. Thermoelectric device structure and apparatus incorporating same
US7202173B2 (en) * 2004-12-20 2007-04-10 Palo Alto Research Corporation Incorporated Systems and methods for electrical contacts to arrays of vertically aligned nanorods
WO2006072943A2 (en) * 2005-01-03 2006-07-13 Ben Gurion University Of The Negev Research And Development Authority Nano- and mesosized particles comprising an inorganic core, process and applications thereof
EP1890802A2 (en) * 2005-05-25 2008-02-27 Velocys, Inc. Support for use in microchannel processing
US7686885B2 (en) * 2005-06-01 2010-03-30 General Electric Company Patterned nanorod arrays and methods of making same
US7820587B2 (en) * 2005-11-28 2010-10-26 Uchicago Argonne, Llc Porous anodic aluminum oxide membranes for nanofabrication
KR100775412B1 (ko) * 2006-04-24 2007-11-12 재단법인서울대학교산학협력재단 다공성 알루미나 나노틀을 이용하여 제조한 탄소나노튜브가스센서의 제조방법
US20070277866A1 (en) * 2006-05-31 2007-12-06 General Electric Company Thermoelectric nanotube arrays
EP2080007B1 (en) * 2006-10-12 2017-11-29 Nextech Materials, Ltd Hydrogen sensitive composite material, tubular sensor for detecting hydrogen and other gases
US7694547B2 (en) * 2007-03-01 2010-04-13 The Ohio State University Research Foundation Robust high temperature composite and CO sensor made from such composite
WO2009045538A2 (en) * 2007-10-04 2009-04-09 Purdue Research Foundation Fabrication of nanowire array composites for thermoelectric power generators and microcoolers
KR100929027B1 (ko) * 2008-01-03 2009-11-26 한국에너지기술연구원 수소 검출용 평판형 접촉연소식 가스센서의 검지물질 및제조방법
TW200935635A (en) * 2008-02-15 2009-08-16 Univ Nat Chiao Tung Method of manufacturing nanometer-scale thermoelectric device
US9377399B2 (en) * 2008-03-18 2016-06-28 Lawrence Livermore National Security, Llc Resonant optical transducers for in-situ gas detection
US20110000224A1 (en) * 2008-03-19 2011-01-06 Uttam Ghoshal Metal-core thermoelectric cooling and power generation device
CN102132430B (zh) * 2008-08-11 2016-03-30 三星电子株式会社 各向异性伸长的热电材料、其制备方法和包括该材料的器件
KR101125170B1 (ko) * 2009-04-30 2012-03-19 한국과학기술연구원 금속산화물 나노입자를 이용한 가스센서 및 그 제조방법
US8748726B2 (en) * 2009-08-17 2014-06-10 Laird Technologies, Inc. Synthesis of silver, antimony, and tin doped bismuth telluride nanoparticles and bulk bismuth telluride to form bismuth telluride composites
US20110120517A1 (en) * 2009-11-13 2011-05-26 Brookhaven Science Associates, Llc Synthesis of High-Efficiency Thermoelectric Materials
US8569740B2 (en) * 2010-01-12 2013-10-29 MicroXact Inc. High efficiency thermoelectric materials and devices
US8839659B2 (en) * 2010-10-08 2014-09-23 Board Of Trustees Of Northern Illinois University Sensors and devices containing ultra-small nanowire arrays
JP5748211B2 (ja) * 2011-05-26 2015-07-15 フィガロ技研株式会社 ガス検出装置とガス検出方法
KR101303859B1 (ko) * 2011-11-24 2013-09-04 연세대학교 산학협력단 코어/쉘 구조를 갖는 열전 나노와이어의 제조 방법
US8932766B1 (en) * 2012-01-10 2015-01-13 Mainstream Engineering Corporation Nanostructured thermoelectric elements, other ultra-high aspect ratio structures and hierarchical template methods for growth thereof
US9203010B2 (en) * 2012-02-08 2015-12-01 King Abdullah University Of Science And Technology Apparatuses and systems for embedded thermoelectric generators

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100101804A (ko) * 2009-03-10 2010-09-20 연세대학교 산학협력단 다공성 나노 템플레이트를 이용한 바이오 센서 및 바이오 센서 제조 방법
KR20120008208A (ko) * 2010-07-16 2012-01-30 한양대학교 산학협력단 전기화학식 가스 센서 및 그의 제조 방법
KR101089320B1 (ko) 2010-08-16 2011-12-02 연세대학교 산학협력단 Bi2Te3 나노선을 이용한 상변화 메모리 소자
KR20120059038A (ko) * 2010-11-30 2012-06-08 고려대학교 산학협력단 p형 산화물 반도체 나노섬을 코팅한 n형 산화물 반도체 나노선 가스 센서 및 그 제조 방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111948256A (zh) * 2020-08-11 2020-11-17 电子科技大学 一种热电自驱动机动车no2传感器及其制备方法
CN111948256B (zh) * 2020-08-11 2022-01-28 电子科技大学 一种热电自驱动机动车no2传感器及其制备方法

Also Published As

Publication number Publication date
US20160013389A1 (en) 2016-01-14
JP6007342B2 (ja) 2016-10-12
WO2014133310A1 (ko) 2014-09-04
JP2016514257A (ja) 2016-05-19
KR20140106812A (ko) 2014-09-04

Similar Documents

Publication Publication Date Title
KR101460500B1 (ko) 칼코지나이드계 나노선을 이용한 열화학 가스 센서 및 그 제조방법
Yang et al. 1D metal oxide semiconductor materials for chemiresistive gas sensors: a review
Liu et al. Triethylamine gas sensor based on Pt-functionalized hierarchical ZnO microspheres
Saruhan et al. Influences of semiconductor metal oxide properties on gas sensing characteristics
Miao et al. Self-assembled monolayer of metal oxide nanosheet and structure and gas-sensing property relationship
Arunkumar et al. Au Decorated ZnO hierarchical architectures: Facile synthesis, tunable morphology and enhanced CO detection at room temperature
Lupan et al. Influence of CuO nanostructures morphology on hydrogen gas sensing performances
Tan et al. Self-template derived CuO nanowires assembled microspheres and its gas sensing properties
Ramgir et al. Metal oxide nanowires for chemiresistive gas sensors: issues, challenges and prospects
Gupta et al. A low temperature hydrogen sensor based on palladium nanoparticles
Lou et al. Toluene and ethanol sensing performances of pristine and PdO-decorated flower-like ZnO structures
Khoang et al. Design of SnO2/ZnO hierarchical nanostructures for enhanced ethanol gas-sensing performance
Jang et al. Heterogeneous, porous 2D oxide sheets via rapid galvanic replacement: toward superior HCHO sensing application
Calavia et al. Fabrication of WO3 nanodot-based microsensors highly sensitive to hydrogen
Santra et al. Mask-less deposition of Au–SnO2 nanocomposites on CMOS MEMS platform for ethanol detection
Xie et al. Growth of porous ZnO single crystal hierarchical architectures with ultrahigh sensing performances to ethanol and acetone gases
Phan et al. Reliability of hydrogen sensing based on bimetallic Ni–Pd/graphene composites
Wang et al. Facile synthesis of bamboo raft-like Co3O4 with enhanced acetone gas sensing performances
Hozák et al. New Insight into the Gas-Sensing Properties of CuO x Nanowires by Near-Ambient Pressure XPS
Poloju et al. Development of CdO/ZnO nanocomposites for the rapid detection and discrimination of n-butanol
US10845325B2 (en) In-situ localized growth of porous metal oxide films on microheater platform for low temperature gas detection
Phan et al. A novel nanoporous Pd–graphene hybrid synthesized by a facile and rapid process for hydrogen detection
Lee Technological realization of semiconducting metal oxide–based gas sensors
KR101906153B1 (ko) 열전 박막을 이용한 열화학 가스 센서 및 그 제조방법
KR101381317B1 (ko) 코어-쉘 구조의 산화갈륨-산화아연 나노로드, 이의 제조방법 및 이를 이용한 가스센서

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170901

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20181105

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20191001

Year of fee payment: 6